
HAL Id: hal-00718290
https://hal.science/hal-00718290

Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A three-level component model in component-based
software development

Huaxi (Yulin) Zhang, Lei Zhang, Christelle Urtado, Sylvain Vauttier,
Marianne Huchard

To cite this version:
Huaxi (Yulin) Zhang, Lei Zhang, Christelle Urtado, Sylvain Vauttier, Marianne Huchard. A
three-level component model in component-based software development. 11th International Con-
ference on Generative Programming and Component Engineering (GPCE 2012), ACM SIGPLAN :
Special Interest Group on Programming Languages, Sep 2012, Dresden, Germany. pp.70-79,
�10.1145/2371401.2371412�. �hal-00718290�

https://hal.science/hal-00718290
https://hal.archives-ouvertes.fr

A Three-level Component Model in Component Based
Software Development

Huaxi (Yulin) Zhang
Dept. Math/Info

Université Toulouse 2
Toulouse, France
Zhang@irit.fr

Lei Zhang
Research Center of

Automation
Northeastern University

Shenyang, China
zl.org.cn@gmail.com

Christelle Urtado
LGI2P / EMA

Nîmes, France
Christelle.Urtado@mines-

ales.fr

Sylvain Vauttier
LGI2P / EMA

Nîmes, France
Sylvain.Vauttier@mines-

ales.fr

Marianne Huchard
Lirmm, Umr 5506

Cnrs and Univ. Montpellier 2
Montpellier, France

huchard@lirmm.fr

ABSTRACT
Component-based development promotes a software devel-
opment process that focuses on component reuse. How to
describe a desired component before searching in the repos-
itory? How to find an existing component that fulfills the
required functionalities? How to capture the system person-
alization based on its constitutive components’ customiza-
tion? To answer these questions, this paper claims that com-
ponents should be described using three different forms at
three development stages: architecture specification, config-
uration and assembly. However, no architecture description
language proposes such a detailed description for compo-
nents that supports such a three step component-based de-

velopment. This paper proposes a three-level Adl, named
Dedal, that enables the explicit and separate definitions
of component roles, component classes, and component in-
stances.

Keywords
Component-based development, Software architecture, Ar-
chitecture description language

1. INTRODUCTION
Component-based software development (Cbsd) consists

in two activities: the development of software components
for reuse and the development of software applications by
component reuse. The first activity can be managed by
classical software development processes, with an analysis,
a design and then a coding phase. The produced software
modules, encapsulated as component classes, are then stored

and indexed in repositories to be reused later on. The sec-
ond activity corresponds to a more specific and still scarcely
studied development process. We propose an architecture-
centric development process that aims at defining the struc-
ture of an application as a set of reused components and a set
of connections between them, using a dedicated Architecture
Description Language (Adl). This process is structured in
three steps, in which architecture definitions are gradually
refined, from abstract to concrete representations.

1. After a classical analysis step, architecture specifica-
tion first captures design decisions as ideal architec-
tures imagined by architects to meet the requirements.
Specifications do not describe complete component types
but only component roles (usages). These roles are
used to search for matching component classes in repos-
itories. Specifications and roles are thus key concepts
to effectively integrate component reuse in the devel-
opment process.

2. Architecture configurations are then described to cap-
ture implementation decisions, as the architects select
specific component classes from the repository to im-
plement component roles.

3. Finally, architecture assemblies define how component
instances are created and initialized to customize the
deployment of architectures in different execution con-
texts.

Our process is supported by a three-level dedicated Adl,
entitled Dedal, which enables the explicit and separate defi-
nitions of architecture specifications, configurations and as-
semblies. This way, a single abstract architecture definition
can be refined into many concrete architecture definitions,
to foster not only the reuse of components but also of archi-
tectures. The refinement relationships between these sep-
arate architecture representations — i.e., the relationships
between the component roles, classes and instances they are
composed of — are proposed to control and verify the global
coherence of these multi-level architecture definitions.

The remaining of this paper is organized as follows. Sec-
tion 2 introduces our proposed architecture-centric, reuse-
based development process. Section 3 presents the different

component description levels supported in Dedal, our pro-
posed Adl to support this development process. Section 4
presents the different architecture description levels which
can be expressed in Dedal, along with the refinement rela-
tions between them. Section 5 introduces the tool suite of
Dedal. Section 6 discusses the related works. It studies how
existing Adls are suitable component based software devel-
opment. Section 7 concludes with future work directions.

2. SOFTWARE ARCHITECTURES IN CBSD

2.1 A Development Process for Component Reuse
Cbsd is characterized by its implementation of the “reuse

in the large” principle. Reusing existing (off-the-shelf) soft-
ware components [8] therefore becomes the central concern
during development. Traditional software development pro-
cesses cannot be used as is and must be adapted to compo-
nent reuse [7, 6]. Figure 1 illustrates our vision of such a
development process which is classically divided in two:

• the component development process (sometimes re-
ferred to as software component development for reuse),
which is not detailed here. This development process
is the producer of components that are stored in repos-
itories for later consumption by the component reuse
process.

