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Abstract

We give a new fast method for evaluating sprectral approximations of non-
linear polynomial functionals. We prove that the new algorithm is convergent if
the functions considered are smooth enough, under a general assumption on the
spectral eigenfunctions that turns out to be satisfied in many cases, including
the Fourier and Hermite basis.
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1 Introduction

The goal of this paper is to introduce and analyze a new method to compute
spectral approximations of polynomial functionals typically arising in spectral
numerical methods applied to nonlinear partial differential equations.

To describe the method and results, let us consider for instance the functional

X(u)(x) := u(x)p (1.1)

where u(x) is a smooth function on the one-dimensional torus T and p ≥ 2 an
integer. We can expand u(x) as the Fourier series

u(x) =
∑

k∈Z

uke
ikx,

where the uk ∈ C are the Fourier coefficients associated with u. In this case, the
functional X(u)(x) =

∑

k∈Z
eikxXk(u) satisfies the convolution formula

∀ k ∈ Z, Xk(u) =
∑

(j1,...,jp)∈Z
p

k=j1+···+jp

uj1 · · ·ujp . (1.2)
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To compute a numerical approximation of such a quantity, a direct method would
be prohibitive: if u is approximated by N coefficients, the sum on the right-hand
side involves Np−1 terms making the computational cost prohibitive for large N .
That is why standard methods use the Fast Fourier Transform (FFT) algorithm
to evaluate (1.1) on grid points and an inverse FFT to go back to approximated
Fourier coefficients Xk. Though this method has the disadvantage to introduce
aliasing problems due to the structure of FFT, it is very cheap in the sense
that if the grid is made of N points (and u approximated by N frequencies) the
computational cost is of order N log N .

In many other situations like Hermite spectral methods, the problem is much
harder because of the lack of fast transformation algorithm from collocation grid
points to spectral variables (see however [10] for recent results by A. Iserles on a
fast algorithm to compute Legendre coefficients).

In this paper, we would like to show how a direct sparse approximation of
(1.2) of the form

∀ k ∈ Z, XN
k (u) =

∑

k=j1+···+jp

|j1|···|jp|≤N

uj1 · · ·ujp . (1.3)

yields a consistent approximation of Xk in the sense that we can control the dif-
ference ‖X−XN‖ in some Banach algebra, provided the function u is sufficiently
smooth.

The big advantage of the representation (1.3) is that the sum on the right-
hand side involves only O(N(log N)p−1) terms making the direct approximation
at the spectral level possible and efficient.

To have an idea of why this method is valid, let us calculate directly the
difference

Xk(u) − XN
k (u) =

∑

k=j1+···+jp

|j1|···|jp|>N

uj1 · · ·ujp .

We can write

|Xk(u) − XN
k (u)| ≤ 1

N s

∑

k=j1+···+jp

|j1|···|jp|>N

|j1|s|uj1 | · · · |js
p||ujp |.

and we immediatly obtain the bound

‖X(u) − XN (u)‖
ℓ1

:=
∑

k∈Z

|Xk(u) − XN
k (u)| ≤ 1

N s

(

∑

k∈Z

|j|s|uj |
)p

=
1

N s
‖u‖p

ℓ1s
.

(1.4)
Note that here we used ℓ1-based spaces (Wiener algebras) as they are the sim-
plest to deal with polynomial nonlinearities in spectral representation. Even if
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similar results can be obtained for standard ℓ2-based spaces, we will state our
result in these Banach spaces to avoid too many technical details. As high reg-
ularity ℓ2 and ℓ1 spaces are imbricated, this does not affect the validity of our
approximation results.

We see however that the previous proof does not extend straightforwardly to
the case of Hermite functions. In this case, if u(x) is defined on the real line R

and decomposes into

u(x) =
∑

k∈N

ukχk(x)

where the χj(x), j ≥ 0 are normalized Hermite functions, then the Hermite
coefficients Xk of the product (1.1) are given by

∀ k ∈ N, Xk(u) =
∑

(j1,...,jp)∈Np

ak;j1,...,jpuj1 · · ·ujp , (1.5)

where

ak;j1,...,jp =

∫

R

χk(x)χj1(x) · · ·χjp(x)dx (1.6)

are the integrals of products of Hermite functions. Note that in this situation,
the coefficients are non zero even in the case where k 6= j1 + · · · + jp. To obtain
a convergence result similar to (1.4) we thus see that we need a non trivial
control of these coefficients. To this aim, we take advantage of the recent work
by B. Grébert, R. Imekraz and E. Paturel, see [8], in which bounds are given
for the coefficients ak;j1,...,jp that allow to prove that X acts on high-regularity
Sobolev spaces. Note that this Hermite case is of particular importance because
of the lack of fast Hermite transform, while in practice Hermite spectral methods
are quite natural and widely used in many applications fields like Bose-Einstein
condensate simulations and Fokker-Planck equations.

In Section 2, we give a very general result in an abstract setting by assuming
explicit bounds on the coefficients ak;j1,...,jp in (1.5). This result covers the case
of Fourier and Hermite basis, spherical harmonics functions, and eigenfunctions
of operators of the form −∆ + V in dimension one with Dirichlet or periodic
boundary conditions.

To cover different situations, we introduce general sparse sets of indices of
the form |k|α|j1| · · · |jp| ≤ N where α = 0 or 1.

