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Abstract. The correspondence principle is customarily used with the Laplace-Carson11

transform technique to tackle the homogenization of linear viscoelastic heterogeneous12

media. The main drawback of this method lies in the fact that the whole stress13

and strain histories have to be considered to compute the mechanical response of the14

material during a given macroscopic loading. Following a remark of Mandel (1966),15

Ricaud and Masson (2009) have shown the equivalence between the collocation method16

used to invert Laplace-Carson transforms and an internal variables formulation. In17

the present article, this new method is developed for the case of polycrystalline18

materials with general anisotropic properties for local and macroscopic behaviors.19

Applications are provided for the case of constitutive relations accounting for glide20

of dislocations on particular slip systems. It is shown that the method yields accurate21

results that perfectly match the standard collocation method and reference full-�eld22

results obtained with a FFT numerical scheme. The formulation is then extended to23

the case of time and strain dependent viscous properties, leading to the Incremental24

Collocation Method (ICM) that can be solved e�ciently by a step-by-step procedure.25

Speci�cally, the introduction of isotropic and kinematic hardening at the slip system26

scale is considered.27
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1. Introduction28

The principal issue for the homogenization of linear viscoelastic heterogeneous media is29

due to memory e�ects. Owing to the dependence of the local strain-rate on both local30

stress (viscous response) and stress-rate (elastic response), standard homogenization31

methods developed for elasticity or viscoplasticity do not apply directly. In particular,32

the whole stress and strain histories have to be considered for determining the mechanical33

response at a given time. From the practical point of view of numerical applications,34

this property requires storing the stress and strain in each mechanical phase for the35

whole loading path. This can be quite cumbersome especially for polycrystals which36

are heterogeneous media containing a large number (typically a few thousands) of37

constituent phases (i.e. crystalline orientations).38

Approximate solutions based on properly chosen internal variables have been39

proposed, e.g. see [1, 2, 3, 4]. Internal variables aim to keep track of the whole40

stress/strain histories and to summarize their e�ect on the material behavior. Since41

their number is limited, the amount of information required to predict the next time42

step is by far smaller than with hereditary approaches considering full memory e�ects (at43

the expense of a lesser accuracy). An alternative internal variable method, based on an44

incremental variational principle, has been proposed by [5, 6]. By contrast with previous45

approaches, this method makes use of the recent developments for the homogenization46

of nonlinear composites which rely on the use of both �rst and second moments of the47

mechanical �elds to de�ne a linear comparison composite (LCC) [7, 8, 9] and e�ective48

internal variables per phase.49

The homogenization problem can be solved exactly by making use of the50

correspondence principle [10]. Taking the Laplace-Carson (LC) transform of the51

problem, the linear viscoelastic behavior is transformed into a symbolic linear elastic52

one in the LC space. Any linear homogenization model can thus be applied to the53

�ctitious elastic heterogeneous material. Then, inverse LC transforms must be carried54

out to obtain the viscoelastic e�ective property in the cartesian space. Except for few55

simple cases for which this inversion can be performed exactly [11, 12] and besides a56

simple approximate solution (direct method) which is only accurate for speci�c loading57

paths such as creep [13, 14, 15], numerical inversions are generally required. For this58

goal, approaches relying on Dirichlet series expansion of the original time functions have59

been proposed, e.g. [13, 16, 17, 18]. Among them, the so-called collocation method [13]60

has provided very good results for the homogenization of polycrystals [19, 20, 21].61

Recently, Ricaud and Masson [22] have made use of a remark of [10] showing that62

an internal variable formulation arises naturally from the collocation method. They63

illustrated the potentiality of this new method for the case of a two-phase composite64

with isotropic phases. The main attractive feature of this formulation is to keep the65

accuracy of integral approaches while preserving the �exibility of an internal variable66

approach.67

The present study develops one step further the approach of Ricaud and Masson68
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[22]. We consider n-phase polycrystalline materials with general anisotropic properties69

for local and macroscopic behaviors and applications are provided for constitutive70

relations accounting for glide of dislocations on particular slip systems. We recall in71

section 2 the basic equations for the homogenization of thermoviscoelastic heterogeneous72

media and it is shown in section 3 how internal variables come out naturally from the73

collocation method, for both stress and strain formulations. Applications are provided74

for a 2-D isotropic polycrystal submitted to (i) creep loading with stress discontinuities75

and (ii) complex loading path with strain harmonic loading. In section 4, the method76

is extended to time- and strain- dependent viscous properties (resulting from isotropic77

and kinematic hardening on slip systems), which can be solved with a step-by-step78

procedure. The results obtained for a loading path containing a harmonic part are79

compared to reference solutions obtained by the FFT full-�eld numerical approach of80

[23].81

2. Homogenization of linear thermoviscoelastic heterogeneous media82

2.1. Constitutive equation for local behavior83

According to the Boltzmann superposition principle, the local stress (resp. strain)84

response of a heterogeneous linear thermoviscoelastic medium can be expressed as a85

Stieltjes convolution of a viscoelastic sti�ness (resp. compliances) tensor with strain86

(resp. stress), with the addition of thermal stress (resp. strain), that is87

σ(x, t) = [C ⋆ ε](x, t) + σ0(x, t)

ε(x, t) = [S ⋆ σ](x, t) + ε0(x, t)
(1)

with x and t the space and time variables, σ and ε stress and strain tensors, ⋆ the88

Stieltjes convolution product, C the viscoelastic sti�ness tensor (i.e. relaxation function),89

and S the viscoelastic compliance (i.e. creep function). Stieltjes convolutions being90

de�ned as the time derivative of Riemann convolutions, the constitutive law is obtained91

by considering the superimposition of in�nitesimal and �nite strain increments, dε and92