• the Cbsd process (referred to as software development
by component reuse) that describes how previously de-
veloped software components can be used for software
development (and how this reuse process impacts the
way software is built).

Component‐based software design by reuse

Lifecycle step Lifecycle step

Component
development and
documentation

Component code
storage and indexation

Component
code & models

Component repository

System requirement
analysis

Architecture
specification design

Architecture
configuration design

Software assembly
instantiation

Production

Architecture runtime
model& software

Architecture design model

Architecture requirement
model

Functional & non
functional requirements

Caption:

Component
search

Component
instantiate

Uses
Produces
Precedes

Production

Component design for reuse

Figure 1: Component development and component-based
software development processes

The Cbsd process, cannot be realized in one phase. Dif-
ferent concerns are managed sequentially at different design
level, from the more abstract to more concrete one. Indeed,
architects and programmers cannot put all the information
of a component in one description without separated these
information. During the development process, these infor-
mation of components is refined and enriched at each dif-
ferent development stage. In this paper, we proposed a
Cbsd process, which deliberately focuses on the produced
artifacts: architecture models of the software for each devel-
opment step for each development step1.

1For simplicity’s sake, it is also exclusively “ reuse-centered”
and does not describe how components should be: adapted if

In this Cbsd process, software is considered to be pro-
duced by the reuse of components that have previously been
stored and indexed in a component repository. It decom-
poses in three steps each of which produces a description
that models the view of the architecture at this development
step [24]:

1. Architecture specification design. After a classical re-
quirement analysis step, architects establish the ab-
stract architecture specification (architecture require-
ment model). They define which functionalities should
be supplied by components, which interfaces should be
exported by components, and how interfaces should
connect to build a software system that meets the re-
quirements. All the constituents of this architectural
models are abstract (as-wished) and partial.

2. Architecture configuration design. In a second step,
architects create architecture configurations (architec-
ture design models) that define the sets of component
implementations (classes) by searching and selecting
from the component repository. Abstract component
types from the architecture specification thus become
concrete (as-found) component types in architecture
configurations.

3. Software assembly instantiation. In a third step, con-
figurations are instantiated into component instance
assemblies (architecture runtime models) and deployed
to executable software applications.

The claim of this paper is that an architectural description
should correspond to each of the three steps of the Cbsd pro-
cess. In other words, components in architectures should be
described from all abstract component, concrete component
and component instance point of views. These descriptions
should reflect the architect’s design decisions at each step of
the development cycle and be expressed using an adequate
Adl.

2.2 Example of a Bicycle Rental System
Figure 2 shows the example used throughout the paper:

the architecture specification of a bicycle rental system (Brs).
A BikerGUI component manages the user interface. It coop-
erates with a Session component which handles user com-
mands. The Session component cooperates with the Ac-
count and Bike&Course components to identify the user,
check the balance of its account, assign him an available
bike and then calculate the price of the trip when the rented
bike is returned. In the following sections, we will use a part
of this system in the dotted area to illustrate our concepts
and Adl syntax.

3. COMPONENT REPRESENTATIONS IN
THE THREE LEVELS OF DEDAL

Dedal models architectures at three separate abstraction
levels, each of which contains different forms of components
and connectors. For now, Dedal mainly focuses on mod-
eling components. At the specification level, components

no existing component perfectly matches specifications, de-
veloped from scratch if no component is found that matches
or closely matches specification, tested and integrated, and
physically deployed.

6/11/2012

1

:component role :required interface
:connection :provided interface

Signatures of the interfaces

AccountOprs
checkID
checkBalance
debit

UQuery findAccount

USave storeAccount

Account
login
pay

Bike
findB
rentB
returnB

CourseOprs
startC
endC BikeOprs

selectB
rentBike
renturnBike

LocOprs findStation

BikeQS
findBike
saveBike

CourseQS
QueryCourse
SaveCourse

Captions:
I

a
b

Interface I composed of
the a and b signatures

Biker
GUI Session AccountBike

AccountOprs

Bike&
Course

Account
DB

Bike&
CourseDB

Co
ur
se
Q
S

Bi
ke
Q
S

U
Q
ue

ry

Co
ur
se
O
pr
s

Bi
ke
O
pr
s

U
Sa
ve

Account

Figure 2: Brs abstract architecture specification

are modeled as roles which are requirement models for con-
crete component search. These specifications thus are ab-
stract and partial. At the configuration level, components
are modeled as (whole) component classes which realize the
specifications. Several component classes might correspond
to a single component role as there might exist several con-
crete realizations of a single specification. At the assembly
level, concrete component classes are instantiated into com-
ponent instances that represent runtime components and
their parametrization. Figure 3 shows a complete example
of components at three levels. In this section, we detailed in-
troduce the different forms of components in these different
levels.