In the case where the momentum k − j1 − · · · jp is bounded in the sum defin-
ing Xk (like in the Fourier case, see (1.3)), the set of non zero coefficients will
be indeed of size O(N(log N)p−1) for α = 0. However in more general situa-
tions like Hermite approximation, the set in k and (j1, . . . , jd) will be of size
O(N2(log N)p−1) for α = 0 (if |k| < N) and O(N(log N)p) for α = 1. The effect
of this parameter α is only a slight deterioration of the rate of convergence of the
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approximation, but it reduces drastically the computational cost of the method
for large N in the Hermite case.

In Section 3, we show how an iterative implementation of the algorithm yields
a convergent approximation of the product of p functions with a cost of order
O(pN log N) instead of O(N(log N)p−1). We give an error estimate for this case
as well.

In Section 4 we detail the case of periodic exponential functions (the Fourier
basis) and discuss the possible extensions to eigenfunctions of operators of the
form −∆+V . In Section 5 we consider the Hermite case and show by numerical
experiments that the error bounds are optimal.

2 An abstract result

We consider Z = Z
d or N

d for d ≥ 1. For u = (uj)j∈Z ∈ C
Z we set

‖u‖
ℓ1s

=
∑

j∈Z

‖j‖s |uj |, (2.1)

where ‖j‖ = max(1, |j1|, . . . , |jd|) for j = (j1, . . . , jd) ∈ Z. We also define the
norm

‖u‖
ℓ2s

=
(

∑

j∈Z

‖j‖2s |uj |2
)

1
2
, (2.2)

and using the Cauchy-Schwartz inequality, we can easily prove that if s′−s > d/2,
there exists a constant C such that for all u, we have

‖u‖
ℓ2s

≤ ‖u‖
ℓ1s

≤ C‖u‖
ℓ2
s′

. (2.3)

For a given integer p ≥ 2, we aim at approximating a function X : (ℓ1
s)

p → ℓ1
s

defined by X(u1, . . . , up) = (Xℓ(u
1, . . . , up))ℓ∈Z where

∀ ℓ ∈ Z, Xℓ(u
1, . . . , up) =

∑

j1,···jp∈Zp

aℓ;j1···jpu
1
j1 · · ·u

p
jp

, (2.4)

with given coefficients aℓ;j1···jp ∈ C. We use the following notation: for a multi-
index j = (j1, . . . , jp) and ℓ ∈ Z, we define the momentum

M(ℓ, j) = ℓ − j1 − · · · − jp. (2.5)

We will also sometime use the notation aℓ;j to denote the coefficient aℓ;j1···jp .
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2.1 Sparse sets of frequencies

We consider a subset K ⊂ Z. We will typically consider the case where K =
Z, a bounded set of Z or a sparse set of indices of Z. We assume that K is
equipped with a function | · | measuring the size of multi-indices of the form
j = (j1, . . . , jd) ∈ Z. We assume that there exist positive constants c0, C0 and
σ such that

∀ j ∈ Z, c0‖j‖ ≤ |j| ≤ C0‖j‖σ
. (2.6)

We then set for u ∈ C
Z (compare (2.1))

|u|
ℓ1s

=
∑

j∈Z

|j|s|uj |, (2.7)

and using (2.6) we obtain

c‖u‖
ℓ1s

≤ |u|
ℓ1s

≤ C‖u‖
ℓ1σs

(2.8)

for some constant c and C independent of u. As particular cases of application,
we mainly have in mind the two following situations:

(i) K is a set of the form

KM = { j ∈ Z | |j| ≤ M }, with |j| := ‖j‖ , (2.9)

where M ∈ N can be equal to +∞ in which case KM = Z. In this situation,
we have C0 = c0 = σ = 1 in the inequality (2.6). Note that for a given M ,
we have ♯KM ≤ CMd for some constant C independent on M , where ♯F
denotes the cardinal of the set F .

(ii) K is a sparse set of the form

K∗
M = { j ∈ Z | |j| ≤ M }, where |j| :=

d
∏

n=1

(1 + |jn|), (2.10)

for some given M ∈ N. In this case, using the inequality of arithmetic
and geometric means, (2.6) is valid with σ = d. In this situation, we have
♯K∗

M ≤ CM(log M)d−1 for some constant C independent of M (see for
instance [4, 11]).

For a fixed α ∈ {0, 1} and N ≥ 0, we define the following approximation
XN,α(u) = (XN,α

ℓ )ℓ∈K of X(u):

∀ ℓ ∈ K, XN,α
ℓ (u1, . . . , up) =

∑

j1,···jp∈Kp

|ℓ|α|j1|···|jp|≤N

aℓ;j1···jpu
1
j1 · · ·u

p
jp

. (2.11)

The next Lemma estimates the number of non zero terms involved in the
definition of XN,α(u) in the two cases (i) and (ii) described above.
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Lemma 2.1 The cardinals of the sparse sets of indices can be estimated as fol-
lows: Let α ∈ {0, 1} and p ≥ 1. There exists a constant C depending only on d
and p such that, for all M and N ≥ 1, we have

(i) With KM defined by (2.9), and |j| = ‖j‖ for all j ∈ Z, then

♯{ℓ, j1, · · · jp ∈ Kp
M | |ℓ|α|j1| · · · |jp| ≤ N} ≤ C(♯KM )(1−α)Nd(log N)p−1+α,

with the convention (♯KM )0 = 1 when KM = Z, that is M = +∞.

