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ABSTRACT

The design of remotely controlled and autonomous Un-

manned Aerial Vehicled AV is an actual direction in modern
aircraft development. A promising aircraft of this type ip@w-
ered paraglidel®PG). In this paper, a new mathematical model
is suggested for the paraglider’s longitudinal motion alratthe

study of PPG dynamics and the synthesis of its automatic con-
trol. PPGunder consideration is composed of a wing (canopy)

and a load (gondola) with propelling unit. TR&G mechanical
model is constructed as the system of two rigid bodies cdedec
by an elastic joint with four degrees of freedom that exezute
a 2D motion in a vertical plane. The details BPGs motion
characteristics including steady-states regimes andatsility
have been studied. A nonlinear control law, based on théapart
feedback linearization, has been designed for the thru3P&.
Simulation results are analyzed. Simulation tests showttiea
internal dynamics are stable near the steady-state flightee

NOMENCLATURE

Oxoyo Inertial (fixed) coordinate system.

Axsy1  Moving coordinate system connected with the gondola.
Cixpy2 Moving coordinate system connected with the canopy.
a Angle of attack[rad].

6: Pitch angle for the gondol&ad].

6, Pitch angle for the canopjrad].

Yuri Martynenko
Institut of Mechanics,
Moscow Lomonosov State University,
1, Michurinskii Prospect, Moscow,
119192, Russia
Email: martynenko@imec.msu.ru

y Climbing angle for the steady-state flight regifned].
C1 center of mass for the gondola.
C, center of mass for the canopy.
A Confluence point.
Application point of the trust force.
Wheel of the gondola.
01 Angle between the axig; and the trust forcéad].
02 Angle between the axig, and the canopjrad].
I; Distance betweeA andC;, d(AC;) [m].
I, distance betweeA andC,, d(AC,) [m).
I3 Distance betweenA and the wheel of the gondola
Az, d(AAg) [m].
I, Distance betweeA; andCy, d(A;Cy) [m].
R Radius of the wheel of the gonddia).
Constant of gravity[m.s2].
Density of air [kg/m?].
p1 Radius of inertia of the gondola with respectig [n?)].
p2 Radius of inertia of the canopy with respecg [n?].
m;  Mass of the gondoldkg].
mp  Mass of the canopykg].
k Stiffness coefficient for the flexible joint iA [N-m/radiang.
S Surface of the gondolén?].
S Surface of the canopyn?].
Cp, Drag coefficient of the gondola.
Cp, Drag coefficient of the canopy.
C_ Lift coefficient of the canopy.
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Co
Ty

Coefficient of the spin moment acting on the canopy.
Trust force of the propelling unifN].

1 Introduction

Recreational flight, space recovery, rescue delivery of air
cargo are privileged application fields flePGsor parafoil-load-
systems. From the economic viewpoint they are low cost com-
pared to fixed wings. Their ability to glide and steer allows
them to face wind-offsets, contrarily to the conventiormlnd
parachutes. They can be used for sensitive instruments-or in

dynamics of the parafoil, with the aerodynamic forces actin
the parafoil calculated from the flow field.

Most parachute and payload systems are usually analyzed
one rigid body system in the same way as an airplane [6]. On
of the first paper when the motion characteristics of parechu
and payload system were analyzed as a two-body system is p
per [7] because it has to be considered that the oscillafitimeo
parachute is different from that of the payload.

The paper by Moulin [8] points out the importance of the
modeling of the link between the parachute and the load bysho
ing its in the dynamic behavior of this complex system. The in

jured humans because precise and very soft landings are pos-dicated circumstance has led to occurrence of a great nuohber

sible. They are lightweight and usually their size is sméfi.
consequence their portability is an essential charatitevidien
they are not airborne. All these advantages enhance thedahp
for use aslAV).