[ε],93

σ(x, t) =
d

dt

[∫ t

0

C(x, t− u) : ε(u) du

]
+ σ0(x, t)

=

∫ t

0

C(x, t− u) : ε̇(u)du+
∑

d

C(x, t− td) : [ε]d + σ0(x, t) . (2)

In this expression, strain discontinuities [ε]d are considered only for times td < t.94

Alternatively, the constitutive behaviour reads95

ε(x, t) =
d

dt

[∫ t

0

S(x, t− u) : σ(u) du

]
+ ε0(x, t)

=

∫ t

0

S(x, t− u) : σ̇(u)du+
∑

d

S(x, t− td) : [σ]d + ε0(x, t) (3)

with possible stress discontinuities [σ]d at times td < t.96
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The creep function of a Maxwell viscoelastic behavior with general anisotropy reads97

S(x, t) = S
e(x) + S

v(x) t (4)98

with S
e and S

v the elastic and viscous compliances tensors. By de�nition, the relaxation99

function C(x, t) obeys C⋆S = I (I is the identity tensor) but, unlike the creep function,100

its analytical expression depends on the class of symmetry (Appendix A).101

2.2. E�ective behaviour102

We consider the case of a polycrystal made of R mechanical phases (i.e. R crystalline103

orientations) with χr the characteristic function of phase r and cr its volume fraction.104

The local thermoviscoelastic behavior is maxwellian and uniform in each phase, so that105

tensors Ce, Cv, Se, Sv, C, S, σ0, ε0 are also uniform per phase, and denoted C
e
r, C

v
r ,106

S
e
r, S

v
r , Cr, Sr, σ0r, and ε0r(t). Thus107

C(x, t) =
∑

r

χr(x)Cr(t), σ0(x, t) =
∑

r

χr(x) σ0r(t)

S(x, t) =
∑

r

χr(x) Sr(t), ε0(x, t) =
∑

r

χr(x) ε0r(t)
(5)

with Sr(t) = S
e
r + S

v
r t and Cr ⋆ Sr = I. The average stress and strain (denoted < . >r)108

within phase r obey the constitutive relation (1)109

⟨σ⟩r (t) = [Cr ⋆ ⟨ε⟩r](t) + σ0r(t)

⟨ε⟩r (t) = [Sr ⋆ ⟨σ⟩r](t) + ε0r(t)
. (6)

These phase average �elds are linked to macroscopic ones by phase average stress and110

strain localization tensors Br(t) and Ar(t) ‡111

⟨σ⟩r (t) = [Br ⋆ σ](t) + ⟨σres⟩r (t)

⟨ε⟩r (t) = [Ar ⋆ ε](t) + ⟨εres⟩r (t)
(7)

with σ and ε the overall (macroscopic) stress and strain (σ =< σ >, ε =< ε >, with112

< . > the average over the polycrystal volume). In (7), ⟨εres⟩r and ⟨σres⟩r are the113

phase average residual stress and strain de�ned by114

⟨σres⟩r (t) = [Dr(t) ⋆ (ε̃0 − ε0r)](t)

⟨εres⟩r (t) = [Er(t) ⋆ (σ̃0 − σ0r)](t)
(8)

where Dr(t) and Er(t) are respectively eigenstrain and eigenstress average in�uence115

tensors. The macroscopic behavior is given by the e�ective (denoted .̃ ) relaxation116

function, creep function, thermal stress, and stress-free strain, given by117

C̃(t) = ⟨Cr ⋆Ar⟩ (t), σ̃0(t) =
⟨
T
Ar ⋆ σ0r

⟩
(t) ,

S̃(t) = ⟨Sr ⋆Br⟩ (t), ε̃0(t) =
⟨
T
Br ⋆ ε0r

⟩
(t) .

(9)

This homogenization problem can be solved by making use of the correspondence118

principle [10]. Taking the LC transforms of previous equations, Stieljes convolution119

‡ Note that A and B are not necessarily uniform per phase
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products are transformed into simple scalar products, and therefore the original120

thermoviscoelastic homogenization problem is transformed into a symbolic thermoelastic121

homogenization problem for which standard homogenization techniques apply. Let f ∗
122

denotes the LC transform of function f , f ∗(p) = p
∫
∞

0
f(t)e−ptdt with p the complex123

variable. The symbolic thermoelastic behavior thus reads124

C̃
∗(p) = ⟨C∗

r(p) : A
∗

r(p)⟩ , σ̃
∗

0(p) =
⟨
T
A

∗

r(p) : σ0
∗

r(p)
⟩

S̃
∗(p) = ⟨S∗

r(p) : B
∗

r(p)⟩ , ε̃
∗

0(p) =
⟨
T
B

∗

r(p) : ε0
∗

r(p)
⟩ (10)

with S
∗

r, C
∗

r, ε0
∗

r and σ0
∗

r symbolic thermoelastic property tensors. Once the125

homogenization problem has been solved in the LC space, the solution has to be126

inverse transformed back to the original time space. This inversion constitutes the127

main di�culty for thermoviscoelastic homogenization. In this work, use will be made of128

the collocation method [13]. Following [22], it will be shown that an internal variables129

formulation can be naturally derived from this inversion procedure, without additional130

assumptions. It is also pointed out that this feature is not restricted to this speci�c131

numerical inversion method.132

3. A formulation based on internal variables inferred from the collocation133

method134

3.1. The collocation method135

It is assumed that the considered polycrystal is subjected to a given derivable stress136

loading path σ(u), u ∈ [0; t] with additional discontinuities (i.e. stress jumps) [σ]d at137