(ii) With K∗
M and |j| the sparse norm defined by (2.10), then we have

♯{ℓ, j1, · · · jp ∈ (K∗
M )p | |ℓ|α|j1| · · · |jp| ≤ N}

≤ C(♯KM )(1−α)N(log N)d(p+α)−1.

Proof. The proof of (ii) is classical (see for instance [4, 11]) using the fact that
in this case, |j| =

∏d
k=1(1 + |jk|) when j = (j1, . . . , jd), so that

|ℓ|α|j1| · · · |jp| =
(

d
∏

k=1

(1 + |ℓk|)
)α

d
∏

k=1

p
∏

n=1

(1 + |jk
n|).

which yields the result for α = 1 (independently on M). The case α = 0 is
treated similarly.
The proof of (i) is a consequence of the fact that for all N ≥ 1 and p ≥ 1,

♯{j1, · · · , jp ∈ Zp | ‖j1‖ · · · ‖jp‖ ≤ N} ≤ CpN
d(log N)p−1.

for some constant Cp depending on p and d. We prove this by induction on
p: for p = 1 the result is clear using ‖j‖ = max(1, |j1|, . . . , |jd|) ∈ N\{0} for

j = (j1, . . . , jd) ∈ Z. Let us assume that it holds for p − 1 ≥ 1. We have

♯{j1, · · · , jp ∈ Zp | ‖j1‖ · · · ‖jp‖ ≤ N}

=

N
∑

k=1

♯{j1, · · · jp−1 ∈ Zp−1 | ‖j1‖ · · · ‖jp−1‖ ≤ N

k
} × ♯{j ∈ Z | ‖j‖ = k },

≤ 2d
N
∑

k=1

Cp−1

(N

k

)d(
log

N

k

)p−2 × dkd−1

≤ 2ddCp−1N
d(log N)p−2

N
∑

k=1

1

k
≤ CpN

d(log N)p−1

for some constant Cp depending on p and d. This yields the result. Here we used
the fact that we calculate explicitly that for k ≥ 2, ♯{j ∈ Z | ‖j‖ = k } = dkd−1,

while for k = 1, this number is equal to 2d, with the definition of ‖j‖ .

As we will see below, the previous result can be refined when the coefficients
aℓ,j in (2.4) have some special structure implying a decay property with respect
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to the momentum M(ℓ, j) defined in (2.5). We will consider theses cases more
in detail in the section devoted to the Fourier case.

2.2 Error estimate

The goal of this section is to give an estimate of the error

‖X(u1, . . . , up) − XN,α(u1, . . . , up)‖
ℓ1s

for smooth u1, . . . , up and where XN,α is defined by (2.11) for some given α ∈
{0, 1} and N ≥ 1.

We make a general hypothesis on the coefficients aℓ;j involved in the definition
of the functional X.

Definition 2.2 Let k = (k1, . . . , kq) ∈ Zq with q ≥ 1 a multi-index. For n =
1, . . . , q, we set µn(k) the n-th largest integer amongst ‖k1‖ , . . . , ‖kq‖ , so that
we have µ1(k) ≥ µ2(k) ≥ µ3(k) ≥ · · · .

We make the following hypothesis:

Hypothesis 2.3 There exist ν ≥ 0, θ ∈ [0, 1] such that for all R, there exists
cR such that for all ℓ ∈ Z, and all j = (j1, . . . , jp) ∈ Zp, we have

|aℓ;j| ≤ cRµ3(k)ν
( µ2(k)θµ3(k)1−θ

µ2(k)θµ3(k)1−θ + µ1(k) − µ2(k)

)R
. (2.12)

where k = (ℓ, j) = (ℓ, j1, . . . , jp).

Let us make some comments on this definition. Such bounds (with θ = 0) were
used in several recent works [5, 6, 2, 1, 3, 7] to prove long time existence results
on nonlinear PDEs set on manifolds with different kind of boundary conditions
(compact manifold, Dirichlet, etc...). It holds true in many situations where the
aℓ,j are products of the form (1.6) with functions χk defining a L2 Hilbert basis
on a manifod M , like the Fourier basis on a torus. It is also valid (with θ = 0)
in the case of spherical harmonics, see [5, 6], and when χk are well localized with
respect to the exponentials, see [1, 3] and Definition 5.3 of [7]. This last situation
corresponds to the case where the χk are eigenfunctions of an operator −∆ + V
with Dirichlet boundary conditions in dimension 1, and with a smooth periodic
potential V .

More recently this was extended to Hermite functions basis diagonalizing the
quantum harmonic oscillator operator, see [8]. In this case the previous bound
holds true but for θ = 1/2.

The main result of this section is the following.

7



Theorem 2.4 Assume that the coefficients aℓ;j of the function X(u1, . . . , up)
satisfy the Hypothesis 2.3 for some constants ν ≥ 0 and θ ∈ [0, 1], and let XN,α

be the approximation (2.11) defined for α ∈ {0, 1}, N ≥ 1 and (K, | · |) ⊂ (Z, ‖·‖)
satisfying (2.6) for some constant σ ≥ 1. Let κ > d be fixed. Then for all s ≥ 0
and s′ ≥ max(σs + θκ, (1 − θ)κ + ν), there exists a constant C such that for all
N and for all functions ui ∈ ℓ1

σs′, i = 1, . . . , p, we have the estimate

‖X(u1, . . . , up) − XN,α(u1, . . . , up)‖
ℓ1s

≤ CN−β(s,s′)
p
∏

i=1

|ui|
ℓ1
s′

, (2.13)

where

β(s, s′) = min
(s′ − σs − θκ

σα + 1
, s′ − (1 − θ)κ − ν

)

. (2.14)

To prove this Theorem, we will use the following technical Lemma. The proof
of this Lemma is postponed to the Appendix.

