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A connected graph G with order n ≥ 1 is said to be recursively arbitrarily partitionable (R-AP for short) if either it is isomorphic to K 1 , or for every sequence (n 1 , ..., n p ) of positive integers summing up to n there exists a partition (

Since previous investigations, it is believed that a R-AP graph should be "almost traceable" somehow. We first show that the longest path of a R-AP graph on n vertices is not constantly lower than n for every n. This is done by exhibiting a graph family C such that, for every positive constant c ≥ 1, there is a R-AP graph in C that has arbitrary order n and whose longest path has order n-c. We then investigate the largest positive constant c < 1 such that every R-AP graph on n vertices has its longest path passing through n • c vertices. In particular, we show that c ≤ 2 3 . This result holds for R-AP graphs with arbitrary connectivity.

Introduction

Let n ≥ 1 be a positive integer. A n-graph is a graph whose order, i.e. its number of vertices, is n. Throughout this paper, we denote by LP (G) the order of the longest path in a given connected graph G. We say that G is recursively arbitrarily partitionable (R-AP for short) if and only if one of the following two conditions holds.

• The graph G is an isolated vertex.

• For every sequence (n 1 , ..., n p ) of positive integers that performs a partition of n, there exists a partition (V 1 , ..., V p ) of V (G) such that G[V i ] is a connected R-AP subgraph of G on n i vertices for all i ∈ {1, ..., p}.

The property of being R-AP was introduced in [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF] as a strengthened version of the property of being arbitrarily partitionable. The property of being AP was itself introduced to deal with a problem of resource sharing among an arbitrary number of users (see [START_REF] Barth | Decomposable trees: a polynomial algorithm for tripodes[END_REF][START_REF] Barth | A degree bound on decomposable trees[END_REF][START_REF] Baudon | Structure of k-connected arbitrarily partitionable graphs[END_REF][START_REF] Marczyk | An ore-type condition for arbitrarily vertex decomposable graphs[END_REF] for further details).

R-AP graphs have been mainly studied in the context of some simple classes of graphs like trees [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF], a family of unicyclic 1-connected graphs called suns [START_REF] Baudon | Recursively arbitrarily vertexdecomposable suns[END_REF], and a class of 2-connected graphs called balloons [START_REF] Baudon | Structural properties of recursively partitionable graphs with connectivity 2[END_REF][START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF]. Although these works did not lead to numerous general properties of R-AP graphs, they however suggest that the property of being R-AP is even closer to traceability1 than is the one of being AP. For instance, we know that if T is a R-AP n-tree, then LP (T ) ≥ n -2. It was also empirically observed2 that if B is a R-AP n-balloon, then LP (B) ≥ n -4. Such bounds do not exist regarding AP trees and AP balloons since the structure of these graphs is much less predictable (see [START_REF] Barth | On the shape of decomposable trees[END_REF] and [START_REF] Baudon | Structural properties of recursively partitionable graphs with connectivity 2[END_REF], respectively).

Regarding these observations, one could naively think that there should exist a small positive constant c ≥ 1 such that LP (G) ≥ n -c for every R-AP n-graph G. In this work, we first show, in Section 3, that such a constant does not exist by exhibiting a class C of R-AP graphs such that for every c there exists a n-graph C in C such that LP (C) = n -c for some n. The graphs of C are 1-connected, but an equivalent result regarding 2-connected graphs is derived by slightly modifying our construction. We then investigate, in concluding Section 4, the greatest constant c ≤ 1 such that every R-AP n-graph has its longest path passing through n • c of its vertices. In particular, we exhibit another family of graphs showing that c ≤ 2 3 . This upper bound also holds regarding -connected R-AP graphs, no matter what is the value of .

Definitions and preliminary results

First observe that adding edges to a R-AP graph does not make it loose its property of being R-AP.

Remark 1. If G is spanned by a R-AP subgraph, then G is R-AP.
Because every path is clearly R-AP, the next result follows by Remark 1.

Remark 2. Every traceable graph is R-AP.

Determining whether a n-graph G is R-AP is laborious since, according to the original definition, one has to check whether G can be partitioned following every partition of n. We thus usually prefer to check the following equivalent condition which derives from the fact that a R-AP graph is partitionable into R-AP subgraphs at will.