The PPG is an aircraft which derives lift from a ram-air

inflated canopy, under which the gondola is suspended. Their

canopies are inflated by the dynamic pressure of the air flpwin
past them and have a cross section in the shape of an aitfoil, a
lowing them to create lift. This capability differentiatdsese
"parafoils” from conventional parachutes which are usesino-

ply create drag. Thus far, the paragliders have been dikte
most exclusively for unmanned aerial vehicle\Y) and sens-
ing applicationsUAV arouse the interest of researchers since the

works, in which the paraglider model is designed as the sysfe
two or several rigid bodies connected by a cylindrical (dresp
ical) joint. During 2D motion these systems have four degree
of freedom, for 3D motion models with eight, nine degrees of
freedom or even with 15 degrees of freedom are appeared [9].

Slegers and Costello [10] study on the dynamic modelling of
a parafoil with nine degrees of freedom, including threetiak
positions of the joint as well as the Euler angles of the pmraf
and the payload.

In [11] for an experimental vehicle ALEX a dynamic mod-
eled is given. The physical parameters of the model are atdn
and then validated using flight test data.

Hur and Valasek [12] investigated the dynamics of the

60s. For example, Chambers and Boisseau [1] make a theoret-BUCKEREYE vehicle considering the mechanical model with

ical analysis to provide an understanding of some of thedund
mentals of the dynamic lateral stability and control of pérey
vehicles. Kuchta [2] investigates the spacecraft landiith &
parachute system. Some of the earliest projects involViagis-
age of parafoil-based systems were discussed by Nikolaiaes
Knapp [3].

To determinate the analytic or interpolating expressians f
aerodynamic forces acting on a paraglider in flight, it isassary
to perform a complex of experimental researches in wind tun-
nels, and also to solve very complicated 3D problems of campu
tational fluid mechanics. The first preliminary wind-tuntests
and free-flight tests for small velocities of wings in air wear-
ried out in wind tunnel of university of Notre Dame by Niko-
laides and Knapp [3]. Burkt al. presented an investigation of
the low-speed static aerodynamic characteristics of ttareeair-
inflated low-aspect-ratio parafoils in full-scale wind hah [4].
The aerodynamic coefficients included lift, drag and sioied
coefficients; rolling, pitching and yawing moment coeffitie
The experimental researches confirmed that a parafoil igasim
to an airplane wing.

Parallel computational methods are described for 3D simu-
lation of the dynamics and the fluid dynamics of a parafoihwit
prescribed, time-dependent shape changes by TezdugHi5].

The mathematical model in [5] is based on the time-dependent
3D Navier-Stokes equations governing the incompressible fl
around the parafoil and Newton’s law of motion governing the

2

eight degrees of freedom: six for the parafoil, and two fa th
relative pitch and yaw attitudes of the vehicle. The patafod

the vehicle are assumed as rigid bodies. The elasticity @f th
risers and suspension are ignored in modeling. In a relaed p
per, Lund [13] details the testing of the same Buckeye podvere
parafoil which had been modified for use as an unmanned aeri:
vehicle. The aircraft was developed into a testbed for thafpa
guidance, navigation and contrélGNQ) algorithms and sensors
designed for the autonomous parafoil recovery of NASAS&-3
aircraft.

Very detailed and careful review of different models of
parafoil-payload system and paraglider was carried ouapep
of Yakimenko [14]. Such models are necessary for a rationa
choice of the basic geometrical and mass parameters ofsyste
for readjusting nominal aerodynamic coefficients, paransebf
control systems, at processing of results of flight testsided-
tification of mathematical models such vehicles.

Multicriteria parametrical identification of parafoil Idale-
livery system was proposed in [15]. Based on the structdead4
tification as an initial step toward creation of an adequateeh
of the parafoil, a high-fidelity model including several éos of
optimization parameters has been developed.

In [16] a control law is proposed, which includes correcsion
in the linear displacement, velocity, and acceleratioraf@ow-
ered parachute.

The paper [17] and its extended version [18] present a non
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linear dynamic model of a powered paraglidePG) and numer-
ical simulation results obtained using the model with sigreées
of freedom and two control inputs, which are the lengths ef th
right and left trailing edges of the parafoil canopy.

Modeling using the Lagrangian/Hamiltonian approach is
also proposed in [19] and [20]. Recently, Zaitsev and Foskial
[21] suggest a mathematical model for a planar longitudimad
tion of a paraglider to synthesize its automatic control.

