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ON THE TEICHMÜLLER GEODESIC GENERATED BY THE L-SHAPED

TRANSLATION SURFACE TILED BY THREE SQUARES

OLIVIER RODRIGUEZ

ABSTRACT. We study the one parameter family of genus 2 Riemann surfaces defined by

the orbit of the L-shaped translation surface tiled by three squares under the Teichmüller

geodesic flow. These surfaces are real algebraic curves with three real components. We

are interested in describing these surfaces by their period matrices. We show that the

only Riemann surface in that family admitting a non-hyperelliptic automorphism comes

from the 3-square-tiled translation surface itself. This makes the computation of an exact

expression for period matrices of other Riemann surfaces in that family by the classical

method impossible. We nevertheless give the solution to the Schottky problem for that

family: we exhibit explicit necessary and sufficient conditions for a Riemann matrix to be

a period matrix of a Riemann surface in the family, involving the vanishing of a genus 3

theta characteristic on a family of double covers.
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1. INTRODUCTION

A translation surface can be defined as an assembling of Euclidean polygons with ap-

propriate identifications of sides or, in an equivalent manner, as a pair (X ,ω) where X is

a compact Riemann surface and ω a holomorphic 1-form on X . Such a pair can be con-

sidered as an element of a rank g vector bundle ΩTg → Tg over the Teichmüller space Tg
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2 O. RODRIGUEZ

of genus g Riemann surfaces. The moduli space of holomorphic 1-forms with a unique

(double) zero on a genus 2 Riemann surface is denoted by H (2).
There exists a natural action of the group GL+

2 (R) on translation surfaces. The pro-

jections of the SL2(R)-orbits into the Riemann moduli space Mg are called Teichmüller

disks. It may happen that the stabilizer of a translation surface under the SL2(R)-action is

a lattice. Passing to the quotient, it gives rise to a Teichmüller curve, that is, an algebraic

curve in the Riemann moduli space, isometrically immersed for the Teichmüller metric.

To date very few is known about how one passes explicitly from one description of a

complex structure to another under the GL+
2 (R) action. For example, how does the period

matrix of a Riemann surface vary under this action? What about the equations defining the

corresponding algebraic curve?

Note that after this paper was written, M. Möller wrote an important result on a closely

related family of examples, see [Möl11, Theorem 0.1].

In this paper we study the family of Riemann surfaces defined by the SL2(R)-orbit of

the L-shaped translation surface tiled by three squares (see Figure 1).

s

s s s

ss s

s

FIGURE 1. The L-shaped translation surface tiled by three squares

According to [McM05, Example in §6], this family is the Teichmüller curve of dis-

criminant 9 and, following McMullen’s notation, will be denoted by W9 (comprehensive

overviews on Teichmüller curves can be found e.g. in [McM03] and [Loc05]). We will

sometimes denote by W M
9 the Teichmüller geodesic generated by the 3-square-tiled sur-

face, that is, its orbit under the diagonal subgroup 1 {( t 0
0 t−1 )}t>0. The 3-square-tiled sur-

face admits an order 4 automorphism; period matrices of Riemann surfaces defined by

such translation surfaces in H (2) were computed by R. Silhol in [Sil06, §3]. We will first

show the following.

Proposition 1. The only Riemann surface in the family W M
9 admitting a non-hyperelliptic

automorphism is the one defined by the L-shaped translation surface tiled by three squares.

As automorphisms provide precious informations in order to compute the period matrix

of a Riemann surface, that prevents to compute an exact expression for period matrices

of these surfaces by the classical method described, for instance, in [BL04, §11.7] (see

Remark 4 below). Nevertheless, we consider a certain family of double covers of those

surfaces (whose construction will be described in detail) admitting many automorphisms,

for which we obtain the following characterization of their period matrices.

Theorem A. Let (X ,ω) be a translation surface in H (2), then X is in the family W9 if

and only if a certain explicit double cover X̂ admits a period matrix Ẑ of the form

Ẑ =




z1
1
2
z1 z13

1
2
z1

1
2
+ 3

4
z1 − 1

2
z13

1
2
z1

z13
1
2
z1 z1




1Note that the usual parametrization of a Teichmüller geodesic is ( et 0
0 e−t ) for t ∈ R.
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for which ϑ
[

1 1 1
1 0 1

]
(Ẑ) = 0.

Recall that for all m,n ∈ (Z/2Z )g, the theta characteristic ϑ
[

m
n

]
is defined by

ϑ

[
m

n

]
(Z) = ∑

k∈Zg

expπ i

[ t(
k+

1

2
m

)
Z

(
k+

1

2
m

)
+

t(
k+

1

2
m

)
n

]

for all Z ∈ Mg(C) such that tZ = Z and ℑm(Z)> 0.

Riemann surfaces in the Teichmüller geodesic generated by the 3-square-tiled surface

correspond to real algebraic curves defined by polynomials with real roots. The situation

being more rigid in this case, this allows us to establish a form for their period matrices

and deduce necessary and sufficient conditions for a Riemann surface to be in the family

W M
9 .

Theorem B. Let (X1,ω1) be the L-shaped translation surface tiled by three squares. For

any real number t ≥ 1, let (Xt ,ωt) =
(

1 0
0 t

)
· (X1,ω1). Then Zt is a period matrix of Xt

associated to a certain explicit homology basis if, and only if there exists a unique real

number yt > 2t/3 such that

Zt =

(
1+ i(2yt − t) iyt

iyt i(yt/2+ t)

)

and satisfying

(1) ∑
(k1,k2,k3)∈Z3

expπ

[

(
t

2
− yt +

1

2
i

)
3

∑
l=1

k2
ℓ +(yt − t + i) ∑

1≤ℓ<m≤3

kℓkm +

(
3

2
i− t

2

)
3

∑
ℓ=1

kℓ

]
= 0.

The construction of the homology basis will be described in detail.

Acknowledgements. I would like to express my gratitude toward my Ph.D. advisor Robert

Silhol for helpful conjectures as well as fulfilling discussions. I also wish to thank Em-

manuel Royer, Pascal Hubert and Guillaume Bulteau for various advices and useful dis-

cussions and comments.

2. PRELIMINARIES

2.1. Translation surfaces. A translation surface is a finite collection of Euclidean poly-

gons in the complex plane such that

• the boundary of each polygon is oriented counterclockwise;

• for every side of a polygon, there exists another side (possibly of the same poly-

gon) parallel and of the same length: both sides are then identified by translation.

Such a collection of polygons defines a topological surface admitting a translation struc-

ture, that is, away from a finite set of points, a maximal atlas whose transition functions

are translations.

As a non-trivial example consider a compact Riemann surface equipped with a holo-

morphic 1-form. Integrating the form yields, away from its zeros, an atlas with polygonal

charts and transition functions that are translations. Conversely, a translation structure de-

fines a complex structure since translations are biholomorphic. Pulling back the 1-form dz

on the complex plane by the charts gives a holomorphic 1-form on the surface.
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As a consequence, we can define in an equivalent manner a translation surface as a pair

(X ,ω) where X is a compact Riemann surface and ω a holomorphic 1-form on X . At a

regular point, in the local coordinate defined by integrating the form, we have ω = dz. At

an order k zero of ω , we have

ω = zkdz = d

(
zk+1

k+ 1

)

so that the Riemann surface X is locally a (k+ 1)-fold cover over the complex plane. This

means that an order k zero corresponds to a cone-type singularity of angle 2π(k+ 1) for

the locally Euclidean metric |ω |. More details can be found in [Mas06, §1] concerning

the equivalence of these definitions. See also [Zor06] for a general survey on translation

surfaces.

We will use the notation (X ,ω) = (P/∼ ,dz) where the quotient P/∼ designates an

assembling of Euclidean polygons with appropriate identifications of sides by translation

and dz is the holomorphic 1-form on C.

