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A self-consistent estimate for linear viscoelastic polycrystals with internal variables inferred from the collocation method !

The correspondence principle is customarily used with the Laplace-Carson transform technique to tackle the homogenization of linear viscoelastic heterogeneous media. The main drawback of this method lies in the fact that the whole stress ! and strain histories have to be considered to compute the mechanical response of the " material during a given macroscopic loading. Following a remark of Mandel (1966), # Ricaud and Masson (2009) have shown the equivalence between the collocation method $ used to invert Laplace-Carson transforms and an internal variables formulation. In % the present article, this new method is developed for the case of polycrystalline & materials with general anisotropic properties for local and macroscopic behaviors.

'

 showing that $ an internal variable formulation arises naturally from the collocation method. They $! illustrated the potentiality of this new method for the case of a two-phase composite $" with isotropic phases. The main attractive feature of this formulation is to keep the $# accuracy of integral approaches while preserving the exibility of an internal variable $$ approach.

$%

. We consider n-phase polycrystalline materials with general anisotropic properties $' for local and macroscopic behaviors and applications are provided for constitutive % relations accounting for glide of dislocations on particular slip systems. We recall in % section 2 the basic equations for the homogenization of thermoviscoelastic heterogeneous % media and it is shown in section 3 how internal variables come out naturally from the %! collocation method, for both stress and strain formulations. Applications are provided %" for a 2-D isotropic polycrystal submitted to (i) creep loading with stress discontinuities %# and (ii) complex loading path with strain harmonic loading. In section 4, the method %$ is extended to time-and strain-dependent viscous properties (resulting from isotropic %% and kinematic hardening on slip systems), which can be solved with a step-by-step %& procedure. The results obtained for a loading path containing a harmonic part are %' compared to reference solutions obtained by the FFT full-eld numerical approach of

Introduction

&

The principal issue for the homogenization of linear viscoelastic heterogeneous media is ' due to memory eects. Owing to the dependence of the local strain-rate on both local ! stress (viscous response) and stress-rate (elastic response), standard homogenization ! methods developed for elasticity or viscoplasticity do not apply directly. In particular, ! the whole stress and strain histories have to be considered for determining the mechanical !! response at a given time. From the practical point of view of numerical applications, !" this property requires storing the stress and strain in each mechanical phase for the !# whole loading path. This can be quite cumbersome especially for polycrystals which (resp. stress), with the addition of thermal stress (resp. strain), that is &% σ(x, t) = [C ⋆ ε](x, t) + σ 0 (x, t) ε(x, t) = [S ⋆ σ](x, t) + ε 0 (x, t) [START_REF] Sabar | A new class of micro-macro models for # elastic-viscoplastic heterogeneous materials[END_REF] with x and t the space and time variables, σ and ε stress and strain tensors, ⋆ the && Stieltjes convolution product, C the viscoelastic stiness tensor (i.e. relaxation function), &' and S the viscoelastic compliance (i.e. creep function). Stieltjes convolutions being ' dened as the time derivative of Riemann convolutions, the constitutive law is obtained ' by considering the superimposition of innitesimal and nite strain increments, dε and

' [ε], '! σ(x, t) = d dt [∫ t 0 C(x, t -u) : ε(u) du ] + σ 0 (x, t) = ∫ t 0 C(x, t -u) : ε(u)du + ∑ d C(x, t -t d ) : [ε] d + σ 0 (x, t) . (2)
In this expression, strain discontinuities [ε] d are considered only for times t d < t.

'" Alternatively, the constitutive behaviour reads

'# ε(x, t) = d dt [∫ t 0 S(x, t -u) : σ(u) du ] + ε 0 (x, t) = ∫ t 0 S(x, t -u) : σ(u)du + ∑ d S(x, t -t d ) : [σ] d + ε 0 (x, t) (3) 
with possible stress discontinuities [σ] d at times t d < t.

'$

The creep function of a Maxwell viscoelastic behavior with general anisotropy reads '% S(x, t) = S e (x) + S v (x) t (4) '& with S e and S v the elastic and viscous compliances tensors. By denition, the relaxation '' function C(x, t) obeys C ⋆ S = I (I is the identity tensor) but, unlike the creep function, its analytical expression depends on the class of symmetry (Appendix A).

Eective behaviour

We consider the case of a polycrystal made of R mechanical phases (i.e. R crystalline ! orientations) with χ r the characteristic function of phase r and c r its volume fraction.