6/11/2012

1

Session

Basket
Europcar

Persistent
Basket

Basket
Amazon

Embedded
Session

ATM
Session

Iphone
Session

Basket

Basket
LocaBike

<<realizes>>

<<instantiates>>

Figure 3: The Session component role, some possible con-
crete realizations and some of their instantiations

3.1 Components in Abstract Architecture
Specifications

Component roles model abstract component types in
that they describe the roles components should play in the
system. A component role lists the minimum list of inter-
faces (both required and provided) the component should
expose and the component behavior protocol that describes
the behavior of the component in the architecture (dynamics
of the architecture). As they define the requirements of the
architect (its ideal view) to guide the search for correspond-
ing concrete components, component roles are abstract and
partial component representations (e.g. Session component
role on Fig. 3). The syntax can be found in Fig. 4.

component_role::=
component_role component_role_name
(required_interfaces interface_list)?
(provided_interfaces interface_list)?
(role_behavior component_behavior)?
(MinInstanceNbr PositiveInteger)?
(MaxInstanceNbr PositiveInteger)?

interface_list::=
interface_name (; interface_name)*

Figure 4: Syntax of component role

• Interface. The interfaces are the connection points
that the component should expose. They can be pro-
vided or required. An interface is composed by its
name, direction (provided or required) and its imple-
mentation class, as shown in Fig. 5.

interface::=
interface interface_name
implementation implementation_class

Figure 5: Syntax of interface

• Role behavior. A role behavior is the protocol that de-
scribes the expected behavior of a component in an ar-
chitecture (the behavior protocol is often referred to as
the dynamics of the architectures). Dedal uses the pro-
tocol syntax of Sofa [19] to describe component role
behavior as regular expressions2. Other formalisms
could have been used instead; the notation chosen is in-
teresting as it is compact and is implemented as an ex-
tension of the Fractal component model we use for our
experimentations, with companion verification tools.
Component protocols capture the behavior of compo-
nents describing all valid sequences of emitted func-
tion calls (emitted by the component and addressed to
neighbor components) and received function calls (re-
ceived by the component from neighbor components).

• Cardinality. The precise cardinality of component in-
stances are described in component role descriptions
using minInstances and maxInstances. They de-
fine the minimum and maximum numbers of compo-
nent instances that are to be instantiated from the
component class which implements this component role.
For example, the BikeGUI component role has a max-
imum number of component instances of 15, as shown
in Fig. 6.

Dedal chooses to describe component roles outside ab-
stract architecture specifications, so as they can be reused
from a specification to another (this would not be possible
if they were embedded). Figure 6 shows the descriptions of
the BikeCourse and BikeCourseDB component roles. They
contain the Sofa-like descriptions of their behavior.

3.2 Components in Concrete Architecture
Configurations

At configuration level, components are modeled in two
ways with component types and component classes. Fig-
ure 7 provides a close-up view of the relationships between
a component role (that model an abstract and partial view

2!i.m (resp. ?i.m) denotes an outgoing (resp. incoming) call
of method m on interface i. A+B is for A or B (exclusive or)
and A;B for B after A (sequencing).

component_role BikeCourse
required_interfaces BikeQS; CourseQS
provided_interfaces BikeOprs; CourseOprs
component_behavior
(!BikeCourse.BikeOprs.selectBike,
?BikeCourse.BikeQS.findBike;)
+
(!BikeCourse.CourseOprs.startC,
?BikeCourse.CourseQS.findCourse;)

MaxInstanceNbr 3

component_role BikeCourseDB
provided_interfaces BikeQS; CourseQS
component_behavior
!BikeCourseDB.BikeQS.findBike;
+
!BikeCourseDB.BikeOprs.findCourse;

component_role BikeGUI
required_interfaces Account; Bike
component_behavior
?BikeGUI.Account.login;
...

MaxInstanceNbr 15

interface BikeQS
implementation fr.ema.locaBike.BikeQS

Figure 6: Component role descriptions of BikeCourse, Bike-
CourseDB, and BikeGUI ; Interface description of BikeQS

of a required component), a component type that models the
complete type of some existing concrete implementation, a
component class that represent the concrete component im-
plementation and a parametrized component instance.

Component
role

Component
class

Component
instance

Session

Basket

Basket
LocaBike

<<realizes>>

<<instantiates>>

Basket
Type<<implements>>

<<matches>>

Component
type

Figure 7: Relationships between component roles, compo-
nent classes, component types and component instances

3.2.1 Component types
Component types represent the full types of at least one

(maybe several) existing component implementations. They
are defined by describing the interface set and the behavior
of these component classes. Component types are reusable
as they can be implemented by multiple component classes
which possess the same interfaces and component behavior.
The BasketType component type description of Fig. 8 is an
example of component type description.