Example 1 (Translation surface tiled by three squares). Consider the L-shaped polygon ob-

tained by assembling three copies of the Euclidean unit square equipped with the glueings

specified in Figure 1. The black dots are identified to the cone-type singularity of angle 6π ,

hence defining a translation surface (X ,ω) in H (2). Rotation by angle π/2 around the

center of the bottom left square induces an order 4 automorphism on the Riemann surface

X : the corresponding algebraic curve then admits an equation of the form

y2 = x(x2 − 1)(x− a)(x− 1/a)

and the order 4 automorphism is

(x,y) 7→
(

1

x
,

iy

x3

)
.

Following [Sil06, §3&4], in this example we have a= 7+4
√

3 and the holomorphic 1-form

ω is

ω = µ

(
dx

y
− xdx

y

)

with µ ∈ C∗.

Remark 1. From a more general point of view, translation surfaces are a specific case of

half-translation surfaces, for which the transition functions are of the form z 7→ ±z+ c for

c ∈ C. Such a surface can be defined as a pair (X ,q) where q is a holomorphic quadratic

differential on X . If (X ,ω) is a translation surface, then the quadratic differential defining

the complex structure is ω2.

2.2. GL+
2 (R)-action. There exists a natural action of the linear group on translation struc-

tures. An element M = (a b
c d ) ∈ GL+

2 (R) acts on z ∈ C by

M · z = ax+ by+ i(cx+ dy).

This is just the affine action on the complex plane identified to R2. When a translation

surface is defined by a collection of polygons (P/∼ ,dz), then the group GL+
2 (R) operates

naturally on the polygons, giving a new translation surface. The action is well defined since

linear applications transform parallelograms into parallelograms.

On a form (X ,ω), the action of M is defined as follows: let

η := aℜe(ω)+ bℑm(ω)+ i
(
cℜe(ω)+ dℑm(ω)

)
,
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then η is a harmonic form on X . There exists a unique complex structure on the underlying

topological surface for which ω is holomorphic, so that we obtain a new Riemann surface

Y and we set

M · (X ,ω) = (Y,η).

Remark 2. For every translation surface (X ,ω), the complex structure defined by (X ,ω)
is stable under the action of the subgroup R∗

+ · SO2(R), since this action corresponds to

multiplying ω by a non zero scalar complex.

Teichmüller geodesics. Let t be a real number such that t > 1 and consider the R-linear

application Mt : C→C defined by

z 7→ 1

2
(1+ t)z+

1

2
(1− t)z̄.

Let (X ,ω) be a translation surface and (Xt ,ωt) = Mt · (X ,ω). The change of complex

structure yields a natural application ft : X → Xt verifying d ft = Mt and having constant

complex dilatation:

∀P ∈ X , µ ft (P) :=
∂̄ ft(P)

∂ ft (P)
=

1− t

1+ t
.

The maximal dilatation is then

K( ft) := sup
P∈X

1+ |µ ft(P)|
1−|µ ft(P)|

= t.

The homeomorphism ft : X → Xt is then a Teichmüller extremal map. We call the Riemann

surface Xt the Teichmüller deformation of X of dilatation t with respect to ω and the family

{Xt}t≥1 a Teichmüller geodesic (see e.g. [Abi80, chap. 1] for more details).

Remark 3. Let (X ,ω) be a L-shaped translation surface of the form indicated in Figure 2.

Then X admits an order 4 automorphism induced by rotation of angle π/2 around 0. Let t

✻

❄
✲✛

λ

λ

❄

s

s

s

s s

s s s

✲
✛✻

β2

β1

α1

α2

0

(X ,ω)

✻

❄

✲✛

1

1

FIGURE 2. An L-shaped translation surface with an order 4 automorphism

be a real number such that t > 0, we define the translation surfaces

(Xgt ,ωgt ) = ( t 0
0 t−1 ) · (X ,ω),

(Xht
,ωht

) = ( t 0
0 1) · (X ,ω),

and (Xvt ,ωvt ) = (1 0
0 t ) · (X ,ω).

Then by Remark 2 it is readily checked that

(1) the Riemann surfaces Xht
and Xvt are isomorphic;

(2) Xgt and Xh
t2

(resp. Xg
t−1

and Xv
t2

) are isomorphic;
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(3) Xht
and Xh

t−1
(resp. Xvt and Xv

t−1
) are isomorphic.

2.3. Period matrix. Let X be a compact Riemann surface of genus g and let B=(α1, . . . ,αg,β1, . . . ,βg)
be a symplectic basis for H1(X ,Z), that is, such that the matrix of the intersection product

is (
0 −Ig

Ig 0

)

Let (ω1, . . . ,ωg) be a basis of holomorphic 1-forms on X , we define

A =

(∫

α j

ωk

)

j,k

and B =

(∫

β j

ωk

)

j,k

.

Then Z = AB−1 is the period matrix associated to B. Note that Z does not depend on the

choice of the basis (ω1, . . . ,ωg).

It is well known that Z verifies the Riemann bilinear relations, that is, Z is symmetric

and ℑm(Z) is positive definite. The Siegel upper half-space is defined by

Sg = {Z ∈ Mg : tZ = Z and ℑm(Z)> 0}.

Let α,β ,γ,δ ∈ Mg(R), an element M = (α β
γ δ

) of the symplectic group

Sp2g(R) =

{
M ∈ M2g(R) : tM

(
0 −Ig

Ig 0

)
M =

(
0 −Ig

Ig 0

)}

acts on an element Z ∈Sg as follows:

M(Z) = (αZ +β )(γZ+ δ )−1.

If B′ is another symplectic basis for H1(X ,Z) and Z′ the period matrix associated to

B′, let M be the base change matrix from B′ to B; then M is a symplectic matrix with

integer entries and Z and Z′ are related by

Z′ = tM(Z).

Recall that if M is symplectic, then tM is also symplectic.

Moreover, by the Torelli theorem, the period matrix characterizes the complex structure:

if X and X ′ are compact Riemann surfaces with period matrices Z and Z′ respectively, then

X and X ′ are isomorphic if, and only if there exists M ∈ Sp2g(Z) such that M(Z) = Z′ (see

[BL04, Theorem 11.1.7]).

Example 2 (Translation surface with an order 4 automorphism). Let (X ,ω) be the L-shaped

translation surface defined in Figure 2. The rotation by angle π/2 around 0 induces an order

4 automorphism on the Riemann surface X . Then following [Sil06, §3],

Z = i

(
2λ 2−2λ+1

2λ−1

−2λ (λ−1)
2λ−1

−2λ (λ−1)
2λ−1

2λ 2−2λ+1
2λ−1

)

is the period matrix of X associated to {α1,α2,β1,β2}.

Remark 4. The main tool in Silhol’s calculation is the existence of a non-hyperelliptic

involution whose action permutes ω with another linearly independent holomorphic 1-form

that can be explicitly described (enabling to compute the whole period matrix, following

[BL04, §11.7] for example). However, on the one hand, generic algebraic curves have no

non-trivial automorphisms, and on the other hand it is not known in general how to provide

a description of another holomorphic 1-form.
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Hyperelliptic Riemann surfaces. Here we describe a construction of a period matrix of a

hyperelliptic Riemann surface. If X is hyperelliptic, then the associated algebraic curve is

defined by an equation of the form

y2 =
m

∏
j=1

(x− x j)

where the x j are distinct complex numbers and m = 2g+ 1 or 2g+ 2. If m = 2g+ 1, then

let x2g+2 = ∞

Let ε1 be a simple arc in P1(C) joining x1 to x2 and not passing through any of the

other x j for j ≥ 3. Let ε2 a second simple arc joining x2 to x3 and not passing through x1

nor any of the other x j’s for j ≥ 4, and such that ε2 only intersects ε1 in x2. In the same

way, we construct simple arcs ε3, . . . ,ε2g+1,ε2g+2 joining respectively x3 to x4, . . . , x2g+1

to x2g+2 and x2g+2 to x1, so that ε j only intersects ε j+1 in one point ( j mod 2g+ 2). Let

π : X →P1(C) denote the projection (x,y) 7→ x and, for j = 1, . . . ,2g+2, let δ j := π−1(ε j):
this is a simple closed curve in X .