times td, and initial conditions σ(x, 0) = σ(0) = 0 ∀(x). The overall polycrystal138

response ε(t) reads139

ε(t) =

∫ t

0

S̃(t− u) : σ̇(u)du+
∑

d

S̃(t− td) : [σ]d + ε̃0(t) . (11)140

The collocation method is based on an approximation of the e�ective creep function S̃141

by a Dirichlet serie S̃
ap

142

S̃(t) ≈ S̃
ap(t) = S̃

e + S̃
vt+

Sc∑

s=1

Sτs(1− e
−t

τs ) (12)143

which LC transform reads144

S̃
ap∗(p) = S̃

e +
1

p
S̃
v +

Sc∑

s=1

Sτs

1

1 + τsp
. (13)145

The Sc collocation times τs can be chosen optimally as in [24], but here they are supposed146

to be determined a priori. Equation (13) de�nes a system of Sc linear equations, in147

which the Sc unknown tensors Sτs are determined from the purely elastic and purely148

viscous end member solutions (that can be solved independently), and from the symbolic149

response S̃ap∗(p) computed at Sc collocation times p = 1/τs. The e�ective strain response150

can then be obtained analytically with relation (11) for any loading path. This method151

has been used for polycrystalline materials e.g. in [19, 20, 21].152
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3.2. Stress formulation153

Alternatively, the macroscopic strain can be obtained by substituting S̃(t) in (11) by154

its approximation S̃
ap(t). Integrating by part and using condition ε(0) = 0 leads to155

ε(t) = S̃
e
:

(
σ(t) +

∑

d

[σ]d

)
+ S̃

v
:

(
ξ(t) +

∑

d

(t− td) [σ]d

)
+

Sc∑

s=1

Sτs :

(
βτs(t) +

∑

d

(1− e
−(t−td)

τs ) [σ]d

)
+ ε̃0(t)

(14)

where two tensorial internal variables ξ(t) and βτs(t) arise naturally. They only depend156

on the macroscopic stress path157

βτs(t) =
1

τs
e

−t

τs

∫ t

0

e
u

τsσ(u)du, ξ(t) =

∫ t

0

σ(u)du, (15)158

and are solution of the following di�erential equations159

β̇τs(t) +
1

τs
βτs(t) =

1

τs
σ(t), ξ̇(t) = σ(t) (16)160

with βτs(0) = 0, ξ(0) = 0. Therefore ξ and βτs are macroscopic variables. Remark that161

there is a single ξ but as many βτs as collocation times. It is also worth noting that162

equations (14-16) could be written alternatively by incorporating stress discontinuities163

[σ]d into the de�nitions of ξ and βτs . If the overall polycrystal loading is performed in164

such a way that ε(t) is prescribed and σ(t) is the wanted response, then σ(t) can165

be replaced in the above equations (16) by its expression derived from (14). The166

e�ective thermal strain ε̃0(t) can be expressed by approximating the phase average167

stress concentration tensors by a Dirichlet serie, as in [21]168

Br(t) ≈ B
ap
r (t) = B

v
r +

Sc∑

s=1

Brτs e
−t

τs (17)169

leading to170

B
ap∗

r (p) = B
v
r +

Sc∑

s=1

Brτs

τsp

1 + τsp
(18)171

where Bv
r denotes stress concentration tensors for the purely viscous behavior. Tensors172

Brτs can be easily determined from the knowledge of Bap∗

r at collocation times p = 1/τs,173

and satisfy B
v
r +
∑Q

s=1 Brτs = B
e
r with B

e
r the stress concentration tensor for the purely174

elastic behavior. Using this approximation with the initial condition ε0r(0) = 0, relation175

(9d) becomes176

ε̃0(t) =

⟨
T
B

e
r : ε0r(t) +

T
B

v
r :
∑

d

[ε0r]d

⟩
+

⟨
∑

s

T
Brτs :

(
∑

d

e
−(t−td)

τs [ε0r]d − ηrτs
(t)

)⟩ (19)
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with the new internal variable ηrτs
depending only on the thermal stress-free strain and177

satisfying178

η̇rτs
(t) +

1

τs
ηrτs

(t) =
1

τs
ε0r(t) , ηrτs

(0) = 0 . (20)179

Hence, ηrτs
is a local variable, and it is worth noting that it is homogeneous per phase180

due to the homogeneity of ε0r. It is stressed that the three internal variables determined181

so far, namely ξ, βτs , and ηrτs
, can be calculated in advance as far as the macroscopic182

stress and thermal loadings are known and provided the necessary collocation times τs183

have been �xed. An important consequence of these developments is that the integral184

expression (11) for the thermoviscoelastic e�ective behavior has been replaced by the185

internal variable formulation given by (14) and (19) that can be advantageously solved186

by means of an incremental numerical procedure.187

Similarly, the phase average stress de�ned by the integral equation (7) can be188

expressed with respect to internal variables, using the approximation (17) and assuming189

a similar form for the eigenstrain in�uence tensors Dr(t)190

Dr(t) ≈ D
ap
r (t) = D

v
r +

Sc∑

s=1

Drτs e
−t

τs . (21)191

This leads to192

⟨σ⟩r (t) = B
e
r : σ(t) +B

v
r :
∑

d

[σ]d+

∑

s

Brτs :

(
∑

d

e
−(t−td)

τs [σ]d − βτs(t)

)
+ ⟨σres⟩r (t) ,

(22)

193

⟨σres⟩r (t) = D
e
r : (ε̃0 − ε0r)(t) +D

v
r :
∑

d

[ε̃0 − ε0r]d+

∑

s

Drτs :

