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Determination of the activation energy by stochastic analyses of molecular dynamics 

simulations of dislocation processes 

 

Ghiath Monnet 

EDF – R&D, MMC, Avenue des Renardières, 77818 Moret-sur-Loing, France  

 

  

Abstract 

 

In this paper, we investigate the probability and the probability density of thermal activation 

of stress-driven dislocation processes, simulated by Molecular Dynamics (MD). Stochastic 

analyses of the survival probability are found to lead to simple relations between the loading 

history and the distribution of the interaction time and strength. It is shown that the 

determination of the activation energy associated to a thermally activated event can be 

achieved by a reduction of the stochastic process to a process obeying the Poisson's 

distribution, preserving the activation probability at the survival time. The method is applied 

to the kink-pair mechanism on screw dislocations in iron. Predictions are compared with 

experimental results and with other methods reported in the literature, which allows to 

underline the difference in the approximations and in the assumptions considered in these 

models.  

1. Introduction 

In the last ten years, the literature witnessed a fast development of Molecular Statics (MS) and 

Molecular Dynamics (MD) simulations of plastic deformation, for a review see [1,2]. 

Different mechanisms were simulated: dislocation generation [3,4] and motion [5,6], 

interactions with point defects [7,8], voids [9], precipitates [10,11,12], dislocation loops [13] 

and other dislocations [14,15]. In all cases, the major contribution of MD simulations was its 

ability to account for the whole spectrum of atomic vibrations. It is thus  a powerful technique 

for the investigation of effects of the temperature, reproducing thermal activation at the 

atomic level of a large variety of dislocation processes.  

Despite the large number of reported investigations, only few analyses were proposed to 

extract thermal activation parameters. The first approach was the use of the nudged elastic 

band in MS for the determination of the activation path [16,17]. Usually, this method is based 
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on the identification of the energetical landscape at zero temperature. The first analysis of 

thermal activation in MD simulations was reported by Domain et al. [6] who investigated the 

screw dislocation motion in iron at low temperature. They discussed and explained the origin 

of the difference between the critical stress measured in experiment and that computed in 

simulations. Rodney [18] simulated the motion of the edge Lomer dislocation in aluminum 

and reported a method for the estimation of the activation energy as a function of the average 

jump stress. Analysis of thermal activation of dislocation nucleation from free surfaces was 

reported by Zhu et al [3], while Warner et al. [19] investigated temperature effect on 

dislocation nucleation  from a crack tip. Recently, Monnet et al. [20] proposed a method for 

the extraction of the activation energy based on the concept of the equivalent stress. A priori, 

these methods look different and their theoretical bases are not clearly connected.  

In this paper, we apply the theory of stochastic systems on MD simulations of thermally 

activated dislocation processes. We show how the thermal activation simulated in MD can be 

reduced to an equivalent Poisson’s process with an equivalent rate and stress. This enables the 

computation of the activation energy associated to any loading history. The method is 

compared to other methods reported in the literature. The stochastic analyses allow for the 

discussion of the assumptions and the approximations of these methods and underline their 

common features. 

The paper is organized as follows. In the next section, we recall some general results of the 

probability theory applied to thermal activation in connection with the transition theory. Then 

we discuss the structure of the activation probability and its density in both simulation and 

laboratory loading conditions. In section 4, we present a method for the determination of the 

activation energy based on the construction of an equivalent Poisson’s process. Then, in 

section 5, the method is applied on the case of kink-pair mechanism. Predictions are  

compared with experimental data and with the predictions of other methods reported in the 

literature. We finally draw some important conclusions of this work.   

2. General considerations 

2.1. Probability and the rate function 

Consider a simulation in which several activation events may take place. Let’s start 

observation at a given time t = 0 and analyze the probability of activation at a given time t = 
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θ.  We denote Ps(θ) the probability of having exactly s activated events in the interval [0; θ] 

and ps(t1, ... ts) the density of probability of having these s events at, respectively t1, ... ts, 

where ti < θ. In the case where the events are undistinguishable, the number of combination of 

s events being s!, we can express every probability as a function of the probability densities 

[21,22]: 

ssss dtdtttp
s

P LL 11

0

),,(
!

