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When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase

factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell

inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this

phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical

approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states

in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested

experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach,

we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This

device is employed to correct the phase that appears in the maximally entangled state generated from a type-II

nonlinear photon-pair source after the photons are created and distributed over fiber channels.

PACS numbers: G1.10.Nz, 61.66.Bi, 03.67.Bg

Keywords: Entanglement, Bell inequality tests, Phase compensation



2

I. INTRODUCTION

Entanglement is an essential resource for many quantum

information protocols, such as quantum key distribution [1],

quantum teleportation [2], entanglement swapping [3], quan-

tum relays [4, 5], quantum memories and repeaters [6–9], as

well as for quantum algorithms [10, 11]. Determining the

potential amount of entanglement delivered by a source, or

by any quantum information system, is therefore of prime in-

terest. Historically, the first entanglement witness was intro-

duced by Bell in 1964 as an inequality [12], which was re-

formulated a few years later by Clauser, Horne, Shimony, and

Holt (CHSH) [13]. Since then, more witnesses have been re-

ported in the literature for further investigation of entangle-

ment [14], i.e., dedicated to states that are non pure and/or

non maximally entangled. Among others, inequalities pro-

posed by Yu et al [15], and by Collins and Gisin [16], are now

widely employed experimentally. In addition to these tests, a

complete way to analyze quantum states is known as quantum

state tomography [14, 17]. This method is complete in the

sense that it permits reconstructing the full density operator of

the quantum state under test (although it does not constitute a

non-locality test). Such a method requires, however, a mini-

mum of 16 measurements to reconstruct the density operator

matrix. Depending on the source under test, these measure-

ments can take a long time before providing the state parame-

ters, contrary to the standard CHSH inequality measurement.

In the following analysis, we will thus be interested in Bell-

type inequality tests.

Let us consider the setup depicted in Figure 1, which cor-

responds to a Bell inequality test of polarization entangled

photons. Using the basis {|HI〉, |VI〉}, referring to horizon-

tal and vertical polarizations on channel I , for I = {A,B},

any polarization entangled state, and more generally two-

system state, can be decomposed into the basis {|HA, HB〉,
|HA, VB〉, |VA, HB〉, |VA, VB〉}. Including a phase factor φ
between the two components of the state, we describe bipar-

tite, elliptically polarized, maximally entangled states as fol-

lows:

|Φ(φ)〉 = 1√
2

[

|HA, HB〉+ eiφ|VA, VB〉
]

|Ψ(φ)〉 = 1√
2

[

|HA, VB〉+ eiφ|VA, HB〉
]

.
(1)

In photonic setups, an arbitrary, but non random, phase, as

in Eq. (1), is very common and can either be induced by the

source itself [18–21], or be accumulated over the quantum

channel linking the source to the analyzers, especially when

this consists of optical fibers [22]. The Bell inequality viola-

tion is sensitive to this phase factor. Indeed, its existence does

not allow for the optimal violation of the CHSH inequality

when the standard settings are used for the polarization ana-

lyzers [13]. One way to retrieve the maximal amount of viola-

tion is to compensate for this phase while keeping the nominal

settings [18, 22]. Consequently, determining the phase exper-

imentally makes it possible to adapt the state towards optimal

entanglement measurements.

The described scenario is typically encountered in experi-

mental setups of Bell inequality tests for polarization entan-

gled states. Phase measurement and compensation techniques

are often empirically used to recover the optimal violation;

here we provide a mathematical formalization of the problem,

which allows comparing the various techniques and adapt the

measurement settings to the states under test in various exper-

imental configurations. Note that the |Ψ(φ)〉 state in Eq. (1)

can directly be derived from the |Φ(φ)〉 state through a π/2
rotation of the polarization on channel B, thus we will restrict

the following analysis to the state |Φ(φ)〉.
The paper is organized as follows. Section II is devoted

to the standard analysis of elliptically polarized maximally

entangled states |Φ(φ)〉, using standard settings and rotat-

ing polarization analyzers, recalling that the maximum value

|S| = 2
√
2 of the Bell parameter can only be obtained for

the |Φ+〉 = |Φ(0)〉 and |Φ−〉 = |Φ(π)〉 states. Section III

presents the general formalism developed to derive the nec-

essary conditions towards maximizing the Bell parameter for

any state of the form |Φ(φ)〉. The next two sections present

theoretical implementations of this approach using potential

experimental configurations. More precisely, Section IV deals

with one rotating phase compensator, while Section V consid-

ers a set of two phase compensators at fixed angles. Finally, in

Section VI we demonstrate an experimental implementation,

based on a type-II non-linear photon-pair source, in which the

phase of the state is adjusted after the photons are created and

distributed over fiber channels.