Lemma 2.5 Let κ > d. Assume that aℓ;j satisfies the previous Hypothesis 2.3
for some constants ν ≥ 0 and θ ∈ [0, 1]. Then for all r ≥ 0, there exists a
constant Cr such that for all j = (j1, . . . , jp) ∈ Zp,

∑

ℓ∈Z

‖ℓ‖r |aℓ;j| ≤ Crµ1(j)r+θκµ2(j)(1−θ)κ+ν . (2.15)

Proof of Theorem 2.4. We set for ℓ ∈ Z,

Rℓ(u
1, . . . , up) = Xℓ(u

1, . . . , up) − XN,α
ℓ (u1, . . . , up)

=
∑

j1,···jp∈Zp

|ℓ|α|j1|···|jp|>N

aℓ;j1···jpu
1
j1 · · ·u

p
jp

.

For some t ≤ s′, we can write

|R|
ℓ1s

≤
∑

ℓ,j1,···jp∈Zp+1

|ℓ|α|j1|···|jp|>N

|ℓ|s|aℓ;j1···jpu
1
j1 · · ·u

p
jp
|

≤ 1

N s′−t

∑

ℓ,j1,···jp∈Zp

|ℓ|α|j1|···|jp|>N

|ℓ|s+α(s′−t)|aℓ;j1···jp |
|j1|t · · · |jp|t

|j1|s
′ |u1

j1 | · · · |jp|s
′ |up

jp
|.

Hence we get using (2.6)

‖R‖
ℓ1s

≤ 1

c0
|R|

ℓ1s
≤ C(t)

N s′−t

p
∏

i=1

|ui|
ℓ1
s′

,

where

C(t) :=
C0

c0
sup

(j1,...,jp)∈Zp

1

|j1|t · · · |jp|t
∑

ℓ

‖ℓ‖σs+σα(s′−t) |aℓ;j1···jp |,
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where C0 is the constant appearing in (2.6). Applying the previous Lemma with
r = σs + σα(s′ − t) and using again (2.6) we see that C(t) will be finite if

t = max(σs + σα(s′ − t) + θκ, (1 − θ)κ + ν).

or equivalently

t = max(
σs + σαs′ + θκ

σα + 1
, (1 − θ)κ + ν),

in which case s′ − t = β(s, s′). This shows the result.

3 Iterative approximations

We consider now the case where X(u1, . . . , up) corresponds to the product oper-
ator of p functions ui =

∑

j∈Z ui
jχj(x), 1 ≤ i ≤ p, where χj(x) is an orthonormal

basis of L2(M) where M is a manifold (typically M = T
d or R

d). In this case,
the coefficients aℓ;j1,...,jn are given by the integrals

aℓ;j1,...,jn =

∫

M
χℓχj1 · · ·χjndM.

We will see in the example below that bound (2.12) holds in many situations
such as the Fourier basis on T

d and the Hermite basis on R
d. In such a case, we

identify a function u with its coefficients uj and talk about u ∈ ℓ1
s by a slight

abuse of notation.
In the previous section, we have proven that for two functions u1 and u2,

the function XN,α(u1, u2) yields a good approximation of the product u1u2 =
X(u1, u2) if these functions are smooth. Now for three functions u1, u2 and u3,
instead of approximating the product u1u2u3 by using XN,α(u1, u2, u3), which
generates a computational cost of order O(N(log N)3) in dimension d = 1 and
for α = 1 (see Lemma 2.1), we might use the following algorithm:

1. Compute the approximation v = XN,α(u1, u2) of the product u1u2

2. Compute XN,α(v, u3) as approximation of u1u2u3.

In other words, we replace XN,α(u1, u2, u3) by XN,α(XN,α(u1, u2), u3).
Obviously the cost of this algorithm is of order O(2N(log N)2) for α = 1,

instead of O(N(log N)3) (in dimension d = 1, see Lemma 2.1). Such an iterative
approximation can be easily generalized to any product of p functions, and the
global cost is of order O(pN(log N)2) for α = 1, instead of O(N(log N)p). As
we will see now, an error estimate of the same kind as in the previous section
remains valid for such sparse approximations. For simplicity, we only present the
result in the case where | · | = ‖ · ‖ , which implies ‖u‖

ℓ1s
= |u|

ℓ1s
.

