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Abstract

Recent developments of the Multilevel Physical Optics (MLPO) algorithm aiming at the comprehensive analysis of complex
reflector antenna systems are presented. The Physical Theory of Diffraction (PTD) line integral along the rim of a reflector is
combined with the Physical Optics (PO) surface integral within the multilevel algorithm. The multilevel scheme is also generalized
to combine fields radiated by various components of different sizes, as encountered in complex antenna systems with multiple
feeds and/or reflectors. Comparison with published results demonstrates the ability of the MLPO algorithm to cope accurately
and efficiently with realistic reflector antenna problems.
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Generalized Multilevel Physical Optics (MLPO)

for Comprehensive Analysis of Reflector Antennas

I. INTRODUCTION

T
HE Physical Optics (PO) approximation provides an

attractive computational tool for the analysis of large

reflector antennas [1]. The PO combined with the PTD (e.g.

in the form of Incremental Length Diffraction Coefficients [2],

[3]) often strikes a balance between the computational burden

and accuracy requirements for the reflector antenna analy-

sis. The PO-PTD combination facilitates uniformly accurate

evaluation of the co- and cross-polarized radiation patterns,

including the far sidelobe regions.

Numerically rigorous techniques such as the method of

moments, though more accurate, are considerably more com-

putationally demanding and, therefore, mostly employed for

small and moderately sized antennas. Combining or hybridiz-

ing a method of moments technique with a PO-type surface

integration is often the preferred method to address reflector

antenna problems involving evaluation of the current on the

reflector surface [4]. In contrast, computationally inexpensive

Geometrical Theory of Diffraction (GTD), often used to

compute fields in far-out sidelobes, is subject to well-known

limitations due to the presence of caustics [5], [6] and to

the possibly large number of diffraction points in the case of

shaped reflectors or reflectors with irregular edges. Also, GTD

is valid only when edges are illuminated from the far field,

which is not always the case in multiple reflector antennas.

Hence GTD computations of cross-polarized patterns and far

sidelobe levels are not considered accurate enough in the

case of high performance reflector antennas [7]. A modified

PO formulation recently proposed in [8] and [9] promises to

describe the diffraction effects while performing only PO type

surface integrals with normal vector directions modified based

on the observation direction. This approach however is yet to

be fully developed for arbitrary three-dimensional geometries.

The combined PO/PTD approach does not suffer from the

above limitations, but for large reflectors and wide angle

patterns, the straightforward evaluation of the pertinent inte-

grals for a wide range of observation directions is inefficient

due to its high computational complexity. This computational

burden can pose a significant limitation in situations such as

reflector shaping and optimization [10], as well as multibeam

multifrequency systems, where repeated evaluation of antenna

characteristics is required. The Fast Fourier Transform (FFT)

facilitates numerically efficient evaluation of radiation inte-

grals, but only for planar apertures. The MLPO was introduced

in [11] in order to reduce the complexity of evaluating the PO

integrals over arbitrary shaped surfaces to a level comparable

to that of the FFT-based techniques. The efficacy of the MLPO

approach for antenna analysis has already been demonstrated

in the case of simple PO analysis (surface integrals only) of

lens and reflector antennas.

In this paper, we show how the MLPO algorithm can be gen-

eralized for the efficient computation of wide angle radiation

patterns, accommodating both diffraction and spill over effects.

For the sake of simplicity, we present the new algorithm

developments for the case of a single reflector antenna system.

In Section II, we formulate the problem under study reducing

it to the evaluation of PO and PTD integrals. The presentation

of the generalized MLPO algorithm in Section III starts with

an outline of the basic multilevel approach and proceeds with

the computation of elemental sub-patterns including the PTD

contribution followed by a hierarchical aggregation of reflector

sub-patterns and additional contributions, such as the feed

radiation, into the final pattern. A numerical example is worked

out in Section IV to demonstrate the main features of the

proposed approach.