(
∑

d

e
−(t−td)

τs [ε̃0 − ε0r]d − λrτs(t)

) (23)

with the new local internal variable λrτs verifying194

λ̇rτs(t) +
1

τs
λrτs(t) =

1

τs
(ε̃0 − ε0r)(t) , λrτs(0) = 0. (24)195

The phase average strain ⟨ε⟩r (t) can be eventually computed by solving incrementally196

the local constitutive thermoviscoelastic relation.197

3.3. Strain formulation198

We now consider that the polycrystal is subjected to a given derivable loading path199

ε(u), u ∈ [0; t] with additional discontinuities [ε]d at times td and initial conditions200

ε(x, 0) = ε(0) = 0 ∀(x). The stress response σ(t) obtained by the strain (or dual)201

formulation reads202

σ(t) =

∫ t

0

C̃(t− u) : ε̇(u)du+
∑

d

C̃(t− td) : [ε]d + σ̃0(t). (25)203
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Approximating the e�ective relaxation function by a Dirichlet series in a form consistent204

with (12)205

C̃(t) ≈ C̃
ap
(t) =

Sc∑

s=1

Cτs e
−t

τs ,
Sc∑

s=1

Cτs = C̃
e
, (26)206

the macroscopic stress reads207

σ(t) = C̃
e
: ε(t)−

Sc∑

s=1

Cτs :

(
ατs(t)−

∑

d

e
−(t−td)

τs [ε]d

)
+ σ̃0(t) (27)208

with the macroscopic internal variable ατs verifying209

α̇τs(t) +
1

τs
ατs(t) =

1

τs
ε(t) , ατs(0) = 0. (28)210

The e�ective thermal stress σ̃0(t) can be expressed by using the following approximation211

for the average strain concentration tensors212

Ar(t) ≈ A
ap
r (t) = A

v
r +

Sc∑

s=1

Arτs e
−t

τs (29)213

where A
v
r denotes the strain concentration tensors for the purely viscous behavior.214

Tensors Arτs satisfy A
v
r +

∑Q
s=1 Arτs = A

e
r with A

e
r the average strain concentration215

tensor for the purely elastic behavior. Relation (9b) thus gives216

σ̃0(t) =

⟨
T
A

e
r : σ0r(t) +

T
A

v
r :
∑

d

[σ0r]d

⟩
+

⟨
∑

s

T
Arτs :

(
∑

d

e
−(t−td)

τs [σ0r]d − ϱrτs
(t)

)⟩
(30)

with ϱrτs
the new internal variable verifying217

ϱ̇rτs
(t) +

1

τs
ϱrτs

(t) =
1

τs
σ0r(t) , ϱrτs

(0) = 0 . (31)218

As for the stress formulation, the integral expression (25) of the thermoviscoelastic219

constitutive relation has been replaced by an internal variables approach de�ned by220

relations (27) and (30).221

Detailed equations for the phase average strain are not given here for the sake of222

conciseness, but they can be obtained using similar developments as those presented223

above for the stress formulation. Approximating Er(t) by a Dirichlet series as Dr(t),224

see equation (21), the expressions obtained for ⟨ε⟩r (t) and ⟨εres⟩r (t) have a very similar225

form to those given above for ⟨σ⟩r (t) and ⟨σres⟩r (t).226

3.4. Application227

The capabilities of the new formulation with internal variables based on the collocation228

method are now illustrated for the homogenization problem of a 2-D polycrystal with229

local anisotropic behavior. Two applications are provided below, the �rst for prescribed230
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overall stress, and the second for prescribed strain. The model has been implemented231

for both stress and strain formulations in order to compare the relative merit and ease of232

the numerical implementations. Results will be also compared to the original collocation233

method.234

The chosen microstructure consists of two (R = 2) randomly mixed phases, and235

it is deformed under antiplane shear. The choice of such a simple microstructure aims236

to obtain a rapid validation of the method, but it is not a limitation. The viscoplastic237

behavior of similar microstructures has been investigated e.g. in [25, 26, 27]. Owing to238

this particular microstructure, the Self-Consistent (SC) scheme has been chosen here to239

solve the symbolic linear thermo-elastic homogenization problem in the LC space. Local240

elastic and viscous compliances are given by241

S
e
r =

2∑

k=1

1

4µe(k)
R

(k)
r ⊗R

(k)
r , S

v
r =

2∑

k=1

1

µv(k)
R

(k)
r ⊗R

(k)
r (32)

with µe(k) and µv(k) the elastic and viscous shear compliances of slip system (k).242

The following values have been considered for the computations: µe(1) = 1MPa,243

µv(1) = 2MPa.s, µe(2) = 100MPa, µv(2) = 20MPa.s, so that system (2) is sti� compared244

to system (1). The two mechanical phases are rotated by 90◦ from each other, and245

slip is allowed on two perpendicular slip planes along direction e3 so that the Schmid246

tensors read R
(k)
2 = 1

2
(ek ⊗ e3 + e3 ⊗ ek), R

(1)
1 = R

(2)
2 , and R

(2)
1 = −R

(1)
2 (see �gure247

3). From the numerical point of view, di�erential equations appearing in the internal248

variables formulation have been solved by the Runge-Kutta method. Collocation times249