3.2.2 Component classes
Component classes represent concrete component imple-

mentations. Each component class points to the component
type it implements. Component classes can either be prim-
itive or composite.

Primitive component classes (e.g. Basket as described
in Fig. 10) define the reused components by describing their
interfaces, behavior, version and implementing class. Exist-
ing models usually do not include links to the implement-
ing class as they assume there is a single implementation.

component_type BasketType
required_interfaces BikeOprs; CourseOprs;

AccountOprs; CampusOprs; AccessoryOprs
provided_interfaces Account; Bike
component_behavior
(!BasketType.Bike.findB,
?BasketType.BikeOprs.findB;)
+
(!BasketType.Account.login,
?BasketType.AccountOprs.checkID;)
. . .

Figure 8: Description of the BasketType component type

In Dedal, components can thus have several distinct imple-
mentations (which can be useful to have implementations
versioned in such cases as software product lines manage-
ment). The BikeTrip component class description of

primitive_component_class::=
primitive_component_class component_class_name
implements component_type_name
content implementation_class
(attributes attribute_list)?
versionID revision_numb
(pre_version pre_version)?
(motivation motivation)?
(condition condition)?

attribute_list::= attribute (; attribute)*

attribute::= type attribute_name

Figure 9: Syntax of primitive component class

Component class versions are documented by their revi-
sion numbers, their previous versions’ revision numbers and
by the motivations of the changes that entail their deriva-
tion from their previous versions. Motivations can either be
corrective if the evolution aims at fixing some bug or perfec-
tive if the evolution aims at increasing the performance of
the component3.

component_class Basket
implements BasketType
content fr.ema.locaBike.Basket
versionID 1.0
attributes string company; string currency

Figure 10: The Basket (primitive) component class descrip-
tion

Composite component classes differ from primitive
components in that their implementation is not defined by
a single class but by an embedded architecture configura-
tion, i.e., a set of connected inner components. The com-
posite component class definition further defines how the
interfaces of the composite component are mapped to cor-
responding unconnected interfaces of its inner components
thanks to delegation connections. As for simple provided
interfaces and required interfaces in composite components,
delegated interfaces are implementations of the correspond-
ing provided and required interfaces in the corresponding
component role. Explicit delegation declarations can be
found in almost all the hierarchical Adl models, such as
Darwin [20], Unicon [16], and Sofa2.0 [5]. Dedal’s syntax
for these can be seen in Fig 11. Figure 13 gives an exam-
ple of the composite component class BikeCourseDBClass
where the BikeQS provided interface of the BikeData com-
ponent inside the BikeCourseDBConfig configuration is del-

3Motivations are used for gradual component version sub-
stitution as described in [23].

egated as a provided interface of the composite component
that implements the BikeQS interface of the BikeCourseDB
component role. Figure 12 shows a graphical representation
of the same BikeCourseDBClass component.

composite_component_class::=
composite_component_class component_class_name
implements component_type_name
content configuration_identifier
delegated_interfaces delegated_interface_list
(attributes attribute_list)?
versionID revision_numb
(pre_version pre_version)
(motivation motivation)?
(condition condition)?

configuration_identifier::=
configuration_name (revision_numb)

delegated_interface_list::=
provided | required inner_interface

as outer_interface
(; provided | required inner_interface

as outer_interface)*

Figure 11: Syntax of the composite component class

Both primitive and composite component classes can ex-
port an attribute list (as exemplified on Fig. 10 and 13).
Attributes are not mandatory but can be declared as ob-
servable / visible properties for component classes so as to
be able to set assembly constraints on attribute values in
the instantiated component assembly level.

3.3 Components in Instantiated Component
Assemblies

Component instances document the real artifacts that are
connected together in an assembly at runtime. They are in-
stantiated from the corresponding component classes. They
might define constraints on components’ attributes that re-
flect design decisions impacting component states (attribute
values) over time. They also set the initial component state
by initializing attributes values.

component_instance::=
component_instance component_instance_name
instance_of component_class_identifier
init_state attribute_value_list
current_state attribute_value_list

attribute_value_list::=
attribute_name = attribute_value
(; attribute_name = attribute_value)*

attribute_value::=

“an attribute value of the correct type”

Figure 14: Syntax of component instance

component_instance BasketLocaBike
instance_of Basket (1.0)
init_state company="LocaBikecurrency";
currency=="Euro."

component_instance BikeCourseDBLoca
instance_of BikeCourseDBClass (1.0)

Figure 15: Component instance descriptions of BikeTripC1
and BikeCourseDBClassC1

By default, component classes can be instantiated into
multiple component instances. When more precise cardinal-
ity information is needed, it is expressed in component role
descriptions using minInstances and maxInstances that
define the minimum and maximum numbers of component

instances that are permitted to instantiate from the compo-
nent class which implements this component role. By this
means, component classes do not include this configuration-
dependent information and remain reusable. In the assem-
bly level, assembly constraints that restrain the valid num-
ber of instances will be checked against the cardinality infor-
mation defined in the component role (in the specification
level). There is no rule to constrain the name of component
instances of a given component class.