This is given by the following result:
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Theorem 3.1 Let ui(x), i ≥ 0 be given functions. For all i ≥ 0, let us define
the functions UN,α(u1, . . . , ui) by induction as follows: UN,α(u1) = u1 and for
i ≥ 1,

UN,α(u1, . . . , ui+1) = XN,α(UN,α(u1, . . . , ui), ui+1),

where α ∈ {0, 1} is fixed and XN,α defined in (2.11) for (K, | · |) ⊂ (Z, ‖ · ‖)

where |j| = ‖j‖ for all j ∈ Z. Then for all p, the function UN,α(u1, . . . , up)

is an approximation of X(u1, . . . up) = u1 · · ·up in the following sense: Assume
that the coefficients aℓ;j satisfy the Hypothesis 2.3 for some constants ν ≥ 0
and θ ∈ [0, 1], and let κ > d be fixed. Then for all p ∈ N, s ≥ 0 and s′ ≥
max(s + (p − 1)θκ, (1 − θ)κ + ν), there exists a constant C such that for all N
we have the estimate

‖X(u1, . . . , up) − UN,α(u1, . . . , up)‖
ℓ1s

≤ CN−βp(s,s′)
p
∏

i=1

‖ui‖
ℓ1
s′

, (3.1)

where

βp(s, s
′) = min

(s′ − s − (p − 1)θκ

α + 1
, s′ − (p − 3)θκ − κ − ν)

)

. (3.2)

Proof. As N and α are fixed, we set U i := UN,α(u1, . . . , ui). For p = 2, the
estimate is the one given in Theorem 2.4 with σ = 1. Assume that it holds for
p− 1 ≥ 2. In particular, we have for all s′′ ≥ 0 and s′ ≥ max(s′′ +(p− 1)θκ, (1−
θ)κ + ν)

‖Up−1‖
ℓ1
s′′

≤
(

1 + CN−βp−1(s′′,s′)
)

p−1
∏

i=1

‖ui‖
ℓ1
s′

,

for some constant C depending on s′, s′′ and p. Here we use the fact that in
the case where |j| = ‖j‖ the norms ‖ · ‖

ℓ1s
and | · |

ℓ1s
coincide. Now using the

definition of Up, we can write

Up − X(u1, . . . , up) = XN,α(Up−1, up) − Up−1 · up

+ (Up−1 − X(u1, . . . , up−1)) · up. (3.3)

As a direct consequence of Lemma 2.5, we easily see that the following holds: for
s > (1 − 2θ)κ + ν, and for u =

∑

j∈Z ujχj and v =
∑

j∈Z vjχj in ℓ1
s, we have

‖uv‖
ℓ1s

≤
∑

ℓ,j1,j2∈Z

‖ℓ‖s |aℓ;j1j2 ||uj1 ||vj2 | ≤ Cs‖u‖ℓ1s+θκ

‖v‖
ℓ1s+θκ

.

Using this inequality and (3.3) we obtain for s′′ ≥ max(s + θκ, (1 − θ)κ + ν),
using (3.1) for p = 2,

‖Up − X(u1, . . . , up)‖
ℓ1s

≤ CN−β2(s,s′′)‖Up−1‖
ℓ1
s′′

‖up‖
ℓs′′

+ ‖Up−1 − X(u1, . . . , up−1)‖
ℓ1s+θκ

‖up‖
ℓ1s+θκ

10



and hence, for some constant C depending on s, s′, s′′ and p,

‖Up − X(u1, · · · , up)‖
ℓ1s

≤ C
(

N−β2(s,s′′)
(

1 + N−βp−1(s′′,s′)
)

+ N−βp−1(s+θκ,s′)
)

×
p
∏

i=1

‖ui‖
ℓ1
s′

.

We take s′′ = s′ − (p − 2)θκ, so that βp−1(s
′′, s′) = 0. For this s′′ we have

β2(s, s
′′) = min

(s′′ − s − θκ

α + 1
, s′′ + θκ − ν − κ

)

= min
(s′ − s − (p − 1)θκ

α + 1
, s′ − (p − 3)θκ − κ − ν

)

Moreover, we have

βp−1(s + θκ, s′) = min
(s′ − s − θκ − (p − 2)θκ

α + 1
, s′ − (p − 4)θκ − κ − ν

)

.

On taking the minimum between βp−1(s + θκ, s′) and β2(s, s
′′), we obtain the

result.

In the rest of this paper, we will show how this Theorem can be applied to
many situations including the discretization of polynomials in Fourier or Hermite
basis.

4 Fourier basis

We consider now functions u(x) defined on x ∈ T
d. We consider functionals of

the form
X(u1, · · · , up)(x) = b(x) u1(x) · · ·up(x), (4.1)

where b(x) is a given function defined on the torus T
d. With a function u(x) ∈ C,

x = (x1, · · ·xd) ∈ T
d, and for a given j = (j1, · · · , jd) ∈ Z := Z

d we associate
the Fourier coefficients

uj =
1

(2π)d

∫

Td

u(x)e−ij·x dx,

where j ·x = j1x1 + · · · jdxd. In this case, the coefficients aℓ;j1···jp defined in (2.4)
can be calculated explicitely, and for given ℓ ∈ Z = Z

d and j = (j1, . . . , jp) ∈ Zp.

aℓ;j1···jp =
∑

k∈Zd

bk
1

(2π)d

∫

Td

ei(−ℓ+k+j1+···+jp)·xdx = bM(ℓ,j), (4.2)

where the numbers bk are the Fourier coefficients associated with the function
b(x), and with the definition (2.5) of the momentum M(ℓ, j). Here we use the

11



very special property of the exponential functions eij·x that the product of two
basis functions is again a basis function. We assume that b(x) extends to an
analytic function on a complex strip Uρ := T

d × i[−ρ, ρ]d around the torus,
which implies by standard Cauchy estimates that

∀ k ∈ Z
d, |bk| ≤ De−ρ|k|, (4.3)

where D = supz∈Uρ
|b(z)|.

