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Abstract: From the study of a functional equation relating the Gibbs measures at two
different tempratures we prove that the specific entropy of the Gibbs measure of the
Sherrington-Kirkpatrick Spin Glass Model vanishes at the inverse temperatureβ= 4log2.

1 Introduction and main results

Over the last decade, mean field models of spin glasses have motivated increasingly
many studies by physicists and mathematicians [1, 4, 5, 6, 7, 8, 10]. The existence
of infinite volume limit of thermodynamic quantities is now rigorously established
thanks to the development of numerous remarkable analytical techniques. For the
Sherrington-Kirkpatrick model, the first major results of Guerra and Toninelli [5] on
existence and uniqueness of the free energy, are generalized by Aizenman, Sims and
Starr [2] in a scheme giving variational upper bounds on the free energy. Talagrand
[10], under some conditions on the overlap function, contributed to the entirely rigor-
ous account of the original formulae proposed by Parisi [7].

An interesting question, related to the behaviour of Gibbs measures, is the study
of their specific entropy. Despite the numerous developments achieved lately on this
model, the study of the properties of the entropy is still missing in the literature. The
specific entropy decreases with the temperature and the high temperature entropy can
easily be estimated. By lowering the temperature the entropy should eventually vanish
and an early result, given in [1], corroborates the idea that the entropy does not vanish
very fast. In this note we estimate the value of the (low) temperature at which the mean
entropy of the Gibbs measure vanishes.

The approach we use here is totally self-contained. From the low-temperature re-
sults, we need solely the existence of the thermodynamic limit of the quenched specific
free energy and its self-averaging property.

We first recall some basic definitions. Suppose that a finite set of n sites is given.
With each site we associate the one-spin space Σ := {1,−1}. The natural configuration
space is then the product space Σn = {−1,1}n =Σn , with cardΣn = 2n equipped with the
uniform probability measure νn . For eachσ ∈Σn , the finite volume Hamiltonian of the
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model is given by the following real-valued function on Σn

Hn(σ) =− 1p
n

∑
1≤i< j≤n

Ji jσiσ j ,

where the family of couplings J = (Ji j )1≤i< j≤n are independent centred Gaussian ran-
dom variables of variance 1.

At the inverse temperature β = 1
T > 0, the disorder dependent partition function

Zn(β, J ), is given by the sum of the Boltzmann factors

Zn(β, J ) =∑
σ

e−βHn (σ,J ).

Moreover, if E J denotes the expectation with respect to the randomness J , it is very

simple to show that E J Zn(β, J ) = 2ne
β2

4 (n−1).
When the randomness J is fixed, the corresponding conditional Gibbs probability

measure is denoted by µn,β(σ|J ) and given by:

µn,β(σ|J ) = e−βHn (σ,J )

Zn(β, J )
.

The entropy of µn,β, is defined as usual by S(µn,β,J ) =−∑
σµn,β(σ|J ) logµn,β(σ|J ).

The real functions

fn(β) = 1

n
E J log Zn(β, J )

and

f n(β) = 1

n
logE J Zn(β, J ),

define the quenched average of the specific free energy and the annealed specific free
energy respectively. The ground state energy density −εn(J ) is given by

−εn(J ) = 1

n
inf
σ∈Σn

Hn(σ, J ).

At the low temperature region (β> 1), the following two infinite volume limits

lim
n→∞ fn(β, J ) = f∞(β),

and,

− lim
n→∞εn(J ) = lim

β→∞
f∞(β)

β
=−ε0

exist for almost all J and are non random; this result has been rigorously proved by
Guerra and Toninelli [5].

The main results of this note are stated in the following and proved in the next
section.
Proposition: Almost surely, at the inverse temperature β∗ = 4log2 = 2.77258 · · ·, the
thermodynamic limit of the quenched free energy is given by

f∞(β∗) = lim
n→∞

1

n
E J log Zn(β∗, J ) = f∞(1)+ (β∗−1)log2 = β2∗

4
+ β2

1

4
=β∗ log2+ 1

4
.
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The Parisi formula provides with the expression of the free energy for the entire low
temperature region in terms of a functional equation; the pertinence of the precise cal-
culation of the limit at a particular value of the temperature stems from its usefulness
in determining the point where the entropy vanishes. This gives new insight to the
behaviour of the model and is summarised in the following

Theorem: At the inverse temperatureβ∗ = 4log2 = 2.77258 · · ·, the specific entropy s(µβ∗)
of the Gibbs measure vanishes almost surely:

s(µβ∗) := lim
n→∞

1

n
S(µn,β∗,J ) =− lim

n→∞
1

n

∑
σ

µn,β∗(σ|J ) logµn,β∗(σ|J ) = 0.