II. PROBLEM SPECIFICATION

Consider a PO-based computation of the radiation pattern

of an idealized reflector antenna comprising a primary feed

and a single reflector surface. We define an antenna far field

pattern U(r̂) in direction r̂ as:

U(r̂) = 4πr ejkr E(r) r → ∞ (1)

where k is the wavenumber and E(r) is the far electric field

radiated by the antenna at observation point r = rr̂. In

order to compute the reflector antenna wide angle pattern,

the PO surface integral contributions have to be augmented

with those of the PTD line integral along the reflector rim and

further combined with the primary feed pattern. The resulting

expression for the far field pattern radiated by the single

reflector antenna system is then of the form:

U(r̂) =

∫

S

A(r̂, rs)ejkr̂·r
s

ds +

∫

C

D(r̂, rc)ejkr̂·r
c

dzl

+ Uf(r̂)ejkr̂·r
f

(2)

where S and C denote the reflector surface and rim contour,

respectively. The elemental surface contribution A(r̂, rs) is

related to the equivalent currents on the surface and D(r̂, rc)
stands for the Incremental Length Diffraction Coefficients

(ILDCs). Also in (2), Uf(r̂) is the feed pattern in the feed

centered coordinate system. It can be either known analytically

or obtained via measurement, or from a separate numerical

analysis of the feed system. Also, rs denotes a point on

the reflector surface S, rc a point on the reflector rim C,

and rf the position of the primary feed. These position

vectors are defined in the same coordinate system, called the

”observation” coordinate system.
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The fields over surface S are assumed to be known thanks,

e.g., to a known incident field and local impedance boundary

conditions. In the following, we assume that S is a perfect

conductor. Then:

A(r̂, rs) = j2kηr̂ × [r̂ × (n̂(rs) × H f(rs))] (3)

where η = 120π is the intrinsic wave impedance, while

H f(rs) and n̂(rs) denote, respectively, the incident magnetic

field produced by the feed and the outward unit vector normal

to S, both at point rs on the surface.

Along the rim, D(r̂, rc) is the far field pattern of the ILDCs

given in [2], [3], normalized to the elemental length dzl:

D(r̂, rc) = D(TM) + D(TE) (4)

with D(TM) = Ef
zl

sin θl

sin2 θ0l

2 sin(φ0l/2)

| cos(φ0l/2)| + sin(α/2)
θ̂l

D(TE) = −sgn(π − φ0l) ηH f
zl

1

sin θ0l

×
1

sin(α/2)(| cos(φ0l/2)| + sin(α/2))

× {sinφl φ̂l
− [cos φl cos θl + (1 + 2

× | cos(φ0l/2)| sin(α/2)) sin θl cot(θ0l)] θ̂l}

where zl is the curvilinear coordinate along the rim. A local

coordinate system (Ol, x̂l, ŷl
, ẑl) is defined with Ol(r

c) on

the rim, ẑl tangent to the rim, and x̂l orthogonal to ẑl in the

plane tangent to the reflector surface at Ol. Ef
zl

and H f
zl

are

the zl components of the incident (feed produced) electric and

magnetic fields, respectively, in this local coordinate system.

The local spherical angular coordinates of the observation

direction are denoted (θl, φl) and those of an incident (locally)

plane wave are (θ0l, φ0l). Also, in (4),

α = cos−1

(

sin θl

sin θ0l

cos φl

)

, 0 ≤ φl < 2π

In general, full characterization of the far field pattern re-

quires computation of O(N2

a ) of its samples. Here, Na = kRa

provides a measure of the antenna electrical size with Ra being

the radius of the smallest sphere enclosing the whole antenna

system. Complexity of the direct evaluation of (2) for O(N2

a )
observation directions is of O(N4

a ). This estimate is dominated

by the cost of calculating the PO surface integral. However,

the complexity of directly computing the PTD contour integral

is of O(N3

a ) and, therefore, must also be addressed. Our goal

is to reduce this overall computational cost to O(N2

a log Na),
which is comparable to that of the FFT-based techniques that

are used for planar apertures.

III. GENERALIZED MLPO ALGORITHM

The generalized PO-PTD based numerical scheme is de-

veloped by extending the original MLPO approach. In a

pre-processing phase, the reflector surface is hierarchically

subdivided into subdomains: surface subdomains (also called

”patches”) at level L are denoted by SL
n , with n = 1, . . . , NL

s .

Also, we denote r̄L
n and RL

n the center and the radius of

the smallest sphere circumscribing patch SL
n , while RL =

maxn{R
L
n}. If a binary subdivision scheme is used along each

Fig. 1. Reflector surface decomposition along polar coordinates in the
projection plane.

of the two coordinates spanning the surface, a parent patch of

level L is subdivided into four patches of level L + 1, called

its ”children”. An example of a binary subdivision in polar

coordinates of the reflector projection plane is shown in Fig. 1.

The subdivision process is stopped at level L = M when RM

is of the order of the wavelength.