We choose on each ε j a holomorphic determination of
√

P so that the induced orien-

tation on δ j is such that (δ j · δ j+1) = 1 ( j mod 2g+ 2), all other intersection numbers

being zero. With this convention, up to homology, we thus have ∑
g
j=1 δ2 j = −δ2g+2 and

∑
g
j=1 δ2 j−1 =−δ2g+1 (this is a readily checked by a topological sketch of the situation, the

reader may also refer to [FK92, §VII.1.1] where this construction is described).

For j = 1, . . . ,g, we define

α j =−
j−1

∑
ℓ=1

δ2ℓ− δ2g+2,

β j = δ2 j−1.

It is readily checked that B := (α1, . . . ,αg,β1, . . . ,βg) is a symplectic basis for H1(X ,Z).
Moreover, as X is a hyperelliptic Riemann surface,

dx

y
,

xdx

y
, . . . ,

xg−1dx

y

is a basis of holomorphic 1-form on X (see [FK92, §III.7.5, Corollary 1]). Let

A =

(
−

j−1

∑
ℓ=1

∫

ε2ℓ

xk−1dx√
P(x)

−
∫

ε2g+2

xk−1dx√
P(x)

)

j,k

B =

(∫

ε2 j−1

xk−1dx√
P(x)

)

j,k

then Z = AB−1 is the period matrix associated to B.

2.4. Real algebraic curves.

Definitions. F. Klein observed that a complex algebraic curve X is defined by real poly-

nomial equations if, and only if X admits an anti-holomorphic involution σ (see [Kle63,

§21]), called a real structure. Moreover, these polynomials can always be chosen so that σ
is induced by complex conjugation. A real algebraic curve is a couple (X ,σ). When it is

clear from the context, we omit σ and simply say that X is a real curve, in particular when

X is defined by a real polynomial equation and σ is the complex conjugation.
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If X is of genus g, then the connected components of the fixed point set of σ are said to

be real. We say that X is an M-curve if it admits the maximum number of real components,

which is g+ 1 (see [GH81, Proposition 3.1]).

Real hyperelliptic M-curves. Suppose that X is a hyperelliptic curve defined by a poly-

nomial equation y2 = P(x) with degP = 2g+ 1 or 2g+ 2, and such that σ is induced by

complex conjugation. Then (X ,σ) is a real M-curve if, and only if all roots of P are real.

Composing σ with the hyperelliptic involution hX yields a second real structure denoted

by −σ . The connected components of the fixed point set of −σ are said to be pure imagi-

nary and the Weierstrass points of X are exactly the intersection points of the real and pure

imaginary components.

Example 3 (M-curve defined by a translation surface). Let (X ,ω) = (P/∼ ,dz) be a

translation surface in H (2) obtained from four mirror images of a L-shaped polygon (see

Figure 3). We can always assume that the polygon P admits 0 as a center of symmetry

and is stable by complex conjugation. The latter defines an anti-holomorphic involution

σ on X that fixes pointwise the three simple closed curves coming from the horizontal

axis of symmetry of P and its horizontal sides: we thus obtain a real M-curve (X ,σ).
The Weierstrass points are represented by black dots (identified to the double zero of ω)

and small circles in Figure 3. Cutting and reassembling the cross-shaped polygon in the

left part of Figure 3 gives the L-shaped polygon in the right part of Figure 3, where the

segments corresponding to the simple closed curves fixed by σ are the horizontal and

vertical segments that join the black dots and those passing through the circles.

0

❞ ❞ ❞

❞

❞

❞

❞

❞

❞

❞

❞❞ ❞

❞

❞

❞

❞ ❞❞

❞

s s

ss

s

s

s s

ss

s s

0

FIGURE 3. A L-shaped translation surface defines a real M-curve

Remark 5. In what follows, if (X ,σ) is a real M-curve defined by a translation surface

(X ,ω), then the real structure σ will always be the one defined by complex conjugation as

in Example 3. If (X1,ω1) denotes the L-shaped translation surface tiled by three squares,

then it corresponds to the unique, so-called splitting prototype in [McM05, §3] and by

[McM05, §6], this translation surface generates the whole Teichmüller curve W9. The

above convention on the definition of the real structure fixes the orientation of the L-shaped

polygon, then by Remark 3 the set of M-curves in the family W9 thus coincides with the

Teichmüller deformations of X1 with respect to ω1.
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Automorphisms of genus 2 real M-curves. If (X ,σ) is a real algebraic curve, we denote

by Aut(X ,σ) the group of its real automorphisms, that is, biholomorphic applications

φ : X → X such that φ ◦σ = σ ◦ φ . The group AutX is sometimes called the group of

complex automorphisms of (X ,σ).
F.-J. Cirre computed the groups of real and complex automorphisms of a real M-curve

as stated below, where Dn denote the dihedral group of order 2n.

Theorem 2 (Cirre). Let a, b, c be three real numbers such that 0 < a < b < c < 1 and let

(X ,σ) be the real M-curve defined by the equation

y2 = P(x) = x(x− a)(x− b)(x− c)(x− 1)

Then Aut(X ,σ) = AutX if, and only if a 6= b(c − 1)/(b − 1). Moreover, we have the

following two cases:

(1) Suppose that Aut(X ,σ) = AutX:

(a) if we have a = bc or a = (b− c)/(c− 1) or a = 1+ c− c/b, then AutX ≃ D2;

(b) if we have bc = a = (b− c)/(c− 1) or bc = a = 1+ c− c/b or (b− c)/(c− 1) =
a = 1+ c− c/b, then AutX ≃ D6;

(c) else, AutX ≃ Z/2Z.

(2) Suppose that Aut(X ,σ) 6= AutX:

(a) if we have a = bc or a = (b− c)/(c− 1) or a = 1+ c− c/b, then Aut(X ,σ)≃ D2

and AutX ≃ D4;

(b) if we have bc = a = (b− c)/(c− 1) or bc = a = 1+ c− c/b or (b− c)/(c− 1) =
a = 1+ c− c/b, then

(a,b,c) =

(
1

3
,

1

2
,

2

3

)
,

Aut(X ,σ) ≃ D6 and AutX is isomorphic to the group G24 of order 24 admitting

the following presentation:

(2) G24 = 〈r,s|r4,s6,(rs)2,(r−1s)2〉;
(c) else, Aut(X ,σ)≃ Z/2Z and AutX ≃ D2.

The details of the proof can be found in [Cir01, Theorem 4.2] and [Cir03, Proposi-

tion 3.5].

This classification can also be translated in terms of the period matrices and of the

hyperbolic structure of the algebraic curve. See [Rod10, chap. 3] for more details, see also

[Nat78].

3. REAL M-CURVES WITH AUTOMORPHISMS IN W9

3.1. Description of the family W9. The SL2(R)-orbit of the L-shaped translation surface

tiled by three squares is denoted by ΩW9. It projects into the Riemann moduli space M2

as an irreducible algebraic curve, which is denoted by W9. According to [HL05, Remark,

p. 3], the latter is the modular curve defined by the quotient Γ\H where Γ is the level 2

congruence subgroup generated by
(

1 2

0 1

)
and

(
0 −1

1 0

)
.

In [Möl05, §4], M. Möller provides equations for the family W9. R. Silhol gives in [Sil07,

Theorem A] a description of the algebraic curves in this family and shows that a translation
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surface (X ,ω) is an element of ΩW9 if, and only if the curve X admits an equation of the

form

y2 = Pu(x) = x(x− 1)

(
x3 + ux2 − 8

3
ux+

16

9
u

)
(3)

with ω = λ
xdx

y

for u ∈ C\ {−9,0} and for some constant λ ∈ C∗. The degree 3 polynomial

x3 + ux2 − 8

3
ux+

16

9
u

admits exactly three real distinct roots if, and only if its discriminant is positive, that is, if,

and only if u is a real number such that u <−9. Thus, a genus 2 curve X = Xu defined by

an equation of the form (3) is a real M-curve if, and only if u <−9.

The following fact was observed in [Sil07] but not stated.

Proposition 3. There exists a bijection between the set of real automorphism classes of

real M-curves in W9 and the interval [−18;−9[.