Remark 3 ([7]

). A connected n-graph G is R-AP if and only if for every λ ∈ {1, ..., n 2 } there exists a partition

(V λ , V n-λ ) of V (G) such that G[V λ ] and G[V n-λ ] are connected R-AP subgraphs of G on λ and n -λ vertices, respectively.
Let us now introduce the following subclass of caterpillar graphs. Definition 4. Let a, b ≥ 2 be two positive integers and consider three vertexdisjoint paths u 1 u 2 , v 1 , ..., v a and w 1 , ..., w b of order 2, a and b, respectively. The caterpillar Cat(a, b) is the tree obtained by identifying the vertices u 1 , v 1 and w 1 .

Throughout this paper, every mention to caterpillar graphs actually refers to caterpillars of the form Cat(a, b). Two examples of such caterpillars are given in Figure 1. This family of caterpillars is important regarding R-AP graphs since it was proven in [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF] that most of R-AP trees are caterpillars of this kind. The authors of [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF] also gave a complete characterization of R-AP caterpillars. 

Longest path and additive factor

In this section, we prove the following result.

Theorem 6. There does not exist a positive constant c ≥ 1 such that we have

LP (G) ≥ n -c for every R-AP n-graph G.
This is proved by exhibiting a counterexample for every possible value of c. For this purpose, we introduce the family of connected cycles graphs. Definition 7. Let k ≥ 1 and x, y ≥ 0 be three positive integers. The connected cycles graph CC k (x, y) is the graph with the following vertices.

• Let u 1 ...u x and v 1 ...v y be paths with order x and y, respectively;

• For every i ∈ {1, ..., k}, let a i b i e i d i c i a i be a cycle with length 5;

• For every i ∈ {1, ..., k -1}, let w i,i+1 be a vertex.

These vertices are linked in CC k (x, y) in the following way:

u x a 1 , v y e k ∈ E(CC k (x, y)) and we have w i,i+1 e i , w i,i+1 a i+1 ∈ E(CC k (x, y)) for every i ∈ {1, ..., k -1}.
An example of connected cycles graph is depicted in Figure 2. Notice that LP (CC k (1, 1)) = |V (CC k (1, 1))| -k. Thus, by showing that all graphs CC k (1, 1) are R-AP, we can contradict the existence of the constant c mentioned in Theorem 6. We are now ready to prove the main result of this section. Lemma 9. The graph P CC k (x) is R-AP for every k ≥ 1 and x ≥ 1 such that x ≡ 2 mod 3. The graph CC k (x, y) is R-AP for every k ≥ 1 and x, y ≥ 1 whenever x ≡ 2 mod 3 or y ≡ 2 mod 3.
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Proof. The proof is by induction on k and uses the terminology introduced in Definition 7. For each value of k, we prove that the result is true for all possible values of x and (possibly) y which satisfy the claim. Recall that, according to Remark 3, a connected n-graph G is R-AP if and only if for every λ ∈ {1, ..., n 2 } we can partition V (G) into two parts V λ and V n-λ inducing connected R-AP subgraphs of G with order λ and n -λ, respectively.

Case 1: k = 1. First, every graph P CC 1 (x) is R-AP since it is spanned by Cat(3, x + 1), which is R-AP according to the assumption on x.

We now prove that every graph C = CC 1 (x, y) is R-AP whenever the conditions of the claim are fulfilled. This is proved by induction on x + y by showing that there is a partition of V (C) into two parts V λ and V n-λ satisfying the conditions above for every λ ∈ {1, ..., n 2 } where n = 5+x+y. For each such value of λ, we give a satisfying subset V λ , and it is understood that V n-λ = V (C) -V λ . We further assume x ≡ 2 mod 3 since the graphs CC 1 (x, y) and CC 1 (y, x) are isomorphic.

First, when dealing with λ ≥ x + 5, we can pick up, as V λ , the λ first vertices of the ordering {u 1 , ..., u x , a 1 , b 1 , c 1 , d 1 , e 1 , v y , ..., v 1 } of V (C) to get a partition of C into a traceable graph or CC 1 (x, y -(λ -(x + 6))) which is R-AP by the induction hypothesis, and a path. For λ = x, one can consider V λ = {u 1 , ..., u x } so that the two induced graphs are traceable. Now, if λ = x + 2 or λ = x + 3, then we can choose {u 1 , ..., u x , a 1 , b 1 } or {u 1 , ..., u x , a 1 , c 1 , d 1 }, respectively, as V λ , so that the two induced subgraphs are paths. Next, consider λ = x + 4. Then V λ = {u 1 , ..., u x , a 1 , b 1 , c 1 , d 1 } yields a correct partition of C. Indeed, on the one hand, C[V λ ] is a caterpillar Cat(3, x + 1) which is R-AP since otherwise it would mean that x ≡ 2 mod 3, a contradiction. On the other hand, the graph