The local thermoviscoelastic behavior is maxwellian and uniform in each phase, so that # tensors C e , C v , S e , S v , C, S, σ 0 , ε 0 are also uniform per phase, and denoted

C e r , C v r , $ S e r , S v r , C r , S r , σ 0r , and ε 0r (t). Thus % C(x, t) = ∑ r χ r (x) C r (t), σ 0 (x, t) = ∑ r χ r (x) σ 0r (t) S(x, t) = ∑ r χ r (x) S r (t), ε 0 (x, t) = ∑ r χ r (x) ε 0r (t) (5) 
with S r (t) = S e r + S v r t and C r ⋆ S r = I. The average stress and strain (denoted < . > r )

& within phase r obey the constitutive relation ( 1)

' ⟨σ⟩ r (t) = [C r ⋆ ⟨ε⟩ r ](t) + σ 0r (t) ⟨ε⟩ r (t) = [S r ⋆ ⟨σ⟩ r ](t) + ε 0r (t) . (6) 
These phase average elds are linked to macroscopic ones by phase average stress and strain localization tensors B r (t) and A r (t)

‡ ⟨σ⟩ r (t) = [B r ⋆ σ](t) + ⟨σ res ⟩ r (t) ⟨ε⟩ r (t) = [A r ⋆ ε](t) + ⟨ε res ⟩ r (t) (7) 
with σ and ε the overall (macroscopic) stress and strain (σ =< σ >, ε =< ε >, with < . > the average over the polycrystal volume). In (7), ⟨ε res ⟩ r and ⟨σ res ⟩ r are the ! phase average residual stress and strain dened by

" ⟨σ res ⟩ r (t) = [D r (t) ⋆ ( ε 0 -ε 0r )](t) ⟨ε res ⟩ r (t) = [E r (t) ⋆ ( σ 0 -σ 0r )](t) (8) 
where D r (t) and E r (t) are respectively eigenstrain and eigenstress average inuence # tensors. The macroscopic behavior is given by the eective (denoted . ) relaxation $ function, creep function, thermal stress, and stress-free strain, given by %

C(t) = ⟨C r ⋆ A r ⟩ (t), σ 0 (t) = ⟨ 6 A r ⋆ σ 0r ⟩ (t) , S(t) = ⟨S r ⋆ B r ⟩ (t), ε 0 (t) = ⟨ 6 B r ⋆ ε 0r ⟩ (t) . (9) 
This homogenization problem can be solved by making use of the correspondence & principle [START_REF] Mandel | Mécanique des milieux continus[END_REF]. 

C * (p) = ⟨C * r (p) : A * r (p)⟩ , σ * 0 (p) = ⟨ 6 A * r (p) : σ 0 * r (p) ⟩ S * (p) = ⟨S * r (p) : B * r (p)⟩ , ε * 0 (p) = ⟨ 6 B * r (p) : ε 0 * r (p) ⟩ (10) 
ε(t) = ∫ t 0 S(t -u) : σ(u)du + ∑ d S(t -t d ) : [σ] d + ε 0 (t) . (11) 
"

The collocation method is based on an approximation of the eective creep function S " by a Dirichlet serie S ap "

S(t) ≈ S ap (t) = S e + S v t + S c ∑ s=1 S τ s (1 -e -t τs ) (12) 
"! which LC transform reads ""

S ap * (p) = S e + 1 p S v + Sc ∑ s=1 S τ s 1 1 + τ s p . ( 13 
) "#
The S c collocation times τ s can be chosen optimally as in [START_REF] Rekik | Optimization of the collocation inversion method for the linear #"$ viscoelastic homogenization[END_REF], but here they are supposed "$ to be determined a priori. Equation (13) denes a system of S c linear equations, in its approximation S ap (t). Integrating by part and using condition ε(0) = 0 leads to

## ε(t) = S e : ( σ(t) + ∑ d [σ] d ) + S v : ( ξ(t) + ∑ d (t -t d ) [σ] d ) + S c ∑ s=1 S τ s :
(

β τs (t) + ∑ d (1 -e -(t-t d ) τs ) [σ] d ) + ε 0 (t) (14) 
where two tensorial internal variables ξ(t) and β τ s (t) arise naturally. They only depend #$ on the macroscopic stress path

#% β τs (t) = 1 τ s e -t τs ∫ t 0 e u τs σ(u)du, ξ(t) = ∫ t 0 σ(u)du, (15) 
#& and are solution of the following dierential equations #'

βτs (t) + 1 τ s β τs (t) = 1 τ s σ(t), ξ(t) = σ(t) (16) 
$ with β τs (0) = 0, ξ(0) = 0. Therefore ξ and β τs are macroscopic variables. Remark that $ there is a single ξ but as many β τs as collocation times. It is also worth noting that $ equations (14-16) could be written alternatively by incorporating stress discontinuities $!