Proof. In [Sil07, Proposition 4.1], the author considers a certain family whose image in

moduli space is shown to be the quotient of P1(C) \ {−9,0,∞} under u 7→ −9u/(u+ 9)
(see also [Sil07, Remarks 4.11]). In particular, there is a bijection between this image and

P1(C) minus two points and a cone point of order 2, namely the one corresponding to

u =−18. Is is then shown in [Sil07, Lemma 5.4] that the aforementioned family is W9.

If we now consider the case of real M-curves, then by the above discussions there is a

bijection between W M
9 and [−18;−9[ on the one hand, and between W M

9 and ]−∞;−18]
on the other hand. Furthermore, it results from [Sil07, Proposition 4.1 and Lemma 5.4]

that if Xu is a real M-curve defined by an equation y2 = Pu(x) as in Equation (3), then the

transformation x 7→ x/(x− 1) induces a (complex, but non-real) isomorphism between Xu

and Xu′ with u′ =−9u/(u+ 9). �

Defining

f3 : x 7→ x+
√

3

−
√

3x+ 1
,

we note that the Möbius transformation f3 is of order 3 and fixes the points i and −i. The

orbits of 0 and ∞ under f3 are respectively

{
√

3,−
√

3,0} and {−
√

3/3,
√

3/3,∞}.
We consider a genus 2 algebraic curve defined by an equation of the form

y2 = Qs(x) = x(x+ 1)(x− s2)
(
x− f3(s)

2
)(

x− f3

(
f3(s)

)2
)
.

If we apply the transformation x 7→ x+ 1 to the roots of Qs(x), then a direct calculation

shows that this curve also admits an equation of the form (3) with

u =
−81(s2 + 1)3

(3s+
√

3)2(3s−
√

3)2
.

We note that the function

s 7→ g(s) =
−81(s2 + 1)3

(3s+
√

3)2(3s−
√

3)2

is even and invariant under f3. This leads to the following:
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Proposition 4. Let (X ,ω) be a translation surface in H (2). Then (X ,ω) is an element of

ΩW9 if, and only if the algebraic curve X admits an equation of the form

y2 = Qs(x) = x(x+ 1)(x− s2)
(

x− f3

(
f3(s)

)2
)(

x− f3(s)
2
)

(4)

with ω = λ

(
dx

y
+

xdx

y

)

with s ∈ C\ {−
√

3,−
√

3/3,−1,0,
√

3/3,
√

3,−i, i} and for some constant λ ∈ C∗.

Proof. According to [Sil07, Theorem A], a translation surface (X ,ω) in H (2) is an ele-

ment of ΩW9 if, and only if X admits an equation of the form y2 = Pu(x) as defined by (3)

with u ∈ C\ {−9,0} and ω admitting a double zero at 0.

The condition in the statement is already proven to be sufficient by the discussion above.

Conversely, let (X ,ω) be an element of ΩW9, then X is defined by an equation of the

form y2 = Pu(x) with u ∈ C \ {−9,0}. From the study of the function g we can take u =

g(s) for some s ∈C\{−
√

3,−
√

3/3,−1,0,
√

3/3,
√

3,−i, i}. Applying the transformation

x 7→ x−1 to the roots of the equation y2 = Pu(x) then leads to the announced form (4) of the

equation y2 = Qs(x). Moreover, up to a non-zero, complex scalar multiple, dx/y+ xdx/y

is the only holomorphic 1-form on X admitting a double zero at (−1,0). �

Noting that we have g(s)≤−9 for every s ∈R and that

∀s ∈]0;
√

3/3[, s2 < f3

(
f3(s)

)2
< f3(s)

2,

we obtain another description of this set.

Lemma 5. Let s be a real number such that 0 < s <
√

3/3, implying
√

3

3
<
∣∣ f3

(
f3(s)

)∣∣<
√

3 < | f3(s)|.

Let X be the real M-curve defined by the equation

y2 = Qs(x) = x(x+ 1)
(
x− a(s)

)(
x− b(s)

)(
x− c(s)

)
,

with a(s)= s2, b(s) = f3

(
f3(s)

)2
and c(s) = f3(s)

2. Then X is in the family W9. Conversely,

every real M-curve in the family W9 admits such a description.

As a consequence, we have the following:

Proposition 6. There exists a bijection between the set of real automorphism classes of

real M-curves in W9 and the interval ]0;
√

3/3[.

3.2. Automorphisms. The preceding discussion encourages to consider the curve defined

by an equation of the form (3) with u =−18, that is

y2 = Pu(x) = x(x− 1)(x− 8+ 4
√

3)(x− 2)(x− 8− 4
√

3).

This curve admits an order 4 automorphism induced by the Möbius transformation x 7→
x/(x− 1). Applying the transformation x 7→ x− 1 to the set of the roots of the polynomial

Pu, we then get the equation

y2 = x(x2 − 1)(x− a)(x− 1/a) with a = 7− 4
√

3.

By Example 1 this curve is defined by the 3-square-tiled translation surface. We note that

7− 4
√

3 = (2−
√

3)2 with 0 < 2−
√

3 <
√

3/3, and that

f3(2−
√

3)2 = 7+ 4
√

3 =
1

a
and f3

(
f3(2−

√
3)
)2

= 1,
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hence this curve is defined by an equation of the form (4) with s = 2−
√

3.

By Example 2, the Riemann surface defined by the 3-square-tiled translation surface

admits an order 4 automorphism induced by an affine transformation. In order to weaken

this condition, we could consider lower order automorphisms of the Riemann surface, for

example non-hyperelliptic holomorphic involutions. However, we observe that in genus 2

such automorphisms can not be induced by affine transformations:

Lemma 7. Let (X ,ω) be a translation surface in H (2) and ϕ be an order 2 automorphism

defined by an order 2 automorphism affine with respect to ω . Then ϕ is the hyperelliptic

involution hX .

Proof. Let ϕ be such an automorphism: since X is hyperelliptic, then following [FK92,

Theorem V.2.13], ϕ must satisfy one of the following:

(a) ϕ has no fixed point;

(b) ϕ only fixes non-Weierstrass points;

(c) ϕ is the hyperelliptic involution.

Now ϕ must fix the double zero of ω , which is necessarily a Weierstrass point, hence the

conclusion. �

We now prove Proposition 1 restated as follows.

Proposition 8. Let s be a real number such that 0 < s <
√

3/3 and let X be the real

M-curve defined by the equation

y2 = Qs(x) = x(x+ 1)(x− s2)
(

x− f3

(
f3(s)

)2
)(

x− f3(s)
2
)

Then AutX 6= 〈hX〉 if, and only if s = 2−
√

3.

Proof. Considering Theorem 2, it is sufficient to consider Möbius transformations that

could give an order 2 automorphism. By applying a suitable Möbius transformation to

the roots of Qs, we can easily adapt the conditions ensuring the existence of non-trivial

automorphisms stated in the theorem to equations of the form (4) with 0 < a(s) < b(s) <

c(s) for all s ∈]0;
√

3/3[. The possibilities are the following:

(a) the Möbius transformation

x 7→ c(s)− b(s)

b(s)− a(s)

x− a(s)

x− c(s)
,

maps (a,b,c) to (0,−1,∞) and induces a holomorphic involution on X if, and only if

we have

a(s) = b(s)− 1+
b(s)

c(s)
.

Calculations lead to
b(s)

c(s)
=− 16

√
3x(x2 + 1)

(x+
√

3)2(
√

3x+ 1)2

then to

b(s)− 1+
b(s)

c(s)
− a(s) =− (x2 + 1)(3x4 + 8

√
3x3 + 18x2+ 16

√
3x− 9)

(x+
√

3)2(
√

3x+ 1)2
.

The degree 4 polynomial in the numerator admits two real roots, namely −2−
√

3 and

2−
√

3, the latter being the only one in the interval ]0;
√

3/3[. According to the above

discussion at the beginning of this section, this curve has an order 4 automorphism;
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(b) the Möbius transformation

x 7→ a(s)
x+ 1

x− a(s)

induces an automorphism on X if, and only if

a(s) =
b(s)c(s)

1+ b(s)+ c(s)
.