1
)( ∫=

θ

θ         (1) 

The normalization conditions is 1)(
0

=∑
∞

=s

sP θ , where P0(θ) is the probability that no activation 

event occurs in the considered interval. It is commonly called the survival probability over 

[0; θ]. The average number of activated events is simply given by: 
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However, the description in terms of probabilities is that ps are difficult to measure directly 

from experiment or to compute in MD simulations. The quantity usually given in these 

studies is the rate of activation ω, i.e. the frequency at which the activation process is 

observed. According to the transition theory [23], for stress-assisted thermally activated 

processes, ω usually follows an Arrhenius-type equation : 

kT

tG
t

))((
exp)(

σ
νω

∆
−= ,         (3) 

where ν is a pre-exponential factor of a frequency dimension, ∆G(σ) the activation energy 

depending on the effective stress σ, k the Boltzmann constant (8.6 10
-5

 eV/K) and T the 

absolute temperature. It is important to note here that, the quantity σ is the local or the 

effective stress [6,20], which is different from the applied stress when any internal stress 

source is present, such as free surfaces [6], distortion fields of obstacles [11,8] or simply the 

self-stress of the dislocation [24], etc. In experiment, the determination of the effective stress 

is rather a complex task and requires the consideration of sophisticated elastic models [25]. 

For the sake of simplicity, we refer in the rest of this paper to the effective stress simply by 

the stress σ.  

In general, ω is a function of time since the temperature or the stress may vary during the 

simulation. This important function provides the property that ω(t)dt is the infinitesimal 

probability of activation between t and t + dt, regardless of the number of events that may take 

place outside the interval dt. ω(t) is not a probability density function since it does not accept 
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any normalization. The connection between ω(t) and the densities of probability ps is given 

only when a finite time interval θ is considered: 

∑ ∫
∞

=
−−−
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11

0

111 ),,,(
!)1(

1
)()(

s

sss dtdttttp
s
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θ

ω       (4) 

Comparing Eq. (2) and (4), we deduce the average number of events within the given interval: 

dttn ∫=
θ

ωθ
0

)()(           (5) 

Here we must note that Eq. (5) is obtained without any condition on the rate function [21]. It 

is in practice the true definition that allows for the experimental determination of ω. In 

experiment, ω is measured over some intervals where the rate function, and hence the stress, 

remains constant. ω is then obtained by dividing the average number of events by the time 

interval θ. The activation energy is generally a monotonous decreasing function with the 

stress [26,27].Together with the activation energy, we obtain the total information about the 

energy involved in the activation.  

2.2. Survival probability 

In an MD simulation, Either one event can take place [9, 10,28]; or several events can occur 

[6,18,29]. Starting from t = 0, let us examine the structure of the activation probability at a 

given time θ in a system of only one possible activation event. In this case Ps(θ) are zero for 

all s different from 0 and 1. For the sake of simplicity the activation probability and the 

Activation Probability Density (APD) are now written as P(θ) and p(θ).. The resulting 

normalization condition reads P(θ) + P0(θ) = 1 for all values of θ. The infinitesimal 

probability dP(θ) that the activation takes place between θ and θ + dθ  and not before is 

proportional to the probability that the system has survived without activation up to θ, which 

is P0(θ), and to the probability of thermal activation in the infinitesimal interval between θ 

and θ + dθ , that is ω(θ)dθ. Thus we deduce dP(θ) = ω(θ)×P0(θ)×dθ. Given the normalization 

condition on probabilities, one can express the variation of the survival probability as: dP0(θ) 

= -P0(θ)×ω(θ)×dθ. Consequently, we find:  
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ωθ
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Note that, since the probability that nothing occurs must decrease with time, the derivative of 

the survival probability is always negative. Using the normalization condition, we obtain the 

APD: 









−= ∫

θ

ωθωθ
0

)(exp)()( dttp            (7) 

In principle, every MD simulation provides an estimate of the survival time θs. If different 

independent MD simulations are carried out using the same conditions, the average of the 

survival time measured in MD should, by virtue of the principle of ergodicity, matches with 

the following formula:  

ssss ddtt
s

θωθωθθ
θ

∫ ∫
∞












−=

0 0

)(exp)( .       (8) 

θs is called the waiting, activation or incubation time. Eq. 8 is the general expression of the 

average activation time, obtained without any restriction on simulation conditions.   

In the following section we examine the structure of the function p(θ) depending on the 

loading conditions.  

3. Survival probability in MD   

3.1. Example of thermally activated process  

In order to illustrate our reasoning in the analyses of MD simulations, we need to restrict our 

discussion to the good order of magnitude characteristic of atomic scale processes. We choose 

the example of the thermally activated Kink-Pair (KP) nucleation [30], allowing the motion of 

dislocations submitted to large lattice friction. This process was widely investigated in MD 

simulations for simulating the motion of screw dislocation in iron [6], the Lomer dislocation 

[18] in Al and the edge dislocation in iron gliding on the {112} planes [31]. The case of the 

screw dislocation in iron constitutes a rare example where the activation energy as a function 

of the stress was determined in a large number of experimental investigations [32,33,34]. 

These investigations were analyzed by Naamane et al. [35], who underlined the fact that the 

critical effective stress for the nucleation of a KP should not be confused with the 

conventional yield stress measured at 0.2% of deformation. Fitting these data allowed for the 

determination of ∆G(σ) and the corresponding rate function:  
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where, H = 4 10
20

 s
-1

 m
-1

, ∆G0 = 0.84 eV and  σo = 360 MPa. The rate function is proportional 

to the dislocation segment length L [36,37]. The parameter H was deduced from experimental 

results [35] and can also be deduced from theoretical approaches reported by Louchet et al. 