In contrast, in this study a new approximated dynamic model
is considered for investigatioRPG motion characteristics in-
cluding steady-states regimes and its stability. A Lageaag-
proach is used to derive tHePGs equations and aerodynamic
forces are described by analytical expressions. Sectios 2 i
devoted to the paraglider model presentation. Dynamic-equa
tions are presented, and the physical parameters of thelmode
are chosen. In section 3 the properties of steady-statenesgi
of paraglider are analyzed. In section 4 #BBGs control is
designed which makes use of the partial feedback lineéizat
results. We consider the amplitude of tristas input and the X
vertical coordinatgc, of the center of mass d?PG as output.
Proposed control provides the output tracks a desiredctaaje
while keeping the whole state bounded and stable. The sasiult
numerical simulation oPPGs motion are presented in section
6. Our conclusion and perspectives are offered in Section 7.

FIGURE 1. Geometric parameters and coordinate systems for the
PPG’smodel Oxyis a fixed (inertial) coordinate syste@yx;y1, AXY2

are frames attached to the gondola and the canopy,yaxasdy, are
parallel to segmeniB; A andAG, respectively.

2 Mathematical model of paraglider's longitudinal tact with the ground surface, so we have the unilateral caimst

motion

A schematic view of the powered paraglider is depicted in y—I3cost —R=0 (3)
figure 1. ThePPG’smodel is the system of two rigid-bodies, the
gondola and the wing (canopy), connected by an elastic jipint  The kinetic energy oPPGis
point A. The gondola parameters have subscript 1, the canopy
parameters have subscript 2. The distances between trex oént 2K = g'A(Q)q (4)
massC; of the gondola, the center of maSs of the canopy and ’
joint AareAC; = I1,AG, = I,. The configuration variables of the

two-bodies system are whereA(q) is the matrix of inertia coefficients

a1 0 a13Cc0sH; —aj4c0s6,
t
q=(xY,61,6) (1) A(q) = 0 a1 a13SinB; —ay4sinB,
a;3c0s0;  a;3sinf; az3 0
wherex, y are the coordinates of joist in the fixed coordinate —a14C086, —ay4siné, 0 aqy
systemOXxy, 6; and 6, are the pitch angles for the gondola and
the canopy respectively.
) The posfitions of t?ehcenter of m{f@of the gondola and of ay; = My + Ny, agz = my(p2+12),
the center of mass; of the canopy will be ags=mp(12+p2),  ayz=rmyly, ag4=myl;
X, = X+118in61, X, =x—1sin6 %) The elastic and gravitational potential enerdiesf thePPG
yc, =y—11c0801, Yo, =y+I2c0s6; are
1
During the take-off roll the wheels of the gondola have con- M= k(61— 62)%+ (a11y — a13€0S61 + a14C0862)g  (5)

3 Copyright © 2012 by ASME



wherek is the stiffness coefficient of the joint linking the canopy ~whereC{ has a constant value. We assume the existence of
and the gondola at the confluence payg is the acceleration spin damping moment [25-27]:
of the free fall.
The wing (canopy) is considered as a straight-line segment 1 .
( ) . Ma = —Cu=pVc, 126 9)
centered at poin€, , the angle between axis and canopy is a w5 PV 2202
denotedos, the unit vectores determines the direction of the

canopy, see figure 2. whereC,, is a constant coefficient. This moment of aerodynamic

Due to the theorem about the simplification of the arbitrary forces tends to decrease the angular velocity of carepuch
forces system to a single resultant force and a resultant mo- 55 3 viscous friction.

ment [22] we can replace the aerodynamic forces acting of the For the gondola we use the same model aerodynamic force
canopy by one resultant in the center of m@s@nd one resul- — pyt without lifting force,Ci, = 0. The modulus of the resultant
tant momenMa, see figure 2. of the drag force acting on the gondola can be written:

|FD1| = CDl%pVgllSl' (10)

Similarly to Fp,, the drag forcé=p, acting on the gondola has
the opposite direction to the velocity of center of mass @&f th
gondolavc,.