The only real solutions lead to the singular curve of equation

y2 = x(x+ 1)(x−
√

3/3)(x+
√

3/3)

corresponding to s =
√

3/3;

(c) the Möbius transformation

x 7→ c(s)− x

x+ 1
induces an automorphism if, and only if

a(s) =
c(s)− b(s)

1+ b(s)
,

which gives the singular curve defined by the equation

y2 = x2(x+ 1)(x−
√

3)(x+
√

3)

corresponding to s = 0. Note that the Möbius transformation x 7→ 1/x induces an

automorphism between the two curves defined by s = 0 and s =
√

3/3;

(d) lastly, the curve X has a holomorphic involution induced by

x 7→ a(s)− b(s)

b(s)− c(s)

x− c(s)

x− a(s)

if, and only if

a(s) =
b(s)

1− b(s)+ c(s)
,

which also gives the solution s = 2−
√

3.

Calculations are tedious, but routine. �

4. PERIODS OF REAL M-CURVES IN W9

4.1. Theta characteristics.

Definitions and elementary properties. Let z ∈Cg and Z ∈Sg, the Riemann ϑ function is

defined by

(5) ϑ(z,Z) = ∑
k∈Zg

exp(π i tkZk+ 2π i tkz).

One shows that the above series defines a holomorphic function on Cg ×Sg (see [Mum83,

chap. II, Proposition 1.1]).

Let m,n ∈ 1
2
Zg, we define order 2 theta characteristics by

ϑ

[
2m

2n

]
(z,Z) = ∑

k∈Zg

exp
(
π i

t(k+m)Z(k+m)+ 2π i
t(k+m)(z+ n)

)

= exp
(
π i tmZm+ 2π i tm(z+ n)

)
ϑ(z+Zm+ n,Z),

which, by the above identity, are also holomorphic functions on Cg ×Sg.

The following proposition points out well known properties of the function z 7→ϑ
[

2m
2n

]
(z,Z).
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Proposition 9. Let Z ∈Sg, m,n ∈ 1
2
Zg and p,q ∈ Zg, then for every z ∈ Cg, the functions

ϑ
[

2m
2n

]
satisfy:

(6) ϑ

[
2m

2n

]
(z,Z) = exp

(
π i tpZp+ 2π i tp(z+ n)− 2π i tmq

)
ϑ

[
2m

2n

]
(z+Zp+ q,Z)

and

(7) ϑ

[
2m+ 2p

2n+ 2q

]
(z,Z) = exp(2π i tmq)ϑ

[
2m

2n

]
(z,Z).

One also has:

(8) ϑ

[
2m

2n

]
(−z,Z) = exp(4π i tmn)ϑ

[
2m

2n

]
(z,Z).

See for example [Mum83, p. 123] for (6) and (7), and [Mum83, §II.3, Proposition 3.14]

for (8).

Remark 6. According to identity (8), for all m,n ∈ 1
2
Zg, the function z 7→ ϑ

[
2m
2n

]
(z,Z) is

even (resp. odd) if and only if 4 tmn≡ 0 mod 2 (resp. 4 tmn≡ 1 mod 2). There are exactly

22g order 2 theta characteristics, among which 2g−1(2g + 1) are even and 2g−1(2g − 1) are

odd functions (see [FK92, Corollary VI.1.5]).

Modular transformation formula. The following describes how Z 7→ ϑ
[

2m
2n

]
(z,Z) trans-

forms under the action of the symplectic group.

Theorem 10. Let m,n ∈ 1
2
Zg and M = (α β

γ δ
) ∈ Sp(2g,Z). For every (z,Z) ∈ Cg ×Sg we

define

M(z,Z) =
(

t(γZ + δ )−1
z,(αZ +β )(γZ+ δ )−1

)
.

Then the following transformation formula holds:

ϑ

[
2m′

2n′

](
M(z,Z)

)
= ζM exp

(
π i tz(γZ + δ )−1γz

)
det(γZ + δ )

1
2 ϑ

[
2m

2n

]
(z,Z)

with (
m′

n′

)
=

(
δm− γn

−β m+αn

)
+

1

2

(
diag(γ tδ )
diag(α tβ )

)
,

where diag(N) = (N11, . . . ,Ngg) for N ∈ Mg(C), and where ζM ∈ C∗ is a eighth root of the

unity only depending on M.

See [Mum83, §II.5, pp. 189-197] for a proof.

Theta characteristics and hyperelliptic curves. Let X be a genus g curve and Z ∈ Sg a

period matrix of X . Let m,n ∈ (Z/2Z)g, from now on we will denote

ϑ

[
m

n

]
(Z) = ϑ

[
m

n

]
(0,Z).

The theta characteristics of Z are the values ϑ
[

m
n

]
(Z). A theta characteristic is said to be

even (resp. odd) if tmn is even (resp. odd). In particular, every odd theta characteristic is

zero.

Remark 7. If ϑ
[

m
n

]
(Z) is zero, then by (7), for all p,q∈ (Z/2Z)g such that p,q≡ 0 mod 2,

the theta characteristic ϑ
[

m+p
n+q

]
(Z) is also zero.

The important role played by theta characteristics in the theory of hyperelliptic curves

is illustrated by the following result, stated here in the specific case of genus 3.
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Theorem 11. Let Z be a period matrix of a genus 3 curve X. If X is not hyperelliptic, then

no even theta characteristic of Z is zero, and X is hyperelliptic if, and only if exactly one

even theta characteristic of Z is zero.

The reader may refer to [Mum84, §IIIa.9, Theorem 9.1].

4.2. Double cover associated to a curve in W9. In this section we describe the construc-

tion of a non ramified double cover of a translation surface in H (2) tiled by three paral-

lelograms.

Construction. Let (X ,ω) be a translation surface in the SL2(R)-orbit of the L-shaped

surface tiled by three squares. Such a surface is geometrically defined by the quotient

(P/∼ ,dz) where P is the Euclidean hexagon obtained by assembling three copies of a

parallelogram of unit area, as decribed in Figure 4.

(X̂ , ω̂)

✲✛

✲✛

t

(X ,ω)

P1

P2

P

t

t

t

t

t

t

t

t

ttt

t

tt

t

tt

t t

t

t

t

t

t

t

t

t

t

t

❞

✗

✎
✗

✎
✗

✎
❞

❞

❞ ❞

❞

❞❞ ❞

❞

❞

❞

❞

FIGURE 4. Double cover: identifications and Weierstrass points

In this representation, the six Weierstrass points of X correspond to:

• the cone-type singularity of angle 6π , represented by black dots in Figure 4;

• the center of the parallelograms and the middle points of the two horizontal and

vertical sides, pairwise identified, of the two non-adjacent parallelograms, all rep-

resented by small circles in Figure 4.

We construct the non-ramified double cover p : (X̂ , ω̂)→ (X ,ω) by assembling (X ,ω)
with its image by the symmetry whose center is one of the two Weierstrass points that

is neither the singularity, nor the center of a parallelogram. More precisely, we can sup-

pose that, up to a translation, the point denoted by P1 in Figure 4 is 0 and we denote

by −P the image of the polygon P by z 7→ −z. Note that the choice of one or an-

other of the two Weierstrass points P1 or P2 has no incidence on the construction, as is

readily checked by reassembling the parallelograms. Then P ∪ (−P) is an Euclidean

dodecagon and we consider the identifications by translation specified in Figure 4. The

quotient
(

P ∪ (−P)/∼ ,dz
)

defines a staircase-shaped translation surface tiled by six

squares, whose vertices are identified to two cone-type singularities of angle 6π , marked
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by black disks and squares in Figure 4. We thus obtain a genus 3 translation surface (X̂ , ω̂)
such that ω̂ has two double zeros on X̂ .

Automorphisms. By a classical result of algebraic geometry, the algebraic curve X̂ defined

above is hyperelliptic, as a non-ramified cover of a genus 2 curve; its eight Weierstrass

points are

• the two cone-type singularities;

• the centers of the parallelograms, represented by small circles in Figure 4.

