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Assessing Operational Complexity of Manufacturing Systems Based 

on Statistical Complexity 
 

The aim of this paper is to contribute to complex systems thinking in 

manufacturing organisations through the development of a metric for 

operational complexity. Operational complexity is concerned with the temporal 

aspects of coordination and control in manufacturing systems. Statistical 

complexity from computational mechanics theory is proposed as the metric. 

The metric can potentially be used to support decision making by objective 

assessment of complexity. The properties of the metric are explored through 

simulation studies. The simulation results confirm that the proposed metric 

captures the intuitive notion of complexity. It is shown that operational 

complexity is influenced by internal factors such as system structure, as well as 

external ones such as demand, and that complexity can be managed through the 

application of appropriate control methods. A case study is presented that 

applies the metric to real production data. The case study shows that the global 

recession had resulted in a decreased operational complexity of outputs. 

 
Keywords: manufacturing systems, complexity, statistical complexity 

 

1 Introduction 

 

Modern business organisations are operating in an uncertain and constantly changing 

environment. Their performance and survival are largely determined by their 

management of change. Conventional theories of management lack the tools to 

describe, analyse, and manage the growing complexity, and can, in turn, no longer 

cope with the issues it gives rise to. 

This holds particularly true for manufacturing companies. They are subjected 

to opportunities and constraints of the global market, cooperating and competing at 

the same time. While operating in an environment full of disturbances, their main 

challenge is how to ensure a stable and deterministic delivery of products in spite of 

the stochastic nature of demand. 

A possible approach is offered by interdisciplinary research broadly termed 

“complexity science,” which develops new methods for studying regularities in 

systems. At its core is an assumption that simple rules and interactions cause complex 

effects. Although complex systems are frequently unpredictable, they also exhibit 

Page 3 of 38

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

precise regularities and patterns. These can be used to create strategies that can deal 

with uncertainty, reduce risk, and expand opportunities of contemporary business 

(Buchanan, 2004). 

Manufacturing companies must deal with two kinds of complexity: the 

organisation of departments, shop floors, and supply chains on one hand, and the 

management of the temporal aspects of coordination and control on the other. The 

former is often termed structural complexity, while operational complexity denotes 

the latter (Peklenik, 1995). It is hypothesized that by measuring and understanding 

both, manufacturing organizations will find more efficient ways of operating in the 

global environment (Wiendahl and Scholtissek, 1994). While structural complexity 

has already received some attention in literature, operational complexity remains 

relatively poorly studied. 

The principal motivation for the studies of complexity in manufacturing is the 

search for methods that would allow us to reduce the degree of complexity and make 

the manufacturing system more productive and predictive (Hon, 2005). In 

manufacturing control, complexity assessment has practical value for comparison of 

control methods, for decision analysis, and for the understanding of the control 

process, especially its complex properties such as self-organization and emergence. 

The goal is to increase the predictability of the manufacturing system behaviour 

despite the incompleteness of information, disturbances, and uncertainties inherent to 

the environment by analyzing the complexity of the control method. 

In order to make complexity analysis a practical approach, complexity must be 

made measurable. Complexity metrics must be calculable and generally applicable. 

Only as such can they be used for performance measurement and ultimately provide a 

link between strategy and execution (Melnyk et al., 2004). 

Page 4 of 38

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

In this paper, statistical complexity from computational mechanics theory is 

proposed as a metric for the operational complexity of manufacturing systems. 

Statistical complexity measures the difficulty of process prediction. The abstraction 

behind statistical complexity is related to symbolic dynamics, wherein a signal is 

replaced by a sequence of symbols. This sequence is then used as a basis for the 

reconstruction of an algorithmic automaton. The statistical complexity is the entropy 

of this automaton’s states. This approach provides a practical algorithm for the 

calculation of the complexity of real systems. 