ModulusT, of the force trust that produces by a propelling
unit applies to the gondola at the poft, (AA; = l4), the angle
between axix; of the gondola and the thrust is denoted The
pointsA, A1, C; andA; are assumed to be on the same line.

Using Lagrange’s equations the dynamic model of the
FIGURE 2. Resultant of the aerodynamic forces and spin moments paraglider in aerial phase can be written

applied to the canopy and attack angle.
d oK\ [oKk\' /am\!
a(%) (%) *(%) =QatQ (1Y)

IFp,| =Cp,30V&S, [FL|=CL(a)3pVE,S  (6) whereQ; is the generalized aerodynamic foreg,is the gener-
alized thrust force

The drag forcd=p, has the opposite direction to the velocity
vector of center of mass of the canogy,. The direction of the

lift force F_ is orthogonal to the velocityc,. In equations (6) Faix+ Fazx

% pVc, represents the dynamic pressure of the airflovis the Tycos(6,+ 01)
air density,S, is the canopy area. The drag coefficient and the Fa1y+ Fazy

lift coefficient are denoted b§p, andCy. The lift coefficientC_ Tysin(61 + 01)
depends on the attack angie[23], which is the angle between Qa= Fa1xd1€0S01+ , Q=

the velocity of center of canopyc, and the unit vector of canopy Fa1yl18in6; Tyl4cosoy
es, see figure 2. We can calculate giras function of generalized

coordinates and velocities as follow —Fa2d2c080,— 0

Faod2sin6 + Mg

SiN(62 + 02) X— cOS(62 4 G2) Y — I25iNG26, 7

\/()-(_ |20059292)2+ (y— |Zsin9292)2 Faix Faox F,?ly, Faoy are the projections onto fixed axgy the
aerodynamic forces applied to the gondola and the canopy.
After computations in equation (11), we have

sina =

For the lift coefficientCy (a) the following approximated
model is used to take into account a variationoofn a large

range [24]: A(Q).q zh(TQ)gbt(Q)Tv
h(a,6) =he— (91) +Qa (12)
CL(a) = CE sina cosa (8) b(q) = (COS(91+ 01) Sin(6y+ 0'1) l4cosoy 0)t

4 Copyright © 2012 by ASME



whereh (g, q) is the vector of nonlinear membelg,are the vec-

t
tor of the Coriolis and centrifugal forces;,(’;—';) are potential
(gravity and elasticity) force€), are aerodynamic forces.

When accelerating during the launch, the paraglider moves
on the ground and the vertical reactiBpat pointA; is

Ry =ai10 - Falyf Fazy — T\,sin(al —+ 91) —+
a13(c0s61 67 + sin61 61) —
14 (c0s0,0% 4 sinB,6,) + a1y

(13)

After differentiating twice the unilateral constraint (&)
obtain the vertical component of the acceleration of paifior
ground motion

y = —I3(67cosBy + B1sinb;)

When the reactioR, given by (13) is positive adding in the
right part of the first equation (12) the vector,

0

1
|3Sin91

0

Ry, (14)

yields the equations of motion for the gondola rolling on the
ground.

When the reaction (13) reverses its sign and becomes neg-
ative, the vehicle takes off the ground and we have to conside
the equation (12). Let us remark that before to take off, the
paraglider is assumed to move along the ground perfectly flat
without friction.

2.1 Physical parameters of the paraglider
For the paraglider the physical parameters are:

my = 100kg, mp = 7 kg, g=9.81ms 2,
Cp, = 0.1,Cp, = 0.1, C, = 0.01,

I, = 0.48m I, = 6.78m, I3 = 0.51m, |4 = 0.24m,
R=0.3m,K; = 100N-m/rad, p = 1.29kg/n?,
p1 = 0.32kg/m?, po = 1.7 kg/m?,

S =1, $ =30, 0, =0rad, 0, =0.1rad.

