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Abstract

A connected graph G with order n is said to be recursively arbitrarily par-
titionable (R-AP for short) if either it is isomorphic to K1, or for every se-
quence (τ1, ..., τk) of positive integers summing up to n there exists a partition
(V1, ..., Vk) of V (G) such that each Vi induces a connected R-AP subgraph of G
on τi vertices. Since previous investigations, it is believed that a R-AP graph
should be ”almost traceable” somehow. We show that there does not exist a
constant c such that every R-AP graph with order n must contain an elementary
path on at least n− c vertices for every n.
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1. Introduction

Let n be a positive integer. A n-graph is a graph whose order, that is, its
number of vertices, is n. We say that a connected n-graph G is recursively
arbitrarily partitionable (R-AP for short) iff one of the following two conditions
holds.

• The graph G is an isolated vertex.

• For every sequence (τ1, ..., τk) of positive integers performing a partition
of n, there exists a partition (V1, ..., Vk) of V (G) such that G[Vi] is a
connected R-AP subgraph of G on τi vertices for all i ∈ {1, ..., k}.

The property of being R-AP was introduced in [5] as a strengthened version
of the property of being arbitrarily partitionable. The latter property was itself
introduced to deal with a problem of resource sharing between an arbitrary
number of users (see [1, 2, 4, 7] for further details).

R-AP graphs have been mainly studied in the context of some simple classes
of graphs. In particular, let us mention some works on trees [5], a class of
unicyclic 1-connected graphs called suns [6], and a class of 2-connected graphs
called balloons [3, 5]. Despite these efforts, we still do not know much about R-
AP graphs though. However, all the previously mentioned investigations suggest
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that the property of being R-AP is even closer to traceability1 than is the one
of being arbitrarily partitionable.

In particular, it is known that a R-AP tree or sun with order n has its
longest elementary path passing through at least n− 2 of its vertices for every
n. Additionally, for every n, all known R-AP balloons with order n have their
longest elementary path of order at least n − 4. Regarding these observations,
one could naively think that there should exist some small constant c such that
the order of the longest elementary path of a R-AP n-graph is at least n − c
vertices for every n.

In this work, we show that such a constant does not exist by exhibiting a
class C of R-AP graphs such that for every c ≥ 1, there exists, for some n, a
n-graph in C whose longest elementary path has order exactly n− c.

2. Definitions and preliminary results

One can easily observe that paths are all R-AP. Since the property of being
R-AP is closed under edge-addition, the next result follows naturally.

Remark 1. Every traceable graph is R-AP.

Determining whether a n-graph is R-AP is laborious since, according to the
original definition, one has to consider every partition of n. Thus, we usually
prefer to check the following equivalent condition which derives from the fact
that a R-AP graph is partitionable at will.

Remark 2 ([5]). A connected n-graph G is R-AP iff for every λ ∈ {1, ..., bn2 c}
there exists a partition (Vλ, Vn−λ) of V (G) such that G[Vλ] and G[Vn−λ] induce
connected R-AP subgraphs of G on λ and n− λ vertices, respectively.

We finally introduce the class of caterpillar graphs.

Definition 1. Let a, b ≥ 2 be two positive integers. The caterpillar Cat(a, b)
is the tree obtained by linking one root vertex to one endvertex of each of two
disjoint paths with order a− 1 and b− 1, respectively2.

Two examples of caterpillars are given in Figure 1. R-AP caterpillars were
fully characterized in [5].

Figure 1: The caterpillars Cat(2, 3) and Cat(3, 3)

Theorem 1 ([5]). A caterpillar Cat(a, b) is R-AP iff a and b take values in
Table 1.

1A traceable graph is a graph having a Hamiltonian path.
2Notice that a caterpillar Cat(a, b) has order a+ b.
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a b

2, 4 ≡ 1 mod 2

3 ≡ 1, 2 mod 3

5 6, 7, 9, 11, 14, 19

6 7

7 8, 9, 11, 13, 15

Table 1: Values a and b (a ≤ b) such that Cat(a, b) is R-AP

3. Main result

In this article, we deal with the structure of connected cycles graphs.

Definition 2. Let k ≥ 1 and x, y ≥ 0 be three positive integers. The connected
cycles graph CC(k, x, y) is the graph with the following vertices.

• Let u1...ux and v1...vy be paths with order x and y, respectively;

• For every i ∈ {1, ..., k}, let aibieidiciai be a cycle with length 5;

• For every i ∈ {1, ..., k − 1}, let wi,i+1 be a vertex.