τs have been distributed on a logarithmic scale between the two extreme relaxation250

times µv(2)/µe(2) and µv(1)/µe(1); numerical applications have been performed for di�erent251

numbers of collocation times, 5 ≤ Sc ≤ 20, with no in�uence on results.252

Several macroscopic loadings have been tested. The �rst case of interest is a creep253

test σ̄13 including a stress jump254

{
σ̄13 = 1MPa for t ≤ 2s

σ̄13 = 4MPa for t > 2s
. (33)255

The predicted macroscopic behavior, phase average stress, and phase average strain, are256

shown in �gure 1. These results have been obtained by means of the original collocation257

method and the new stress (�3.2) and strain (�3.3) formulations. They are all plotted258

in �gure 1. It can be seen that results obtained with those three formulations are in259

perfect match with each other at both macroscopic and local levels, which validates260

the numerical resolution of present developments. It is worth recalling that those three261

formulation are equivalent, as discussed above. In particular, the stress jumps at t = 0s262

and t = 2s and subsequent recovery of both phases are nicely captured.263

Another example of challenging test is the response under harmonic loading. We264

have studied the case of a strain imposed antiplane shear with a constant strain-rate265
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Figure 1. Response of the 2-D polycrystal under the creep loading with stress jump

(33). (a) Stress response: `macro' indicates the prescribed σ13(t), `phase 1' indicates

⟨σ13⟩1 (t), and `phase 2' ⟨σ13⟩2 (t). (b) Corresponding strain response (ε13(t), ⟨ε13⟩1 (t),

and ⟨ε13⟩2 (t)). Results from the original collocation method and for both stress and

strain approaches are shown.

stage followed by a sinusoidal overall strain stage, as in [5]266

{
ε13 = Aωt for t ≤ t0
ε13 = A sin[ω(t− t0)] for t > t0

(34)267

with numerical values A = 0.04, ω = 15s−1, and t0 = 1s. As for the previous268

example, it is found that the three approaches, namely standard collocation method,269

stress formulation, and strain formulation provide the same results (�gure 2), for the270

macroscopic behavior but also for phase average stress and strain. At large time, the271

overall specimen has relaxed from the �rst loading stage and therefore macroscopic stress272

and phase average stresses tend to periodic oscillations around 0MPa.273

To check the validity of these results, reference solutions were generated with a274

full-�eld numerical approach based on Fourier Transforms. The method is described in275

[23, 28] for elastic or viscoplastic composites and polycrystals, and in [29] (with numerical276

details in [30]) for elasto-viscoplastic behavior . The FFT-based full-�eld formulation277

is conceived for periodic unit cells deformed under periodic boundary conditions, and278

it provides the �exact� (within numerical accuracy) solution of the governing equations.279

Here, we considered a periodic tile microstructure formed by square grains (see �gure280

3) which has been found to provide numerical results in very good agreement with281

theoretical solutions [31] (with which the linear SC scheme also coincides). For linear282

viscoelastic behaviors, the relaxation spectra of this microstructure exhibits an in�nite283

number of relaxation times. With macroscopic loading (34), the detailed distribution284

of stress and strain is thus obtained. For the purpose of comparison with mean-�eld285

homogenization models, stress and strain �elds have been spatially averaged to evaluate286
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phase average quantities. Comparison is provided in �gure 2. It turns out that results287

from the internal variable approaches are virtually undistinguishable from FFT ones,288

which proves the accuracy of the proposed method for anisotropic linear viscoelastic289

behavior although the method only accounts for a �nite (and small) number of relaxation290

times.291

Figure 2. Response of the 2-D polycrystal under the harmonic loading given by

(34). Macroscopic and phase average (a) stress and (b) strain responses, as in

�gure 1. Results from the original collocation method and from both stress and

strain approaches are shown, together with those obtained by FFT full-�eld numerical

method.

Figure 3. Periodic 2-D microstructure considered for FFT numerical computations.

Arrows indicate the normal of slip planes. Slip direction is along e3.

4. Extension to time- and strain-dependent viscous properties292

The above formulation has been provided for constant elastic S
e
r and viscous S

v
r293

compliances. An important consequence of this feature is that coe�cients Sτs in (12)294
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have to be determined only once, independently of the macroscopic prescribed loading.295

We are now extending the formulation to situations for which this is no more the296

case. For illustrative purpose, we are considering the case of local constitutive relations297

including isotropic and kinematic hardening, the latter being time-dependent due to298

static relaxation mechanisms.299

4.1. Local constitutive behavior law including hardening and revovery300

We consider a local constitutive relation (proposed in [30]) with constant elastic301

properties, but with a viscous part depending on strain due to isotropic and kinematic302

hardening and on time due to static relaxation. We consider Voce-type law for isotropic303

hardening and a simple saturating expression for kinematic hardening as in [32]. The304

complete constitutive relation reads (spatial position x has been omitted)305

ε̇ = S
e
r : σ̇ + ε̇v (35)

ε̇v =
K∑

k=1

γ̇(k)
R

(k)
r (36)

γ̇(k) = γ̇0
τ (k) −X(k)

τ
(k)
0

(37)

τ (k) = R
(k)
r : σ (38)

τ̇
(k)
0 = (τ

(k)
sta − τ

(k)
0 )

K∑

l=1

H(k,l)|γ̇(l)| (39)

Ẋ(k) = cγ̇(k) − dX(k)|γ̇(k)| − e|X(k)|msign(X(k)) (40)

with ε̇v the local viscous strain-rate, γ̇(k) the shear-rate on slip system (k), τ (k) the306

resolved shear stress on that system, and γ̇0, c, d, and e constant coe�cients. With307

this law, the reference shear stress τ
(k)
0 for system (k) evolves from an initial value to308

a saturation value τ
(k)
sta due to isotropic hardening, H being the (constant) interaction309

matrix between slip systems. Kinematic hardening is due to the backstress X(k) that310

includes static recovery (coe�cient e). This viscoelastic behavior can be also written311