The central symmetry defines an involution that fixes exactly four points. These points

are represented by small crosses in Figure 4 and correspond to:

• the center of symmetry of the assembling of parallelograms;

• the middle points of the two horizontal sides of the two central parallelograms;

• the middle points of the four vertical sides of the two parallelograms located at the

extremities.

The central symmetry then induces a non-hyperelliptic order 2 automorphism on X̂ , which

will be denoted by ψ2. The curve X̂ then admits an equation of the form

w2 = P̂(z) = (z2 + 1)(z2 − a2)(z2 − b2)(z2 − c2)

with ω̂ =
dz

w
+

z2dz

w
,

for which ψ2 is defined by (z,w) 7→ (−z,w).
Composing ψ2 with the hyperelliptic involution hX̂ : (z,w) 7→ (z,−w) yields an extra

involution τ : (z,w) 7→ (−z,−w), that is fixed point free and such that X = X̂/〈τ〉; the

covering map p : X̂ → X is then given by (z,w) 7→ (z2,zw). The algebraic curve X then

admits the equation

y2 = P(x) = x(x+ 1)(x− a2)(x− b2)(x− c2)

with ω =
1

2

(
dx

y
+

xdx

y

)
.

Furthermore, the curve X̂ admits an order 3 automorphism defined as follows. Consider

the affine transformation induced by rotation of angle π around each of the two cone-type

singularities, operating by circular permutation of the three parallelograms belonging to a

same diagonal row. Letting this transformation act three times is equivalent to replace ω̂
by −ω̂. Now this operation leaves invariant the quadratic differential ω̂2 that induces the

complex structure on X̂ (see Remark 1). The automorphism thus defined on X̂ is of order

3 and will be denoted by ψ3.

Homology basis and periods. Let X be a genus 2 algebraic curve defined by

y2 = P(x) = x(x+ 1)(x− a2)(x− b2)(x− c2).

Let π : X → P1
C be the projection (x,y) 7→ x. Using the construction presented in p. 7

applied to

x1 =−1, x2 = 0, x3 = a2, x4 = b2 and x5 = c2,

we obtain simple closed curves δ1, . . . ,δ6 in X , oriented such that the intersection num-

bers are (δ j · δ j+1) = 1 ( j mod 6), all others being zero, and such that ∑3
j=1 δ2 j = 0 and

∑3
j=1 δ2 j−1 = 0.

Let X̂ be the genus 3 hyperelliptic curve defined by

(9) w2 = P̂(z) = (z2 + 1)(z2 − a2)(z2 − b2)(z2 − c2)
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and let π̂ : X̂ → P1
C be the projection (z,w) 7→ z.

We proceed the same way by applying the construction in p. 7 to

x1 =−c, x2 =−b, x3 =−a, x4 = i, x5 =−i, x6 = a, x7 = b and x8 = c.

We denote by γ1, . . . ,γ8 the obtained cycles, satisfying (γ j · γ j+1) = 1 ( j mod 8), all others

being zero, such that ∑4
j=1 γ2 j = 0 and ∑4

j=1 γ2 j−1 = 0.

✻ ✻

✲
α1

β1 β2

α̂1

β̂1 β̂2 β̂3

α̂2 ❲

X̂

X

✻

✲
α̂3

✲
α2

✲
❄

❄

FIGURE 5. Homology bases for X and X̂

Now let

(10)

α̂1 = γ1, β̂1 =−γ2,

α̂2 = γ1 + γ3 + γ4, β̂2 =−γ4,

α̂3 = γ7, β̂3 = γ6

and

(11)
α1 = δ1 − δ6, β1 = δ1,
α2 = δ4, β2 = δ3.

Then B̂ =(α̂1, α̂2, α̂3, β̂1, β̂2, β̂3) and B =(α1,α2,β1,β2) are symplectic bases for H1(X̂ ,Z)
and H1(X ,Z) respectively, represented in Figure 5.

Remark 8. If a2, b2 and c2 are positive real numbers, then X is a real genus 2 M-curve

and X̂ is a real genus 3 curve with three real components: this case corresponds to the

situation where the translation surfaces (X ,ω) and (X̂ , ω̂) are tiled by rectangles. We can

then specialize the above construction: we call δ1 the pullback of [−1;0] to X by π , δ2

the pullback of [0;a2] and so on. Since P is non-zero in the upper half-plane H that is

simply connected, we can choose on H the determination of
√

P that is real and positive

on [−1;0]. This determination can be extended to R and even to the strips below the

open intervals bounded by the roots of P(x). Note that it will then be pure imaginary

with positive imaginary part on ]−∞;−1], pure imaginary with negative imaginary part on

[0;a], real and negative on [a;b], and so on (see also [Sil01, Lemma 2.4]).

We construct in the same way the cycles γ j’s on X̂ for j = 1, . . . ,8: the paths εi are

chosen as intervals in R∪{∞} for i /∈ {3,4,5}, ε4 as the interval from i to −i contained in
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the imaginary axis and ε3 and ε5 symmetric to the origin. The orientation is defined by the

choice of a determination of
√

P̂ that is real and positive on [−b;−a].

The above construction allows to give an expression of the periods of X in terms of the

periods of its double cover X̂ .

Lemma 12. Let X be a genus 2 algebraic curve defined by an equation of the form

y2 = P(x) = x(x+ 1)(x− a2)(x− b2)(x− c2)

where a, b and c are complex numbers such that a2, b2 and c2 are distinct and different

from 0 and −1, and X̂ the double cover defined by

w2 = P̂(z) = (z2 + 1)(z2 − a2)(z2 − b2)(z2 − c2).

Then the period matrix Ẑ of X̂ associated to the basis B̂ of H1(X̂ ,Z) has the form

Ẑ =




z1 z12 z13

z12 z2 z12

z13 z12 z1




and the period matrix Z of X associated to the basis B of H1(X ,Z) is given by

Z =

(
2z2 2z12

2z12 z1 + z13

)
.

Proof. In order to make the calculation clear, the reader can consider the specialization of

the construction of the homology basis B̂ to the case where a, b and c are real numbers

such that 0 < a < b < c, see Remark 8 above.

The curve X̂ admits the non-hyperelliptic order 2 automorphism defined by

ψ2 : (z,w) 7→ (−z,w).

We note that ψ2∗(γ1) = −γ7 as γ1 and γ7 have the same orientation, and that ψ2∗(γ2) =
γ6 since γ2 and γ6 have opposite orientations. Moreover, we have ψ2∗(γ3) = −γ5 and

ψ2∗(γ4) = −γ4. That yields to ψ2∗(α̂1) = −α̂3, ψ2∗(α̂2) = −α̂2 and ψ2∗(α̂3) = −α̂1 and

the same holds for the β̂ j’s. We thus obtain the rational representation of ψ2 in the sym-

plectic basis B̂:

tM2 =




0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0




= ρQ(ψ2).

Then the matrix Ẑ is stable under the action of the symplectic matrix M2, hence the expres-

sion for Ẑ. We denote by

(ω̂1, ω̂2, ω̂3) =

(
dz

w
,

zdz

w
,

z2dz

w

)

the usual basis for the holomorphic 1-forms on X̂ , and we introduce the matrices

Â =

(∫

α̂ j

ω̂k

)

j,k

and B̂ =

(∫

β̂ j

ω̂k

)

j,k

.
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Noting that ψ2
∗(ω̂k) =−ω̂k for k = 1 and 3, we deduce from the above calculation of M2

that Â11 = Â31 and Â13 = Â33. Also, since ψ2
∗(ω̂2) = ω̂2 then we have Â12 = −Â32 and

Â22 = 0. We obtain identical relations for B̂, thus we have:

Â =




a1 a2 a3

a21 0 a23

a1 −a2 a3


 and B̂ =




b1 b2 b3

b21 0 b23

b1 −b2 b3


 .