[36]. Within this approach, H is equal to (νD × b/ 2

cl ), where lc is the critical length of the kink-

pair taken equal to 10b. With a typical value of 10
13 

s
-1

 for the Debye frequency νD, and 0.248 

nm for the Burgers vector, one finds a value for H close to 4 10
20

 s
-1

 m
-1

. Therefore, this value 

is considered characteristic of the process and independent of the loading conditions.  

The numerical values of parameters in Eq. 9 were used in DD simulations [35] and were 

found to provide a realistic description of the collective behavior of dislocations in good 

agreement with experiment. Furthermore, the square root dependency on the stress is in 

agreement with theoretical models of the KP nucleation [38,39].  

The average velocity of the dislocation is proportional to the rate function: v = bω(σ,T). Since 

conditions in MD and experiment are quit different, we will distinguish two different sets of 

conditions: (i) the laboratory (or experimental) conditions in which we consider the following 

typical values: L = 1 µm, v = 1 µm/s, a strain rate = 10
-4

 s
-1

; and (ii) MD conditions [6], where 

we take: L = 10 nm, a strain rate of 1.5×10
7
 s

-1
, leading to an average dislocation velocity v = 

4 m/s. Comparing with Eq. 3, the frequency ν is evaluated to 4 10
12

 s
-1

 in MD conditions and 

to 4 10
14

 s
-1

 in experimental condition. 

In this paper, the experimentally determined activation energy in Eq. 9 will be used: (i) to 

illustrate the difference in stochastic properties of thermal activation in MD and in 

experiment; (ii) for comparison with the the predictions of the method proposed in this paper. 

These predictions will be also compared with predictions of other methods reported in the 

literature. 

3.2. Simulation at constant stress 

If the stress is constant σ = σc, the treatment shown in § 2 simplifies drastically, since the rate 

function ωc is also constant. According to Eq. 7, the APD decreases exponentially with time: 

p(θ) = ωc exp(–θωc), leading to the activation probability P(θ) = 1 – exp(–ωc θ). An important 
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property is to be underlined here. When the stress is constant, the average incubation time 

given in Eq. 8 becomes: 

( )
c

ssccss d
ω

θθωωθθ
1

exp
0

=−= ∫
∞

.       (10) 

This result is obvious, since it is the direct consequence of the definition of the rate function. 

Using Eqs. 3 and 10, if different activation events are simulated, we can have an estimate of 

the average activation time <θs>, which allows us to deduce the activation energy: 

( )νθσ sc kTG ln)( =∆          (11) 

As pointed out by Monnet et al. [20], the frequency parameter ν should be estimated 

depending on the nature of the obstacle. In some cases, the evolution of the this parameter 

with temperature can not be neglected. Recently, Ryu et al. [40] reported a large activation 

entropy for dislocation nucleation. They connect this entropy to thermal expansion with 

negligible contribution from vibrational entropy. Warner et al. [19] connected the large 

temperature effect on the activation energy of dislocation nucleation to the changes in the 

elastic constants and the staking fault energy.  

In the case where several events can be activated in the MD simulation at constant stress, the 

events are thus random and the activation obeys the Poisson’s distribution [21]. This is 

precisely the case in experiment where a given critical stress is associated with an imposed 

strain rate.  

As we will see later, the case of constant stress will be of interest in establishing the method 

of determination of the activation parameters in MD simulations. 

3.3. Case of constant stress rate  

In the case where the stress change is proportional to time, i.e. dσ = σ& dt, time integrals can 

thus be easily transformed to stress integrals [18]. When the stress increases linearly from σs 

at t = 0 to the current value σ, Eq. 7 can be rearranged to express the APD per unit stress: 












−= ∫

σ

σ

ω
σσ

σω
σ

s

duup )(
1

exp
)(

)(
&&

            (12) 

From Eq. 12, it can be seen that the APD does not depend only on the current value of stress, 

but also on the stress rate and on the starting stress σs. The profile of p(σ) depends on the test 

conditions. To clarify this feature we calculate p(σ) in simulation and laboratory conditions 
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(see Fig. 1 a and b) with a starting stress σs = 0. We use the activation energy determined 

experimentally and discussed in §3.1. We compute the APD from Eq. 12 in MD and 

laboratory conditions. With a strain rate of 10
-4

 s
-1

, the stress rate is close to 7 MPa/s in 

experiment, while it is of the order of 10
12

 MPa/s in MD simulations [6]. 

 

Fig. 1: about here.  