[σ] d into the denitions of ξ and β τs . If the overall polycrystal loading is performed in $" such a way that ε(t) is prescribed and σ(t) is the wanted response, then σ(t) can $# be replaced in the above equations ( 16) by its expression derived from [START_REF] Turner | Self-consistent modelling of nonlinear visco-elastic # " polycrystals : an approximate scheme[END_REF]. The $$ eective thermal strain ε 0 (t) can be expressed by approximating the phase average $% stress concentration tensors by a Dirichlet serie, as in [START_REF] Masson | Self-consistent estimates for the rate-dependent elastoplastic behaviour #!' of polycrystalline materials[END_REF] $

& B r (t) ≈ B ap r (t) = B v r + Sc ∑ s=1 B rτ s e -t τs (17) 
$' leading to elastic behavior. Using this approximation with the initial condition

% B ap * r (p) = B v r + Sc ∑ s=1 B rτ s τ s p 1 + τ s p (18) 
ε 0r (0) = 0, relation %# (9d) becomes %$ ε 0 (t) = ⟨ 6 B e r : ε 0r (t) + 6 B v r : ∑ d [ε 0r ] d ⟩ + ⟨ ∑ s 6 B rτ s : ( ∑ d e -(t-t d ) τs [ε 0r ] d -η rτ s (t) )⟩ (19) 
with the new internal variable η rτ s depending only on the thermal stress-free strain and %% satisfying %&

ηrτ s (t) + 1 τ s η rτ s (t) = 1 τ s ε 0r (t) , η rτ s (0) = 0 . (20) 
%'

Hence, η rτ s is a local variable, and it is worth noting that it is homogeneous per phase stress and thermal loadings are known and provided the necessary collocation times internal variable formulation given by ( 14) and ( 19) that can be advantageously solved &$ by means of an incremental numerical procedure.

&%

Similarly, the phase average stress dened by the integral equation ( 7) can be && expressed with respect to internal variables, using the approximation ( 17) and assuming &' a similar form for the eigenstrain inuence tensors D r (t)

' D r (t) ≈ D ap r (t) = D v r + Sc ∑ s=1 D rτ s e -t τs . ( 21 
) ' This leads to ' ⟨σ⟩ r (t) = B e r : σ(t) + B v r : ∑ d [σ] d + ∑ s B rτ s : ( ∑ d e -(t-t d ) τs [σ] d -β τs (t)
)

+ ⟨σ res ⟩ r (t) , (22) ' 
! ⟨σ res ⟩ r (t) = D e r : ( ε 0 -ε 0r )(t) + D v r : ∑ d [ ε 0 -ε 0r ] d + ∑ s D rτ s : ( ∑ d e -(t-t d ) τs [ ε 0 -ε 0r ] d -λ rτ s (t) ) (23) 
with the new local internal variable λ rτ s verifying '"

λrτ s (t) + 1 τ s λ rτ s (t) = 1 τ s ( ε 0 -ε 0r )(t) , λ rτ s (0) = 0. (24) 
'#

The phase average strain ⟨ε⟩ r (t) can be eventually computed by solving incrementally '$ the local constitutive thermoviscoelastic relation.

'%

Strain formulation '&

We now consider that the polycrystal is subjected to a given derivable loading path

'' ε(u), u ∈ [0; t] with additional discontinuities [ε] d at times t d and initial conditions ε(x, 0) = ε(0) = 0 ∀(x).
The stress response σ(t) obtained by the strain (or dual) formulation reads

σ(t) = ∫ t 0 C(t -u) : ε(u)du + ∑ d C(t -t d ) : [ε] d + σ 0 (t). (25) 
! Approximating the eective relaxation function by a Dirichlet series in a form consistent " with (12

) # C(t) ≈ C ap (t) = Sc ∑ s=1 C τs e -t τs , Sc ∑ s=1 C τs = C e , (26) 
$ the macroscopic stress reads

% σ(t) = C e : ε(t) - Sc ∑ s=1 C τ s : ( α τs (t) - ∑ d e -(t-t d ) τs [ε] d ) + σ 0 (t) (27) 
& with the macroscopic internal variable α τs verifying '

ατs (t) + 1 τ s α τs (t) = 1 τ s ε(t) , α τs (0) = 0. ( 28 
)
The eective thermal stress σ 0 (t) can be expressed by using the following approximation for the average strain concentration tensors

A r (t) ≈ A ap r (t) = A v r + Sc ∑ s=1 A rτ s e -t τs (29) 
! where A v r denotes the strain concentration tensors for the purely viscous behavior.

"

Tensors A rτ s satisfy A v r + ∑ Q s=1 A rτ s = A e
r with A e r the average strain concentration # tensor for the purely elastic behavior. Relation (9b) thus gives

$ σ 0 (t) = ⟨ 6 A e r : σ 0r (t) + 6 A v r : ∑ d [σ 0r ] d ⟩ + ⟨ ∑ s 6 A rτ s : ( ∑ d e -(t-t d ) τs [σ 0r ] d -ϱ rτ s (t)
)⟩ [START_REF] Brenner | Suquet Multi-scale modeling of the mechanical behaviour of polycrystalline ice under #$ transient creep[END_REF] with ϱ rτ s the new internal variable verifying

% ρrτ s (t) + 1 τ s ϱ rτ s (t) = 1 τ s σ 0r (t) , ϱ rτ s (0) = 0 . (31) 
& As for the stress formulation, the integral expression (25) of the thermoviscoelastic ' constitutive relation has been replaced by an internal variables approach dened by relations ( 27) and [START_REF] Brenner | Suquet Multi-scale modeling of the mechanical behaviour of polycrystalline ice under #$ transient creep[END_REF].