ε̇ = S
e
r : σ̇ + S

v : σ + ε̇0 (41)312

with313

S
v =

K∑

k=1

γ̇
(k)
0

R
(k)
r ⊗R

(k)
r

τ
(k)
0

, ε̇0 = −
K∑

k=1

γ̇
(k)
0

X(k)
R

(k)
r

τ
(k)
0

. (42)

It is worth noting that the above constitutive relation is de�ned at any point x within314

the polycrystal. Therefore, τ̇
(k)
0 (x) and Ẋ(k)(x) should be heterogeneous within each315

mechanical phase due to the intraphase heterogeneity of γ̇(k)(x). A consequence of this is316

that the compliance Sv(x) and the stress-free strain ε̇0(x) are also heterogeneous within317

phases, but then standard homogenization techniques do not apply. To circumvent this318

di�culty, we have replaced γ̇(k)(x) in equations (39) and (40) by its phase average value319 ⟨
γ̇(k)
⟩
r
so that, starting with phase uniform τ̇

(k)
0 and Ẋ(k) (now denoted τ̇

(k)
0r and Ẋ

(k)
r ),320
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S
v and ε̇0 remain phase uniform (denoted S

v
r and ε̇0r) so that mean-�eld homogenization321

can be carried out. The phase average behavior thus reads322

⟨ε̇⟩r = S
e
r : ⟨σ̇⟩r + S

v
r : ⟨σ⟩r + ε̇0r . (43)323

The consequence of this approximation will be discussed below.324

4.2. The Incremental Collocation Method (ICM)325

In section 3, both stress and strain approaches have been treated and applied326

simultaneously, and we have shown that both provide identical results. In the following,327

for the sake of clarity, only the stress formulation is presented (but we have checked that328

the strain approach still provides equivalent results) and stress jumps are not included.329

The main issue comes from the evolution of the viscous local behavior with time and330

strain. As a consequence, the coe�cients Sτs and the homogenized viscous compliance331

S̃
v evolve so that the homogenization procedure cannot be applied the same way as332

previously. This issue can be solved with an incremental resolution, assuming that333

coe�cients Sτs are constant during a su�ciently small time increment. Then, equation334

(14) becomes335

∆ε̄ = S̃
e : ∆σ̄ + S̃

v|1/2 : ∆ξ +
S∑

s=1

Sτs |1/2 : ∆βτs +∆ε̃0 (44)336

with ∆ denoting the increment between times tn and tn+1, e.g. ∆ε̄ = ε̄(tn+1) − ε̄(tn).337

In (44), values for Sτs and S̃
v are taken for half the time increment, e.g. Sτs |1/2 =338

(Sτs(tn) + Sτs(tn+1))/2. The evolution laws for ξ and βτs are the same as in section339

3, see eq.(16). Similarly, the macroscopic thermoelastic strain given in equation (19) is340

computed using341

∆ε̃0 =

⟨
T
B

e
r : ∆ε0r −

∑

s

T
Brτs |1/2 : ∆ηrτs

⟩
(45)342

and the phase average stress343

∆ ⟨σ⟩r = B
e
r : ∆σ −

∑

s

Brτs |1/2 : ∆βτs +D
e
r : (∆ε̃0 −∆ε0r)−

∑

s

Drτs |1/2 : (∆θτs −∆ηrτs
) (46)

where the new macroscopic internal variable θτs = λrτs+ηrτs
is introduced for numerical344

purpose (see Appendix B)345

θ̇τs(t) +
1

τs
θτs(t) =

1

τs
ε̃0(t) , θτs(0) = 0. (47)346

Phase average strain increments can then be computed with (41). Note that if hardening347

is discarded (c = d = e = H = 0), behaviors given by (44) and (14) are strictly348

equivalent.349

When used with the original integral approach, the standard collocation method350

applied to polycrystals with local behavior (35-40) requires calculation of coe�cients351
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Sτs at each time step. This is also the case for the proposed incremental approach.352

However, unlike the present formulation, the integral approach requires keeping record353

of the whole history of S̃ and Br from the very �rst loading stage for the evaluation of354

integrals (9), which is cumbersome especially when dealing with polycrystals with a large355

number of mechanical phases and loading steps. With the proposed approach (denoted356

Incremental Collocation Method, ICM), the numerical resolution is incremental. A step-357

by-step procedure can be applied, in which the aim of internal variables is to summarize358

the e�ects of the whole stress and strain history. This allows studying the polycrystal359

response for any complex loading with much more ease and �exibility. The algorithm360

for numerical implementation of the ICM is detailed in Appendix B.361

4.3. Application362

To show the potentiality of the proposed ICM, the microstructure introduced in section363

3.4 is investigated for deformation under the complex loading (34). Results are compared364

with reference solutions generated by the full-�eld FFT method, as in section 3. The365

local behavior (35-40) has been implemented with coe�cients indicated in Table 1 and366

γ̇0 = 1s−1, m = 1, and H(k,l) = 2 ∀k, l. Figure 4 shows the e�ective stress response367

for two cases: (i) when both isotropic and kinematic are considered (with parameters368

c = 5MPa, d = 10, e = 0), and (ii) with isotropic hardening only (c = d = e = 0).369

It can be seen that, for both cases, the ICM matches well FFT solutions at the very370

�rst loading stage, but then the e�ective behavior becomes softer than the FFT one,371

the largest stress discrepancy σ̄FFT13 − σ̄INC13 being observed close to the stress peak372

t ≈ 1s. At larger time after several loading cycles, the discrepancy decreases until both373

responses coincide again.374

It is recalled that the step-by-step numerical resolution of the ICM provides the375

same results as the internal variable approach of section 3 when hardening is discarded.376