Figure 1. Schematics of the considered setup. A source (S) pro-

duces pairs of maximally polarization entangled photons. Rotating

polarization analyzers (e.g., polarizing beamsplitters) are placed on

the path of each photon, i.e., on channels A and B, respectively. The

associated rotations are defined by an angle i = a, b, with respect to

the {|HA〉, |VA〉}, {|HB〉, |VB〉} basis, respectively.

II. ANALYSIS WITH ROTATING POLARIZATION

ANALYZERS

In the following, we consider the standard Bell inequality

test setup shown in Figure 1, and we perform the standard cal-

culation leading to the maximum Bell parameter value using

optimized analyzer settings for a given phase.

Any elliptically polarized Bell state |Φ(φ)〉 can be writ-

ten as a superposition of |Φ+〉 and |Φ−〉, i.e., as |Φ(φ)〉 =
1+eiφ

2 |Φ+〉 + 1−eiφ

2 |Φ−〉. We define the basis {|+I〉, |−I〉},

where I = {A,B}, related to the initial basis {|HI〉, |VI〉}
using the transformation

(

|+I〉
|−I〉

)

=

(

cos θI sin θI
− sin θI cos θI

)(

|HI〉
|VI〉

)

, (2)

where θI = a, b is the angle between the analyzer I and |HI〉,
for I = {A,B}, respectively.
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The outcome probabilities, P
(φ)
++(a, b) = |〈+A+B|Φ(φ)〉|2

and P
(φ)
−−(a, b) = |〈−A−B|Φ(φ)〉|2, of measuring both pho-

tons in the same state are given by

P
(φ)
++(a, b) = P

(φ)
−−(a, b)

= 1
2

[

cos2(φ2 ) cos
2(a− b)

+ sin2(φ2 ) cos
2(a+ b)

]

,

(3)

while the outcome probabilities P
(φ)
+−(a, b) =

|〈+A−B|Φ(φ)〉|2 and P
(φ)
−+(a, b) = |〈−A+B|Φ(φ)〉|2 of

measuring both photons in different states read

P
(φ)
+−(a, b) = P

(φ)
−+(a, b)

= 1
2

[

cos2(φ/2) sin2(a− b)
+ sin2(φ/2) sin2(a+ b)

]

.

(4)

Note that changing both φ to φ+π and b to −b leaves Eqs. (3)

and (4) unchanged, so that we can restrict the analysis to 0 ≤
φ ≤ π.

The correlation factor E(φ)(a, b) = P
(φ)
++(a, b) −

P
(φ)
+−(a, b)− P

(φ)
−+(a, b) + P

(φ)
−−(a, b), as defined in Ref. [12],

is then given by

E(φ)(a, b) = cos2(φ/2) cos 2(a−b)+sin2(φ/2) cos 2(a+b).
(5)

The Bell parameter, defined as

S(φ)(a, b, a′, b′) = E(φ)(a, b) + E(φ)(a, b′)
+E(φ)(a′, b)− E(φ)(a′, b′),

(6)

is therefore given by

S(φ)(a, b, a′, b′) = cos2(φ2 ) [cos 2(a− b) + cos 2(a− b′)
+ cos 2(a′ − b)− cos 2(a′ − b′)]

+ sin2(φ2 ) [cos 2(a+ b) + cos 2(a+ b′)
+ cos 2(a′ + b)− cos 2(a′ + b′)] .

(7)

To demonstrate a violation of the Bell inequality, i.e.,

|S(φ)(a, b, a′, b′)| > 2 [12, 13], it is necessary to choose

the analysis parameters a, a′, b, and b′ so as to maxi-

mize S(φ)(a, b, a′, b′) for any given value of φ. The op-

timal angles are obtained by solving the set of equations
(

∂S(φ)

∂a = 0, ∂S(φ)

∂b = 0, ∂S(φ)

∂a′
= 0, ∂S(φ)

∂b′ = 0
)

.

Using trigonometric transformations, this set of equations can

be written in the simple form:











tan 2a = cosφ tan(b+ b′)
tan 2b = cosφ tan(a+ a′)
tan 2a′ = − cosφ cotan(b+ b′)
tan 2b′ = − cosφ cotan(a+ a′).