With this calculation, we can prove the following result:

Proposition 4.1 If the Fourier coefficients bk of the function b(x) satisfy the
analytic estimate (4.3), then the coefficients aℓ,j1···jp defined in (4.2) satisfy the
Hypothesis 2.3 with ν = 0 and θ = 0.

Hence we see that when b is analytic, we will have β(s, s′) = s′−s
α+1 in the

formula (2.14), provided s′ and s are large enough. The proof of the previous
proposition can be found in [1, 7]. As explained in these references, the same
result holds true when the function u(x) is decomposed on a Hilbert basis ej(x),
j ∈ Zd that is well-localized with respect to the exponential. This includes in
particular the case where ej(x) are the eigenfunctions of a differential operator of
the form u(x) 7→ −∆u(x)+V (x)u(x) for some smooth periodic potential function
V (x) in dimension d = 1. We refer to [7] for extensive discussions on the subject.

Let us mention that in the particular case where b(x) is a trigonometric poly-
nomial containing only a finite number of frequencies, the use of the parameter
α = 1 is not mandatory to obtain sparse set of indices. This is a consequence of
the Lemma below:

Lemma 4.2 Considering the approximation (2.11), we assume that there exists
q ≥ 0 such that

|M(ℓ, j)| > q =⇒ aℓ;j = 0.

The cardinals of the sparse sets of indices with α = 0 can be estimated as follows:
Let p ≥ 1, then there exists a constant C depending only on d, q and p such that,
for all M and N ≥ 1, we have

(i) With KM defined by (2.9), and |j| = ‖j‖ for all j ∈ Z, then

♯{ℓ, j1, · · · jp ∈ Kp
M | |j1| · · · |jp| ≤ N} ≤ CNd(log N)p−1.

(ii) With K∗
M and |j| the sparse norm defined by (2.10), then we have

♯{ℓ, j1, · · · jp ∈ (K∗
M )p | |j1| · · · |jp| ≤ N} ≤ CN(log N)dp−1.

12
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Figure 1: Sparse approximation of u3 for σ = 3. Left: convergence of the ℓ1-error;
Right: CPU time

Proof. For a fixed ℓ in the sets considered, the estimates can be obtained
similarly as in the proof of Lemma 2.1, and are independent of ℓ. Now under the
assumption on the momentum, if aℓ;j 6= 0 then we have necessarily M(ℓ, j) =
m ∈ Z

d with |m| ≤ q. Summing in m then yields the result (with a constant
proportional to qd).

Note that the case considered in the introduction corresponds to b(x) = 1
and q = 0 in the previous Lemma.

We show now on a numerical example the accuracy of the estimates above.
We consider the function u(x) =

∑

k∈Z
uke

ikx with uk = (1 + |k|)−σ so that
u ∈ ℓ1

s′ for s′ < σ − 1. We compute up by the direct method (2.11) and the
iterative algorithm described in Section 3. In both cases we expect a maximal

convergence rate O(N
σ−1
α+1 ) in ℓ1 (that is for s = 0). In figure 1 (left) we plot in

log scale the ℓ1-error versus the sparse level N in the case p = 3 for the different
approximation methods. In figure 1 (right) we plot the estimated CPU time
together with the theoretical bounds CN(log N)p−1+α for the direct method and
CpN(log N)1+α for the iterative one. For convenience we plot only the theoretical
bounds for α = 0. The version α = 0 is clearly more accurate than α = 1. On
the other hand it has only a minimal extra cost, so for this particular example
it is clearly preferable. It should be pointed out, however, that this is due to the
very simple form of the functional X(u) = u3 for which aℓ;j = 0 if |M(ℓ, j)| 6= 0.

Figure 2 shows the error versus the CPU time. It is clear from this plot the
advantage of the iterative algorithm with respect to the direct method, as well
as the advantage of α = 0 with respect to α = 1.

Finally, in figure 3 we show the convergence of the ℓ1-error, still in the case
p = 3 but for different values of σ. We consider here only the case of α = 1 and
the direct formula (2.11). The results in the other cases are analogous. For all
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values of σ we recover the expected theoretical rate of convergence.

5 Hermite

We consider now the case where u(x) is defined on the real line (x ∈ R) and the
basis (χj)j∈N is given by the set of normalized Hermite functions defined by the
formula

Tχj := −d2χj

dx2
(x) + x2χj(x) = (2j + 1)χj(x), j ∈ N, (5.1)

with the condition ‖χj‖L2(R)
= 1. Note that here, with the notation of the

previous sections, we have Z = N. For all j ∈ N, the Hermite functions are given
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by

χn(x) =
Hn(x)

√

2nn!
√

π
e−x2/2

where Hn(x) is the n-th Hermite polynomial with respect with the weight e−x2
.

Recall that these Hermite polynomials satisfy

∀n, m ∈ N,

∫

R

Hn(x)Hm(x)e−x2
dx = 2nn!

√
πδnm,

and the induction relations:

H0(x) = 1, and Hn+1(x) = 2xHn(x) − 2nHn−1(x), n ≥ 1.

In this situation, (χj(x))j∈N is a Hilbert basis of L2(R) and for a given real
function u(x), we can write

u(x) =
∑

j∈N

ujχj(x), where uj =

∫

R

u(x)χj(x) dx.