 

We plot the ADP profiles for three different temperatures: 10, 300 and 600 K in MD 

conditions and three temperatures: 10, 100 and 200 K in experimental conditions. Three 

general remarks can be made, see Fig. 1. (i) All ADP profiles are peaked around a maximum 

value of p(σ) at a given value of the stress, denoted σp. Both σp and p(σp) vary with the 

temperature and loading conditions. (ii) The standard deviation of all APD profiles in MD 

conditions is much larger than in experiment. This explains partially the large fluctuation of 

the jump stress in MD (see loading curves reported in [6,18,31]). (iii) The APD peaks are not 

symmetrical, hence we can define in addition to most probable stress σp the mean activation 

stress σm, which corresponds to the average of the stress at which the activation occurs, i.e. 

the average of the maximum stress. By carrying out several independent simulations, the 

average of the maximum stress provides an estimate of the σm and not of σp. σm and σp are 

also called the mean jump stress and the most probable jump stress, since the activation is 

usually the signature of a collective jump of atoms. If the starting stress is zero or very low in 

all these simulations, we can express the mean jump stress as: 

∫ ∫
∞









−=

0 0

)(
1

exp)( σω
σ

σω
σ
σ

σ
σ

dduum
&&

       (13) 

Let us examine the values of σm and σp from profiles depicted in Fig. 1. As it can be seen, at 

10 K for all conditions the profile is strongly peaked around the value σo = 360 MPa. The 

probability to nucleate a KP is thus appreciable only within 2 MPa around the mean jump 

stress. However, at 600 K the profile is quite spread with a relatively large variance of almost 

80 MPa. The average value of the jump stress σm is 168 MPa while the most probable jump 

stress σp is close to 179 MPa. The case of 300 K is intermediate with σm = 262 MPa and σp = 

272 MPa. The effect of temperature is clearly more pronounced in experimental conditions. 

Although the variance remains small for all temperatures (σm ≈ σp), the efficiency of thermal 

activation is that strong that the average value of the maximum stress at room temperature 
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tends to zero [35]. While in MD simulations, this athermal plateau cannot be reached. This 

was first pointed out by Domain et al. [6] who have shown that the difference between 

experimental and MD simulation conditions provokes a loss of efficiency of the thermal 

activation in MD. This loss has been evaluated to 21 kT, which is not negligible compared 

with 25 kT, the activation energy measured in experiment. 

 

So far, we investigates the ADP profiles for σs = 0. Beside the effect of the loading rate on the 

ADP profiles, the starting stress σs may play an important role. Let us denote σm and σp the 

values obtained with a zero starting stress. In other cases, the starting stress will be indicated 

between brackets. As pointed out first by Rodney [18], when σs is small compared to σm say, 

no significant effect is expected. The reason is that the ADP profiles are peaked around σm. 

But in simulations of kink-pair nucleation [6,18,31], the starting stress for an event n can be 

very large, depending on the jump stress of event (n – 1) (see curves reported in [6,18,31]). 

To show the evolution of the ADP profile with σs we plot the ADP profiles in Fig. 2 for 

different values of σs:  0, σm and σp. 

 

Fig. 2: about here. 

When σs = 0, we get the reference values of σm and σp. Increasing the value of the starting 

stress decreases the distribution variance. The profile is not always in the form of a peak, 

especially when of σs > σp. As general tendency, when σs increases, σm(σs) increases and the 

difference between σm(σs) and σp(σs) decreases. Also, since the stress increment here is 

proportional to time, we can also note that the average survival time decreases strongly with 

σs. We will see in the following that these features (shown in Fig. 2) are important for the 

determination of the activation parameters.  

It is important to note that when σs is not zero but it remains the same in all the independent 

MD simulations, the average of the jump stress can be given by: 

∫ ∫
∞












−=

s s
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σω
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σω
σ
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1
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       (14) 

In the case where σs is not the same in the different MD simulations, Eq. 12  should be 

replaced by:  
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where the 
n

...  denotes the average over the number n of independent simulations. In these 

conditions, it is difficult to predict the average jump stress from MD simulations. 

 

3.4. Case of constant strain rate  

Simulations at constant strain rate imposes a constant deformation increment to be 

accommodated at every simulation step. If the dislocation does not move significantly before 

the activation event, then all the deformation is accommodated elastically and the stress 

remains proportional to the strain, i.e. to the simulation time. In all other cases, the stress 

profile can be any profile σ(t).  Here nothing can be said about the stochastic properties other 

than the general equations shown in § 2.2. But, as far as we are only concerned with the 

activation energy ∆G(σ), a possible approach can be used. This is the objective of the next 

section.       

4. Determination of the activation energy function  

We assume that the energy barrier is independent of the temperature, except for the entropy 

contribution [23]. Ngan et al. [41] proposed an original approach of the stochastic dislocation 

nucelation. They compared their prediction of the survival time with MD and experimental 

results. They considered the Weilbull distribution, which is appropriate in predicting size 

effect, but still an empirical approach, that cannot be connected to physical parameters. We do 

not discuss this approach here since no use of the transition theory was made. 