(8)

Solving these equations gives the solutions a = 0, a′ = π/4,

and b = −b′ = 1
2 arctan(cosφ), and using Eq. (7), we obtain

S
(φ)
Max = 2 [cos(arctan(cosφ))

+ cosφ sin(arctan(cosφ))]

= 2
√

cos2(φ) + 1.

(9)
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Figure 2. Maximum values of the Bell parameter S(φ) for a set of

setting (a, a′, b, b′) ploted as a function of φ for standard calculation

and optimization.

The rotation angles of the analyzers (a, a′, b, b′) and S
(φ)
Max are

plotted as a function of φ in Figure 2. We find, as expected,

the usual set of parameters for phase values equal to 0 and

π, which leads to a maximal violation of the Bell inequality.

Moreover, the Bell inequality is violated (S
(φ)
Max > 2) for any

phase except for the value φ = π/2, for which SMax = 2.

This corresponds to the circularly polarized maximally entan-

gled state |Φ(π/2)〉 = 1√
2
[|HAHB〉+ i|VAVB〉]. In prac-

tical systems, however, the measurement precision is always

limited by noise, which extends to a larger range of φ values

around π/2 the domain where the Bell inequality is not vio-

lated. Rotating analyzers are therefore unsuitable for optimal

entanglement measurements if the phase φ of the state is not

determined and compensated for by an appropriate polariza-

tion device.

We develop in the following a formalism for recovering op-

timal settings for Bell inequality violation by any elliptically

polarized maximally entangled state, and apply it to two prac-

tical phase compensation configurations (Secs. IV and V).

We finally give an actual experimental situation in which our

formalism is directly implemented (Sec. VI).

III. GENERAL FORMALISM FOR OPTIMAL ANALYSIS

OF ELLIPTICALLY POLARIZED, MAXIMALLY

ENTANGLED STATES

To retrieve the optimal violation of the Bell inequality for

any elliptically polarized, maximally entangled state, polar-

ization devices, labeled TA and TB , are introduced between

the source and the two initially rotating analyzers (A and B)

depicted in Figure 1. The following analysis takes into ac-

count these devices that are considered adjustable, while the

two former polarization analyzers are now kept fixed (e.g.,

standard polarization beamsplitters). The new analysis param-

eters to be further defined are therefore directly linked to TA

and TB settings. To generalize the formalism of Eq. (2), we
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define the unitary transformations T̂A and T̂B as
(

|+I〉
|−I〉

)

= T̂I

(

|HI〉
|VI〉

)

=

(

hI vI
−v∗I h∗

I

)(

|HI〉
|VI〉

)

, (10)

with I = {A,B}. hI and vI , which satisfy the condition

|hI |2 + |vI |2 = 1, can be defined as
{

hI = cosαI eiϕI

vI = sinαI eiϕ
′

I
(11)

In the same way as in Section II, we can infer the outcome

probabilities P
(φ)
++, P

(φ)
+−, P

(φ)
−+, and P

(φ)
−−, using Eq. (10), as

follows:

P
(φ)
++ = P

(φ)
−− = 1

2

[

cos2
φeff

2 cos2(αA − αB)

+ sin2 φeff

2 cos2(αA + αB)
]

P
(φ)
+− = P

(φ)
−+ = 1

2

[

cos2
φeff

2 sin2(αA − αB)

+ sin2 φeff

2 sin2(αA + αB)
]

,

(12)

where the effective phase, φeff, is given by

φeff = φ+ ϕA + ϕB − ϕ′
A − ϕ′

B . (13)

The maximum value of the Bell parameter (S = 2
√
2) can

obviously be obtained, for instance, for φeff = 0 (mod 2π). In

this case, Eq. (12) corresponds exactly to the measurement of

the |Φ+〉 state (see Section II). However, the analysis parame-

ters are no longer the former analyzer settings {a, b} but rather

the coefficients αA and αB , corresponding to T̂A and T̂B , re-

spectively. Note that the Bell inequality test can be performed

using positive and negative angle settings. In the following,

we restrict the analysis to the case αI ≥ 0. The case αI < 0
is directly obtained by changing ϕ′

I into ϕ′
I + π in Eq. (11).