Detailed equations for the phase average strain are not given here for the sake of conciseness, but they can be obtained using similar developments as those presented ! above for the stress formulation. Approximating E r (t) by a Dirichlet series as D r (t), " see equation [START_REF] Masson | Self-consistent estimates for the rate-dependent elastoplastic behaviour #!' of polycrystalline materials[END_REF], the expressions obtained for ⟨ε⟩ r (t) and ⟨ε res ⟩ r (t) have a very similar # form to those given above for ⟨σ⟩ r (t) and ⟨σ res ⟩ r (t). ! for both stress and strain formulations in order to compare the relative merit and ease of ! the numerical implementations. Results will be also compared to the original collocation !! method.

!"

The chosen microstructure consists of two (R = 2) randomly mixed phases, and !# it is deformed under antiplane shear. The choice of such a simple microstructure aims !$ to obtain a rapid validation of the method, but it is not a limitation. The viscoplastic !% behavior of similar microstructures has been investigated e.g. in [START_REF] Castañeda | Variational estimates of the self-consistent type for the #"& eective behaviour of some model nonlinear polycrystals[END_REF][START_REF] Milton | The theory of composites[END_REF][START_REF] Lebensohn | Study of the antiplane deformation ## of linear 2-d polycrystals with dierent microstructure[END_REF]. Owing to !& this particular microstructure, the Self-Consistent (SC) scheme has been chosen here to !' solve the symbolic linear thermo-elastic homogenization problem in the LC space. Local " elastic and viscous compliances are given by "

S e r = 2 ∑ k=1 1 4µ e(k) R (k) r ⊗ R (k) r , S v r = 2 ∑ k=1 1 µ v(k) R (k) r ⊗ R (k) r ( 32 
)
with µ e(k) and µ v(k) the elastic and viscous shear compliances of slip system (k).

"

The following values have been considered for the computations: µ e(1) = 1MPa,

"! µ v(1) = 2MPa.s, µ e(2) = 100MPa, µ v(2) = 20MPa.s, so that system (2) is sti compared ""
to system [START_REF] Sabar | A new class of micro-macro models for # elastic-viscoplastic heterogeneous materials[END_REF]. The two mechanical phases are rotated by 90 • from each other, and

"#
slip is allowed on two perpendicular slip planes along direction e 3 so that the Schmid

"$ tensors read R (k) 2 = 1 2 (e k ⊗ e 3 + e 3 ⊗ e k ), R (1) 
1 = R (2) 
2 , and 

R (2) 1 = -R (1) 2 (see gure 
##

The predicted macroscopic behavior, phase average stress, and phase average strain, are Another example of challenging test is the response under harmonic loading. We $"

have studied the case of a strain imposed antiplane shear with a constant strain-rate $# and ⟨ε 13 ⟩ 2 (t)). Results from the original collocation method and for both stress and strain approaches are shown.

stage followed by a sinusoidal overall strain stage, as in [START_REF] Lahellec | Eective behavior of linear viscoelastic composites: a time-integration #& approach[END_REF] $$

{ ε 13 = Aωt for t ≤ t 0 ε 13 = A sin[ω(t -t 0 )] for t > t 0 (34) $%
with numerical values A = 0.04, ω = 15s -1 , and t 0 = 1s. As for the previous $& example, it is found that the three approaches, namely standard collocation method, $' stress formulation, and strain formulation provide the same results (gure 2), for the % macroscopic behavior but also for phase average stress and strain. At large time, the % overall specimen has relaxed from the rst loading stage and therefore macroscopic stress % and phase average stresses tend to periodic oscillations around 0MPa.

%!

To check the validity of these results, reference solutions were generated with a %" full-eld numerical approach based on Fourier Transforms. The method is described in %# [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear #[END_REF][START_REF] Lebensohn | N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform[END_REF] for elastic or viscoplastic composites and polycrystals, and in [START_REF] Idiart | Macroscopic behavior and eld ##% uctuations in viscoplastic composites: Second-order estimates versus full-eld simulations[END_REF] (with numerical %$ details in [START_REF] Brenner | Suquet Multi-scale modeling of the mechanical behaviour of polycrystalline ice under #$ transient creep[END_REF]) for elasto-viscoplastic behavior . The FFT-based full-eld formulation %% is conceived for periodic unit cells deformed under periodic boundary conditions, and %& it provides the exact (within numerical accuracy) solution of the governing equations.