Then we get Ẑ = ÂB̂−1 under the announced form, with

z1 =
1

2

a2

b2

+
1

2

a1b23 − a3b21

b1b23 − a3b21

,

z12 =
a3b1 − a1b3

b1b23 − b3b21

=
1

2

a21b23 − a23b21

b1b23 − b3b21

,

z13 =
1

2

a1b23 − a3b21

b1b23 − b3b21

− 1

2

a2

b2

,

z2 =
a23b1 − a21b3

b1b23 − b3b21

.

The curve X is the quotient of X̂ by the fixed point free involution τ : (z,w) 7→ (−z,−w),
which leaves invariant ω̂1 and ω̂3 on X̂ . These differentials then induce holomorphic forms

on X , which will be denoted by ω1 and ω2 respectively. Let

A =

(∫

α j

ωk

)

j,k

and B =

(∫

β j

ωk

)

j,k

.

Let p : X̂ → X be the quotient map, then p sends α̂1 and α̂3 onto α2, and α̂2 onto α1,

whereas β̂1 and β̂3 are sent onto β2, and β̂2 onto β1. Furthermore, the restriction of p is of

degree 2 on β̂2 and bijective on each α̂ j , β̂ j for j 6= 2. We then have

A =

(
a21 a23

a1 a3

)
and B =

(
1
2
b21

1
2
b23

b1 b3

)
,

and a direct calculation yields the expression of the period matrix Z = AB−1 of the curve

X . �

4.3. Characterization of the cover in terms of the periods. This section is devoted to

the proof of Theorem A. In the following, we deal with real M-curves in W9. This is

only to fix ideas because the arguments used here work verbatim for the non-real case:

the only difficulty lies in expressing the choice of arcs in P1(C) whose pullbacks will

provide suitable cycles for the construction of the symplectic bases B̂ and B. The method

employed to exhibit the form of the period matrix and identify the corresponding theta

characteristic is inspired from [Sil01, Theorem 5.5].

We first establish the expression of a period matrix of X̂ when X is a real M-curve in

W9.

Proposition 13. Let X be a real M-curve in the family W9. Let Ẑ be the period matrix of its

double cover X̂ associated to the symplectic basis B̂ of H1(X̂ ,Z) described above. Then Ẑ

has the form

(12) Ẑ =




iy1
1
2
iy1 iy13

1
2
iy1

1
2
+ 3

4
iy1 − 1

2
iy13

1
2
iy1

iy13
1
2
iy1 iy1




with y1,y13 ∈ R.
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Proof. Let f3 be the Möbius transformation defined in §3.1, then X admits the equation

y2 = x(x+ 1)(x− a2)(x− b2)(x− c2)

where a, b and c are real numbers satisfying the conditions of Lemma 5. The double cover

X̂ is defined by

w2 = (z2 + 1)(z2 − a2)(z2 − b2)(z2 − c2),

and f3 induces an order 3 automorphism on X̂ , denoted by ψ3, defined by

ψ3 : (z,w) 7→
(

z+
√

3

−
√

3z+ 1
,

16w

(1−
√

3z)4

)
.

Let (α̂ j, β̂ j) ( j = 1,2,3), (ω̂1, ω̂2, ω̂3) and Â, B̂ be as in p. 16. From the proof of Lemma

12, we know that Â11 = Â31, Â13 = Â33, Â12 = −Â32 and Â22 = 0 on the one side, and

B̂11 = B̂31, B̂13 = B̂33, B̂12 =−B̂32 and B̂22 = 0 on the other side.

A direct calculation gives

ψ3
∗(ω̂1) =

1

4
ω̂1 −

√
3

2
ω̂2 +

3

4
ω̂3

and, noting that ψ3∗(α̂3) = α̂1, we get Â12 =
√

3
2
(Â11 − Â13). Since ψ3∗(β̂1) = β̂3, we also

have B̂12 =
√

3
2
(B̂13 − B̂11).

As ψ3∗(α̂1) = α̂1 − 2α̂2 + α̂3 + β̂2, we have
∫

ψ3∗(α̂1)
ω̂1 = Â11 − 2Â21+ Â31 + B̂21

=

∫

α̂1

ψ3
∗(ω̂1) =

1

4
Â11 −

√
3

2
Â12 +

3

4
Â13,

hence Â21 =
5
4
Â11− 3

4
Â13+

1
2
B̂21. Noting that ψ3∗(β̂3) = β̂1+ β̂2+ β̂3, the same arguments

yield B̂21 =
3
2
B̂13 − 5

2
B̂11.

Considering
∫

ψ3∗(α̂1)
ω̂3 =

∫
α̂1

ψ3
∗(ω̂3) with

ψ3
∗(ω̂3) =

3

4
ω̂1 +

√
3

2
ω̂2 +

1

4
ω̂3,

we find Â23 =
5
4
Â13 − 3

4
Â11 +

1
2
B̂23 and in a similar way, we finally obtain B̂23 =

3
2
B̂11 −

5
2
B̂13.

We have shown that Â and B̂ have the form

Â =




a1

√
3

2
(a1 − a3) a3

5
4
(a1 − b1)+

3
4
(b3 − a3) 0 3

4
(b1 − a1)+

5
4
(a3 − b3)

a1

√
3

2
(a3 − a1) a3




B̂ =




b1

√
3

2
(b3 − b1) b3

3
2
b3 − 5

2
b1 0 3

2
b1 − 5

2
b3

b1

√
3

2
(b1 − b3) b3




with a1, a3 ∈ iR and b1, b3 ∈R (by definition of the α j’s and β j’s for j = 1,3 and Remark

8). Then the period matrix of X̂ associated to the symplectic basis B̂ for H1(X̂ ,Z) is

(13) ÂB̂−1 =




z1
1
2
z1 z13

1
2
z1

1
2
+ 3

4
z1 − 1

2
z13

1
2
z1

z13
1
2
z1 z1



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where z1,z13 ∈ iR are defined by

z1 =
4

3

a3b1 − a1b3

b2
1 − b2

3

z13 =
1

3

a3b1 − a1b3 + 3(a1b1 − a3b3)

b2
1 − b2

3

hence the expression for Ẑ. �

We now compute the period matrix of the double cover of one particular real M-curve

in the family W9. The natural choice consists in considering the curve defined by the

translation surface tiled by three squares: by Proposition 1 this is the only non-singular

curve in this family admitting a non-hyperelliptic automorphism. An equation of this curve

was given in §3.2.

Lemma 14. Let X1 be the real M-curve defined by the 3-square-tiled translation surface,

defined by the equation

y2 = P(x) = x(x2 − 1)(x− a2)

(
x− 1

a2

)
with a = 2−

√
3

and let X̂1 be its double cover. Then the period matrix Ẑ1 of X̂1 associated to B̂ is

Ẑ1 =




4
3
i 2

3
i 1

3
i

2
3
i 1

2
+ 5

6
i 2

3
i

1
3
i 2

3
i 4

3
i


 .

Proof. The curve X1 admits an order 4 automorphism induced by x 7→ 1/x. Its double

cover X̂1 is defined by the equation

w2 = P̂(z) = (z4 − 1)(z2 − a2)

(
z2 − 1

a2

)

and ϕ lifts to an order 4 automorphism of X̂1, denoted by ψ4 and defined by

ψ4 : (z,w) 7→
(

1

z
,

iw

z4

)
.

It is readily checked that

ψ4
∗
(

dz

w

)
= i

z2dz

w
and ψ4

∗
(

z2dz

w

)
= i

dz

w
.

We also note that ψ4∗(α̂1) = −β̂1 hence, with the notations defined in the proof of Propo-

sition 13, we get B̂11 =−iÂ13 and B̂13 =−iÂ11. A direct calculation then gives the period

matrix Ẑ1. �

Remark 9. By Lemma 12, the period matrix of X1 associated to the basis B is

Z1 =

(
1+ 5

3
i 4

3
i

4
3
i 5

3
i

)
.

As the hyperelliptic curve X̂1 has many automorphisms, the modular transformation

formula will enable us to identify the only even theta characteristic that vanishes for the

period matrix Ẑ1.
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Proposition 15. Let X1 be the real M-curve defined by the 3-square-tiled translation sur-

face, let Ẑ1 be the period matrix of its double cover X̂1 associated to B̂. Then

ϑ
[

1 1 1
1 0 1

]
(Ẑ1) = 0.