The multilevel algorithm starts with the PO surface inte-

gration over each of the elemental patches of level M . These

elemental subpatterns involve both the surface integrals of the

equivalent currents (function A(r̂, rs) defined in (3)) and the

line integrals of ILDC contributions for patches situated along

the rim C, as defined in (4). This integration phase is thus

performed for each patch (n = 1, . . . , NM ) in its self-centered

coordinate system (i.e., with the origin at point r̄M
n for patch

SM
n ), yielding:

Ū
M

n (θ, φ) = e−jkr̂·r̄
M

n ×
[

∫

SM
n

A(r̂, rs)ejkr̂·r
s

ds +

∫

SM
n

∩C

D(r̂, rc)ejkr̂·r
c

dzl

]

(5)

Due to the size of these patches (kRM is of O(1)), these

radiation patterns are fully described by sampling the direc-

tions of observation very coarsely, according to Property 3

in [12]. The integrals are thus evaluated for a very sparse

grid comprising O(1), i.e., a small fixed number of directions.

The number of quadrature points needed for surface and

line integrals over each level M patch is also of O(1). The

computational complexity of evaluating the integrals for each

level M patch is then of O(1), and the total computational

complexity of evaluating the surface and line integrals via

(5) for all level M patches is of O(N2

r ), where Nr = kRr

denotes the electrical size of the reflector. Here, Rr denotes

the radius of the smallest sphere circumscribing the whole

reflector surface. It is noteworthy that the additional cost due

to the evaluation of the PTD line integrals scales as O(Nr),
and is expected to be quite small compared to that of the PO

surface integrals.

The remainder of the algorithm involves multilevel aggrega-

tion of subdomain radiation patterns [11]. At each level from

M to 1 during the aggregation phase, the ”children” patterns

must be interpolated prior to aggregation, due to the need to

increase the grid density with increasing subdomain size from

level L to level L − 1. Thereafter they must be expressed in

their ”parent” patch coordinate system: the coordinate systems
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SL
n with their origins at the r̄L

n points are translated to the

coordinate system SL−1

m with origin r̄L−1

m . Such translations

are performed through phase changes in far field patterns. The

obtained patterns can be summed and the resulting pattern is

amenable to interpolation at the next aggregation step.

The computational complexity of such multilevel interpo-

lation and aggregation process has been shown in [11] to

be of O(N2

r log Nr). Assuming that Nr is comparable with

Na, the computational cost of this process is expected to

asymptotically dominate the total cost of the radiation pattern

evaluation for electrically very large antennas. On the other

hand, for moderately sized reflectors, the level M integration

time tends to be the dominant computational burden, due to a

large constant hidden in its O(N2

r ) complexity estimate.

If an antenna system comprises multiple radiating compo-

nents such as the main and sub-reflectors, illuminated by single

or multiple feed elements, the minimum sufficient sampling

rates of individual radiation patterns can be applied to each

object in its self-centered coordinate system. Interpolation and

origin translations are then used to aggregate partial patterns

into the global one, in the same way as for reflector subdo-

mains. The density of angular grids is increased proportionally

to the ratio of electrical sizes of individual components,

leading to a final interpolation and aggregation step similar

to the two-level Fast Physical Optics algorithm [12].

In the case of an offset single reflector antenna system

presented in Fig. 2, the reflector and the feed can be considered

as radiating objects with electrical sizes Nr and Nf, and

radiation patterns Ur and Uf, respectively. Here, Ur and Uf

are assumed to be computed in coordinate systems Sr and

Sf with their origins at the centers of the smallest spheres

circumscribing the reflector and the feed, respectively. Both

the reflector and the feed patterns must be interpolated to the

sampling rate associated with the radius Ra of the smallest

enclosing sphere of the whole antenna. These interpolated

patterns can then be translated to the global coordinate system

with the origin at center of the antenna. Finally, the reflector

and feed patterns can be summed to obtain the pattern Ua

of the whole antenna system. This final aggregation of the

antenna pattern components is characterized by the complexity

of O(N2

a ).

IV. NUMERICAL RESULTS

We apply the generalized MLPO algorithm to a single

offset parabolic reflector antenna system used in the GRASP9

Technical Description document as an illustrative example

of the computation of wide angle patterns (see [5], p. 241).