%'

Here, we considered a periodic tile microstructure formed by square grains (see gure & 3) which has been found to provide numerical results in very good agreement with phase average quantities. Comparison is provided in gure 2. It turns out that results &% from the internal variable approaches are virtually undistinguishable from FFT ones, && which proves the accuracy of the proposed method for anisotropic linear viscoelastic &' behavior although the method only accounts for a nite (and small) number of relaxation ' times. compliances. An important consequence of this feature is that coecients S τ s in [START_REF] Beurthey | Structural morphology and relaxation spectra of viscoelastic # heterogeneous materials[END_REF] '"

have to be determined only once, independently of the macroscopic prescribed loading.

'#

We are now extending the formulation to situations for which this is no more the hardening and a simple saturating expression for kinematic hardening as in [START_REF] Chaboche | A review of some plasticity and viscoplasticity constitutive theories[END_REF]. The !" complete constitutive relation reads (spatial position x has been omitted)

!# ε = S e r : σ + εv (35) εv = K ∑ k=1 γ(k) R (k) r (36) γ(k) = γ0 τ (k) -X (k) τ (k) 0 (37) τ (k) = R (k) r : σ (38) τ (k) 0 = (τ (k) sta -τ (k) 0 ) K ∑ l=1 H (k,l) | γ(l) | (39) 
Ẋ(k) = c γ(k) -dX (k) | γ(k) | -e|X (k) | m sign(X (k) ) ( 40 
)
with εv the local viscous strain-rate, γ(k) the shear-rate on slip system (k), τ (k) the !$ resolved shear stress on that system, and γ0 , c, d, and e constant coecients. With !% this law, the reference shear stress τ (k) 0 for system (k) evolves from an initial value to !& a saturation value τ (k) sta due to isotropic hardening, H being the (constant) interaction !' matrix between slip systems. Kinematic hardening is due to the backstress X (k) that ! includes static recovery (coecient e). This viscoelastic behavior can be also written

! ε = S e r : σ + S v : σ + ε0 (41) ! with !! S v = K ∑ k=1 γ(k) 0 R (k) r ⊗ R (k) r τ (k) 0 , ε0 = - K ∑ k=1 γ(k) 0 X (k) R (k) r τ (k) 0 . ( 42 
)
It is worth noting that the above constitutive relation is dened at any point x within !" the polycrystal. Therefore, τ (k) 0 (x) and Ẋ(k) (x) should be heterogeneous within each !# mechanical phase due to the intraphase heterogeneity of γ(k) (x). A consequence of this is !$ that the compliance S v (x) and the stress-free strain ε0 (x) are also heterogeneous within !%

phases, but then standard homogenization techniques do not apply. To circumvent this !& diculty, we have replaced γ(k) (x) in equations ( 39) and (40) by its phase average value

!' ⟨ γ(k) ⟩
r so that, starting with phase uniform τ (k) 0 and Ẋ(k) (now denoted τ (k) 0r and Ẋ(k) r ), ! S v and ε0 remain phase uniform (denoted S v r and ε0r ) so that mean-eld homogenization ! can be carried out. The phase average behavior thus reads ! ⟨ ε⟩ r = S e r : ⟨ σ⟩ r + S v r : ⟨σ⟩ r + ε0r .

(

) ! ! 43 
The consequence of this approximation will be discussed below.

! "

The Incremental Collocation Method (ICM)

! #

In section 3, both stress and strain approaches have been treated and applied ! $

simultaneously, and we have shown that both provide identical results. In the following, ! %

for the sake of clarity, only the stress formulation is presented (but we have checked that

! &
the strain approach still provides equivalent results) and stress jumps are not included.

! '

The main issue comes from the evolution of the viscous local behavior with time and !! strain. As a consequence, the coecients S τs and the homogenized viscous compliance !!

Sv evolve so that the homogenization procedure cannot be applied the same way as

!!
previously. This issue can be solved with an incremental resolution, assuming that !!! coecients S τs are constant during a suciently small time increment. Then, equation

!!" (14) becomes ! 
!# ∆ε = Se : ∆ σ + Sv | 1/2 : ∆ξ + S ∑ s=1 S τ s | 1/2 : ∆β τs + ∆ε 0 (44) 
!!$ with ∆ denoting the increment between times t n and t n+1 , e.g. ∆ε = ε(t n+1 ) -ε(t n ).

!!%

In (44), values for S τs and Sv are taken for half the time increment, e.g.

S τs | 1/2 = !!&
(S τs (t n ) + S τs (t n+1 ))/2. The evolution laws for ξ and β τs are the same as in section !!'

3, see eq.( 16). Similarly, the macroscopic thermoelastic strain given in equation ( 19) is

!" computed using !" ∆ ε 0 = ⟨ 6 B e r : ∆ε 0r - ∑ s 6 B rτ s | 1/2 : ∆η rτ s ⟩ (45) 
!"

and the phase average stress

!"! ∆ ⟨σ⟩ r = B e r : ∆σ - ∑ s B rτ s | 1/2 : ∆β τs + D e r : (∆ ε 0 -∆ε 0r ) - ∑ s D rτ s | 1/2 : (∆θ τs -∆η rτ s ) (46)
where the new macroscopic internal variable θ τ s = λ rτs +η rτ s is introduced for numerical

!"" purpose (see Appendix B) !"# θτs (t) + 1 τ s θ τs (t) = 1 τ s ε 0 (t) , θ τs (0) = 0. (47) 
!"$ Phase average strain increments can then be computed with (41). Note that if hardening !"% is discarded (c = d = e = H = 0), behaviors given by ( 44) and ( 14) are strictly !"& equivalent.