2 Background 

Manufacturing systems exhibit both fundamental components of complexity: 

complexity of structure and complexity of operation. Structural complexity can 

remain unchanged for longer periods of time. On the other hand, operational 

complexity is continuously influenced by numerous factors such as changes in 

demand, machine breakdowns, and control methods. Control, in general, provides a 

lever that can be used to influence the system’s behaviour. Operational complexity 

can therefore only be understood through a closer examination of control. 

2.1 The Manufacturing Control Problem 

Baker (1998) defines manufacturing control as the actuation of a manufacturing 

system to make products that takes into consideration the present and past observed 

states of the manufacturing system, as well as economic demand. He proposes a 

cybernetic model of control wherein the manufacturing system and the control system 

form a typical feedback loop. While Baker’s definition will be adopted throughout 

this paper, his feedback model fails to capture important properties of manufacturing 

control systems. 

Page 5 of 38

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Firstly, information obtained through the observation of real-life systems is 

usually incomplete. Furthermore, it is prone to subjective interpretation wherever 

human subjects are involved. As the toughest problems in manufacturing control are 

not problems of optimization, but those of a subjective nature, a clearer definition of 

the role played by human subjects is required. A cybernetic model based on 

Peklenik’s (1988) manufacturing cybernetics theory is presented in Figure 1. 

A manufacturing control system encompasses the whole decision process, 

including subjects’ decisions, leading to the control signals for the manufacturing 

plant. The information about the inputs and outputs of the plant is acquired by sensory 

and other processes. The goals are expressed as desired outputs. The control algorithm 

φ describes how control signals are generated based on the goals, the input, and the 

output information. 

The control problem resists formal description, especially when subjects and 

their decision making are taken into consideration as well. Nevertheless, the problem 

can be stated as: How to best satisfy the given goals of a manufacturing system, 

subjected to disturbances, by making decisions based on incomplete data? 

To provide an answer to the control problem, we need metrics for the 

evaluation of solutions. The difficulty in creating such metrics lies in the fact that 

every manufacturing system has unique properties; general metrics are therefore hard 

to find. One possibility is to take the approaches from complexity science and apply 

them to the manufacturing domain. The main hypothesis here is that manufacturing 

control can be improved if its complexity is measured and analyzed. 

2.2 Information Theory Approaches to Manufacturing Complexity 

As models are specific to a system or phenomenon, a general approach towards 

complex systems control is difficult to formulate. A promising approach to this 

Page 6 of 38

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

problem was found in information theory, which allows us to treat different complex 

systems on an equal footing. 

Information theory is well established in complexity science. It provides a 

well-developed theoretical basis, mathematical definitions, and computational tools. 

The theory was first established by Shannon (1948). It provides a measure of 

uncertainty as a function of probabilities, known as the Shannon entropy (1). 

( ) ( ) ( )( )2
log

x

H X P x P x
χ∈

= −∑   (1) 

H(X) is a measure of uncertainty or of information about a random variable. It 

quantifies how much information one is missing when one does not know the value of 

a random variable. 

Entropy is often associated with complexity, because intuitively, the more 

uncertain an observer is about the observed process, the more complex the process 

appears. This is studied by Shafiei-Monafred and Jenab (2010) for the case of 

operations in demand-based manufacturing. They show how human subjects learn to 

perform a task in less time and then define complexity of manufacturing operations 

based the learning curve model. 

In the manufacturing domain, several complexity metrics are based on the 

Shannon entropy. 

Frizelle and Woodcock (1995) define two types of complexity, static and 

dynamic complexity, which correspond to the aforementioned structural and 

operational complexity. 

Static complexity is defined as the expected amount of information necessary 

to describe the state of a manufacturing system. The measure is based on the 

probability of a resource occupying a state. 
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Dynamic complexity is the expected amount of information necessary to 

describe the state of a system deviating from schedule due to uncertainty. The 

calculation involves the measurement of the difference between actual performance of 

the system and the expected figures in the schedule. 

Frizelle’s complexity metrics have been used and developed further in the 

work of Efstathiou (1998), Sivadasan (2002), Huaccho Huatuco (2009), and Isik 

(2010). 

