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In this short note, we study the smoothness of the extremal solutions to the
following system of equations:

(1)











−∆u = µev in Ω,

−∆v = λeu in Ω,

u = v = 0 on ∂Ω,

where λ, µ > 0 are parameters and Ω is a smoothly bounded domain of RN ,
N ≥ 1. As shown by M. Montenegro (see [6]), there exists a limiting curve Υ
in the first quadrant of the (λ, µ)-plane serving as borderline for existence of
classical solutions of (1). He also proved the existence of a weak solution u∗

for every (λ∗, µ∗) on the curve Υ and left open the question of its regularity.
Following standard terminology (see e.g. the books [3], [5] for an introduction to
this vast subject), u∗ is called an extremal solution. Our result is the following.

Theorem 1 Let 1 ≤ N ≤ 9. Then, extremal solutions to (1) are smooth.

Remark 2 C. Cowan ([1]) recently obtained the same result under the further
assumption that (N − 2)/8 < λ/µ < 8/(N − 2).

Any extremal solution u∗ is obtained as the increasing pointwise limit of
a sequence of regular solutions (un) associated to parameters (λn, µn) = (1 −
1/n)(λ∗, µ∗). In addition, see [6], un is stable in the sense that the principal
eigenvalue of the linearized operator associated to (1) is nonnegative. In other
words, there exist λ1 ≥ 0 and two positive functions ϕ1, ψ1 ∈ C2(Ω) such that

(2)











−∆ϕ1 − g′(v)ψ1 = λ1ϕ1 in Ω,

−∆ψ1 − f ′(u)ϕ1 = λ1ψ1 in Ω.

ϕ1 = ψ1 = 0 on ∂Ω,

1
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where, in the context of (1), g(v) = ev and f(u) = eu. This motivates the
following useful inequality.

Let f, g denote two nondecreasing C1 functions and consider the more gen-
eral system

(3)











−∆u = g(v) in Ω,

−∆v = f(u) in Ω,

u = v = 0 on ∂Ω.

Lemma 3 Let N ≥ 1 and let (u, v) ∈ C2(Ω)2 denote a stable solution of (3).
Then, for all ϕ ∈ C1

c (Ω), there holds

(4)

∫

Ω

√

f ′(u)g′(v)ϕ2 dx ≤
∫

Ω

|∇ϕ|2 dx

Remark 4 As we just learnt, the same inequality has been obtained indepen-
dently by C. Cowan and N. Ghoussoub. See [2].

Proof. Since (u, v) is stable, there exist λ1 ≥ 0 and two positive functions
ϕ1, ψ1 ∈ C2(Ω) solving (2). Given ϕ ∈ C1

c (Ω), multiply the first equation in (2)
by ϕ2/ϕ1 and integrate. Then,

(5)

∫

Ω

g′(v)
ψ1

ϕ1

ϕ2 dx ≤
∫

Ω

ϕ2

ϕ1

(−∆ϕ1)

= −
∫

Ω

|∇ϕ1|2
( ϕ

ϕ1

)2

+ 2

∫

Ω

ϕ

ψ1

∇ϕ∇ϕ1

= −
∫

Ω

∣

∣

∣

ϕ

ϕ1

∇ϕ1 −∇ϕ
∣

∣

∣

2

+

∫

Ω

|∇ϕ|2 ≤
∫

Ω

|∇ϕ|2.

Working similarly with the second equation, we also have

(6)

∫

Ω

f ′(u)
ϕ1

ψ1

ϕ2 dx ≤
∫

Ω

|∇ϕ|2 dx

(4) then follows by combining the Cauchy-Schwarz inequality and (5)- (6). �

Thanks to the inequality (4), we obtain the following estimate.

Lemma 5 Let N ≥ 1. There exists a universal constant C > 0 such that any
stable solution of (1) satisfies

(7)

∫

eu+v dx ≤ C |Ω|
(

λ

µ
+
µ

λ

)

.

Proof. Multiply the second equation in (1) by ev − 1 and integrate.

λ

∫

Ω

eu+vdx ≥ λ

∫

Ω

eu(ev − 1)dx =

∫

Ω

∇v∇(ev − 1) dx(8)

= 4

∫

Ω

∣

∣

∣
∇(ev/2 − 1)

∣

∣

∣

2

dx.
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Using (4) with test function ϕ = ev/2 − 1, it follows that

λ

∫

Ω

eu+v dx ≥ 4
√

λµ

∫

Ω

e
u+v

2 (ev/2 − 1)2 dx(9)

≥ 4
√

λµ

∫

Ω

e
u+v

2 ev dx− 8
√

λµ

∫

Ω

e
u+v

2 ev/2 dx.

By Young’s inequality, ev/2 = 1√
2
ev/2 ·

√
2 ≤ 1

4
ev + 1. So,

∫

Ω

e
u+v

2 ev/2 dx ≤ 1

4

∫

Ω

e
u+v

2 ev dx+

∫

Ω

e
u+v

2 dx.

Plugging this in (9), we obtain

(10) λ

∫

Ω

eu+v dx + 8
√

λµ

∫

Ω

e
u+v

2 dx ≥ 2
√

λµ

∫

Ω

e
u+v

2 ev dx.

Similarly,

(11) µ

∫

Ω

eu+v dx+ 8
√

λµ

∫

Ω

e
u+v

2 dx ≥ 2
√

λµ

∫

Ω

e
u+v

2 eu dx.