Remark: The formulation of the above statement assumes that the limit limn→∞ 1
n S(µn,β∗,J )

exists and is independent of J . This follows from general principles and can immedi-
ately be obtained from the existence and self-averaging of the low temperature specific
free energy.

2 Proof of the main results

Notice first, that for all β> 0, the quenched limit f∞(β) exists and is a convex function
of β [5]. Let β1 ≡ 1. From the high temperature results [1], we have, almost surely, that

f∞(β1) = lim
n→∞

1

n
E J log Zn(β1, J ) = lim

n→∞
1

n
logE J Zn(β1, J )

= f ∞(β1) = log2+ β2
1

4

= log2+ 1

4
.

The following figure 1 illustrates the definition of the inverse temperature β∗; the an-

nealed free energy f ∞(β) = log2+ β2

4 is plotted as a function of β and the straight line

is defined by β
β1

f∞(β1) ≡β f∞(β1). The two graphs intersect at β1 = 1 and β∗ = 4log2 =
2,77258 · · ·. One can now easily check that, at β=β∗, the annealed free energy f ∞(β∗)
is simply related to f∞(β1) by the following relationship

f ∞(β∗) = β2∗
4

+ log2 = β∗
β1

(
β∗β1

4
+ β1

β∗
log2) = β∗

β1
(log2+ 1

4
) = β∗

β1
f∞(β1).

We denote by T the mapping T : µn,β1 (σ|J ) 7→ µn,β(σ|J ) defining, for all β> β1, the
Gibbs probability measure µn,β(σ|J ) via the functional equation

µn,β(σ|J ) := exp(−βHn(σ, J ))

Zn(β, J )
=µ

β/β1

n,β1
(σ|J )

Zβ/β1
n (β1, J )

Zn(β, J )
.

Notice that β/β1 is a non dimensional quantity. Moreover the value β1 fixes the tem-
perature scale i.e. the temperature β>β1 is expressed in units where β1 ≡ 1.
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β
1 β∗

β 7→ f ∞(β) = ln2+ β2

4

β 7→β f ∞(1)

Figure 1: The valueβ∗ = 4log2, is given by the intersection of the graph of the annealed
free energy f ∞(β) with the straight line β f ∞(1).

Since µn,β is a probability on the configuration space, summing up over the config-
urations σ and taking the thermodynamic limit, we have indeed

lim
n→∞

1

n
log

∑
σ

µn,β(σ|J ) = lim
n→∞

1

n
log

∑
σ

µ
β/β1

n,β1
(σ|J )+α∞(β1,β) = 0,

where the limit α∞(β1,β) is given by

α∞(β1,β) = lim
n→∞

β

β1

1

n
log Zn(β1, J )− lim

n→∞
1

n
log Zn(β, J )

= lim
n→∞

β

β1

1

n
E J log Zn(β1, J )− lim

n→∞
1

n
E J log Zn(β, J ) (due to the self-averaging)

= β

β1
f∞(β1)− f∞(β).

The existence, for all β > β1, of the limit α∞(β1,β) follows immediately from the exis-
tence of the two limits f∞(β1) and f∞(β). Now, by making use of the relation between
the limits f ∞(β∗) and f∞(β1), one can check, that for β=β∗, the limit α∞(β1,β∗) gives
the deviation of the free energy f∞(β∗) from its mean value :

a∞ :=α∞(β1,β∗) = β∗
β1

f∞(β1)− f∞(β∗) = f ∞(β∗)− f∞(β∗).

The proof of the proposition reduces thus in determining the value a∞.
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Proof of the Proposition: At β=β1, the quenched limit f∞(β1) equals the annealed one
f ∞(β1) = β2

1/4+ log2, where the term β2
1/4 comes from the mean value of the Boltz-

mann factor (i.e. the typical behaviour and the mean behaviour coincide at this tem-
perature). Since for β > β1, the typical and the average behaviour are no longer the
same, we use the standard large deviations argument in order to make the deviant be-
haviour at β∗ look like the typical behaviour at β1.