In conclusion, the components in architectures can be
found in Figure 16.

spec

ComponentRole
minInstanceNbr : EInt
maxInstanceNbr : EInt
behavior : ComponentBehavior

config

ComponentClass
attributes: Attribute

ComponentClass_Role

CompositeComponentClass
delegatedProvidedInterface : Interface
delegatedRequiredInterface : Interface

ComponentType
requiredInterface : Interface
providedInterface : Interface
behavior : ComponentBehavior

PrimitiveComponentClass
content : EString
requiredInterfaces : Interface
providedInterface : Interface

ass

ComponentInstance_Role ComponentInstance

AssemblyConstraint

class1

implements

0..1

instance

1

appliedOn

0..1

class1

role 1

instance

1

role 1

implements

0..1

appliedOn

0..1

Figure 16: The metamodel of components in Dedal

4. THREE LEVELS OF ARCHITECTURE
DESCRIPTION IN DEDAL

In this section, we briefly present the three architecture
descriptions in Dedal based on the above component descrip-
tions.

4.1 Abstract Architecture Specifications
Abstract architecture specifications (Aass) are the first

level of software architecture descriptions. They provide
a generic definition of the global structure and behavior
of software systems according to previously identified func-
tional requirements. They model the requirements expressed
by the architect to serve as a basis to search for concrete
component to create concrete architecture configurations.
These architecture specifications are abstract and partial:
they do not identify concrete component types that are go-
ing to be instantiated in the software system. They only
describe the “ideal” component types from the application
point of view. In Dedal, an Aas is composed of a set of
component roles, a set of connections and its architecture
behavior.

)������������	��������)��&�����������	��

)���������������������������)���"�����������	��

)����#	�����������������

�
������)

!
�

��
�
-
�

�
�

�
-
�

��
�,	�	����,	�	

��
�!����,�!�	��

• • •

!����-��
��������

	
������������

	
����

�����������
�����������

Figure 12: Graphic view of the BikeCourseDBClass composite
component class and inner configuration

component_class BikeCourseDBClass
implements BikeCourseDBType
using BikeCourseDBConfig (1.0)
delegated_interfaces
provided BikeData(1.0)[BikeDB].BikeQS
as BikeCourseDBType.BikeQS;

provided TripData(1.0)[CourseDB].CourseQS
as BikeCourseDBType.CourseQS

attributes string company
versionID 1.0

Figure 13: Description of the BikeCourseDBClass composite
component class and inner configuration

4.2 Concrete Architecture Configurations
Concrete architecture configurations (Cacs) are the sec-

ond level of system architecture descriptions. They result
from the search and selection of real component types and
classes in a component repository. These component types
must match abstract component descriptions from the ar-
chitecture but need not to be identical; compatibility is suf-
ficient. Component classes must be valid implementations
of their declared component type. Cacs describe the ar-
chitecture from an implementation viewpoint (by assigning
component roles to existing component types). Architec-
ture configurations thus list the concrete component and
connector classes which compose a specific version of a
software application.

4.3 Instantiated Component Assemblies
Instantiated software component assemblies (Iscas) are

the third level of software architecture descriptions. They
result from the instantiation of the component classes from
a configuration. They provide a description of runtime soft-
ware systems and gather information on their internal states.
Indeed, this description level enables the record of state-
dependent design decisions [22]. Iscas list the component
and connector instances that compose a runtime software
system, the attributes of this software system, and the as-
sembly constraints the component instances are constrained
by.

assembly BRSAss
instance_of BRSConfig (1.0)
component_instances
BikeTripC1; BikeCourseDBClassC1
assembly_constraints
BikeTripC1.currency="Euro.";
BikeCourseDBClassC1.company=BikeTripC1.company
version 1.0
component_instance BikeTripC1
instance_of BikeTrip (1.0)
component_instance BikeCourseDBClassC1

instance_of BikeCourseDBClass (1.0)

Figure 17: Component assembly description of the Brs

Assembly Constraints Assembly constraints define con-
ditions that must be verified by attributes of some compo-
nent instances of the assembly, to enforce its consistency.
Such assembly constraints are not mandatory. Dedal per-
mits to define two types of constraints that must all be en-
forced and that either are.