In this section we will see that any stress-assisted activation process can be in general reduced 

to a Poisson's process with a well defined stress and activation energy. First we show how this 

can be done on the level of one activated event and, then, we generalize the treatment in order 

to consider a set of separate activation events. In all these cases we determine the constant 

stress leading to an equivalent Poisson's process.        
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4.1. Reduction to the equivalent Poisson's process  

Let us consider a given stress profile schematized in Fig. 3a. The starting stress is σs and the 

activation occurs after a survival time θs when the stress is at its end value σe. For the 

treatment bellow, σe does not need to be the maximum stress value. The stress does not even 

need to be monotonous with time, see Fig. 3a.   

 

Fig 3: about here. 

 

The idea proposed in this paper is based on the reduction of the complex activation process 

with σ(t) to a Poisson's process whith a constant stress σ = σc.. We can call this stress the 

Poisson's stress since it represents the constant stress making the associated Poisson's process 

equivalent to that observed with the "real" profile σ(t).  

In order to identify the equivalent Poisson process, we need first to identify ωc and σc from 

the activation time and the stress profile σ(t) computed in the MD simulation. σc can be 

computed by imposing that the activation probability P(θs)σ(t) is the same as the activation 

probability of  the equivalent Poisson's process 
csP σσθ =)( . This is schematized in Fig. 3b. 

Since, the stress is constant in the Poisson's distribution, this condition can be expressed as: 

( )











−=− ∫

s

dttsc

θ

ωθω
0

)(expexp .        (16) 

The solution of Eq. 16 is simply: 

∫=
s

dtt
s

c

θ

ω
θ

ω
0

)(
1

         (17) 

The  rate of the equivalent Poisson's process equals thus the average over the survival time θs 

of the rate function: )(tc ωω = . It is important to note that this result is obtained without any 

approximation or restriction on the shape of the function σ(t). Of coarse, the two profiles of 

the APD are quit different (see Fig. 3b); the condition in Eq. 17 imposes only that the time 

integration of the two ADP gives the same value at t = θs.  

In general, the activation energy is not known. MD simulations provide σ(t) and the survival 

time θs. The question now is how to determine the Poisson's stress σc directly from the σ(t). In 

order to answer this question we can use the following approximation [6,20,31]. It consists in 
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the expansion of the activation energy to the first order around the value of σe: ∆G = A – Vσ, 

where A is constant and V the activation volume. This enables us to reduce Eq. 17 to the 

following expression: 

)
)(

exp(ln
kT

tV

V

kT
c

σ
σ = .            (18) 

Eq. 18 is valid for all stress profiles computed in MD. As pointed out in [20], in the special 

case where the stress is proportional to time and the starting stress is zero, Eq. 17 simplifies 

to: 

kT

V

V

kT e
ec

σ
σσ ln−=            (19) 

Eq 18 or 19 can be easily used to determine the Poisson's stress, using a rough estimation of 

the activation volume. As can be guessed from Eq. 19, the difference between σc and the 

maximum stress σe depends rather on the temperature than on the slightly varying activation 

volume. In the next section, we give an evidence to this postulate using experimental data.   

It can also be seen from Eq. 19 that when the temperature goes to zero, the Poisson's stress 

tends to the maximum stress, whatever the value of the activation volume. 

4.2. Generalization to many activation events 

In MD simulations, the activation event cannot be considered as independent. Besides, 

loading conditions during the activation of a given event, i.e. the σ(t) profiles, may be 

different from one event to another one. Following the method described in § 4.1., one can 

associate a critical stress to every event, which are not necessary the same. Although, every 

event was reduced to a Poisson's process, the ensemble of events can not be considered as 

belonging to one Poisson's process.  

Let us consider N events simulated in one MD simulation or in several independent MD 

simulations. We can always associate to an event n an activation time θn, a Poisson's stress 

σc,n and rate ωc,n using the procedure presented in § 4.1. In this framework, we cannot deal 

with avalanches of activated events. Although the origin of these avalanches was explained 

[31], the correlation between them is still difficult to couple with thermal activation kinetics. 

Poisson's stresses σc,n are called "partial" Poisson's stresses, since they account for only one 

event at a time. For every event, the activation probability at the survival time is given by: 

Pn(θn) = 1 – exp(–θnωc,n).          (20) 
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Now, we seek the Poisson's process of the whole ensemble of the events. In practice, we seek 

the Poisson's stress σc as a function of the different σc,n and their associated survival times θn. 