The affine mapping T on measures induces a transformation on the free energies

reading f ∞(β∗) = β2∗
4 + log2 = β∗

β1
f∞(β1). It follows that the pre-image of the term β2∗/4

— coming from the average of the Boltzmann factor — (point C of the figure 2), is
β1β∗/4 = β1 log2 = log2 (point C ′); one gets the value of the free energy f∞(β1) if the
term β2

1/4 = 1/4 is added to this pre-image. We remark that the sheer particularity of
the two temperaturesβ1 andβ∗ is that the pre-image of log2 is 1/4! Therefore, to obtain
the quenched limit at β∗ is enough to add to the image of log2 (i.e. to the segment OC )
the value 1/4 (segment C B).

One can now easily check that the difference of the two limits f∞(β∗) and f∞(β1),
is simply given by the segment O A:

f∞(β∗)− f∞(β1) = (β∗−β1) log2.

β
1 β∗

β 7→ f ∞(β) = ln2+ β2

4

β 7→β f ∞(1)

β 7→β log2

A

C
B

OA’

C’
B’

Figure 2: The affine map T maps C ′ to C . The length of the segment A′B ′ corresponds
to the value f∞(β1) that is parallel transported to the segment AB . The segment OB
equals f∞(β∗). The dashed lines A′A and B ′B are parallel to C ′C .

Hence,

f∞(β∗) = (β∗−β1) log2+ f∞(β1) =β∗ log2+ β2
1

4
= β2∗

4
+ 1

4
= 2.1718 · · · ,
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and, moreover

a∞ = f ∞(β∗)− f∞(β∗)

= β∗
β1

f∞(β1)− f∞(β∗)

= β∗β1

4
− β2

1

4
.

One can check that the value of f∞(β∗) is slightly lower than the bound one can
obtain by making use of the spherical model (2.2058 · · ·). �

Proof of the Theorem: For β∗, we have

s(µβ∗) = lim
n→∞

1

n
S(µn,β∗,J ) =− lim

n→∞
1

n

∑
σ

µn,β∗(σ|J ) logµβ∗/β1

n,β1
(σ|J )

Zβ∗/β1
n (β1, J )

Zn(β∗, J )

= − lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) logµβ∗/β1

n,β1
(σ|J )−α∞,

and, by the positivity of the entropy one checks readily that

lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) logµn,β1 (σ|J ) ≤−β1

β∗
α∞ = 1

4β∗
− 1

4
.

In the following, we shall show that this inequality is saturated. For this we introduce a
slightly different notation.

Let Wn,β1 (σ|J ) = e−β1Hn (σ,J )/2nβ1 be the random weight associated with each con-
figuration σ ∈Σn . The Gibbs measures µn,β1 (σ|J ) and µn,β∗(σ|J ) are now given by

µn,β1 (σ|J ) = Wn,β1 (σ|J )∑
σWn,β1 (σ|J )

,

and,

µn,β∗(σ|J ) =
W β∗/β1

n,β1
(σ|J )∑

σW β∗/β1

n,β1
(σ|J )

.

We have indeed, from the high temperature results,

lim
n→∞

1

n
E J log

∑
σ

Wn,β1 (σ|J ) = lim
n→∞

1

n
logE J

∑
σ

e−β1Hn (σ,J )

2nβ1
= β2

1

4
+ log2−β1 log2 = 1

4
,

and, from the previous proposition,

lim
n→∞

1

n
E J log

∑
σ

W β∗/β1

n,β1
(σ|J ) = lim

n→∞
1

n
E J log

∑
σ

(
e−β1Hn (σ,J )

2nβ1

)β∗
β1

= β2∗
4

−β∗ log2+ β2
1

4
= 1

4
,
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i.e. the behaviour of the sums
∑
σWn,β1 (σ|J ) and

∑
σW β∗/β1

n,β1
(σ|J ) is the same. Thus, for

the comparison of the two measures, namely for distinguishing between the behaviour

of the summands Wn,β1 (σ|J ) and W β∗/β1

n,β1
(σ|J ) we need additional information.