(15)

Let us remark that for the choice of the stiffness coefficient
k of joint linking the canopy and the gondola it is possible to
use the relation between the natural frequencig3R® and the
stiffness coefficienk. (The natural frequencies of relative mo-

flight [11]). For a steady-state flight P Gthe forces applied to
paraglider (gravitational, aerodynamic, thrust) formblaéanced
system of forces so we can replace aerodynamic forces the ve
tical force (M + my)g applied toPPG at pointC, and consider
two-link pendulum with the fixed poir@,. If we neglect friction
we can consider the conservative system. For small osoilsit
this system we have the following matrix equation:

Aog+Cog=0 (16)

whereA is the constant inertia positive definite matrix abglis
rigidity matrix.The linear system (16) being conservataiéthe
roots of its characteristic equation are on the imaginaiy. &4g-
ure 3 shows for the two non null natural frequencies depecelen
on the stiffness coefficiemtof the joint between the canopy and
the gondola

141
12

10

L 8
-
< 6
al
ol
o i i i i j
0 1 2 3 4 5
k N-m/radians x 10
FIGURE 3. Natural frequencies as a function of the stiffness coeffi-
cientk

3 Steady-state flight regimes

If the modulusTy, of the thrust force is constant, then, using
the dynamic model (12) we can find the steady-state flightwegi
under which there is the following steady stationary soluti

x=\Vpcosy, y = \Vpsiny,

. 17
=0, 6,—0, 6, — 610, B> — Bso, (A7)

tions of the gondola and the canopy can be measured during thewherey is the climbing angle.

5
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In this regime, the paraglider moves uniformly along a
straight line making an angle of with the horizontal axigOx.
Substituting particular solution (17) into differentiadjweation
(12) yields to four scalar equations relating for four unkme:

Ty, 610, G20 andVp

0=h(a,q)+b(a)Tv (18)

First and second scalar equations in (18) are linear equsatio
with respect tdl, andViZ. After to solve these equations and the
elimination ofT, andVO2 from third and fourth equations (18) we
get two transcendental equations for the steady-statewvalti
anglesbio, 620

f3(610,620,1) =0, f4(610,620,4) =0 (19)

wherep is the vector of parameters PG which include the
anglesy, gi, 0y, the stiffness coefficierk and other parameters.

The transcendental equations (19) define a multi-parameter

set of steady-state regimes. This set can be constructedrifum
cally with a Newton-Raphson method. If in the numerical gtud
we use the anglg as a single parameter, then each given (rea-
sonable) value of is associated with some values &fy, 62,

Vo, andT,. These steady-state values inclyde 0 and the corre-
sponding values dd g, 620, Vo, andT,, with the last characteristic
denoted bylo. In other words, the steady state regimes include a
horizontal flight afT,o = const For thrust values other thahy,

the paraglider in a steady-state regime follows an inclitrae
jectory. Therefore, the velocity of a horizontal flight cahte
changed by varying the thrust. Setting up linear equations f
small neighborhood of steady-state regimes (17), we cayzna
their stability. Using the data (15) the roots of the chardstic
equation of the linear model of the paraglider around thadste
stationary solution (17) witly = 0.1 are:

A1o = —3.2370+7.0385i, Ag4 = —0.2849+ 7.7878i,

Asg = —0.05281-+ 0.8164. (20)

Steady-state regimes with highly inclined trajectoriesiar-
stable.

If for horizontal flight (y = 0) we use the angle; as pa-
rameter in the equations (19) we can investigate the behatio
Tw(01), Vo(01), B10(01) andB,p(01), see figure 4. The thruio
has minimum for variatiow; between-0.5 rad and Q5 rad.

When the stiffness coefficiektincreases the difference be-
tween the pitch of the gondoB and the pitch of the canop
decreases, see figure 5.