ElMaraghy et al. define an entropic complexity metric for manufacturing 

system configurations (2005). They introduce a complexity coding system to capture 

the variety and amount of information present in a given manufacturing system and its 

components. 

An entropic definition of complexity is introduced for mixed-model assembly 

lines by Hu et al. (2008), and Wang and Hu (2010), wherein the authors argue that 

complexity is introduced by product variety. This is also considered by Jenab and Liu 

(2010) who present a graph-based model for the relative complexity of products. 

The above approaches relate complexity to entropy and thus uncertainty. A 

useful interpretation of this is that entropy measures the amount of information one 

gains by looking at the actual state of a system. If the system is complex, a lot of 

information is gained, and vice versa. These methods therefore provide a way of 

looking at the structural complexity of the system. Even Frizelle’s dynamic 

complexity, which captures the uncertainty of a schedule, is defined for a certain state 

in time. Operational complexity should, on the other hand, capture how a system 

evolves in time. 

The only approach that explicitly studies temporal aspects of manufacturing 

systems is presented in (Frizelle and Suhov, 2001), wherein the authors apply the 
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Kolmogorov-Sinai entropy to Markovian queues. Complexity is associated with the 

limiting rate of the entropy production in an observed process, and can be interpreted 

as the randomness of behaviour in the sense of algorithmic complexity. It has been 

argued, however, that randomness is not complex, as it easily yields to statistical 

description. This notion is explored further in the following Section. 

3 Measuring Operational Complexity 

A well-known approach to the complexity assessment of a process through the 

examination of the sequence of symbols produced by it is the Kolmogorov-Chaitin 

complexity. It is defined as the length of the shortest program capable of producing 

the sequence. By this definition, periodic sequences are not complex, as repeating 

patterns are easily encoded. Random sequences, on the other hand, are considered 

complex, as they cannot be compressed into a shorter description. 

Consider the example of flipping a fair coin. Although the sequence produced 

by repeating a coin flip is random, coin flipping is intuitively not complex. This is 

because the intuitive notion of complexity is not associated with the produced 

sequence but with the underlying process. A coin flipping process is easy to describe 

in a statistical way: there is a fifty percent chance of heads and a fifty percent chance 

of tails. Albeit statistical, the description allows for prediction. Even if one cannot 

know whether the next outcome will be heads or tails, one can make an accurate 

prediction about the distribution of outcomes over future trials. 

In the above sense, complexity is associated with the difficulty of predicting a 

process, in other words, with the difficulty of discovering the patterns present in the 

process. 

This is readily applicable to the control problem and associated operational 

complexity. If a manufacturing system’s states and outputs are easy to predict, the 
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system is not complex. On the other hand, if making predictions is difficult, the 

system is complex. An operational complexity metric should therefore quantify how 

difficult it is to predict the future of the system. 

Figure 2 presents the complexity curve from the control problem perspective. 

The complexity curve relates complexity to disorder. Perfectly ordered and perfectly 

disordered processes have zero complexity. In between, the complexity increases to a 

point where it becomes incomputable due to the observer’s limitations. The area 

beyond that point is commonly termed “the edge of chaos”. 

As stated in the control problem definition, one of the goals of control is to 

make the outputs more deterministic. This, however, is countered by the nature of the 

inputs, by disturbances, and by the control and manufacturing processes themselves. 

The more complex these influences, the harder it is to predict the output. 

On their way towards becoming outputs (products), inputs (orders, demand) 

go through a transformation process. At first, they can usually be described 

statistically accurately with e.g. the Poisson arrival model. Then, as they are 

scheduled, they transform into manufacturing system states. Their description 

becomes dependant on the manufacturing system itself. Patterns emerge, depending 

both on the structure of the manufacturing system as well as on the control method. 

Complexity increases. Finally, the states are transformed into outputs. Outputs can be 

considered a coarser description than the states, as different state sequences can lead 

to the same outputs. Complexity decreases again, as the outputs are in general easier 

to predict than complete system states. 