C[V n-λ ] is a path. Now consider λ = x + 1. If V λ = {u 1 , ..., u x , a 1 } does not provide a satisfying partition of C, then y ≡ 2 mod 3 since C[V n-λ ] is Cat(3, y + 1)
and is not R-AP. Consider now, as V λ , the λ first vertices of the ordering (v 1 , ..., v y , e 1 , b 1 , d 1 , c 1 , a 1 , u x , ..., u 1 ) of V (C). If this choice of V λ does not yield a correct partition of C once again, then it means that either C[V λ ] is the caterpillar Cat(3, y + 1), or a connected cycles graph CC 1 (x , y) with x ≡ 2 mod 3. But then we get that either x+1 = y +4 or x+1 = y +5+x , respectively, which both imply that x ≡ 2 mod 3, a contradiction.

Finally consider every value λ ∈ {1, ..., x -1}. On the one hand, if x -λ ≡ 2 mod 3, then choose V λ = {u 1 , ..., u λ } so that C[V λ ] and C[V n-λ ] are a path, and CC 1 (x-λ, y) which is R-AP by the induction hypothesis. On the other hand, i.e. x -λ ≡ 2 mod 3, we have λ ≡ 0 mod 3 since otherwise we would have x ≡ 2 mod 3. We can assume that λ ∈ {y, y + 2, y + 3}, since otherwise we could deduce a correct partition of C as in the cases λ ∈ {x, x + 2, x + 3}, respectively. Then consider, as V λ , the λ first vertices of (v 1 , ..., v y , e 1 , b 1 , d 1 , c 1 , a 1 , u x , ..., u 1 ). If this choice of V λ does not yield a correct partition of C, then C[V λ ] is either a caterpillar Cat(3, y + 1) which is not R-AP, or a graph CC 1 (x , y) with x ≡ 2 mod 3. But note then that the first situation cannot occur because λ ≡ 0 mod 3. For the second situation, note that, because λ ≡ 0 mod 3, we have y ≡ 2 mod 3. Since we have x , y < x, the graph CC 1 (y, x ) is actually R-AP by the induction hypothesis.

Case 2: arbitrary k.

Let us now suppose that the result is true for every i up to k -1, and let us prove it for k. Consider first C = P CC k (x) for consecutive values of x ≡ 2 mod 3. As we did before, to prove that C is R-AP we show that there exists a partition of V (C) satisfying our conditions for every possible value of λ. One may choose V λ as follows.

• If λ ≡ 1 mod 3, then one may consider, as V λ , the first λ vertices of the ordering

(b k , d k , c k , a k , w k-1,k , e k-1 , b k-1 , d k-1 , c k-1 , a k-1 , ..., w 1,2 , e 1 , b 1 , d 1 , c 1 , a 1 , u x , ..., u 1 ) of V (C).
On the one hand, notice that C[V λ ] is either a path, or covered by a R-AP caterpillar or a partial connected cycles graph P CC k (x ) with k ≤ k -1 and x ≡ 2 mod 3, which is R-AP by the induction hypothesis. On the other hand, observe that C[V n-λ ] is either traceable, or spanned by a connected cycles graph CC k (x, y) for some k ≤ k -1 and y, which is R-AP according to the induction hypothesis.

• If λ ≡ 2 mod 3, then one can obtain similar partitions of C from the ordering

(d k , c k , b k , a k , w k-1,k , e k-1 , d k-1 , c k-1 , b k-1 , a k-1 , ..., w 1,2 , e 1 , d 1 , c 1 , b 1 , a 1 , u x , ..., u 1 ) of V (C).
• Otherwise, if λ ≡ 0 mod 3, then one has to consider as V λ the first λ vertices of the ordering (u 1 , .. To end up proving the claim, we have to show that CC k (x, y) is R-AP whenever x ≡ 2 mod 3 or y ≡ 2 mod 3. As for the base case, we show this by induction on x + y. Once again, we assume that x ≡ 2 mod 3 for a given graph C = CC k (x, y).

., u x , a 1 , b 1 , c 1 , d 1 , e 1 , w 1,2 , ..., a k-1 , b k-1 , c k-1 , d k-1 , e k-1 , w k-1,k , a k , b k , c k , d k ) of V (C) when x ≡ 1 mod 3, or the ordering (u 1 , ..., u x , a 1 , c 1 , d 1 , b 1 , e 1 , w 1,2 , ..., a k-1 , c k-1 , d k-1 , b k-1 , e k-1 , w k-1,k , a k , c k , d k , b k ) otherwise, i.
For some λ ∈ {1, ..., y}, one can consider V λ = {v 1 , ..., v λ } so that C is partitioned into a path and CC k (x, y -λ) which is R-AP according to the induction hypothesis. When λ = y + 1, one can choose V λ = {v 1 , ..., v y , e k } so that C is partitioned into a path and a partial connected cycles graph which is R-AP by the induction hypothesis since x ≡ 2 mod 3. For other values of λ, one may choose V λ as follows.