These vertices are linked in CC(k, x, y) in the following way: uxa1, vyek ∈
E(CC(k, x, y)) and we have wi,i+1ei, wi,i+1ai+1 ∈ E(CC(k, x, y)) for every i ∈
{1, ..., k − 1}.

An example of connected cycles graph is depicted in Figure 2. Notice that
CC(k, 1, 1) has its longest elementary path of order |V (CC(k, 1, 1))|−k. Hence,
our goal here is to prove that CC(k, 1, 1) is R-AP for every k ≥ 1. It will then
follow that for some n, there exists a R-AP n-graph whose longest elementary
path is arbitrarily smaller than n.

u1 u2 u3 a1

c1

a2

c2

w1,2

b1 b2

e1 e2 v1v2v3v4v5

d2d1

Figure 2: The connected cycles graph CC(2, 3, 5)

Before proving that CC(k, 1, 1) is R-AP for every k, we introduce another
graph structure we shall encounter while partitioning a connected cycles graph.
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Definition 3. Let k ≥ 1 and x ≥ 0 be two positive integers. The partial
connected cycles graph PCC(k, x) is the graph obtained by removing the vertex
ek from CC(k, x, 0).

We are now ready to prove our main result.

Theorem 2. The graph PCC(k, x) is R-AP for every k ≥ 1 and x ∈ {1, 3, 4, 6}.
The graph CC(k, x, y) is R-AP for every k ≥ 1 when one of the following two
conditions is met: x ∈ {1, 3, 4, 6} and y ≥ 1, or x = 2 and y 6≡ 2 mod 3.

Proof. The proof is by induction on k and uses the terminology introduced in
Definition 2. For each value of k, we prove that the result is true for all possible
values for both x and y. Recall that, according to Remark 2, a connected n-
graph G is R-AP iff for every λ ∈ {1, ..., bn2 c} we can partition V (G) into two
parts Vλ and Vn−λ inducing connected R-AP subgraphs of G with order λ and
n− λ, respectively.

Case 1: k = 1.
First, the graphs PCC(1, 1), PCC(1, 3), PCC(1, 4) and PCC(1, 6) are R-AP
since they are spanned by Cat(2, 3), Cat(3, 4), Cat(3, 5) and Cat(3, 7), respec-
tively. We now prove the base case for connected cycles graphs by induction on
y.

Case 1.a: k = 1 and y = 1.
Notice that CC(1, 1, 1), CC(1, 2, 1), CC(1, 3, 1), CC(1, 4, 1) and CC(1, 6, 1) are
R-AP since they are spanned by Cat(2, 5), Cat(3, 5), Cat(2, 7), Cat(3, 7) and
Cat(5, 7), respectively.

Case 1.b: k = 1 and arbitrary y.
Now, suppose that CC(1, 1, i), CC(1, 3, i), CC(1, 4, i) and CC(1, 6, i) are R-AP
for every i from 1 up to y − 1, and similarly for CC(1, 2, i) when i 6≡ 2 mod 3.
Let us next consider a graph C = CC(1, x, y) for some x ∈ {1, 3, 4, 6} and
λ ∈ {1, ..., bn2 c} where n = 5 + x+ y. We show how to partition V (C) into two
parts Vλ and Vn−λ satisfying the above conditions by giving a satisfying subset
Vλ (each time, it is assumed that Vn−λ = V (C)−Vλ). First, since n = 5+x+y,
x ≤ 6 and y ≥ 2, then λ cannot exceed y + 4. If λ ≤ y − 1, then we can
partition C into a path of size λ and CC(1, x, y − λ), which is R-AP by the
induction hypothesis, by considering Vλ = {v1, ..., vλ}. When λ = y, one can
partition C into a path with order λ and CC(1, x, 0), which is traceable, by
choosing Vλ in a similar way. For λ = y + 1, consider Vλ = {v1, ..., vy, e1} to
obtain a partition of C into a path and PCC(1, x). When λ = y + 2, consider
Vλ = {v1, ..., vy, e1, b1} to induce two paths. For λ = y + 3, one can obtain a
similar partition of C by considering Vλ = {v1, ..., vy, e1, d1, c1}. Finally, the
case λ = y + 4 may only happen when C is CC(1, 6, 2) or CC(1, 6, 3), but in
these cases C can be partitioned into a path and CC(1, 0, y) (which is traceable)
or a path and Cat(3, 4) by considering Vλ = {u1, ..., u6} or Vλ = {u1, ..., u6, a1},
respectively.