Multiply (10) and (11) to get

(12)

λµ

(
∫

Ω

eu+v dx

)2

+64λµ

(
∫

Ω

e
u+v

2 dx

)2

+8
√

λµ(λ+µ)

∫

Ω

eu+v dx

∫

Ω

e
u+v

2 dx ≥

4λµ

∫

Ω

e
u+v

2 eu dx

∫

Ω

e
u+v

2 ev dx.

Using Young’s inequality, the left-hand side in the above inequality is bounded
above by

(13) 2λµ

(
∫

Ω

eu+v dx

)2

+ C(λ+ µ)2
(
∫

Ω

e
u+v

2 dx

)2

,

where C is a universal constant. In addition, by the Cauchy-Schwarz inequality,

(14)

∫

Ω

e
u+v

2 eu dx

∫

Ω

e
u+v

2 ev dx ≥
(
∫

Ω

eu+v dx

)2

.

Plugging (14) in (13) and remembering that (13) is an upper bound of the
left-hand side in (12), we obtain

(15) C(λ + µ)2
(
∫

Ω

e
u+v

2 dx

)2

≥ 2λµ

∫

Ω

e
u+v

2 eu dx

∫

Ω

e
u+v

2 ev dx.
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By the Cauchy-Schwarz inequality and (14), we have

(
∫

Ω

e
u+v

2 dx

)2

≤ |Ω|
∫

Ω

eu+v dx(16)

≤ |Ω|
(
∫

Ω

e
u+v

2 eu dx

∫

Ω

e
u+v

2 ev dx

)1/2

.

Using (16) in (15), we obtain

(17) C
(λ + µ)2

λµ
|Ω| ≥

(
∫

Ω

e
u+v

2 eu dx

∫

Ω

e
u+v

2 ev dx

)1/2

.

Applying once more (14), we obtain the desired estimate. �

We can now prove Theorem 1.

Step 1. Case 1 ≤ N ≤ 3. It is enough to treat the case N = 3, the cases
N = 1, 2 being easier. By (8) and (7), ev/2 − 1 is bounded in H1

0 (Ω) (with a
uniform bound with respect to λ and µ). By the Sobolev embedding, it follows

that ev is bounded in L
N

N−2 (Ω). By (8) and elliptic regularity, u is bounded

in W 2, N

N−2 . For N = 3, N
N−2

> N
2
. By Sobolev’s embedding, we deduce that

u is bounded, and so must be v. This implies the desired conclusion for the
corresponding extremal solution.
Step 2. General case. We adapt a method introduced in [4]. Fix α > 1/2
and multiply the first equation in (1) by eαu − 1. Integrating over Ω, we obtain

µ

∫

Ω

(eαu − 1) ev dx = α

∫

Ω

eαu|∇u|2 dx =
4

α

∫

Ω

∣

∣∇
(

e
αu

2 − 1
)∣

∣

2
dx

By (4),
√

λµ

∫

Ω

e
u+v

2

(

e
αu

2 − 1
)2

dx ≤
∫

Ω

∣

∣∇
(

e
αu

2 − 1
)∣

∣

2
dx.

Combining these two inequalities, we deduce that

(18)
√

λµ

∫

Ω

e
u+v

2

(

e
αu

2 − 1
)2

dx ≤ α

4
µ

∫

Ω

(eαu − 1) ev dx

Hence,

(19)
√

λµ

∫

Ω

e
2α+1

2
ue

v

2 dx ≤ α

4
µ

∫

Ω

eαuev dx+ 2
√

λµ

∫

Ω

e
α+1

2
ue

v

2 dx

Let us estimate the terms on the right-hand side. By Hölder’s inequality,

(20)

∫

Ω

eαuev dx ≤
(
∫

Ω

e
2α+1

2
ue

v

2 dx

)

2α−1

2α
(
∫

Ω

e
u

2 e
2α+1

2
v dx

)
1
2α
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Given ε > 0, it also follows from Young’s inequality that

∫

Ω

e
α+1

2
ue

v

2 dx ≤ ε

2

√

µ

λ

∫

Ω

eαuev dx+
1

2ε

√

λ

µ

∫

Ω

eu dx.

Using (7), we deduce that

(21)

∫

Ω

e
α+1

2
ue

v

2 dx ≤ ε

2

√

µ

λ

∫

Ω

eαuev dx+
1

2ε

√

λ

µ
C |Ω|

(

λ

µ
+
µ

λ

)

.

where C is the universal constant of Lemma 5.
So, gathering (19), (20), (21), and letting

X =

∫

Ω

e
2α+1

2
ue

v

2 dx and Y =

∫

Ω

e
2α+1

2
ve

u

2 dx,

we obtain

√

λµX ≤
(α

4
+ ε

)

µX
2α−1

2α Y
1
2α + C

λ

ε
|Ω|

(

λ

µ
+
µ

λ

)

.

By symmetry, we also have

√

λµY ≤
(α

4
+ ε

)

λY
2α−1

2α X
1
2α + C

µ

ε
|Ω|

(

λ

µ
+
µ

λ

)

.

Multiplying these inequalities, we deduce that

(

1−
(α

4
+ ε

)2
)

X Y ≤ C1

(

λ

µ
+
µ

λ

)2
(

1 +X
2α−1

2α Y
1
2α + Y

2α−1

2α X
1
2α

)

.

where C1 = C |Ω|
ε

(

α
4
+ ε

)

> 0. Hence, for every α < 4, either X or Y must be
bounded (with a uniform bound with respect to λ and µ).
Without loss of generality, λ ≥ µ and by the maximum principle, v ≥ u. It
follows that eu is bounded in Lp(Ω) for every p = α + 1 < 5. Using standard
elliptic regularity, the result follows. �
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