• Logical constraints. Logical constraints are regular ex-
pressions that are written using one or more logical

operators among and (&&), or (‖) and not (!) in our
Dedal definition. To be verified, logical constraints
must be evaluated at true.

• Relational constraint. Relational constraints can be
used in two situations: (1) to declare the relation be-
tween an attribute and a given constant value, or (2)
to specify the relation between the values of two dis-
tinct attributes. The relation operators are admissible
are less than (<), greater than (>), less than or equal
to (<=), greater than or equal to (>=), equals (==)
and different from (! =).

• Instance constraints. The number of component in-
stance for a component role can be refined in the as-
sembly constraint to meet the different requirements of
different runtime systems. They are expressed using
MinInstanceNbr, MaxInstanceNbr and Instan-
ceNbr, that represent the minimum, maximum and
exact number of component instances.

Such simple assembly constraints are illustrated on the ex-
ample of Fig. 17 where the value of the currency attribute of
component BikeTripC1 is fixed to Euro and where the value
of the attribute company of the BikeCourseClassDBC1 com-
ponent must be maintained identical to the value of attribute
company of component BikeTripC1. Another example that
involves cardinalities would be expressed as the assembly
constraint InstanceNbr(BikeGUI)==10 that means that ex-
actly ten component instances of the BikeGUI component
role should be instantiated in this system. The cardinality
information of the BikeCourse component role is stored in
its specification (see Fig. 6).

assembly_constraint::=
logical_constraint | relational_constraint

logical_constraint::=
(! assembly_constraint) |
(assembly_constraint (|| | &&)

assembly_constraint)

relational_constraint::=
(instance_attribute (== | != | > | < | >= | <=)
(instance_attribute | attribute_value))

instance_constraint::=
((MinInstanceNbr | MaxInstanceNbr | InstanceNbr)
(Component_role_name) == PositiveInteger)

instance_attribute::=

component_instance_name . attribute_name

Figure 18: Syntax for assembly constraints

However, in our work, assembly constraints are only listed
without conflict detection among them, such as the logical
conflict or the relational conflict.

5. IMPLEMENTATION OF DEDAL
The Dedal Adl presented in this paper has been imple-

mented in the Arch3D tool suite. The language has been
implemented twice: as an XML-based A dl and as a Java-
based Adl4. The tools also propose a component model
which enables to instantiate and manipulate corresponding
assemblies at runtime which is coded as an extension of Ju-
lia, the open-source java implementation of the Fractal com-
ponent platform5.

Figure 19: GUI view of BRS example

6. RELATED WORKS
We surveyed representative Adls to compare their sup-

port of components descriptions at different abstraction lev-
els.

6.1 Specification level
Abstract component type (Component role). Ab-

stract component type is abstract component type which
just describes the required interfaces of this component in
this software system. However, all of these Adls include
concrete component type descriptions, which are suitable
for traditional development. The component classes are usu-
ally exactly designed and programmed according to concrete
component types. C2 [18, 17] is an exception as it provides
a subtyping component type theory, which can almost be
considered as a quai-abstract component type and facilitate
reuse of component specification by instantiating it into dif-
ferent components.

6.2 Configuration level
Component types. All existing Adls have their con-

crete component type definition, which specifies the inter-
faces of components. Some of them further supply the com-
ponent behavior information, like C2, Wright [1, 2, 3] and
SOFA 2.0 [19, 5, 13].

Connector type. Existing Adls support three connec-
tor types: (1) implicit, such as Darwin and SOFA2.0, (2)
explicit and predefined, such as C2 and Unicon [21, 20], and
(3) explicit and customized, such xAdl2.0 [9, 10, 11] and
Wright.

Component classes. In existing Adls, component classes
are often described with their component types, which of-
ten specify the interfaces and the behavior of component
classes. Most works state that all components should have

4Detailed information can be found in http://www.irit.fr/∼
Yulin.Zhang/Dedal.html
5 http://fractal.ow2.org/

a reference component type. Darwin [16, 15] and Unicon
are different as they treat composite component description
both as component type and class.

Composite component classes. Hierarchical composi-
tion support in existing Adl can be of three types.

• Explicitly hierarchical composition: The entire system
is treated as a composite component. The hierarchy
is explicitly described in component classes. Darwin,
Unicon and SOFA2.0 are the representative works.

• Implicitly hierarchical composition: Composition is de-
scribed in the component type. Wright is such an Adl.
However, in Wright, component types often preferably
described in configurations6.

• Explicit non-hierarchical composition: The C2 is a unique
Adl for describing composition. In C2, the communi-
cations of components are completely cut by connec-
tors, thus it supposes that if some components are to-
tally cut by a top connector and a bottom connector,
and then this configuration can be seen as a composite
component. The interfaces of this composite compo-
nent are the interfaces of both connectors.