Therefore, observed discrepancies are associated with the treatment of hardening. This377

is now illustrated with the case for which only isotropic hardening has been considered.378

Here, the main di�erence with results presented in section 3 is that τ
(k)
0 is evolving. As379

discussed above, γ̇(k)(x) had to be replaced by
⟨
γ̇(k)
⟩
r
in the hardening law for the ICM380

to be solved with standard mean-�eld homogenization techniques. Hence, instead of381

correctly predicting intraphase �uctuations for τ
(k)
0 as with the FFT approach, the ICM382

requires phase uniform values. Consequences of this limitation have been investigated383

in [33] for viscoplastic polycrystals. Here, the ICM underestimates the average value of384 ⟨
τ
(k)
0

⟩
r
compared to FFT reference results. At the same time, the overall behavior for385

the ICM is softer than for FFT predictions; this can originates from lower
⟨
τ
(k)
0

⟩
r
but386

also from the intraphase heterogeneity of τ
(k)
0 , not predicted by ICM. Figure 5a shows387

an example of result for slip system k = 1 of phase r = 1 (similar trend is observed388

for other slips systems). Interestingly, the stress discrepancy σ̄FFT13 − σ̄INC13 is found to389

be correlated with the standard deviation

√
< τ

(k)
0 τ

(k)
0 > − < τ

(k)
0 >2 (computed with390
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Table 1. Parameters of the constitutive relation.

Slip system k µe [MPa] τ0(t = 0) [MPa] τsta [MPa]

1 1 2 4

2 100 20 30

FFT) of τ
(k)
0 . As shown in �gure 5b, the highest stress discrepancy at stress peak391

coincides with the largest standard deviation. Then, as the number of loading cycles392

increases,
⟨
τ
(k)
0

⟩
r
becomes closer to the stationary value and at the same time τ

(k)
0393

becomes more uniform within phases. At large time, ICM and FFT predictions coincide394

again.395

Figure 4. Viscoelastic homogenization with (a) both isotropic and kinematic

hardening and (b) isotropic hardening only. Comparisons between incremental

collocation and FFT methods for the macroscopic stress response σ̄13.

5. Concluding remarks396

In the present article, the equivalence between the collocation method used to inverse397

Laplace-Carson transforms and an internal variables formulation has been developed398

for the case of linear thermo-viscoelastic polycrystalline materials exhibiting general399

anisotropic properties for local and macroscopic behaviors. The method has been400

applied to 2-D polycrystals with 2 slip systems per phase, deformed under antiplane401

shear, for macroscopic loading including stress discontinuities and for complex strain402

loading including a cyclic stage. It has been shown that the internal variable method403

yields accurate results that perfectly match the standard collocation method. Excellent404

agreement has also been obtained with references solutions provided by the full-�eld FFT405

numerical scheme. The formulation has been extended to the case of time- and strain-406
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Figure 5. Viscoelastic homogenization with isotropic hardening predicted by the

incremental collocation and FFT methods. (a) Evolution of
⟨
τ
(1)
0

⟩

1
. (b) Di�erence

between the overall stresses σ̄13 obtained with FFT and ICM as a function of the

standard deviation of τ
(1)
0 .

dependent constitutive viscous properties. In that case, an incremental collocation407

method is proposed. It can be e�ciently solved numerically using a step-by-step408

procedure, and a general algorithm has been proposed. The capability of the method has409

been illustrated on a 2-D polycrystal, but it is worth noting that solving similar problems410

with 3-D polycrystals exhibiting few thousand phases requires only a few minutes on a411

standard laptop. The new method is therefore especially e�cient for solving complex412

loading paths. Moreover, the introduction of isotropic and kinematic hardening at the413

slip system level has been considered. Some discrepancies with reference FFT results414

have been observed. They are likely due to the approximation made in considering phase415

uniform hardening variables within mean-�eld homogenization. Finally, it is pointed416

out that the obtained ICM o�ers a simple framework to address the case of nonlinear417

behaviors, e.g. using a linearization procedure similar as the one proposed by [21].418
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Appendix A. Relaxation function for an anisotropic Maxwell behavior423

For general anisotropy, tensors C and S verify424

C ⋆ S = I , C
∗ : S∗ = I. (A.1)425
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For a Maxwell behaviour, the creep function is S(t) = S
e + S

v t and the LC transform426

of the relaxation function thus reads427

C
∗(p) =

(
S
e +

1

p
S
v

)
−1

. (A.2)428

For general anisotropy, an analytic expression for the relaxation function C(t), given429

by the inverse transform of C∗, cannot be obtained. However, a closed-form expression430

can be found for particular symmetry classes by using the spectral decomposition of the431

fourth-order symmetric tensors [34]. For an isotropic behaviour, local properties read432