In light of this, the following Section formally defines an operational 

complexity metric. 
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3.1 Statistical Complexity 

Statistical complexity attempts to measure the size of the minimum program capable 

of statistically reproducing the patterns in a data set. It originates in the computational 

mechanics approach to pattern discovery (Shalizi and Crutchfield, 2001), which has 

been applied to various fields ranging from molecular systems (Nerukh et al., 2002) to 

the stock market (Park et al., 2006). The following is a brief illustration of the 

approach. For a detailed derivation we refer to (Shalizi and Crutchfield, 2001). 

3.1.1 Definition 

A stream of data of infinite length X is split at a chosen point xt into two sequences 

(2). The sequence up to xt is denoted x
s

, and the sequence from xt+1 on is denoted x
r

. 

   2 1 1 2, , , , , ,
t t

x

t t t

x

X x x x x x− − + +=
s r

K K

144244314243

  (2) 

Causal states Si are defined as sets of x
s

 for which the probability of an x
r

 is 

the same for every x
r

. The set of causal states is denoted by S. 

Causal states, together with their transition probabilities, construct an ε-

machine – a minimal model of the process. It has been proven in (Shalizi and 

Crutchfield, 2001) that causal states are maximally accurate predictors and that their 

state-to-state transitions are minimally stochastic. 

The statistical complexity Cµ is the Shannon entropy (1) over the distribution 

of causal states (3). P(Si) denotes the probability of the ε-machine being in state Si. 

    ( ) ( )2log
i

i

S

i

S

C P S P Sµ
∈

= −∑    (3) 

The statistical complexity measures the average amount of historical memory 

stored in the process. In a complex process, more information about the past is stored 

internally. Prediction therefore requires more information and is, in turn, more 

difficult. 
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An interesting property of statistical complexity is that it is an upper bound of 

excess entropy E (Shalizi and Crutchfield, 2001), which is the mutual information of 

the processes semi-infinite past and semi-infinite future (4). This allows for another 

interpretation of statistical complexity. The memory needed to perform an optimal 

prediction is greater or equal to the amount of information that the past provides about 

the future. 

    ( ),E I x x Cµ= ≤
s r

   
 (4) 

The illustration of the ε-machine concept is provided in Figure 3, where ε-

machines are shown for completely random and completely deterministic processes. 

The random process (A – e.g. coin-flipping) has the statistical complexity of 

zero. The deterministic process (B) has the statistical complexity of one bit. This is 

because only one previous state has to be remembered to optimally predict the one 

that follows it. The same process can be encoded differently (C) and have a different 

statistical complexity. Considerations in this regard are analyzed in Section 3.3. 

3.1.2 Calculation 

Statistical complexity can be estimated by considering finite lengths of the symbolic 

sequence under observation. Shalizi C.R. and Shalizi K.L. (2004) present a Causal-

State Splitting Reconstruction (CSSR) algorithm, which is able to reconstruct the ε-

machine of the process. Although the approach offers great practicality, there are also 

some limitations to it. 

The maximum history length considered, Lmax , is an adjustable parameter. It is 

shown that for periodic processes, the lower bound of Lmax is the period. The upper 

bound is limited by adequate sampling to the order of the logarithm of the whole 

sequence length, log(N). 
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3.2 Observation Levels 

In complex systems, the observer plays a crucial role. Emergence, as the defining 

phenomenon of complex systems, has no meaning without an observer. Because 

emergence is the occurrence of something new, it has to be specified for whom it is 

new. 

Consider an example of a manufacturing system. Machine operators, 

production managers, and business managers all observe the same system. Their 

views are partial and acquired on different structural and temporal scales. The 

operators mainly deal with single elements of the system. The production managers 

are concerned with the state of the system as a whole. Lastly, the business managers 

are mostly interested in system outputs. Temporal scales vary as well, from seconds at 

the operator level to days at the business level. 