• If λ ≡ 0 mod 3, one can consider, as V λ , the λ first vertices from the ordering (u 1 , ..

., u x , a 1 , b 1 , c 1 , d 1 , e 1 , w 1,2 , ..., w k-1,k , a k , b k , c k , d k e k , v y , ..., v 1 ) of V (C) when x ≡ 1 mod 3, from (u 1 , ..., u x , a 1 , c 1 , d 1 , b 1 , e 1 , w 1,2 , ..., w k-1,k , a k , c k , d k , b k , e k , v y , ..., v 1
) otherwise, i.e. when x ≡ 0 mod 3. The two induced subgraphs are then R-AP since they are traceable or isomorphic to connected cycles graphs which are R-AP according to the induction hypotheses.

• If λ ≡ 0 mod 3 and λ -(y + 1) ≡ 0 mod 3, then one can consider the λ first vertices of the ordering

(v 1 , ..., v y , e k , b k , d k , c k , a k , w k-1,k ..., e 1 , b 1 , d 1 , c 1 , a 1 , u x , ..., u 1 ) of V (C).
For each such partition, we get, on the one hand, that C[V λ ] is either a path, a R-AP caterpillar, or a R-AP (partial) connected cycles graph. In particular, note that when C[V λ ] is a caterpillar or partial connected cycles graph, then this graph is R-AP since y ≡ 2 mod 3 because of the assumptions on λ.

On the other hand, the graph C[V n-λ ] is either a path, or a (partial) connected cycles graph which is R-AP by the induction hypothesis.

• If λ ≡ 0 mod 3 and λ -(y + 1) ≡ 1 mod 3, then one may pick up, as V λ , the λ first vertices from the ordering given to deal with the previous case. This choice of V λ makes, on the one hand, C[V λ ] being spanned by either a path, or CC k (x , y) where k ≤ k -1 and x ≡ 2 mod 3 which is R-AP by the induction hypothesis. On the other hand, C[V n-λ ] is a path, or is spanned by some graph CC k (x, y ) for k ≤ k -1 and some y which is R-AP, again by the induction hypothesis.

• Otherwise, if λ ≡ 0 mod 3 and λ -(y + 1) ≡ 2 mod 3, then some similar partitions of C may be obtained from the ordering (v 1 , ..

., v y , e k , d k , c k , b k , a k , w k-1,k ..., w 1,2 , e 1 , d 1 , c 1 , b 1 , a 1 , u x , ..., u 1 ) of V (C).
Note that Lemma 9 provides a full characterization of R-AP (partial) connected cycles graphs since every such graph whose parameters do not satisfy this lemma is not R-AP. To be convinced of that fact, one just has to consider successive partitions of such a graph for λ = 3. Finally notice that by adding the edge u 1 v 1 to any connected cycles graph CC k (1, 1), we get a 2-connected graph which is R-AP according to Remark 1 and whose longest path has order LP (CC k (1, 1)) + 1. Therefore, Theorem 6 is also true when restricted to 2-connected graphs.

Longest path and multiplicative factor

The graph CC k (1, 1) has order n = 6k + 1 while its longest path has order n-k for every k ≥ 1. Thus, even if connected cycles graphs confirm that the order of the longest path in a R-AP n-graph is not constantly lower than n up to an additive factor, they do not reject the strong relationship between the properties of being R-AP and traceable. We now suggest to catch this relationship thanks to a multiplicative factor.

Question 10. What is the biggest c < 1 such that LP (G) ≥ n • c for every R-AP n-graph G?

Regarding connected cycles graphs, we get that c ≤ 5 6 . In this section, we deduce a better upper bound on c thanks to the following graph construction.

Definition 11. Let k, k ≥ 1 be two positive integers. The urchin W (k, k ) is the graph obtained as follows.

• Let A, B, C be three sets of k, k and k distinct vertices, respectively.

• Add a perfect matching between the vertices of A and B.