S
e =

1

3ke
J+

1

2µe
K , S

v =
1

3kv
J+

1

2µv
K (A.3)433

and thus434

C
∗(p) = 3ke

(
τk p

1 + τk p

)
J+ 2µe

(
τµ p

1 + τµ p

)
K (A.4)435

with τk = kv/ke and τµ = µv/µe two characteristic relaxation times. The corresponding436

relaxation function is given by437

C(t) = 3ke exp(−t/τk)J+ 2µe exp(−t/τµ)K . (A.5)438

For cubic symmetry, the local properties read439

S
e =

1

3ke
J+

1

2µe
a

Ka +
1

2µe
b

Kb , S
v =

1

3kv
J+

1

2µv
a

Ka +
1

2µe
b

Kb (A.6)440

and thus441

C
∗(p) = 3ke

(
τk p

1 + τk p

)
J+ 2µe

a

(
τµa

p

1 + τµa
p

)
Ka + 2µe

b

(
τµb

p

1 + τµb
p

)
Kb (A.7)442

with τk = kv/ke, τµa
= µv

a/µ
e
a and τµb

= µv
b/µ

e
b three characteristic relaxation times.443

The corresponding relaxation function thus reads444

C(t) = 3ke exp(−t/τk)J+ 2µe
a exp(−t/τµa

)Ka + 2µe
b exp(−t/τµb

)Kb . (A.8)445

Similar expressions can be obtained for other symmetry classes.446

Appendix B. Numerical resolution of the incremental collocation method447

We provide here the algorithm for the step-by-step resolution of the ICM described in448

section 4. The case of loadings with prescribed σ̄ is presented �rst. Assuming that449

the homogenization problem has been solved for times 0 ≤ t ≤ tn, we seek to �nd450

the mechanical response at time tn+1 associated to stress and time increments ∆σ̄ and451

∆t. The algorithm consists essentially of 3 loops, besides the time loop: the outer loop452

(index i) for solving ε̃0 and S
v, the inner loop (index j) for ∆σr, and a loop for the453

symbolic homogenization problem.454

(1) Computation of ∆βτs and ∆ξ following (16)455

(2) Initializations: (Sv)i=0
tn+1

= (Sv)tn ; (Sτs)
i=0
tn+1

= (Sτs)tn ; (S̃
v)i=0

tn+1
= (S̃v)tn ; (Brτs )

i=0
tn+1

=456

(Brτs )tn ; (Drτs )
i=0
tn+1

= (Drτs )tn457
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(3) Computation of ∆ ⟨σ⟩r:458

(a) Initialization of (∆ ⟨σ⟩r)
j=0

459

(b) Computation of (∆X)j and (∆τ0)
j following (39-40)460

(c) Computation of (∆ε0r)
j and (∆ ⟨ε⟩r)

j following (42-41)461

(d) Computation of (∆ηrτs
)j following (20)462

(e) Computation of (∆ε̃0)
j following (45)463

(f) Computation of (∆θτs)
j following (47)464

(g) Actualization of (∆ ⟨σ⟩r)
j+1 following (46)465

(h) Compute convergence error δ1 =
∣∣(∆ ⟨σ⟩r)j+1 − (∆ ⟨σ⟩r)

j
∣∣

466

If δ1 < threshold then go to (4), else j ← j + 1 and return to (3.b)467

(4) Actualization of (ε̃0)
i+1
tn+1

and (Sv)i+1
tn+1

following (42)468

(5) Homogenization of the symbolic thermo-elastic problem ⇒ (Sτs)
i+1
tn+1

; (S̃v)i+1
tn+1

;469

(Brτs )
i+1
tn+1

; (Drτs )
i+1
tn+1

470

(6) Compute convergence error δ2 =
∣∣(Sv)i+1

tn+1
− (Sv)itn+1

∣∣
471

If δ2 < threshold then go to (7), else i← i+ 1 and return to (3.b)472

(7) Output macroscopic and local responses at time tn+1 , and go to (2) for the next473

time step474

In cases of loading with prescribed ε̄ (instead of σ̄ as above), the algorithm has to475

be slightly changed since ∆βτs and ∆ξ cannot be calculated in advance.476

(1) Initializations: (Sv)i=0
tn+1

= (Sv)tn ; (Sτs)
i=0
tn+1

= (Sτs)tn ; (S̃
v)i=0

tn+1
= (S̃v)tn ; (Brτs )

i=0
tn+1

=477

(Brτs )tn ; (Drτs )
i=0
tn+1

= (Drτs )tn478

(2) Computation of ∆βτs , ∆ξ and ε̃0479

(a) Initialization : (∆βτs)
j = (∆βτs)

0, (∆ξ)j = (∆ξ)0 and (∆ε̄0)
j = (∆ε̄0)

0
480

(b) Computation of (∆σ̄)j from (44)481

(c) Computation of (∆βτs)
j+1 and (∆ξ)j+1 following (16)482

(d) Computation of (∆ε̃0)
j+1

483

1. Initialization of (∆ ⟨σ⟩r)
k=0

484

2. Computation of (∆ ⟨σ⟩r)
k+1 with steps (3.b) to (3.g) above485

3. Compute convergence error δ1 =
∣∣(∆ ⟨σ⟩r)k+1 − (∆ ⟨σ⟩r)

k
∣∣

486

If δ1 < threshold then (∆ε̃0)
j+1 = (∆ε̃0)

k and go to (2.e), else k ← k + 1487

and return to (2.d.2)488

(e) Compute convergence error δ2 as the max of normalized value of489 ∣∣(∆βτs)
j+1 − (∆βτs)

j
∣∣, |(∆ξ)j+1 − (∆ξ)j|, and |(∆ε̃0)

j+1 − (∆ε̃0)
j|490

If δ2 < threshold then go to (3), else j ← j + 1 and return to (2.b)491

(3) Reactualization of (Svsct)i+1
tn+1

following (??)492

(4) Homogenization of the symbolic thermo-elastic problem ⇒ (Sτs)
i+1
tn+1

; (S̃v)i+1
tn+1

;493

(Brτs )
i+1
tn+1

; (Drτs )
i+1
tn+1

494

(5) Compute convergence error δ3 =
∣∣(Sv)i+1

tn+1
− (Sv)itn+1

∣∣
495

If δ3 < threshold then go to (6), else i← i+ 1 and return to (2)496
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(6) Output macroscopic and local responses at time tn+1 , and go to (2) for the next497

time step498
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