The phase value φ can be conveniently determined experi-

mentally from the coincidence measurements in the diagonal

basis, i.e., for αA = αB = π/4, since coincidence and anti-

coincidence probabilities are then reduced to

P
(φ)
++ = P

(φ)
−− = 1

2 cos
2 φeff

2

P
(φ)
+− = P

(φ)
−+ = 1

2 sin
2 φeff

2 ,
(14)

where φeff is linked to φ through Eq. (13). We can infer the

phase φ from a fit of the measured probability P
(φ)
++ as a func-

tion of a polarization device dependent parameter linked to

ϕI or ϕ′
I .Then, for any given transformation T̂A, T̂B satisfy-

ing φeff = 0 (Eq. (13)), the optimal value |S| = 2
√
2 for the

Bell parameter can be retrieved using the appropriate settings

of the new analysis parameters αA, αB .

It should be stressed that the transformations T̂A and T̂B

contain six free parameters (αA, αB , ϕA, ϕB , ϕ
′
A and ϕ′

B).

The techniques that are detailed hereafter to analyze ellipti-

cally polarized states for maximal violation of Bell inequali-

ties, require only three free parameters (one analysis param-

eter on each channel and one phase parameter to satisfy the

relation φeff = 0 (mod 2 π)). Therefore, without loss of gen-

erality, we will choose to fix some of the parameters in each

practical case that we study, depending on the considered de-

vice.

IV. ANALYSIS USING A ROTATING PHASE

COMPENSATOR

In this section, we apply the formalism developed above to

the case of the most general type of polarization device, i.e.,

a rotating phase compensator. A free space optics based re-

alization of such a device is a rotating Soleil-Babinet phase

compensator. We note that there are also fully fibered solu-

tions, where mechanical stress is applied to the fiber. Then,

the amount of stress controls the introduced birefringence and

phase between the two polarization modes which are parallel

and orthogonal to the stress direction, while the rotation angle

parameter is controlled by the direction in which the stress is

applied.

To perform our analysis, we represent operators T̂A and T̂B,

quantitatively, by a Jones matrix, as explained in detail in Ap-

pendix A. Then, the set of parameters (h, v) of the unitary

transformation are related to the retardation, χ, and rotation,

ζ, angles of the devices on each channel. We consider now

a configuration, in which the direct measurement of the Bell

parameter S for an elliptically polarized, maximally entan-

gled state is performed with one rotating phase compensator

on channel A and a phase compensator set at ζB = π/4 with

respect to the {|HB〉, |VB〉} basis on channel B [23]. Then,

from Eqs. (11) and (A5) we obtain αB = χB/2, ϕB = 0, and

ϕ′
B = π/2.

Furthermore, identifying the real and imaginary parts of hA

and vA, based on Eqs. (11) and (A2), allows determining the

coefficients αA, ϕA, and ϕ′
A of the unitary transformation T̂A:







αA = arcsin
[

sin χA

2 sin 2ζA
]

ϕA = arctan
[

− tan χA

2 cos 2ζA
]

ϕ′
A = −π

2 .
(15)

Using these rotating and fixed phase compensators on chan-

nels A and B, respectively, the condition φeff = 0 (mod 2π)

simply gives ϕA = −φ − π. Then, the Bell inequality mea-

surements can be performed using αA and αB as new analysis

parameters, whose values can be obtained from










χB = 2αB

χA = 2 arccos [cosαA cosφ]

ζA = 1
2 arcsin

[

sinαA

sin
χA
2

]

.
(16)

The phase φ must be determined before making entangle-

ment measurements. The condition αA = αB = π/4, used to

derive Eq. (14), leads to
{

χB = π/2
ζA = 1

2 arcsin
1√

2 sinχA/2
. (17)

By inserting φeff = φ+ ϕA in Eq. (14), we obtain:

P
(φ)
++(ϕA) = 1

2 cos
2
(

φ+ϕA

2

)

, (18)

with ϕA = arccos(
√
2 cos χA

2 ). Phase φ can therefore be ob-

tained from the measurement of P
(φ)
++ as a function of ϕA.

Then, the retardation angle χA can be chosen in order to sat-

isfy φeff = 0 and we are left with the free parameters χB and

ζA for the Bell inequality measurement.



5

V. ANALYSIS USING A SET OF PHASE COMPENSATORS

AT FIXED ANGLE

In the case of fiber quantum communication systems, if the

phase of the elliptically polarized state is due to the polariza-

tion fluctuations induced by the network optical fiber, a real

time adjustment is necessary. It is possible in this case to

use commercially available phase compensators composed of

effective fiber waveplates, for which birefringence is modi-

fied along two given directions through a stress induced by a

piezo-electric actuator. These devices are the fiber equivalent

to the standard bulk-optics Soleil-Babinet compensators and

the voltages applied to the piezo-electric actuators can be eas-

ily controlled dynamically. As we will show in the following,

such a setup allows a convenient estimation of φ and measure-

ment of the Bell parameter.