Here, note that the Hilbert space associated with the norm ℓ2
s defined in

(2.2) coincides with the domain of the operator T s (see (5.1)). Using standard
notations, the classical space H̃s defined by

H̃s = {u(x) ∈ Hs(R) |x 7→ xp∂q
xu(x) ∈ L2(R) for 0 ≤ p + q ≤ s }

corresponds with the domain of the operator T s/2 (see for instance [9]) and hence
with ℓ2

s/2. In particular, we can write owing to (2.3)

c‖u‖
H̃s ≤ ‖u‖

ℓ1
s/2

≤ C‖u‖
H̃s′ ,

provided s − s′ > d, and for some positive constants c and C independent of u.
Let us now consider the functional X(u)(x) = u(x)p for p ∈ N. In this case,

the coefficients aℓ,j1···jp in (2.4) are given by the formula, for (ℓ, j1, . . . , jp) ∈ N
p+1.

aℓ;j1...jp =

∫

R

χℓ(x)χj1(x) · · ·χjp(x)dx. (5.2)

The following Proposition can be found in [8], Proposition 3.6:

Lemma 5.1 For all ν > 1/8 and all R > 0, there exists cR such that for all
ℓ ∈ N, and all j = (j1, . . . , jp) ∈ N

p, we have

|aℓ;j| ≤ cR
µ3(k)ν

µ1(k)
1
24

( µ2(k)
1
2 µ3(k)

1
2

µ2(k)
1
2 µ3(k)

1
2 + µ1(k) − µ2(k)

)R
. (5.3)

where k = (ℓ, j) = (ℓ, j1, . . . , jp). In particular, these coefficients satisfy Hypoth-
esis 2.3 with θ = 1/2 and ν > 1/8.
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Note that the estimate given in [8] is slightly better than the one given in

2.12 because of the presence of the term µ1(k)
1
24 in the denominator in (5.3).

Remark 5.2 In this paper, we will only consider the case of Hermite functions
in dimension 1. The extension to higher dimension can be made using the frame-
work of [8], Section 3.2.

In this situation, and when α = 1, we obtain a convergence rate of order

N
s−s′+κ

2 for κ > 1 and sufficiently large s′ for the algorithm described in Theorem

2.4, and N
s−s′+(p−1)κ/2

2 for the iterative algorithm (see Theorem 3.1).
In the following we will illustrate these results by numerical simulation. In

all the computations presented below, the coefficients (5.2) are approximated
in double machine precision by using Gauss-Hermite quadrature rules with the
packages provided by J. Burkhardt1.

We first consider the case where p = 3, and for given number σ, we consider
the fonctions u(x) =

∑

n≥0 unχn(x) with un = (1 + n)−σ so that u ∈ ℓ1
s′ for

s′ < σ − 1. Hence in this case, we expect a maximal convergence rate of order
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Figure 4: Convergence of the sparse approximation

O(N−σ−1−κ
2 ) in ℓ1 (that is for s = 0) and when α = 1. In Figure 4 we plot in log-

log scale the error measured in ℓ1 norm between the approximation XN,1(u, u, u)

1http://people.sc.fsu.edu/∼jburkardt/cpp src/hermite rule/hermite rule.html
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and the exact solution u3 whose Hermite coefficients are approximated using a
Hermite transform with 500 points. The convergence rates observed correspond
to the theoretical estimate (2.13).

In figure 5, we plot the time required by the algorithm in the cases p = 2, 3
and p = 4, to compute the Hermite coefficients of u(x)p. As expected, the time
increases when p becomes large, which is in accordance with the cost of order
N(log N)p predicted by Lemma 2.1. We compare with the cost of the Hermite
transform algorithm with N points, which is in O(N2). Note that for this latter
method, the cost does not significantly differ with p, and only p = 3 is shown.
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Figure 5: Time versus sparse level N

In figure 6, we give the same time computation but with the iterative algo-
rithm. We observe a significant speed up in the algorithm in comparison with
the previous algorithm.

In the last figures 7, 8 and 9, we fix σ = 10 for the coefficients un = (1+n)−σ

of the function u(x), and we plot the error versus the time required for the
algorithm (obtained in Figure 5). We compare with the result obtained with
the Hermite transform method. The results obtained are better for the sparse
approximation. The results obtained for the iterative algorithm are similar, but
less convincing because it requires much large number N , despite a better cost
for a single iteration.
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Appendix: Proof of Lemma 2.5

To prove this Lemma, we will use the following result, which can be found in [7]
for θ = 0 and [8] for θ = 1/2.

Lemma 5.3 Assume that j = (j1, . . . , jp) ∈ Zp and for ℓ ∈ Z, let

Aθ(ℓ, j) =
µ2(ℓ, j)θµ3(ℓ, j)1−θ

µ2(ℓ, j)θµ3(ℓ, j)1−θ + µ1(ℓ, j) − µ2(ℓ, j)
. (5.4)

Then we have
∀ ℓ ∈ Z, ‖ℓ‖ Aθ(ℓ, j) ≤ 2µ1(j). (5.5)

Proof. If ‖ℓ‖ ≤ µ1(j), the equation (5.5) is obvious using the relation Aθ(ℓ, j) ≤
1.
In the case ‖ℓ‖ ≥ µ1(j), then we have µ2(ℓ, j)θµ3(ℓ, j)1−θ = µ1(j)θµ2(j)1−θ and

‖ℓ‖ Aθ(ℓ, j) =
‖ℓ‖ µ1(j)θµ2(j)1−θ

µ1(j)θµ2(j)1−θ + ‖ℓ‖ − µ1(j)

=

(

‖ℓ‖ − µ1(j)

µ1(j)θµ2(j)1−θ + ‖ℓ‖ − µ1(j)

)

µ1(j)θµ2(j)1−θ + µ1(j)Aθ(ℓ, j).
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Figure 7: σ = 10, p = 2

We conclude using the fact that Aθ(ℓ, j) ≤ 1, and 1 ≤ µ1(j)θµ2(j)1−θ ≤ µ1(j).