Since, the application of the σc,n during the θn produces the activation of N events, the 

equivalent Poisson's stress σc should lead to the activation of N events during the interval 

θtot = Σ(θn). For this equivalent Poisson's process, the average activation time θc is simply the 

average of the computed θn: θc = θtot/N = <θn>. Its rate function ωc equals thus the inverse of 

the average survival time θc, i.e. ωc = 1/θc and the associated the activation probability at θc  is 

Pc(θc) = 1 – exp(–θcωc). Since the Poisson's stress σc should in average produce the same 

activation probability as that produced by the σc,n, one may write the necessary condition 

over σc as:  

( ) ( )∑ −=−
N

nnccc
N

θωθω ,exp
1

exp .        (21) 

Equation 21, although rigorous, cannot be solved in σc as was solved eq. 16, because events 

are not independent. A good approximation of Eq. 20 is possible thanks to the special 

structure of the function Pn. The probability of activation P after an incubation time θ in a 

Poissonian process is given by 1 – exp(-ωθ), where ω is the rate associated with the stress σ 

by Eq. 3. Let us examine the variation of P with σ. The first derivative of P with respect to σ 

is always positive, while the second derivative vanishes at σ = σc, i.e. when ∆G(σc) = – (kT/V) 

ln(νθn). When σ varies around σc: σ = σc + ∆σ, P varies roughly proportionally with ∆σ. In 

Fig. 4, we plot for typical values of the different variables (L = 10 nm) the evolution of P as a 

function of ∆σ. We can clearly see that P varies almost linearly with ∆σ for a wide range of 

the activation probability (from 0.1 up to 0.9).  

 

Fig. 4: about here.  

 

The first derivative at σc is simply V/(kTe), which is independent of θn and the value of σc 

varies with the logarithm of the incubation time (see eq. 11), i.e. σc does not vary strongly 

with θc.  

Now we go back to Eq. 20 and we try to take advantage of (i) and (ii). It is easy to find that 

we can write every activation probability in eq. 21 as :  

( )cncccncn
kT

V
PP σσσσ −+= ,, )()(         (22) 
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Inserting Eq. 22 into Eq. 21 yields the following solution for the Poisson's stress : 

ncc ,σσ =            (23) 

Consequently, the survival times θn do not contribute in the determination of the Poisson's 

stress. The later is simply the linear average of the partial Poisson's stresses σc,n.        

Once the Poisson stress for all events is determined, we can reduce the ensemble of the n 

events to one Poisson process with a constant stress σc. The associated activation energy can 

be easily determined using the procedure discussed in §3.2. 

5. Application to the kink-pair mechanism on the screw dislocation in iron.  

 

5.1. Effect of the activation volume   

In the method presented in this paper the activation volume V is required for the 

determination of σc,n. We must thus first check that the computed values σc,n are not strongly 

affected by the choice of V. To do so, we can use the experimentally determined activation 

rate is Eq. 9 discussed in §3.1. We consider a typical mechanical loading condition in MD 

(see § 3.3.). The stress is increased from 0 at constant stress rate dσ = σ& dt, where σ& is of the 

order of 10
12

 MPa/s. The stress increases to a maximum value (the jump stress) when the 

activation occurs. The average value of the jump stress σm can be determined using eq. 13. In 

order to calculate the associated Poisson's stress σc from eq. 18, we consider two values for 

the activation volume: 20 b
3
, found in experiment at high stresses [33,34]; and 10 b

3
. The 

results are depicted in Fig. 5. In order to reveal the effect of imposing a constant value of V, 

we consider another test by deriving the activation energy found in experiment (Eq. 9) to 

deduce the exact current value of V at the current stress value. We have thus three different 

values of V for the determination of the Poisson's stress. All these estimates are plotted in Fig. 

5. As we can clearly see, there is no significant effect of the exact value of V on the 

computation of the Poisson's stress. We can thus trust the robustness of the value of the 

critical stress even with a rough estimate of the activation volume. 

 

 

Fig. 5: about here.  
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From Fig 5 we can see that the Poisson's stress is always lower and close to the maximum 

stress. The difference between them increases with temperature.     

5.2. Activation probability density in MD      

In order to show the profile of the APD in a typical MD simulation, we use the stress-strain 

curve reported by Domain et al. [6] for the loading at 300 K of a ½<111> screw dislocation in 

iron in the (110) plane (see Fig. 6). The method developed in this paper for the determination 

of the activation energy will be applied in the next section. Here we use the activation energy 

determined from experiment (see § 3.1.), to compute the APD profiles associated to 

nucleation of every kink-pair. The results are shown in Fig. 6.   

    

 

Fig. 6: about here. 

 

From Fig. 6, we can see that, depending on the starting stress of every event, the APD profile 

varies from one event to the other. Thee profiles are quite different from the profile obtained 

with a zero starting stress (see Fig. 1). For some events it is even not possible to distinguish a 

maximum of the APD. The integration of these profiles furnishes the activation probabilities 

obtained according to experimental data. In the next section, they will be compared to the 

activation probabilities deduced from the method proposed in this paper.  