340

125

320 12
I—gsoo o115
280 11
260 105

-05 0 05 205 0 05

(e} 01
0.16 0.265
0.155 0.264
0.263
2 015 8

A = 0.262
0.145 0.261
0.26

-05 0 05 20.5 0 0.5

01

FIGURE 4. Different steady-state regimes characterizedlfy Vo,
610 andByg as a function ot for the interval-0.5rad < g; < 0.5rad

15F
14} SRR
13 T .
-
12 4
/
/
11 /
/
/
10
!
o/
!
!
8
; ; ; ; ;
0 1000 2000 K 3000 4000 5000
FIGURE 5. Dependence of steady state values of an@igs(solid

line) and6,q (dashed line) on the stiffness coefficidnt

4 Stabilization of the flight altitude

In this section we briefly inform the reader about the par-
ticular application of the routine procedure of linear cohto
stabilize the flight altitude. The density of @irdepends on the
altitude above the ground. However for small flight altitsidiéris
dependance can be considered as null. Then the motion of tf
paraglider does not depend on its altitude and in consegLgnc
is a cyclic variable. Therefore, the horizontal uncongdlmo-
tion of the paraglider af, = T,o = constdoes not depend on

Copyright © 2012 by ASME



Hence this steady-state flight regime is not asymptoticéiple
with respect to the flight altitude. However a flight at theidkss
altitude can be stabilized by controlled the trust forcermpé-
tude [21]. Zaitsev and Formal'skii proposed for the stabilj
control of a 2D paraglider without joint in the confluent pioin
nominal thrust amplitudds, closed toT,o, added to a feedback
with respect to the deviation of the gondola’s flight altiéufdom
the desired value and with respect to the vertical compooient
velocity of the pointA.

Tv=Ts— Kp(ycl - ygl) - KVycl (21)

where, Ts = constis a given thrust amplitude equal or close to

Tyw-. The admissible thrust values are bounded above by a certain

0.2

0.15

< 01

value Ty, because the steady-state regime can become unstable,

see [28]. Furthermore the thrust amplitude cannot be nagati
Therefore, instead (21), we consider the feedback:

0, if Ty<oO.
Tv: Tv7 if OS Tv S Tm (22)
Tm, IfTy>Th

The gainsK, andKy, are chosen using the degree of stability
0 > 0 such as the eigenvalues of the matrix system of the lin-
ear model satisfyrRe); < —9d [29]. In the other cases we apply
0 = 0. Figure 6 shows, and then the asymptotical stability, ob-
tained with the control law (22) for variations of gailis andKy
from 1.0 N/mto 4000 N/mand Q0 N/(m.s) to 4000 N/(m.s)
respectively.

5 Partial feedback linearization

Our objective is to make the outpyt, tracks a desired tra-
jectory ygl (t) while keeping the whole state bounded. Time
variableygl (t) and its time derivatives up to a sufficiently high
are assumed to be known and bounded. We con¥idegyc, —
y& (t) = y—licosh —y& (t) as output of system (12) and

Y =y+1161sin6y — ¥ (t) (23)
defines the linearizing coordinates. The state feedbacérs c
puted when solving the following equationTp

u=clg+ Ilélchsel —y2 (1)

=cAth+ IlelzcoselqtctAfle\,—ygl (t) (24)

FIGURE 6. Stability degree as a function of the gakgandKp ob-
tained with the control law (22).

with ¢t = (0 113sin6; 0)', which yieldsY = u. We choose the
control law as a simple linear double-integrator relatfopde-
tween the output and the new input

u=ko (y& - YCl) + Ky (y& - YCl)

(25)

wherey?:1 is the desired trajectory.
The trust amplituddy has to be chosen in the pre-feedback
form

T, (u — A th—1162c0s6; + ygl) (26)

_ 1
" cA-1p

Similarly to (22) the applied pre-feedback cannot be negaind
is limited by the maximal valu@én,.

The trust control (26) is defined everywhere, except at the
points of singularity which are zeros of the following fuioct

d(61,6)

dA " lp = —2 <L
do(61,62)

(27)

Formp < my it is possible to get for the functioth (64, 62) the
following asymptotic expansion

sn(6 -, (1+0(%))

Copyright © 2012 by ASME
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The physical sense of the equality to zero the function
d (641, 6,) is the horizontal position of a vector of thrust of the
PPGpropelling unit.