The antenna configuration is defined by the following initial

data (cf Fig. 2): parabolic reflector with diameter Dr = 40λ,

magnification factor F/Dr = 0.8, height of the reflector

”center” with respect to the paraboloid axis h = 30λ, half

angle subtended by the reflector from the source point at the

reflector focus: θ = 29.1◦. A Gaussian feed is taken as the

primary source, with its radiated fields computed by complex

source point formulas (see [5], p. 99) with the complex shift

parameter b equal to 1.66λ (12 dB taper at the edge of the

reflector).

Fig. 2. Vertical cross section of the offset single reflector antenna system
and spheres circumscribing the radiating components and the whole system.
(Oγ , Rγ) are the center and radius of the smallest sphrere circumscribing the
feed (γ = f), the reflector (γ = r) and the whole antenna (γ = a), respectively.

From these data, the MLPO code computes the radii of the

spheres circumscribing the reflector and the whole antenna

system, respectively. Using notations previously introduced for

the reflector, the antenna system, and the feed, we obtain for

the case under study: Rr = 22.09λ and Ra = 25.98λ (cf

Fig. 2). Rf is taken equal to b. The number of decomposition

levels M for the multilevel computation of the reflector pattern

is then computed so as to obtain sufficiently small patches at

level M . For the above case, the computed value for M is 5,

leading to RM = 1.37λ for the maximum radius of the level

M patch circumscribing spheres. A Gauss quadrature with 8

integrand points along each projected variable describing the

reflector surface is used for surface integration over level M
patches. The PTD integral is performed with 8 integrand points

along the reflector rim for each edge patch at level M .

Figure 3 presents the full 3D co- and crosspolarised patterns

of the antenna system, including the PTD integral contribution

and the feed spillover. These patterns were computed by

our MLPO code in 253 seconds on a single processor, and

comprise 2945 cuts with constant φ value, and 1473 θ values

in each of these cuts. To compute the same patterns with

approximately the same accuracy (1 dB down to -80 dB on

amplitude patterns) GRASP9 requires about 30 min on the

same single processor machine.

Figure 4 illustrates the accuracy of the MLPO results by

comparison with the patterns obtained with our home made

direct PO code, and with GRASP9 reference results obtained

with a large number of integration points on the reflector

surface. The cut shown on this figure is in the plane of

symmetry of the patterns (xOz plane: φ = 0, π), where the

requirements on the surface and edge integrals are particularly

high to reach the prescribed accuracy of 1 dB down to -80 dB.

For the considered antenna, the shadow boundaries in the

symmetry plane occur in the θt = 104.2◦ (top of the reflector)

and θb = 162.2◦ (bottom of the reflector) directions, shown

on Fig. 2 (black dashed lines). The feed radiation is shadowed

in the [θt, θb] interval of θ values. As a consequence, the

pattern shown in Fig. 4 exhibits an increase of the back

radiation around these directions. It should be noted that

the respective fields computed by surface integration and
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(a) Copolarized pattern.

(b) Crosspolarized pattern.

Fig. 3. 3D patterns computed with MLPO, including PTD contribution. θ
is varying from 0 to π along the radial coordinate. The black circle is for
θ = π/2, i.e. the boundary between the front and rear patterns.

edge integration in PO-PTD simulations are quite different

from the fields obtained in GO-GTD based simulations from

specular reflection of space rays and from edge diffracted

rays, respectively. In the latter type of simulation, the rays

originating from the feed are blocked by the reflector, yielding

a GO field discontinuity along the shadow boundary. On the

contrary, the far field obtained by PO surface integration is

not null in the angular region “shadowed” by the reflector.

Combination of the field obtained by PO integration with the

direct radiation from the feed yields the shape of the “shadow”

pattern, except in angular regions where the PTD contribution

is dominant. For instance, the peak which is observed for

θ ∼ 130◦ in Fig. 4, corresponds both to the direction of

maximum radiation of the feed and of equiphase combination

of contributions from elliptical slices of the reflector surface

parallel to its edge; in GO-GTD simulations, it appears as

a caustic for GTD rays, while GO rays are blocked in that

direction [5]. The influence of the PTD integral is illustrated

in Fig. 5 on two cuts of full 3D patterns obtained with and

without the PTD integral contribution. This influence is visible,

both on the copolarized pattern in the symmetry plane (φ = 0)

and on the crosspolarized pattern in the φ = π/4 plane. The

most critical region with respect to the integration accuracy

is in the symmetry plane, in the interval of θ values ranging

between −140◦ and −90◦, i.e., in the back radiation pattern

not only of the reflector but also of the feed (cf Fig. 2). The

other region where the PTD contribution is clearly dominant

on this pattern, approximately between 40◦ and 70◦, shows

the importance of taking into account the PTD fields in far

sidelobe regions, even in the front radiation pattern.