!"'

When used with the original integral approach, the standard collocation method !# applied to polycrystals with local behavior (35-40) requires calculation of coecients !# S τs at each time step. This is also the case for the proposed incremental approach.

!# However, unlike the present formulation, the integral approach requires keeping record !#! of the whole history of S and B r from the very rst loading stage for the evaluation of !#" integrals [START_REF] Castañeda | Second-order homogenization estimates for nonlinear composites ## incorporating eld uctuations. I theory[END_REF], which is cumbersome especially when dealing with polycrystals with a large !## number of mechanical phases and loading steps. With the proposed approach (denoted !#$ Incremental Collocation Method, ICM), the numerical resolution is incremental. A step-!#% by-step procedure can be applied, in which the aim of internal variables is to summarize

!#&
the eects of the whole stress and strain history. This allows studying the polycrystal !#' response for any complex loading with much more ease and exibility. The algorithm To show the potentiality of the proposed ICM, the microstructure introduced in section !$! 3.4 is investigated for deformation under the complex loading [START_REF] Walpole | Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables[END_REF]. Results are compared !$" with reference solutions generated by the full-eld FFT method, as in section 3. The !$# local behavior (35-40) has been implemented with coecients indicated in Table 1 and It is recalled that the step-by-step numerical resolution of the ICM provides the !%# same results as the internal variable approach of section 3 when hardening is discarded.

!$$ γ0 = 1s -1 , m = 1, and H (k,l) = 2 ∀k, l.
!%$ Therefore, observed discrepancies are associated with the treatment of hardening. This !%% is now illustrated with the case for which only isotropic hardening has been considered.

!%&

Here, the main dierence with results presented in section 3 is that τ (k) 0 is evolving. As !%' discussed above, γ(k) (x) had to be replaced by be correlated with the standard deviation

√ < τ (k) 0 τ (k) 0 > -< τ (k) 0 > 2 (computed with !'
Table 1. Parameters of the constitutive relation. dependent constitutive viscous properties. In that case, an incremental collocation "% method is proposed. It can be eciently solved numerically using a step-by-step "& procedure, and a general algorithm has been proposed. The capability of the method has "' been illustrated on a 2-D polycrystal, but it is worth noting that solving similar problems " with 3-D polycrystals exhibiting few thousand phases requires only a few minutes on a " standard laptop. The new method is therefore especially ecient for solving complex " loading paths. Moreover, the introduction of isotropic and kinematic hardening at the "! slip system level has been considered. Some discrepancies with reference FFT results "" have been observed. They are likely due to the approximation made in considering phase "# uniform hardening variables within mean-eld homogenization. Finally, it is pointed "$ out that the obtained ICM oers a simple framework to address the case of nonlinear "% behaviors, e.g. using a linearization procedure similar as the one proposed by [START_REF] Masson | Self-consistent estimates for the rate-dependent elastoplastic behaviour #!' of polycrystalline materials[END_REF]. (3) Reactualization of (S vsct ) i+1 t n+1 following (??) 

2. 1 .

 1 Constitutive equation for local behavior &! According to the Boltzmann superposition principle, the local stress (resp. strain) &" response of a heterogeneous linear thermoviscoelastic medium can be expressed as a &# Stieltjes convolution of a viscoelastic stiness (resp. compliances) tensor with strain &$

%

  where B v r denotes stress concentration tensors for the purely viscous behavior. Tensors % B rτ s can be easily determined from the knowledge of B ap * r at collocation times p = 1/τ s , B rτ s = B e r with B e r the stress concentration tensor for the purely %"

  . An important consequence of these developments is that the integral &" expression[START_REF] Rougier | Représentation spectrale en viscoélasticité linéaire des #& matériaux hétérogènes[END_REF] for the thermoviscoelastic eective behavior has been replaced by the &#

$ 3 .

 3 4. Application % The capabilities of the new formulation with internal variables based on the collocation & method are now illustrated for the homogenization problem of a 2-D polycrystal with ' local anisotropic behavior. Two applications are provided below, the rst for prescribed ! overall stress, and the second for prescribed strain. The model has been implemented

"% 3 )

 3 . From the numerical point of view, dierential equations appearing in the internal "& variables formulation have been solved by the Runge-Kutta method. Collocation times "' τ s have been distributed on a logarithmic scale between the two extreme relaxation # times µ v(2) /µ e(2) and µ v(1) /µ e(1) ; numerical applications have been performed for dierent # numbers of collocation times, 5 ≤ S c ≤ 20, with no inuence on results. # Several macroscopic loadings have been tested. The rst case of interest is a creep

#$ shown in gure 1 .