Proof of Lemma 2.5. Let j = (j1, . . . , jp) ∈ Zp be fixed. We distinguish
three cases in the sum in ℓ ∈ Z appearing in (2.15).
(i) ‖ℓ‖ > µ1(j). In this case, we have µ1(ℓ, j) = ‖ℓ‖ , µ2(ℓ, j) = µ1(j) and

µ3(ℓ, j) = µ2(j). Hence we can write using (2.12) with R = r + κ, and the
previous Lemma

∑

‖ℓ‖>µ1(j)

‖ℓ‖r |aℓ;j| ≤ cµ2(j)ν
∑

‖ℓ‖>µ1(j)

‖ℓ‖r
Aθ(ℓ, j)r+κ

≤ c2rµ1(j)rµ2(j)ν
∑

‖ℓ‖>µ1(j)

Aθ(ℓ, j)κ.

As in this case we have

Aθ(ℓ, j) =
µ1(j)θµ2(j)1−θ

µ1(j)θµ2(j)1−θ + ‖ℓ‖ − µ1(j)
≤ µ1(j)θµ2(j)1−θ 1

1 + ‖ℓ‖ − µ1(j)
,

we obtain
∑

‖ℓ‖>µ1(j)

‖ℓ‖r |aℓ;j| ≤ c2rµ1(j)r+θκµ2(j)(1−θ)κ+ν
∑

‖ℓ‖>µ1(j)

( 1

1 + ‖ℓ‖ − µ1(j)

)κ

≤ Cµ1(j)r+θκµ2(j)(1−θ)κ+ν ,

where the constant C depends only on r and κ but not on j. Here we use the
fact that the sum in the right-hand side is convergent and independent of µ1(j),
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Figure 8: σ = 10, p = 3

owing to the condition κ > d.
(ii) µ1(j) ≥ ‖ℓ‖ > µ2(j). In this case we have µ1(ℓ, j) = µ1(j), µ2(ℓ, j) = ‖ℓ‖
and µ3(ℓ, j) = µ2(j). Hence we have

Aθ(ℓ, j) =
‖ℓ‖θ

µ2(j)1−θ

‖ℓ‖θ
µ2(j)1−θ + µ1(j) − ‖ℓ‖

≤ µ1(j)θµ2(j)1−θ 1

1 + µ1(j) − ‖ℓ‖ .

Using again the previous Lemma, we obtain
∑

µ1(j)≥‖ℓ‖>µ2(j)

‖ℓ‖r |aℓ;j| ≤ c2rµ1(j)rµ2(j)ν
∑

µ1(j)≥‖ℓ‖>µ2(j)

Aθ(ℓ, j)κ

≤ c2rµ1(j)r+θκµ2(j)(1−θ)κ+ν
∑

µ1(j)≥‖ℓ‖>µ2(j)

( 1

1 + µ1(j) − ‖ℓ‖
)κ

,

and we conclude as in the previous case.
(iii) µ2(j) ≥ ‖ℓ‖ . In this last situation, we can estimate directly the term, and
obtain using the fact that A(ℓ, j) ≤ 1,

∑

‖ℓ‖≤µ2(j)

‖ℓ‖r |aℓ;j| ≤ µ2(j)r
∑

‖ℓ‖≤µ2(j)

|aℓ;j| ≤ cµ2(j)ν+r
(

∑

‖ℓ‖≤µ2(j)

1
)

.

20



0 1 2 3 4 5 6 7

x 10
(3

(12

(10

(8

(6

(4

(2

0

Time

L
o

g
1
0
 o

f 
th

e
 e

rr
o

r 
(s

=
1
)

 

 

Hermite transform

Sparse approximation

Figure 9: σ = 10, p = 4

Hence, using ♯{ℓ ∈ Z
d | ‖ℓ‖ ≤ µ2(j)} ≤ Cµ2(j)d, we get

∑

‖ℓ‖≤µ2(j)

‖ℓ‖r |aℓ;j| ≤ Cµ2(j)r+d+ν ≤ Cµ1(j)r+θκµ2(j)(1−θ)κ+ν ,

as κ > d. Gathering the previous estimate yields the result.

Authors addresses:

E. Faou, INRIA and ENS Cachan Bretagne, Avenue Robert Schumann, F-35170
Bruz, France.
Erwan.Faou@inria.fr

F. Nobile, Ecole Polytechnique Fédérale de Lausanne, EPFL SB MATHICSE
CSQI, MA B2 444 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland.
fabio.nobile@epfl.ch

C. Vuillot, ENS Cachan Bretagne, Avenue Robert Schumann, F-35170 Bruz,
France.
christophe.vuillot@eleves.bretagne.ens-cachan.fr

References

[1] D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math.
Physics 234 (2003) 253–283.

21
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