Resolution of observation is subjective, giving rise to two questions: Can 

different levels of observation of the same system co-exist, and, if they can, how to 

determine the optimal level of observation and optimal type of description? 

Shalizi and Moore (2003) argue that different levels of observation of the 

same system can co-exist from the perspective of computational mechanics theory. 

Comparing a fine and a coarse-grained description, each may have its own, coherent 

causal account, which gives legitimacy to using different resolutions and time scales 

in describing the same process.  

Shalizi (2001) furthermore suggests that the optimal level is determinable and 

defines it as the level at which the ratio of the extent of predictability to the difficulty 

of prediction is highest (Prokopenko et al., 2009). This metric has been termed 

“efficiency of prediction”, e (5), and is defined as the quotient of excess entropy (4) 

and statistical complexity (3). 
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How much can be predicted.

How difficult it is to predict.

E
e

Cµ

= =    (5) 

It can be interpreted as the fraction of historical memory stored in the process, 

which is useful in telling us about the future. Given two possible observation levels, 

the one with higher efficiency of prediction should be chosen. 

These concepts are studied in the following Section, where the operational 

complexity metric is applied to a simulated system. The simulation results are 

observed on different levels and with different encodings. 

4 Simulation Experiments 

Three groups of simulation experiments are carried out to analyze the properties of 

the proposed operational complexity metric. The first group studies the effect of the 

control algorithm on complexity. The second group shows how structural complexity 

affects the operational complexity and the implications of observing this on different 

levels. Finally, the third group studies the introduction of periodicity into the control 

algorithm. 

4.1 Problem Formulation 

A simulation model of a simple make-to-order manufacturing system is developed. 

The system consists of two machines, both capable of processing two types of jobs. 

Jobs have fixed processing times and due times, relative to arrival times. Job 

processing cannot be interrupted. The Poisson arrival model is used for job arrival 

times. For successful completion in due time, the system receives a fixed award. If a 

job is not completed in its due time, the penalty, which is subtracted from the award, 

increases linearly with time. Job details are outlined in Table 1. 

J1 are shorter jobs with a minor award. J2 are lengthier and carry a 

significantly greater award. As such, they implicitly have a higher priority. 
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The goal of control is to maximize the reward. In this case, a genetic algorithm 

approach is chosen for the control algorithm for several reasons. Firstly, the problem 

is non-deterministic, because the arrival times are generated randomly. It is more 

important for the algorithm to find a good solution in a short period of time than for it 

to find the optimal solution, as the optimum may change with every new job arrival 

anyway. Secondly, modifying the parameters of the genetic algorithm allows us to test 

the changes in control algorithms. The complexity measure can then be evaluated 

with regards to the algorithm parameters. Lastly, the specified goal is easily encoded 

into a fitness function. 

For the genetic algorithm, a direct approach with a job-based encoding is used 

(Hongze et al., 2009). The crossover is position-based. Swap mutation is used (Cheng 

et al., 1996). The genetic algorithm takes the jobs that had not been processed yet and 

schedules them to machines. The fitness function of the algorithm maps a schedule 

encoding to its calculated received reward. The schedules specify job orders for each 

machine. Jobs are processed sequentially with zero in-between time. 

The simulated control problem is presented in Figure 4. 

For the analysis, inputs, states, and outputs are observed at different levels and 

with different encodings (OX, OS, and OY respectively). The observations are made on 

each step of the simulation. 

Inputs are encoded using the job type. The encoding process is as follows. If 

no job arrives, the inputs are encoded to be “0”. Inputs are encoded to be “1” and “2” 

when jobs of type J1 and J2 arrive, respectively. If jobs of both types arrive on the 

same simulation step, the inputs are encoded to be “3”. 

Similarly, the states are encoded in three different ways. “Full states” by using 

machine ID and job type, “states” by using machine ID and whether the machine is 
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processing a job or is idle, and “trivial states” by observing whether any of the 

machines is processing a job or not. 

The outputs are encoded in two different ways: “outputs” by using the job type 

and “trivial outputs” by only considering whether something was produced or not. 