• Add all possible edges between distinct vertices in B ∪ C. This construction is illustrated in Figure 3. Note that the urchin W (k, k) has order 3k while its longest path has order 2k + 2. We then get that LP (W (k, k))/n tends to 2 3 as k grows to infinity. In what follows, we show Theorem 12 follows as a corollary of Lemma 13. Note that Lemma 13 is tight in the sense that urchins W (k, k -x) with x ≥ 3 are not R-AP since such a graph W cannot be partitioned as requested for λ = 3. Indeed, as a set V λ with size 3 inducing a R-AP subgraph of W , one has to consider, following the terminology introduced in the proof of Lemma 13, a part of the form {u i , v i , w j } or {w i , w j , w }. After having successively picked several sets with size 3 off W , one necessarily gets an urchin (k , 0) with k ≥ 3. Such a graph is clearly not partitionable for λ = 3 once again.

We can strengthen Theorem 12 as follows. Let W = W (k, k ) be a R-AP urchin. Observe that by adding the edges u 1 u 2 , ..., u 1 u k to W , we get a 2connected graph W 2 which is R-AP by Remark 1. By then adding the edges u 2 u 3 , ..., u 2 u k to W 2 , we get another R-AP graph W 3 which is 3-connected. By repeating this procedure as many times as wanted, we get an -connected R-AP graph W for any value of assuming k and k are big enough. Note that we have LP (W i ) = LP (W ) + 2i, and thus that LP (W i )/LP (W ) tends to 1 as k grows to infinity. Therefore, the statement of Theorem 12 is also true when restricted to -connected R-AP graphs, no matter what is the value .

Theorem 14. Theorem 12 is also true when Question 10 is restricted to R-AP graphs of arbitrary connectivity.

Figure 1 :

 1 Figure 1: The caterpillars Cat(2, 3) and Cat(3, 3)

Figure 2 :Definition 8 .

 28 Figure 2: The connected cycles graph CC 2 (3, 5)

  e. when x ≡ 0 mod 3. The two induced subgraphs C[V λ ] and C[V n-λ ] are then R-AP. Indeed, on the one hand, C[V λ ] is either isomorphic to a path or spanned by a connected cycles graph CC k (x, y) for k ≤ k -1 and some y. On the other hand, the subgraph C[V n-λ ] is spanned by some P CC k (x ) graph with k ≤ k and x ≡ 2 mod 3.

Figure 3 :

 3 Figure 3: The urchins W (3, 3) and W (3, 5)

A traceable graph is a graph that has a Hamiltonian path.
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that any urchin W (k, k) is R-AP, and thus that the following holds regarding Question 10.

Theorem 12. Regarding Question 10, we have c ≤ 2 3 .

We prove that an urchin W (k, k ) is R-AP for some values of k and k .

Lemma 13. The urchin

Proof. We introduce some terminology to deal with the vertices of any urchin 

For this purpose, we show, for every value of λ ∈ {1, ..., n 2 }, that V (W ) can be partitioned into two parts V λ and V n-λ inducing R-AP graphs on λ and n -λ vertices, respectively.

We first deal with the easy cases, i.e. λ ∈ {1, 2, 3}. For λ = 1, consider V λ = {u 1 } so that the two induced subgraphs are K 1 and W (k -1, k + 1). Since k ≥ k -2, this subgraph is R-AP by the induction hypothesis. For λ = 2, let V λ = {u 1 , v 1 }. The two induced subgraphs then are K 2 and W (k -1, k ), which is R-AP for the same reason as the previous case. Now, for λ = 3, choose V λ = {u 1 , v 1 , w 1 }. The two induced subgraphs then are a path, and the urchin W (k -1, k -1) which is R-AP, again by the induction hypothesis.

We now deal with the remaining values of λ, i.e. λ ≥ 4. The part V λ is obtained by choosing two disjoint sets V λ and V λ , and then considering their union. On the one hand, in the case where λ ≡ 1 mod 3, let x = λ-4 3 . Clearly, x is an integer. First, let

The two induced subgraphs then are a path or W (x + 2, x), and W (k -(x + 2), k -(x -2)), which are R-AP by the induction hypothesis since k ≥ k -2.

On the other hand, i.e. λ ≡ 1 mod 3, let x = λ 3 and y ≡ λ mod 3 with y ∈ {0, 2}. Then, let V λ = x i=1 {u i , v i , w i }. The strategy for choosing V λ depends on whether y = 0 or y = 2.

• y = 0. Choose V λ = ∅. In this situation, the two induced subgraphs are W (x, x) and W (k -x, k -x) which are R-AP by the induction hypothesis since k ≥ k -2.

• y = 2. Let V λ = {v x+1 , u x+1 }. The two induced subgraphs then are W (x + 1, x) and W (k -(x + 1), k -x), which are R-AP according to the induction hypothesis.