 1 These results have been obtained by means of the original collocation #% method and the new stress (3.2) and strain (3.3) formulations. They are all plotted #& in gure 1. It can be seen that results obtained with those three formulations are in #' perfect match with each other at both macroscopic and local levels, which validates $ the numerical resolution of present developments. It is worth recalling that those three $ formulation are equivalent, as discussed above. In particular, the stress jumps at t = 0s $ and t = 2s and subsequent recovery of both phases are nicely captured. $!

Figure 1 .

 1 Figure 1. Response of the 2-D polycrystal under the creep loading with stress jump (33). (a) Stress response: `macro' indicates the prescribed σ 13 (t), `phase 1' indicates ⟨σ 13 ⟩ 1 (t), and `phase 2' ⟨σ 13 ⟩ 2 (t). (b) Corresponding strain response (ε 13 (t), ⟨ε 13 ⟩ 1 (t),

'

  

Figure 2 .

 2 Figure 2. Response of the 2-D polycrystal under the harmonic loading given by (34). Macroscopic and phase average (a) stress and (b) strain responses, as in gure 1. Results from the original collocation method and from both stress and strain approaches are shown, together with those obtained by FFT full-eld numerical method.

Figure 3 .

 3 Figure 3. Periodic 2-D microstructure considered for FFT numerical computations. Arrows indicate the normal of slip planes. Slip direction is along e 3 .

t

  Figure 4 shows the eective stress response !$% for two cases: (i) when both isotropic and kinematic are considered (with parameters !$& c = 5MPa, d = 10, e = 0), and (ii) with isotropic hardening only (c = d = e = 0).!$'It can be seen that, for both cases, the ICM matches well FFT solutions at the very !% rst loading stage, but then the eective behavior becomes softer than the FFT one, ≈ 1s. At larger time after several loading cycles, the discrepancy decreases until both

r

  in the hardening law for the ICM !& to be solved with standard mean-eld homogenization techniques. Hence, instead of !& correctly predicting intraphase uctuations for τ (k) 0 as with the FFT approach, the ICM !& requires phase uniform values. Consequences of this limitation have been investigated !&! in [33] for viscoplastic polycrystals. Here, the ICM underestimates the average value of !&" ⟨ τ reference results. At the same time, the overall behavior for !&# the ICM is softer than for FFT predictions; this can originates from lower intraphase heterogeneity of τ (k) 0 , not predicted by ICM. Figure 5a shows !&% an example of result for slip system k = 1 of phase r = 1 (similar trend is observed !&& for other slips systems). Interestingly, the stress discrepancy σFFT 13 -σINC 13 is found to !&'

Figure 5 . 1 .

 51 Figure 4. Viscoelastic homogenization with (a) both isotropic and kinematic hardening and (b) isotropic hardening only.Comparisons between incremental collocation and FFT methods for the macroscopic stress response σ13 .

"& ( 3 )

 3 Computation of ∆ ⟨σ⟩ r : "#& (a) Initialization of (∆ ⟨σ⟩ r ) j=0 "#'(b) Computation of (∆X) j and (∆τ 0 ) j following (39-40) "$ (c) Computation of (∆ε 0r ) j and (∆ ⟨ε⟩ r ) j following (42-41) "$ (d) Computation of (∆η rτ s ) j following[START_REF] Turner | Self-consistent modeling of visco-elastic polycrystals : application #!% to irradiation creep and growth[END_REF] "$ (e) Computation of (∆ ε 0 ) j following (45) "$! (f) Computation of (∆θ τ s ) j following (47) "$" (g) Actualization of (∆ ⟨σ⟩ r ) j+1 following (46)"$# (h) Compute convergence error δ 1 = (∆ ⟨σ⟩ r ) j+1 -(∆ ⟨σ⟩ r ) j "$$If δ 1 < threshold then go to (4), else j ← j + 1 and return to(3.b) 

# 3 .

 3 (a) Initialization : (∆β τs ) j = (∆β τs ) 0 , (∆ξ) j = (∆ξ) 0 and (∆ε 0) j = (∆ε 0 ) 0 "& (b) Computation of (∆ σ) j from (44) "&(c) Computation of (∆β τs ) j+1 and (∆ξ) j+1 following (16)"& (d) Computation of (∆ε 0 ) j+1 "&! 1. Initialization of (∆ ⟨σ⟩ r ) k=0 "&" 2. Computation of (∆ ⟨σ⟩ r ) k+1 with steps (3.b) to (3.g) above "&Compute convergence error δ 1 = (∆ ⟨σ⟩ r ) k+1 -(∆ ⟨σ⟩ r ) k "&$ If δ 1 < threshold then (∆ε 0 ) j+1 = (∆ε 0) k and go to (2.e), else k ← k + 1 Compute convergence error δ 2 as the max of normalized value of "&' (∆β τs ) j+1 -(∆β τs ) j , |(∆ξ) j+1 -(∆ξ) j |, and |(∆ε 0 ) j+1 -(∆ε 0 ) j | "' If δ 2 < threshold then go to (3), else j ← j + 1 and return to (2.b) "'

  are transformed into simple scalar products, and therefore the original thermoviscoelastic homogenization problem is transformed into a symbolic thermoelastic homogenization problem for which standard homogenization techniques apply. Let f * denotes the LC transform of function f , f