Three groups of experiments are carried out. In each case, the experiment ends 

after 1000000 simulation steps and is repeated 10 times. Statistical complexity is 

evaluated using the CSSR algorithm. 

4.2 Standard Configuration with Different Algorithm Properties 

 

In this group of experiments, the effects of the control algorithm on complexity are 

analyzed. In order to do this, genetic algorithm scheduling is compared to random 

scheduling. In the genetic algorithm case, population size is set to 20, mutation rate is 

set to 0.05, and the number of generations is fixed at 5. In the case of random 

scheduling, schedules are generated randomly. Both algorithms produce a new 

schedule when a new job arrives. 

Results are shown in Table 2. 

The complexity of randomly generated inputs, encoded in the same way as 

outputs, was calculated to be 0 in both cases. The result is trivial, but confirms 

complete randomness is adequately recognized by the calculation method. 

Although the inputs are random and thus easy to predict, the outputs are not, 

even in the case of random scheduling. This shows that some inherent structure is 

present in the system. 

In the presented scenario, output patterns are a consequence of rules implicitly 

formed by the system and job configuration. In the example, two outputs from the 

same machine cannot be fewer than 12 simulation steps apart, because 12 is the 
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processing time for the shortest possible job. Rules like this limit the possible output 

sequences and are the reason behind the observed output pattern. 

When the genetic algorithm is introduced, the complexity of outputs and states 

decreases. In other words, they become easier to predict. This is in agreement with the 

intuitive notion that control increases the predictability of the outputs and decreases 

the effort needed to make the prediction. 

An interesting result is that when the states are observed on the “trivial states” 

level, the complexity increases when control is introduced. Both configurations 

produce the same automaton configuration, depicted in Figure 5. 

The difference is that when random scheduling is used, the probability of the 

system being in state 1 (idle) decreases and the probability of state 14 (continuous 

work) increases. Higher probability of state 14 decreases the uncertainty of the 

automaton state, subsequently giving lower complexity. 

Figure 5 also clearly shows the pattern discovered by the method. The left part 

of the automaton represents processing of a single J1 job. Processing of J2 jobs takes 

place in state 14 – continuous work. 

The case of trivial state encoding also shows that by choosing a level of 

observation that is too coarse, the complexity is not captured adequately. Efficiencies 

of prediction, presented in Table 2, show that prediction is significantly less efficient 

on the trivial states level. Consequently, this level is less suitable for observation, as it 

gives rise to no new emergent patterns, which would result in higher efficiency of 

prediction. 

The contribution of this set of experiments is twofold. Firstly, controlling 

regularities by means of a control algorithm can be used to manage the complexity. In 

the case presented, outputs and states become easier to predict. Secondly, however, 
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this has to be observed on an appropriate level, as a coarse-grained projection of the 

observation can have different complexity properties. Efficiency of prediction can be 

used to guide the observation level selection. 

4.3 Configuration with Three Machines 

This group of experiments is designed to test how the system structure influences 

operational complexity. Two more scenarios are devised in addition to the original 

one with two machines (2M). The second scenario (3ME) uses three machines, while 

inputs remain the same as in the 2M scenario. In the third scenario (3MH), three 

machines are used as well. The average job inter-arrival times are modified, so that 

jobs arrive proportionally more frequently for three machines as they do for two. The 

scenarios are compared in Figure 6. 

The results show that output complexity is mainly influenced by input job 

configuration, regardless of encoding. In 2M and 3ME cases, in which input job 

configuration is the same, output complexity does not differ significantly. In the 3MH 

case, where more jobs arrive per time unit, the output complexity rises. 

The state complexity, on the other hand, is mostly influenced by the number of 

machines. This is understandable, as more machines yield a bigger state space. 

The trivial states level again behaves differently from the states and full states 

levels. As in the previous case, the automaton is the same in all three scenarios 

(Figure 5). The complexity increases in the 3ME case because the probability of being 

idle increases, and drops in the 3MH case because the probability drops. This is a 

consequence of the fact that there is a greater probability that at least one machine is 

processing a job at all times in the 3MH case. 