To investigate the internal dynamics®PGunder the con-
trol law (26) with (25) we define a 4 3 dimensional matrix as
follow

—sin(al + 91) |4COE(O'1 + 91) 0
| coqo1+61) lssin(o1+61) 0
S(@) = 0 -1 0
0 0 1
The three independent columns of maBix|) are in the null
space of vectob(q), that isS'b = 0
Multiplying the equation (12) on the matri® we get the
zero-dynamic equation which does not content the input

SA@a-h@), o =0 (28)

The equations (28) are the system of three nonlinear ordi-
nary differential equations of second order with the thrag-v
ablesx, 6; and 6,. The simulation results show that near the
steady-state flight regimes the solutions of internal dyinammre
stable, so our control design has been solved.

For numerical simulation we choose the desired trajectory
as following:

4 (t—1t)"

% (0= 3 (tr—t)""

(29)

6 Numerical results about the tests of the partial
feedback linearization
For the numerical test the chosen valudgtfto limit (26) is
equal to 50(N. For the reference trajectories (29) we choose the
following coefficient
a=0; a=0; a=60; az=-120 and a;=60 (30)
The chosen values for the initial and final timigs= 0 s and
ty = 40s. Then the control law (26) is applied without discon-
tinuities when the paraglider rolls on the ground and dutirey
flight phase. The initial conditions are:

6:(0) =0.2rad, a; = 6,(0) = 0.0rad,
x(0) =0, y(0) = 0.7998m
. . (31)
6,(0) =0.2rad.s ™, 6,(0) =0.0rad.s?,
x(0) =5.0ms 1 y(0)=0msL

Physically the initial velocityx(0) can be viewed like an initial
impulsion given by the pilot. Figure 7 the profiles of the auttp
Yc, and its reference trajectoyg1 show that the choice to define
a unique reference trajectory for both phases, the rollimasp
and the flight phase is feasible. Just before to take off tuektr
ing error is maximal but after the control law tracks peffgect
the reference trajectory. The other generalized coore@aitthe
paraglider, figures 9a and 9b their time derivatives ardesthir-
ing the travel.

10 15 20 25 30

0.4
0.3
0.2

0.1r

-0.1 i i i i i i i
0

15 25 30 35 40
t(s)

FIGURE 7. Top: Profiles ofyc, (solid line) andy(d:1 (dashed line).
Bottom: differenceyc, — Y4 .

Figure 10, before to take off the control law of paraglidigr
evolutes as a bang-bang control between the limit valued0 ar
500N. After for the flight phase this control law is smooth.

Figure 11, the profile of the vertical compondt of the
ground reaction confirms the activity of the control law wiitle
presence of several oscillations. The paraglider takeatafi-
stantt = 3.5s. The initial value ofRy is coherent with the global
Paraglider's mass, (10kg, see (15)) and tacking into account
also its initial velocity.

7 Conclusion

Based on the available approach for aerodynamic forces
very soundness model of longitude motion of power paraglide
are proposed. Paraglider motion has a complicated osciflat
character. The feedback linearization is very popular botizs
and gives very good results. We proposed to apply this con
trol method to the paraglider, considering as output theeren
of mass of the gondola. Good preliminary results are obtkine

Copyright © 2012 by ASME
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FIGURE 9. Time derivatives of the generalized coordinates of the
Paraglider.

prove that the feedback linearization makes sense for thigato
of the paraglider. However it would be interesting to explan-
other output with maximum feedback linearization and imér
stability. See for example [30] where the computation of i& su
able output function whose feedback linearization yiekigwap-
totic stability of the full state for 2-DOF underactuatedahan-
ical systems. However this method of feedback lineariraito
strongly connected to the physical system’s model. It whel@
drawback for the paraglider the aerodynamic forces wittefor
ample the dependance on the attack angle for the canopyhwhic
is not so easy to estimate. In consequence it would be ititeges

9
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FIGURE 10. Control lawT,.
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FIGURE 11. Vertical component of the ground reactiBn

in future to study deeper the robustness of this controlegiseto
see if it is well-adapted for the so complex dynamic modehef t
paraglider. Furthermore an extended 3D dynamic model wouls
useful for the design of new types of efficient powered padagl

In future the perspectives are to consider a more exact nfiodel
the attack angle and to study the sensitivity of the contral |
with respect to some perturbations.
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