We introduce the relative entropy density s(µβ∗ |µβ1 ) of the measure µβ∗ w.r.t. the
measure µβ1 which gives the extend to which the measure µβ∗ “differs" from the mea-
sure µβ1 :

s(µβ∗ |µβ1 ) := lim
n→∞

1

n
S(µn,β∗ |µn,β1 ) = lim

n→∞
1

n

∑
σ

µn,β∗(σ|J ) log
µn,β∗(σ|J )

µn,β1 (σ|J )
.

This limit exists and it is a non-negative function vanishing in the case the two mea-
sures are equal. We notice moreover that

s(µβ∗ |µβ1 ) = lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) log
µn,β∗(σ|J )

µn,β1 (σ|J )

= lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) log
W β∗/β1

n,β1
(σ|J )

Wn,β1 (σ|J )

= lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) logW
β∗
β1

−1

n,β1
(σ|J ).

Obviously, W β∗/β1

n,β1
(σ|J ) ≤∑

σW β∗/β1

n,β1
(σ|J ). Hence,

limsup
n→∞

1

n

∑
σ

µn,β∗(σ|J ) logW
β∗
β1

−1

n,β1
(σ|J ) = lim

n→∞
1

n
log

(∑
σ

W β∗/β1

n,β1
(σ|J )

)1− β1
β∗

.

and, consequently,

s(µβ∗ |µβ1 ) = lim
n→∞

1

n
log

(∑
σ

W β∗/β1

n,β1
(σ|J )

)1− β1
β∗ = 1

4β∗
(β∗−β1)

where the equality of the limsup and the limit is a consequence of the positivity of
s(µβ∗ |µβ1 ).

Using now the functional definition of the measure one gets

s(µβ∗ |µβ1 ) = lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) log
µn,β∗(σ|J )

µn,β1 (σ|J )

= lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) logµ
β∗
β1

−1

n,β1
(σ|J )+α∞

= 1

4β∗
(β∗−β1).

Recalling that α∞ = β1
4 (β∗−β1), it follows immediately that

lim
n→∞

1

n

∑
σ

µn,β∗(σ|J ) logµn,β1 (σ|J ) = 1

4β∗
− 1

4
=−β1

β∗
α∞
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which proves the theorem. �
Remarks: Another interesting quantity is the relative entropy density s(µβ∗ |ν) of the
measure µn,β∗ w.r.t. the uniform measure νn(σ) :

s(µβ∗ |ν) = lim
n→∞

1

n
S(µn,β∗ |νn) = lim

n→∞
1

n

∑
σ

µn,β∗(σ|J ) log
µn,β∗(σ|J )

νn(σ)
= −s(µβ∗)+ log2

= log2.

(We recall that s(µβ1 |ν) =−s(µβ1 )+ log2 = β2
1

4 = 1
4 ).

One can also easily check that the value of the limit α∞ corresponds to the entropy
difference α∞ = s(µβ1 )− s(µβ∗).

3 Concluding remarks

In this note we showed that the mean entropy of the Gibbs measure vanishes at the
inverse temperatureβ∗ = 4log2. A related question concerns the Hausdorff dimension
of the support of the Gibbs measure. From our result on the entropy one can easily
show that this dimension vanishes at β∗.

A last observation concerns the value of the temperature β∗: it is obtained from
the relationship between the free energies f̄∞(β∗) and f∞(1); moreover, one can read-
ily check that β∗ = β2

c , where βc = 2
√

log2 is the critical temperature of the Random
Energy Model (REM). The REM is defined by 2n energy levels Ei (i = 1, · · · ,n), a family
of random, independent, identically distributed random variables; many results are
qualitatively the same as those of the SK model. It would be interesting to clarify this
relationship in order to obtain some information on the behaviour and properties of
the Gibbs measure at low temperatures. Both βc and β∗ are to be compared with the
value at β1 ≡ 1, i.e. the maximum value of β where the free energies of the two models
coincide. What we learn by the comparison of the two models is that the Gibbs mea-
sure of the SK has seemingly a richer structure than for the REM. As a matter of fact,
the entropy of the REM vanishes at βc while the entropy of the SK model is still strictly
positive at this point.
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