Another interpretation is provided by the complexity curves in Figure 6 b). 

The inputs exhibit complexity of zero in all cases. As they transform into states, the 
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complexity rises depending on the system structure. The output complexity is then 

mainly determined by the input configuration. 

This group of experiments suggests that complexity should be studied by 

simultaneously observing the system at different levels. Aspects of how operational 

complexity is influenced by structural complexity can, for example, be quantified by 

observing the system states. Properties of the inputs, conversely, can be quantified by 

observing the outputs. The complete view on operational complexity can only be 

obtained by observing both. 

4.4 Configuration with Periodic Control 

The main question for this group of experiments is whether complexity can be 

decreased by introducing periodicity into the control algorithm, as hypothesized by 

Suh (2005). 

Periodic control was simulated by running the genetic algorithm periodically. 

Four experiments were carried out with periods of one (every step), two, four, and 

eight steps. The algorithm processes all pending jobs only at the beginning of each 

period. 

The results in Figure 7 show that output complexity does decrease, but does 

not do so significantly. In relation to the previous group of experiments, this is 

speculated to be a consequence of the fact that output operational complexity is 

mostly influenced by input configuration. 

Conversely, the state complexity does decrease significantly, but only to a 

certain point. The decrease of complexity is a consequence of the fact that jobs are 

packed one after another more closely. This results in longer periods of continuous 

work followed by longer periods of the system being idle. The future states 

consequently become easier to predict. 
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Periodic control is hereby shown to lower the operational complexity of 

system states. As such, it can be used as a countermeasure to the growth of 

complexity due to structure, which was shown in the previous Subsection. 

5 Case Study 

The practicality of the approach is shown in a case study based on real data acquired 

from a manufacturing company. The production is serial, running 24 hours a day in 

three shifts. 

Data was acquired for five manufacturing centres over a period of 24 months, 

from October 2007 to October 2009. The data consists of times, at which the outputs 

were produced, along with several process parameters. In the case study, the 

productivity data is analyzed to assess the complexity of the outputs. 

The method of encoding the data is adopted from (Nerukh et al., 2002). 

Firstly, the number of pieces produced per hour is calculated for the whole period. 

Quantities are encoded with bins of size 20. This means that for zero produced pieces, 

the value is set to 0, for 1–20, the value is set to 1, etc. The complexity for each month 

is calculated using a three month window in order to achieve the required data length. 

CSSR algorithm is used to reconstruct the automatons. The length of the analyzed 

string is 16. 

5.1 Results and Discussion 

Figure 8 shows complexity and production rate for the period between November 

2007 and August 2009. 

The operational complexity of outputs remains high, at approximately 11 bits, 

throughout 2008. In December 2008 and January 2009, no pieces were produced for a 

period of three weeks as a consequence of the holiday season. The complexity, 

accordingly, sharply drops to less than 3 bits in this period. 
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In 2009, complexity increases again but never reaches the heights of 2008 and 

fluctuates around approximately 9 bits. This remains true even in July 2009, when 

slightly more pieces were produced than in August 2008 (marked on Figure 8). 

In light of the findings of simulation studies, lower output complexity in 2009 

is a direct consequence of lower demand, which is itself a consequence of the global 

recession. Lower demand also influences the complexity indirectly. In 2009, the 

management introduced free weekends in order to cope with the situation. Thusly, 

periodicity was implicitly introduced into control. As shown by the simulation 

studies, this can contribute to the complexity drop. 

The results make it clear that there is an intrinsic connection between 

complexity and the production rate. In most cases, an increased production rate means 

a higher complexity as well. Some deviations from this occur in July and August 2008 

and July and August 2009. In August, the production rate drops each year because of 

vacations. Complexity, interestingly, remains the same in both years. 