Finally, we illustrate the robustness of the MLPO algorithm,

by increasing the size of the problem, showing that parameters

tuned for a small wide angle pattern problem lead to prescribed

accuracy for large sized problems. Increasing the problem size

leads to an increased number of decomposition levels, which

is determined by the code itself. Oversampling values and

numbers of quadrature points are kept the same for all problem

sizes, as they only depend on the patch size at the highest level

of decomposition. To validate this approach, large antenna

problems are constructed by scaling the previously described

one, considered as the ”scale 1” configuration. Scaling by a

factor q is performed by multiplying the frequency by q.

Applying the MLPO algorithm to the scale 4 configura-

tion, with the scale 1 oversampling values and numbers of

quadrature points, leads to an observed accuracy of 1 dB

down to −90 dB on the amplitude 3D patterns. Table I shows

representative values for MLPO and direct PO computation

times in seconds, obtained for the scale 1 and scale 4 prob-

lems with a single Intel Xeon X5460@3.16GHz processor

on a multiuser server for pattern computations without PTD

integral (“only PO” column) and with PTD integral (“with

PTD” column). The increase in the computation time when

accounting for the PTD contribution is presented in the last

column. Computation times are subject to variations from one

run to another, but these values are “representative” in the

sense that they were obtained repeatedly with less than 1% or

a few seconds of error. The direct PO computation times for

sufficiently sampled wide angle patterns of the scale 4 antenna

system were obtained by multiplying by a proper factor the

computation times measured when computing undersampled

subsets of the full patterns (with no adaptive quadrature

rule being used, CPU times are essentially proportional to

the number of directions of the computed patterns for large

Fig. 4. Co-polarized pattern cut in the symmetry plane: comparison between
GRASP9, MLPO, and direct PO results.
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(a) Copolarized pattern in the symmetry plane.

(b) Crosspolarized pattern in the φ = π/4 plane.

Fig. 5. Comparison of the patterns computed by the PO surface integral only,
and by the PO+PTD integrals. The fields radiated by the feed are added in
both cases.

antenna systems). The “ratio” row in the Table is obtained

by dividing computation times of scales 4 and 1: in the case

of computations involving only surface integrals, this ratio is

expected to be close to 16 for the MLPO, and of the order

of 256 for the direct PO. The measured values are clearly in

good agreement with these predictions.

The data of Table I support the claim that the PTD contribu-

tion must also be computed by a multilevel algorithm, in order

to keep its computation time negligible with respect to the

MLPO surface integral computation. The ratio of computation

times devoted to the PTD integral should theoretically vary

as Nr with MLPO and N3

r with regular PO (leading to ratios

of 4 and 64 respectively). The orders of magnitude of the

experimental data presented here (4.3 and 92., respectively)

are coherent with these predictions. Computation of the PTD

contribution by the direct numerical integration at scales 1 and

4 requires minutes and hours, respectively, in contrast to the

computation times of a few seconds (less than 20 s at scale 4)

observed with the MLPO.

V. CONCLUSION

The MLPO algorithm augmented with the PTD integral

has been developed and applied to a single reflector antenna.

Furthermore, the PO and PTD contributions of the reflector

have been combined with the feed radiation to obtain the

total far field pattern of the antenna over the whole angular

range. The algorithm accuracy and computational efficiency

have been tested on the case of full 3D pattern computations

TABLE I
COMPUTATION TIMES IN SECONDS OF THE MLPO AND DIRECT PO

ALGORITHMS, FOR THE SCALE 1 AND SCALE 4 PROBLEMS, WITH AND

WITHOUT THE PTD LINE INTEGRAL

MLPO algorithm CPU times (s)

only PO with PTD PTD cost

scale 1 1.537 · 102 1.572 · 102 3.5

scale 4 2.270 · 103 2.285 · 103 1.5 · 101

ratio 4/1 14.8 14.5 4.3

direct PO algorithm CPU times (s)

only PO with PTD PTD cost

scale 1 2.20 · 103 2.32 · 103 1.2 · 102

scale 4 5.78 · 105 5.89 · 105 1.1 · 104

ratio 4/1 263. 254. 92.

by comparison to reference results. It has been shown to easily

satisfy the accuracy required for wide angle patterns in the

demanding case of a single offset reflector antenna.
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