• Complex composition model : xADL2.0 permits nec-
essary component composition at two levels: config-
uration and assembly. In the configuration level, the
composition is described in the component type. In the
assembly level, the composition is directly described in
component instance. In both two levels, the composi-
tion is embedded in a specific container called subAr-
chitecture.

Implementation. The implementation information is
seldom included in Adls, as they intend to be independent
from implementation. However, for real architecture design,
the implementation information is really important to dis-
criminant between different component classes. FractalAdl
and Unicon enable to add implementation data to compo-
nent classes. Unicon is more advanced, as it can support
variable implementation, which can be specified during in-
stantiation according to different requirements.

Attributes. All these works do not have their own at-
tribute definition in their component description. However,
as FractalAdl and xAdl 2.0 [9] are extensive Adls, archi-
tects can easily customize these information by adding con-
trollers in FractalAdl [4, 14] implementation or xADL 2.0 [9]
DTD definition.

6.3 Assembly level
The assembly (runtime) description of software architec-

tures becomes more and more important as dynamic evo-
lution requirements grow. In order to make the connection
between configurations (component classes) and assemblies
(component instances), there are two methods: mapping
configurations to assemblies, or modeling assemblies.

Most dynamic Adls i.e., C2, SOFA 2.0 and FractalAdl
use the first choice. This often implies that other tools are
necessary to support the mapping. The link is very fragile to
preserve and update. Once the link between them is broken
or expired, the architecture erosion and drift can occur.

Furthermore, mappings cannot represent all the facets of
runtime systems, such as the parametrized attributes when

6In Wright, component types can be defined in styles

ADL Abstract

component type

Component type Component

behavior

Component class Component instance

C2SADEL Conceptual component :

references to external

component type

Conceptual component :

Extensible, component

type.

behavior :

Message-based

protocols.

No concrete type definitions. Component

instances defined with types

Wright --- Component : Extensible,

concrete component type.

Computation :

CSP-based behavior.

Component : Concrete component types.

No references to implementations.

Darwin --- Component : Extensible,

concrete component type.

--- component : Concrete component types.

No references to implementations.

Unicon --- interface : Built-in,

concrete component type.

--- Component : Concrete component types,

with multiple references to

Implementations (variants).

SOFA 2.0 --- frame : Extensible,

concrete component type.

protocol : Defined by

behavior protocols

Concrete component types. Support

references to implementations.

Fractal

ADL

--- No explicit component

types. Component

definitions reused and

extended in other

definitions

set of client and server

interfaces. Signature

defined

as a reference to an

implemented type

definition : component definition (set of

interfaces). Can be reused to model other

components (as a class of component)

Independent definition. Can

refine a base definition used

as a type

xADL 2.0 componentType :

Extensible, concrete

component type.

componentType :

Concrete component type definition. Can

refer to an implementation

Independent definition.

Contain a reference to

a component type

Table 1: Comparison of components in different Adls

ADL Primitive
component

Implementation Attributes Composite component Delegation

C2 instance — — Explicit, non-hierarchical composition Derive from two wrapped connectors.
Wright Instance — — Implicit, hierarchical composition: Composite configuration

embedding in computation of component type.
Bindings

Darwin instance — — Explicit, hierarchical composition bind
Unicon instance Implementation

constraining.
— Explicit, hierarchical composition Bind

SOFA 2.0 instance — — architecture: Explicit, hierarchical composition. Delegate and Subsume

Fractal ADL component java class extended Explicit, hierarchical composition. binding

xADL 2.0 component — — subArchitecture: Implicit, hierarchical composition.
Embedded in component types for configuration level;
Embedded in component instance in assembly.

signatureInterfaceMapping: in component
type level; interfaceInstanceMapping:
assembly level.

Table 2: The comparison of primitive and composite component in Adls

instantiating components or runtime state of component.
Thus an Adl that embraces the implementation architec-
ture (component instances) is really needed. From this side,
xAdl 2.0 and AAdl [12] are more complete, as they have
their own assembly runtime architecture description.

7. CONCLUSION
This paper proposes a three step component-based devel-

opment process to ease the reuse of components and archi-
tectures. To support component-reuse centric development,
a three level component model is proposed by explicitly sep-
arating different level information on components into com-
ponent roles, component classes and component instances.
Based on the proposed component model, component de-
sign decisions can thus be precisely captured and traced
throughout the development process. A three-level architec-
ture is also proposed based on the component model. The
three-level syntax of Dedal supports the expression of re-
quirements by the means of abstract and partial component
roles that are used as the main conceptual support for the
search of reusable components to be included in configura-
tions. The model of the runtime system (the instantiated
component assembly) is rich enough to serve as the basis of
a full evolution process [25].