6 Conclusions 

Complexity has been identified as a ubiquitous property of manufacturing systems, 

one that has to be embraced by complex systems thinking rather than dismissed. It has 

been hypothesized that our understanding of complexity must be expanded, and that it 

can be expanded through the development of complexity metrics. 

This paper presents a unique view on operational complexity in manufacturing 

control. Complexity is associated with the difficulty of prediction. Statistical 

complexity from computational mechanics is proposed as a complexity metric. The 

metric offers a practical approach to complexity assessment based on a strong 

information theory background. As such, it allows for an easy implementation and a 

clear interpretation. 
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The properties of the metric are explored in the manufacturing context using 

simulation studies which highlight the limitations associated with the choice of the 

observation level. The metric is found to be both subjective and objective. It is 

determined by the subjective choice of the observation level, but is calculated 

deterministically based on the observed time series. This allows for a comparison of 

different systems when they are observed at the same level. 

Several implications of the choice of the observation level are outlined. It is 

suggested complexity should be studied by simultaneously observing the system at 

different levels. A complete picture of complexity can therefore only be obtained by 

merging the partial views of different management levels. Efficiency of prediction can 

be used as a metric that guides the selection of observation levels. 

Introduction of periodicity into control is shown to lower the complexity of 

manufacturing plant states and is suggested to be used as a countermeasure to the 

growth of complexity due to growth of structure, e.g. with the introduction of new 

machines. 

Practicality of the approach is confirmed by the case study, wherein the 

operational complexity of outputs is calculated for real data obtained from serial 

production. The case study uses an established method to encode the data.  The results 

show a drop in complexity as a consequence of the drop in demand in 2009, which 

was a reaction to the global recession. This supports the hypothesis that complexity 

should not be decreased regardless of the cost, but should instead be properly 

managed. 

Although the case study gives some insight into complexity, further studies are 

needed to build a causal relation between complexity and the events that influence it. 

Only then could the root causes to specific problems be identified using the proposed 
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metric. Future work will focus on exploring the relations between product complexity, 

process complexity, and manufacturing system configurations complexity in regards 

to the operational complexity. Other possibilities for future work include development 

of a general method for assessing complexity in manufacturing systems and a further 

exploration of the impacts of the levels of observation. 
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Job 

type 

Inter-arrival 

time [steps] 

Processing 

time [steps] 

Due time relative 

to arrival time [steps] 

Award Penalty 

rate [step
-1

] 

J1 14 12 30 3 1 

J2 50 32 40 50 10 

Table 1: Job details 
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CSSR, L=20, average values Cµ, input 

[bits] 

Cµ, output 

[bits] 

Cµ, state 

[bits] 

Cµ, trivial state 

[bits] 

Random 0 7.68 8.14 0.93 

Genetic algorithm 0 7.07 7.44 1.39 

Efficiency of prediction 

on the observation level 

0 % 96.2 % 97.3 % 68.4 % 

Table 2: Comparison of random and genetic algorithm scheduling from the 

perspective of statistical complexity 
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Figure 1: Manufacturing cybernetics view on the manufacturing control problem. 

 

Figure 2: The complexity curve from the control problem perspective. 

 

Figure 3: ε-machines for a completely random process, a deterministic process, and 

the same deterministic process, but with a different encoding. 

 

Figure 4: The simulated problem postulated as a control problem. 

 

Figure 5: ε-machine for trivial states – genetic algorithm scheduling. 

 

Figure 6: Average statistical complexity of the 2M, 3ME and 3MH configurations, 

observed on different levels. 

 

Figure 7: Statistical complexity with regards to control period. 

 

Figure 8: Statistical complexity and productivity of the analysed data. 
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Manufacturing cybernetics view on the manufacturing control problem.  
132x55mm (600 x 600 DPI)  
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The complexity curve from the control problem perspective.  

113x70mm (600 x 600 DPI)  
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ε-machines for a completely random process, a deterministic process, and the same deterministic 
process, but with a different encoding.  
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The simulated problem postulated as a control problem.  
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ε-machine for trivial states – genetic algorithm scheduling.  
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