When considering a graph C = CC(1, 2, y), where y ≥ 3 and y 6≡ 2 mod 3,
then λ cannot exceed y + 2. For values λ ≤ y such that y − λ 6≡ 2 mod 3,
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one can partition C as above into a path and a connected cycles graph which is
R-AP by the induction hypothesis. When λ ≤ y and y−λ ≡ 2 mod 3, consider
as Vλ the first λ vertices of the ordering (u1, u2, a1, b1, c1, d1, e1, vy, ..., v1) of
V (C) to obtain a partition of C into either a path and the traceable graph
CC(1, 0, y), a path and Cat(2, 3), or a path and CC(1, 2, y′) with y′ ≡ 1 mod 2
which is R-AP by the induction hypothesis (when y ≡ 1 mod 3), or either a
path and CC(1, 1, y) which is R-AP, two paths, a path and the traceable graph
CC(1, 2, 0), or a path and some graph CC(1, 2, y′′), with y′′ ≡ 0 mod 3, which
is R-AP by the induction hypothesis (when y ≡ 0 mod 3). When λ = y + 1,
one can use the previous ordering of V (C) once again to deduce Vλ since y ≥ 3.
Finally, for λ = y + 2, one may consider Vλ = {v1, ..., vy, e1, b1} to obtain a
partition of C into two paths.

Case 2: arbitrary k.
Let us now suppose that the result is true for every i up to k−1, and let us prove
it for k. Consider first C = PCC(k, x) for consecutive values of x in (1, 3, 4, 6).
As we did before, to prove that C is R-AP we show that there exists a partition
of it satisfying our conditions for every possible value of λ. One may choose Vλ
as follows.

• If λ ≡ 1 mod 3, then one may consider, as Vλ, the first λ vertices of the
ordering (bk, dk, ck, ak, wk−1,k, ek−1, bk−1, dk−1, ck−1, ak−1, ..., w1,2, e1,
b1, d1, c1, a1, ux, ..., u1) of V (C). On the one hand, notice that C[Vλ] is
either a path or covered by a R-AP caterpillar or a partial connected cycles
graph PCC(k′, x′) with k′ ≤ k − 1 and x′ ∈ {1, 3, 4, 6}, which is R-AP
by the induction hypothesis. On the other hand, observe that C[Vn−λ] is
spanned by a connected cycles graph CC(k′′, x, y) for some k′′ ≤ k − 1
and y. The latter graph is R-AP according to the induction hypothesis.

• When λ ≡ 2 mod 3, one can obtain the same partitions of C from the
ordering (dk, ck, bk, ak, wk−1,k, ek−1, dk−1, ck−1, bk−1, ak−1, ..., w1,2, e1,
d1, c1, b1, a1, ux, ..., u1) of V (C).

• Otherwise, one has to consider as Vλ the first λ vertices of the ordering
(u1, ..., ux, a1, b1, c1, d1, e1, w1,2, ..., ak−1, bk−1, ck−1, dk−1, ek−1, wk−1,k,
ak, bk, ck, dk) of V (C) when x ∈ {1, 4}, the ordering (u1, ..., ux, a1, c1,
d1, b1, e1, w1,2, ..., ak−1, ck−1, dk−1, bk−1, ek−1, wk−1,k, ak, ck, dk, bk)
otherwise. The two induced subgraphs C[Vλ] and C[Vn−λ] are then R-AP.
Indeed, on the one hand, C[Vλ] is either isomorphic to a path or spanned
by a connected cycles graph CC(k′, x, y) for k′ ≤ k − 1 and some y. On
the other hand, the subgraph C[Vn−λ] is spanned by some PCC(k′′, x′)
graph with k′′ ≤ k and x′ ∈ {1, 3, 4, 6}.

To end up proving the claim, one has to show that CC(k, x, y) is R-AP for
every x ∈ {1, 3, 4, 6} and every y ≥ 1, and for every y 6≡ 2 mod 3 when x = 2.
This is done by induction on y once again.

First, let C = CC(k, x, y) where x is taken consecutively in (1, 3, 4, 6) and
consider consecutive values of y. For some λ ∈ {1, ..., y}, one can consider
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Vλ = {v1, ..., vλ} so that C is partitioned into a path and CC(k, x, y− λ) which
is R-AP according to the induction hypothesis on y (when λ ≤ y − 1) or k
(otherwise). When λ = y + 1, one has to choose Vλ = {v1, ..., vy, ek} so that C
is partitioned into a path and a partial connected cycles graph which is R-AP
by the induction hypothesis. For other values of λ, one may choose Vλ as done
previously.