Following previously reported experimental results [18, 19,

22], we apply the general formalism presented in Section III to

a configuration, in which there is one phase compensator set at

ζB = π/4 with respect to the {|HB〉, |VB〉} basis on channel

B and a set of two compensators (the first set parallel to the

{|HA〉, |VA〉} basis (ζ1A = 0) and the second at ζ2A = π/4
with respect to the same basis) on channel A. In this case,

the three parameters required to compensate the phase φ and

perform the Bell inequality measurement are the three phase

compensator retardation angles χ1A, χ2A, χB .

The device on channelA is represented by the unitary trans-

formation T̂A = T̂π/4(χ1A)T̂0(χ2A), where the correspond-

ing Jones matrices, T̂π/4 and T̂0, are given in Appendix A.

The elements of the T̂ matrix can then be written as

{

hA = cos χ2A

2 e−i
χ1A

2

vA = −i sin χ2A

2 ei
χ1A

2 .
(19)

Applying the same procedure as in the previous section, we

find αA = χ2A/2, ϕA = −χ1A/2, and ϕ′
A = χ1A/2− π/2.

With the devices considered here on channels A and B, the

condition φeff = 0 (mod 2π) simply gives φeff = φ − χ1A +
π = 0 (mod 2π).

The phase φ can be determined periodically in the diagonal

basis (αA = αB = π/4, or equivalently χ2A = χB = π/2)

through the measurement of

P
(φ)
++(χ1A) =

1
2 sin

2(φ−χ1A

2 ). (20)

It can then compensated by the first phase compensator fol-

lowing the relation χ1A = φ+π. Bell measurements can then

be performed using the analysis parameters αB = χB/2 and

αA = χ2A/2, as in the case of a linearly polarized Bell state.

In this configuration, the development of a fully automated

analysis procedure dedicated to elliptically polarized, maxi-

mally entangled states can be made simple and rapidly recon-

figurable, which would be convenient for future fiber quantum

communication systems.

VI. EXPERIMENTAL REALIZATION

In order to generate and experimentally test elliptically po-

larized maximally entangled states along the lines of the pre-

vious analysis, we use the photon-pair source shown in Fig-

ure 3. The source is based on a type-II nonlinear waveguide

generator pumped by a 655 nm laser so as to emit degener-

ate paired photons at the telecom wavelength of 1310 nm (see

also Ref. [22] for more details). Instead of the state |Φ(φ)〉 we

have been discussing until now, the created photons are in this

case in the |Ψ(φ)〉 state (see Eq. (1)). As mentioned above,

the same arguments and state analysis hold for all maximally

entangled states.

As the paired photons are distributed over fiber channels,

one to Alice (A) and the other to Bob (B), the ellipticity of the

state is due to the birefringence of the fibers, which introduces

a phase between the |H〉 and |V 〉 polarization modes. To

perform a Bell inequality measurement, Alice and Bob each

have an adjustable linear polarization analyzer consisting of a

half wave plate and a polarization beam splitter. Moreover, to

compensate the phase, a Soleil-Babinet (SB) device, fixed at

ζ2A = 0, therefore defined by the transfer matrix of Eq. (A6),

is placed on the path of one of the channels, for example on

Alice’s, as shown in Figure 3. This setup is slightly different

from the situation described in Section IV as on each chan-

nel the rotation parameter of the phase compensator is here

replaced by the rotation of a half wave plate (HWP). The free

parameters are then the rotation angles ζ1A and ζB of the half

wave plates and the retardation angle χ2A of the compensator.

In order to compensate for the phase of the distributed state,

a phase measurement is carried out by setting both HWPs (i.e.,

A and B) at the angle ζ1A = ζB = π/8 in order to satisfy

αA = αB = π/4. In this configuration, the coincidence prob-

ability between detectors DA and DB depends on the effec-

tive phase of the entangled state (see Eq. (14)). By tuning the

phase φSB (corresponding to χ2A) induced by the SB com-

pensator, we observe, as predicted in the case of a maximally

entangled state, an interference pattern, shown in Figure 4.

For the specific values of φ1
SB ≃ 5 rad and φ2

SB ≃ 1.86 rad

for which the coincidence rate is minimized and maximized,

we obtain φeff = 0 and π, corresponding to the maximally

entangled states |Ψ+〉 and |Ψ−〉, respectively. Consequently,

using either one of these two phase compensation positions

allows maximizing the violation of the Bell inequalities.