5.3. Determination of the activation parameters        

For every event recorded on the stress strain curve in Fig. 6 we compute the corresponding 

Poisson's stress σc,n using eq. 18 (see Fig. 7) and a value of 20 b
3
 for the activation volume. 

We recall here that every σc,n is a constant stress characteristic of Event n. The σc,n appear as 

horizontal line segments in the figure. For every event, σc,n is located between the starting and 

the maximal stress, but remain closer to the maximum stress. Some domains of integration of 

eq. 18 are delimited by vertical dashed lines in the figure.  

 

Fig. 7: about here. 
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The σc,n vary substantially from one to another event. The Poisson's stress σc amounts to 255 

MPa and shown as a double-line in the figure. From Fig. 7 we can evaluate the average 

activation time, since simulation reported in [6] is performed at constant strain rate of 1.5×10
7
 

s
-1

. θc is found close to 0.038 ns. Eq. 11 can then be used to deduce the corresponding 

activation energy, which yields ∆G = 0.13 eV. The value of ∆G is therefore associated to the 

Poisson's stress σc = 255 MPa. 

5.4. Validation and comparison with experiment 

The result of the application of the method presented in this paper is ∆G(σc = 255 MPa) =  

0.13 eV. The value can be compared with the experimental data discussed in §3.1. Numerical 

application shows that for the same effective stress, ∆G is equal to 0.133 eV which is almost 

the same as the activation energy obtained from Eq. 11. This is a first and direct validation.  

 

Fig. 8: about here. 

 

The method can also be checked at the level of individual events, by comparing the activation 

probabilities. Since the activation energy and the Poisson's partial stresses σc,n are now known 

(see Fig. 7), we can compute the activation probability for every event Pn = 1 – exp( – ωc,nθ n) 

and compare it with the activation probability computed form experiment (see Fig. 6). Fig. 8 

shows profiles of the activation probabilities computed from experiment (thick line) and from 

the method presented in this paper (thin line). For every enent, the evolution of the activation 

probabilities are different, but the average of Pn (θn)  is almost the same in both approaches: 

0.52 and 0.54. This agreement is noticeable since the ∆G(σc) predicted from our stochastic 

analysis is obtained from a completely different and independent way compared to 

experiment [35].  
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5.5. Discussion 

We first discuss the approach proposed by Domain et al [6] and used by Monnet et al [20]. 

The difference with the method proposed in this paper is the solution of Eq. 21. The solution 

considered in these works is based on the following reasoning. Since, for every event, the 

distribution is Poissonian, the different products ωnθn should not be very different from 1. The 

Taylor series to the first order in the vicinity of (–1) of the survival probabilities is expressed 

by: 

( ) )1(exp 11

iiii ee θωθω −+=− −−         (24) 

Inserting Eq. 22 into Eq. 21, we get: 

∑=
n

cnc

tot

c θω
θ

ω ,

1
          (25) 

If we expand the activation energy as before (∆G = A – Vσ ), we obtain the first order solution 

of eq. 21 called σind (the index "ind" refers to independent): 

N

ncnind
kT

V

V

kT
)exp(ln ,σθσ =         (26) 

The symbols 
N

... denotes the average over all the N events. Replacing the σc,n by their 

expression in Eq. 18, one gets: 

tot
kT

tV

V

kT
ind

θ

σ
σ )

)(
exp(ln=          (27) 

Eq. 27 is the same as Eq. 3 in [6] and Eq. 11 in [20]. It corresponds to the extension of the 

average in Eq. 18 over all the activation events. Since Eq. 18 was established for a Poisson's 

process, the solution given in Eq. 27 stipulates implicitly that all events are random and 

independent. In other terms, there is a competition between these events at any time interval. 

The events are of coarse not independent, their occurrence obeys conditional probability and 

not statistics of random independent events. Although, this assumption is not justified from a 

theoretical point of view, σind still provides a good estimate of the Poisson's stress, since the 

products ωnθn as well as ωcθc are in deed close to 1. As can be seen in Fig. 7, σc is equal to 

255 MPa and σind is 266 MPa. The difference amounts to 4%. This confirms that the 

approximation of independent events used in [6,20] provides a good estimate of the Poisson's 

stress. 