We plan to develop this work in two directions. The first
perspective for this work is to enrich and experiment the
use of Dedal to manage component- based software product
lines. We want to enrich the Dedal language to support fine
grained product line information such as variability and op-
tionality etc. The second perspective is to develop a quality
extension of Dedal to make it support embedded and critical
system development.

Acknowledgements
This work has been partially financed by the French ANR-
10-BLAN-0219 CUTTER project.

8. REFERENCES
[1] R. Allen and D. Garlan. A formal basis for

architectural connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213–249,
1997.

[2] R. Allen, D. Garlan, and R. Douence. Specifying
dynamism in software architectures. In Proceedings of
the Workshop on Foundations of Component-Based
Software Engineering, Zurich, Switzerland, September
1997.

[3] R. J. Allen. A formal approach to software
architecture. PhD thesis, 1997. Chair-David Garlan.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The fractal component model and
its support in java: Experiences with auto-adaptive
and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006.

[5] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0:
Balancing advanced features in a hierarchical
component model. In SERA ’06, pages 40–48, Seattle,
USA, 2006. IEEE Computer Society.

[6] M. R. V. Chaudron and I. Crnkovic. Software
Engineering; Principles and Practice, chapter
Component-based Software Engineering, pages
605–628. John Wiley & Sons, 2008.

[7] I. Crnkovic, M. Chaudron, and S. Larsson.
Component-based development process and
component lifecycle. In ICSEA ’06, page 44, Papeete,
French Polynesia, october 2006.

[8] I. Crnkovic, S. Sentilles, A. Vulgarakis, and
M. Chaudron. A classification framework for software
component models. IEEE Trans Software Eng,
37(5):593–615, October 2011.

[9] E. M. Dashofy, A. V. der Hoek, and R. N. Taylor. A
highly-extensible, xml-based architecture description
language. In WICSA ’01, pages 103–112, Washington,
DC, USA, 2001.

[10] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An
infrastructure for the rapid development of xml-based
architecture description languages. In ICSE ’02, pages
266–276, Orlando, Florida, 2002. ACM Press.

[11] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A
comprehensive approach for the development of
modular software architecture description languages.
ACM Trans. Softw. Eng. Methodol., 14(2):199–245,
2005.

[12] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The
architecture analysis & design language (AADL): An
introduction. Technical Report
CMU/SEI-2006-TN-011, Software Engineering
Institute, Carnegie Mellon University, 2006.

[13] P. Hnetynka, F. Plasil, T. Bures, V. Mencl, and
L. Kapova. SOFA 2.0 metamodel. Technical report,
Dep. of SW Engineering, Charles University,
December 2005.

[14] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B.
Stefani. Supporting heterogeneous architecture
descriptions in an extensible toolset. In ICSE ’07,
pages 209–219, 2007.

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. In
Proceedings of the 5th European Software Engineering
Conference, pages 137–153, Sitges, Spain, September
1995.

[16] J. Magee and J. Kramer. Dynamic structure in
software architectures. SIGSOFT Softw. Eng. Notes,
21(6):3–14, 1996.

[17] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
language and environment for architecture-based
software development and evolution. In ICSE’99,
pages 44–53, Los Angeles, CA, May 1999.

[18] N. Medvidovic, R. N. Taylor, and E. J. Whitehead.
Formal modeling of software architectures at multiple
levels of abstraction. In In Proceedings of the
California Software Symposium 1996, pages 28–40,
April 17, 1996.

[19] F. Plasil and S. Visnovsky. Behavior protocols for
software components. IEEE Trans. Softw. Eng.,
28(11):1056–1076, 2002.

[20] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for software
architecture and tools to support them. IEEE Trans.
Softw. Eng., 21(4):314–335, 1995.

[21] M. Shaw, R. DeLine, and G. Zelesnik. Abstractions
and implementations for architectural connections. In
ICCDS ’96, pages 2–10, Annapolis, Maryland, 1996.

[22] M. Shaw and D. Garlan. Software architecture:

perspectives on an emerging discipline. Prentice-Hall,
Inc., 1996.

[23] H. Y. Zhang, C. Urtado, and S. Vauttier.
Connector-driven process for the gradual evolution of
component-based software. In ASWEC’09, Gold
Coast, Australia, April 2009.

[24] H. Y. Zhang, C. Urtado, and S. Vauttier.
Architecture-centric component-based development
needs a three-level ADL. In M. A. Babar and
I. Gorton, editors, ECSA’10, volume 6285 of LNCS,
pages 295–310, Copenhagen, Denmark, August 2010.
Springer.

[25] H. Y. Zhang, C. Urtado, and S. Vauttier.
Architecture-centric development and evolution
processes for component-based software. In SEKE’10,
Redwood City, USA, July 2010.