VII. CONCLUSION

In this paper we have addressed that properly measuring

and violating the so-called Bell parameter and inequality, re-

spectively, is not always possible when using standard rotat-

ing polarization analyzers, since maximally polarization en-

tangled states can either be generated with, or can accumulate

along propagation, a phase factor between their two compo-

nents.

We have developed a general formalism describing how to

measure and compensate the phase thanks to the insertion of

polarization compensation devices between the source and the
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Figure 3. Experimental setup of the considered source and analysis system. Two cross-polarized photons are generated at the degenerate

wavelength of 1310 nm using a type-II periodically poled lithium niobate waveguide (PPLN/W). After being coupled into a telecom fiber,

these photons are rendered indistinguishable in terms of spatial and temporal observables thanks to a compensation stage towards providing

the state |H,V 〉 (for more details, see the Ref. [22]). Employing a simple beam-splitter (BS) permits separating the paired photons in a

non-deterministic manner, to distribute them to the users, say Alice (a) and Bob (b), and to create polarization entanglement. In this fibered

configuration, a phase between the |H〉 and |V 〉 components of the entangled state is accumulated along propagation. To cancel this phase and

to analyze the entangled state in a proper way, a Soleil-Babinet phase compensator is inserted before the Alice’s rotating polarization analyzer.

As is commonly the case, Alice and Bob’s analyzers are made of an HWP and a PBS.

φeff = π → |Ψ−〉

φeff = 0 → |Ψ+〉

Figure 4. Coincidence rate measured between Alice (a) and Bob

(b) as function of the phase induced by the Soleil-Babinet when the

polarization entangled state is analyzed in the diagonal basis, i.e., for

both a and b polarization analyzer angles set to π/8. Note here that

φSB corresponds χ2A, as defined in Eq. (A6).

polarization analyzers. This approach has also been success-

fully applied to simple phase correcting schemes, which may

present advantages depending on the nature of the experimen-

tal setup, i.e., free space or telecom fiber links. We have also

linked our theoretical approach to an experimental setup, in

which the phase of an entangled state accumulated over fiber

channel distribution is canceled by the use of a Soleil-Babinet

phase compensator.

Since our approach is general, in the sense that no assump-

tion on the additional polarization devices (TA and TB) is re-

quired, we believe that it can be applicable and useful for vari-

ous polarization entanglement based quantum communication

systems. In particular, this can be of interest when the phase

factor in the state is a priori not known to the users, which is

the case when entanglement is generated from a quantum dot

device [20, 21], or distributed over some distance in optical

fibers [22].
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Appendix A: Appendix: Jones matrices of a retardation plate

When polarized light goes through a waveplate, the polar-

ization transformation can be described by the use of the so-

called Jones matrices [24]. This transformation is character-

ized by the operator T̂ = R̂−1P̂ R̂, R̂ and P̂ being the rotation

and retardation matrices, respectively:

R̂ =

(

cos ζ sin ζ
− sin ζ cos ζ

)

, P̂ =

(

e−iχ2 0

0 ei
χ
2

)

, (A1)

where ζ (−π/4 ≤ ζ ≤ π/4) is the angle between the polar-

ization state |H〉 and the neutral axis |H ′〉 of the waveplate,

and χ (−π ≤ χ ≤ π) corresponds to the retardation phase
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induced by the anisotropic crystalline plate. The T̂ matrix el-

ements (see Eq. (10)) can then be written:

{

h = cos χ
2 − i sin χ

2 cos 2ζ
v = −i sin χ

2 sin 2ζ.
(A2)

For the specific cases of a half or a quarter waveplate, the

corresponding operators can be easily derived as

T̂λ/2(ζ) = −i

(

cos 2ζ sin 2ζ
sin 2ζ − cos 2ζ

)

, (A3)

T̂λ/4(ζ) = − i√
2

(

cos 2ζ + i sin 2ζ
sin 2ζ i− cos 2ζ

)

, (A4)

where ζ is the rotation angle of the considered waveplate. In

the specific case of phase compensators at fixed angles π/4 or

0, the corresponding operators are given by

T̂π/4(χ) =

(

cos χ
2 −i sin χ

2
−i sin χ

2 cos χ
2

)

, (A5)

T̂0(χ) =

(

e−iχ2 0

0 ei
χ
2

)

, (A6)

with χ the retardation angle of the phase compensator.
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