In the literature, we can find another method proposed by Rodney [18] and consists in tow 

approximations furnishing the activation energy and the corresponding stress. (i) The 
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activation energy of the process is considered equal to the effective activation enthalpy ∆H
*
, 

defined by:  








 ∆
=∆

σ
σν
&

ln*
kTH ,           (28) 

where ∆σ is the stress drop following the nucleation of the KP. (ii) The identification of the 

associated stress is based on the following reasoning. Simulation of different activation events 

allows for the determination of the average jump stress σm. Instead of using Eq. 13 to connect 

σm to the APD profile, σm is considered to match with the most probable stress σp, obtained at 

a constant stress rate σ&  with a low starting stress. In these conditions, σp is obtained by 

maximizing the APD. The derivative of the APD in eq. 12 vanishes when: 

( )
σ

σω

σ
σω

σ &

2
)()( p

p

=
∂

∂
          (29) 

Together with Eq. 3, Rodney [18] finds: 

)( p

kTG

p

σω
σσ σ &

=
∂
∆∂

−              (30) 

The important feature in Eq. 30 is that σp is independent of the starting stress. The computed 

σp is always larger than σm but remains close to σm (see Fig. 1). However, in the case where 

the starting stress σs is enough large, the values of σm(σs) and σp(σs) can be strongly affected. 

Fig. 2 and Fig. 6 provide an evidence to this. The profiles of the APD are not always peaked 

around the fixed value σp. Despite this feature, the average of the jump stress remains indeed 

close to σp because the large values of σs increase σm(σs) to approach σp. (see Fig. 2). We 

expect the average of the jump stress to be a good estimate of σp. The two assumptions 

considered in this method come to approximate the stress-strain curve, such as that shown in 

Fig. 6, by a “sawtooth” shape curve, in which, at every activation event, the stress falls down 

from σm to σm – ∆σ, before increasing again up to σm. We notice that the survival time <θs> in 

this approximation can be deduced from the relation ∆σ = <θs> σ& . We can easily see that Eq. 

28 is an approximation of Eq. 11. In the given example of Fig. 6, ∆σ = 30 MPa and σ& = 

1.1×10
18

 Pa/s. Numerical application provides the value of 0.122 eV for the activation energy, 

while the average of the jump stress amounts to 266 MPa. These values are in good 

agreement with experimental results [35]. Although simple and accurate, the method 

proposed in [18] can be used only when the stress increases linearly with time during the 

incubation time.  
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6. Conclusions 

In this paper, we described the stochastic properties of thermally activated dislocation 

processes simulated by MD simulations with a view to determine the activation energy. We 

can draw the following conclusions. 

(i) The structure of the activation probability and the activation probability density (APD) 

can be straightforwardly connected to the mechanical loading applied on the system. 

(ii) In the case where the APD is constant, thermal activation is found to obey the 

Poisson's distribution. The activation energy as a function of the stress can be easily 

determined, since the average activation time is directly connected to the activation 

energy.  

(iii) In the case where the stress varies with time, we have shown that the determination of 

the activation energy comes to a reduction of the process to a Poisson's process 

characterized by two parameters: an average activation time and an equivalent 

constant stress, called the Poisson's stress.    

(iv) The Poisson's stress is computed from the stress profile and identified thanks to the 

condition of conservation of the activation probability.  

(v) The method presented in this paper provides results in good agreement with 

experimental results characterizing the kink-pair mechanism controlling the motion of 

screw dislocations in iron. 

(vi) The comparison with other methods reveals important common features and similar 

prediction. However, the approximations and the assumptions considered are not 

equivalent. The method presented in this paper has the advantage to be valid for 

arbitrary mechanical loading.  
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Figures 

 

Fig. 1: profiles of the activation probability density at different temperatures per stress unit of 

MPa in (a) MD conditions and (b) laboratory conditions, calculated from Eq. 12, using a zero 

starting stress. 

 

Fig. 2: effect of the starting stress on the activation probability density per stress unit of MPa, 

computed using Eq. 12 

 

Fig. 3: (a) a schematic stress profile and the corresponding Poisson's stress; (b) the probability 

activation for the two stress profiles in (a). 

 

Fig. 4: evolution of the activation probability in the vicinity of the Poisson's stress. 

 

Fig. 5: evolution of the average jump stress (full circles) and the Poisson's stress calculated 

from experimental data. Open symbols designate values of the critical stress obtained with a 

constant volume approximation, for squares V = 20 b3 and for rectangles V = 10 b3. Full 

triangles refer to the Poisson's stress computed with values of the activation volume derived 

from experimental data. 

 

Fig. 6: evolution of the stress and the activation probability density as a function of strain in 

MD simulations of screw dislocation moving in iron at 300 K and 1.5 10
7
 s

-1
 strain rate. 

 

Fig. 7: the stress-strain curve reported in [6]. The straight horizontal segments indicate the 

Poisson's partial stresses and the double-line the Poisson's stress. The simple horizontal line 

show the value of the Poisson's stress in the independent-event approximation. 

 

Fig. 8: comparison between of activation probabilities computed from experimental data 

(thick line) with those obtained using the method proposed in this paper and based on the 

concept of the Poisson's stress (thin line). 
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Fig. 1  
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