• If λ ≡ 0 mod 3, one can consider, as Vλ, the λ first vertices from the
ordering (u1, ..., ux, a1, b1, c1, d1, e1, w1,2, ..., wk−1,k, ak, bk, ck, dk ek, vy, ...,
v1) of V (C) when x ∈ {1, 4}, from (u1, ..., ux, a1, c1, d1, b1, e1, w1,2, ...,
wk−1,k, ak, ck, dk, bk, ek, vy, ..., v1) otherwise. The two induced subgraphs
are then R-AP since they are traceable or isomorphic to connected cycles
graphs which are R-AP according to the induction hypotheses on k and
y.

• When λ 6≡ 0 mod 3 and λ− (y+1) ≡ 1 mod 3, then one may pick up, as
Vλ, the λ first vertices from the ordering (v1, ..., vy, ek, bk, dk, ck, ak, wk−1,k
..., e1, b1, d1, c1, a1, ux, ..., u1) of V (C). This choice of Vλ makes, on the
one hand, C[Vλ] being spanned by either a path or CC(k′, x′, y) where
k′ ≤ k − 1 and x′ are such that the conditions of our claim are met and
so that this graph is R-AP (in particular, we cannot simultaneously have
x′ = 2 and y ≡ 2 mod 3). On the other hand, C[Vn−λ] is spanned by
some graph CC(k′′, x, y′) for k′′ ≤ k − 1 and some y′ and thus is R-AP
according to the induction hypothesis.

• Otherwise, if λ 6≡ 0 mod 3 and λ− (y+ 1) ≡ 2 mod 3, then some similar
partitions of C may be obtained from the ordering (v1, ..., vy, ek, dk, ck,
bk, ak, wk−1,k ..., w1,2, e1, d1, c1, b1, a1, ux, ..., u1) of V (C).

Finally, partitions of C = CC(k, 2, y), for consecutive values of y with y 6≡ 2
mod 3, may be obtained in a similar way using the following four orderings of
V (C).

1. (v1, ..., vy, ek, dk, ck, bk, ak, wk−1,k, ..., w1,2, e1, d1, c1, b1, a1, u2, u1)
when λ, y ≡ 0 mod 3.

2. (v1, ..., vy, ek, bk, dk, ck, ak, wk−1,k, ...w1,2, e1, b1, d1, c1, a1, u2, u1) when
λ ≡ 0 mod 3 and y ≡ 1 mod 3.

3. (u1, u2, a1, b1, c1, d1, e1, w1,2, ..., wk−1,k, ak, bk, ck, dk, ek, vy, ..., v1)
when λ ≡ 1 mod 3.

4. (u1, u2, a1, c1, d1 , b1, e1, w1,2, ..., wk−1,k, ak, ck, dk, bk, ek, vy, ..., v1)
when λ ≡ 2 mod 3.

In each of these cases, the partition (Vλ, Vn−λ) of V (C) induces either trace-
able subgraphs of C, or subgraphs of C which are R-AP according to our in-
duction hypotheses.

From Theorem 2, we deduce the following.
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Corollary 1. There does not exist a constant c such that, for every n, a R-AP
n-graph has its longest elementary path of order at least n− c.

Indeed, recall that, for every c, the connected cycles graph CC(c + 1, 1, 1)
is R-AP according to Theorem 2 and has its longest elementary path passing
through n− (c+ 1) of its vertices.

4. Conclusions

Observe that any graph CC(k, x, y) has order n = x + y + 6k − 1 while
its longest elementary path passes through exactly n − k of its vertices. Thus,
such a graph remains almost traceable although its traceability degree cannot
be characterized using some n−c bound. Hence, even if the order of the longest
elementary path of a R-AP n-graph is not constantly lower than n, it remains
that there seems to be some strong relationship between these two parameters
though. In particular, it would be next interesting to catch this relationship in
the following way.

Question 1. What is the greatest c such that every R-AP n-graph has its
longest elementary path of order at least c · n for every n?

We considered the question for all classes of graphs which have been studied
so far regarding the property of being R-AP (that is, trees [5], suns [6] and
balloons [3]). Table 2 sums up the upper bounds on c which can be deduced
from each of these classes (the reader is referred to the corresponding articles
for further information).

Thanks to the balloon graph B(1, 2, 2, 3, 4), we get that 11/14 is the best
upper bound on c known so far regarding Question 1.
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