Taking the LC transforms of previous equations, Stieljes convolution ' ‡ Note that A and B are not necessarily uniform per phase products * (p) = p ∫ ∞ 0 f (t)e -pt dt with p the complex ! variable. The symbolic thermoelastic behavior thus reads "

  Homogenization of the symbolic thermo-elastic problem ⇒ (S τs ) i+1 t n+1 ; ( Sv ) i+1 Compute convergence error δ 2 = (S v ) i+1 t n+1 -(S v ) i If δ 2 < threshold then go to (7), else i ← i + 1 and return to (3.b) Output macroscopic and local responses at time t n+1 , and go to (2) for the next In cases of loading with prescribed ε (instead of σ as above), the algorithm has to "%# be slightly changed since ∆β τs and ∆ξ cannot be calculated in advance. Initializations: (S v ) i=0 t n+1 = (S v ) tn ; (S τs ) i=0 t n+1 = (S τs ) tn ; ( Sv ) i=0 t n+1 = ( Sv ) tn ; (B rτ s ) i=0 t n+1 = "%% (B r τs ) t n ; (D r τs ) i=0 t n+1 = (D r τs ) t n Computation of ∆β τs , ∆ξ and ε0

	"$%	
	"$&	(4) Actualization of ( ε 0 ) i+1 t n+1 and (S v ) i+1 t n+1 following (42)
	"$'	(5) t n+1 ;
	"%	(B rτ s ) i+1 t n+1 ; (D rτ s ) i+1 t n+1
	"%	(6) t n+1
	"%	
	(7) "%!
	"%"	time step
	"%$	
	(1) "%&
	(2) "%'

  Output macroscopic and local responses at time t n+1 , and go to (2) for the next

	(6) "'%
	"'&	time step
	"'	
	"'!	(4) Homogenization of the symbolic thermo-elastic problem ⇒ (S τs ) i+1 t n+1 ; ( Sv ) i+1 t n+1 ;
	"'"	(B rτ s ) i+1 t n+1 ; (D rτ s ) i+1 t n+1
	"'$	

(5) Compute convergence error

δ 3 = (S v ) i+1 t n+1 -(S v ) i t n+1

"'# If δ 3 < threshold then go to

[START_REF] Lahellec | On the eective behavior of nonlinear inelastic composites: I. # incremental variational principles[END_REF]

, else i ← i + 1 and return to (2)

& 2. Homogenization of linear thermoviscoelastic heterogeneous media &

& the collocation method[START_REF] Schapery | Approximate methods of transform inversion for viscoelastic stress analysis[END_REF]. Following[START_REF] Ricaud | Eective properties of linear viscoelastic heterogeneous media: #" Internal variables formulation and extension to ageing behaviours[END_REF], it will be shown that an internal variables ' formulation can be naturally derived from this inversion procedure, without additional !

&due to the homogeneity of ε 0r . It is stressed that the three internal variables determined & so far, namely ξ, β τs , and η rτ s , can be calculated in advance as far as the macroscopic &

&theoretical solutions[START_REF] Lebensohn | Full-eld vs. homogenization #$! methods to predict microstructure-property relations for polycrystalline materials[END_REF] (with which the linear SC scheme also coincides). For linear & viscoelastic behaviors, the relaxation spectra of this microstructure exhibits an innite &! number of relaxation times. With macroscopic loading (34), the detailed distribution &" of stress and strain is thus obtained. For the purpose of comparison with mean-eld &# homogenization models, stress and strain elds have been spatially averaged to evaluate &$

Acknowledgments "'

This study was partly funded by the French `Agence Nationale de la Recherche' (project " ELVIS, #ANR-08-BLAN-0138). Authors are very grateful to Renaud Masson (CEA-" Cadarache, France) for stimulating discussions on the subject. by the inverse transform of C * , cannot be obtained. However, a closed-form expression "! can be found for particular symmetry classes by using the spectral decomposition of the "! fourth-order symmetric tensors [START_REF] Walpole | Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables[END_REF]. For an isotropic behaviour, local properties read 

and thus (A.8)

""# Similar expressions can be obtained for other symmetry classes.

""$ Appendix B. Numerical resolution of the incremental collocation method ""%

We provide here the algorithm for the step-by-step resolution of the ICM described in