Proof. Let M = (α β
γ δ

) ∈ Sp6(R) and

p = diag(γ tδ ) and q = diag(α tβ).

Then, following Theorem 10, we have the following transformation formula for theta char-

acteristics:

(14) ϑ

[
2m

2n

](
M(Z)

)
= φ(M,m,n,Z)ϑ

[
2m′

2n′

]
(Z),

with

(15)

[
m′

n′

]
=

[
tα
(
m− 1

2
p
)
+ tγ

(
n− 1

2
q
)

tβ
(
m− 1

2
p
)
+ tδ

(
n− 1

2
q
)
]
=: M

[
m
n

]

and where φ is a function, depending only on M, on m,n ∈ (Z/2Z)3 and on Z ∈S3, that

never vanishes.

By construction, X̂1 is a genus 3 hyperelliptic curve, hence by Theorem 11, there exists a

unique even theta characteristic
[

m
n

]
=
[m1 m2 m3

n1 n2 n3

]
for which ϑ

[
m
n

]
(Ẑ1) = 0. Period matrices

of the form (12) are stable under the action of the two symplectic matrices

M2 =




0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0




= tρQ(ψ2)

and M3 =




1 −2 1 0 1 0

1 −1 0 0 0 −1

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 −2

0 0 0 1 1 1




= tρQ(ψ3),

then by equation (14) and Remark 6, we must have Mk

[
m
n

]
≡
[

m
n

]
(mod 2) for k = 2 and 3.

As a consequence, we obtain

{
m1 ≡ m2 ≡ m3 (mod 2)

n1 ≡ m2 ≡ n3 (mod 2)

which, among the even theta characteristics, reduces the possibilities to the following three:

ϑ
[

0 0 0
0 1 0

]
,ϑ
[

1 1 1
1 0 1

]
and ϑ

[
0 0 0
0 0 0

]
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the latter never being zero by Riemann theorem on theta divisor (for instance, see [FK92,

Theorem VI.2.4]). Furthermore, the period matrix Ẑ1 is stable under the action of

M4 =




0 0 0 1 0 0

0 1 0 0 −1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 2 0 0 −1 0

0 0 −1 0 0 0




= tρQ(ψ4),

hence M4

[
m
n

]
≡
[

m
n

]
(mod 2), which provides the extra condition

m2 ≡ 1 (mod 2),

hence the conclusion. �

Now we can prove the theorem:

Proof of Theorem A. From now on we assume that the period matrices of the double covers

are associated to the same symplectic basis B̂ for H1(X̂ ,Z), such as these matrices have

the form presented in the theorem.

The set of isomorphism classes of genus 2 curves defined by an equation of the form

(16) y2 = Qs(x) = x(x+ 1)(x− s2)
(
x− f3(s)

2
)(

x− f3

(
f3(s)

)2
)
.

is connected, hence the associated family of curves also form a connected subset in the

moduli space of genus 3 hyperelliptic curves. The map associating to the equation of such

a double cover its period matrix is continuous, then the set of these matrices is connected.

By Theorem 11, exactly one even theta characteristic ϑ
[

m
n

]
vanishes for these period

matrices. As the set of these period matrices is connected and the set of order 2 theta

characteristics is discrete, the same theta characteristic will vanish for the whole family.

Since by Proposition 15, the theta characteristic ϑ
[

1 1 1
1 0 1

]
is zero for one member of this

family, then it also vanishes for the period matrix of any double cover of a curve in the

family defined by equation (16). �

4.4. Periods of real M-curves from periods of double covers. We now proceed to the

proof of the main theorem.

Proof of Theorem B. Let (X1,ω1) be the L-shaped translation surface tiled by three squares;

if t is a real number such that t > 1, then let (Xt ,ωt) =
(

1 0
0 t

)
· (X1,ω1). By Remark 5,

Proposition 4 and Lemma 5, every (Xt ,ωt) is defined by an equation of the form

y2 = Qs(x) = x(x+ 1)(x− s2)
(

x− f3

(
f3(s)

)2
)(

x− f3(s)
2
)

(17)

with ωt = λs

(
dx

y
+

xdx

y

)

for some real number s such that 0 < s <
√

3/3 and some constant λs ∈ C∗.

We construct from equation (17) a symplectic basis B̃ = (α̃1, α̃2, β̃1, β̃2) for H1(Xt ,Z)
as described in p. 7: with the notations defined in Figure 6, the point P1 corresponds to

(−1,0), P2 to (0,0), P3 to
(
s2,0

)
, P4 to

(
f3

(
f3(s)

)2
,0
)

, P5 to
(

f3(s)
2,0
)

and P6 to the

point at infinity. For all t ≥ 1, we choose the constant λs such that
∫

β̃1
ωt = 1.

For t being fixed, let η1 = ωt and let η2 be the unique holomorphic 1-form on Xt such

that
∫

β̃1
η2 = 0 and

∫
β̃2

η2 = 1. As Xt is a real M-curve, and by construction of the homology
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FIGURE 6. Stretching the 3-square-tiled surface

basis B̃, the period matrix AtB
−1 must satisfy ℜe(AtB

−1) = 0. A direct calculation then

shows that there exist two unique real numbers yt and y′t such that

At :=

(∫

α̃ j

ηk

)

j,k

=

(
−it iyt

−2it iy′t

)
and B :=

(∫

β̃ j

ηk

)

j,k

=

(
1 0

−2 1

)
,

The basis B = (α1,α2,β1,β2) for H1(Xt ,Z) defined in p. 16 is obtained from B̃ by the

change of basis given by the symplectic matrix

N =




1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1


 ∈ Sp4(Z).

Then the period matrix of Xt associated to B is

Zt =
tN(AtB

−1) =

(
1+ i(2yt − t) iyt

iyt i(yt/2+ t)

)

whose imaginary part is positive definite if, and only if yt > 2t/3. Hence, following the

notations of Theorem A, we have

z1 = iyt

z13 = i(t − yt/2)

from which we deduce the expression of the period matrix associated to the basis B of the

double cover X̂t :

Ẑt =




iyt iyt/2 i(t − yt/2)
iyt/2 1

2
+ i(yt − t/2) iyt/2

i(t − yt/2) iyt/2 iyt


 .
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Consider the symplectic basis obtained from B by the change of basis given by

M =




0 0 1 0 0 0

−1 1 −1 0 0 0

1 0 0 0 0 0

1 1 1 0 1 1

1 0 1 0 1 0

1 1 1 1 1 0




∈ Sp6(Z),

then the period matrix associated to this new basis is

Ẑ′
t =

tM(Ẑt) =




1
2
+ i
(
yt − 1

2
t
)

1
2
− 1

2
i(yt − t) 1

2
− 1

2
i(yt − t)

1
2
− 1

2
i(yt − t) 1

2
+ i
(
yt − 1

2
t
)

1
2
− 1

2
i(yt − t)

1
2
− 1

2
i(yt − t) 1

2
− 1

2
i(yt − t) 1

2
+ i
(
yt − 1

2
t
)


 ,

fo which we can prove, by the same arguments as those used in the proof of Theorem A,

that the corresponding vanishing even theta characteristic is ϑ
[

1 1 1
0 0 0

]
. Developping, we get

ϑ
[

1 1 1
0 0 0

]
(Ẑ′

t ) = ∑
(k1,k2,k3)∈Z3

expπ

[
yt

(
k1k2 + k2k3 + k3k1 − (k2

1 + k2
2 + k2

3)
)

+ t

(
1

2
(k2

1 + k2
2 + k2

3)− (k1k2 + k2k3 + k3k1)−
1

2
(k1 + k2 + k3)−

3

8

)

+ i

(
1

2
(k2

1 + k2
2 + k2

3)+ k1k2 + k2k3 + k3k1 +
3

2
(k1 + k2 + k3)+

9

8

)]
,

hence equation (1). �
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