
HAL Id: hal-00717918
https://hal.science/hal-00717918

Submitted on 14 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the existence and unicity of stable models in normal
residuated logic programs-CMMSE’10

Manuel Ojeda-Aciego, Nicolás Madrid

To cite this version:
Manuel Ojeda-Aciego, Nicolás Madrid. On the existence and unicity of stable models in normal
residuated logic programs-CMMSE’10. International Journal of Computer Mathematics, 2011, pp.1.
�10.1080/00207160.2011.580842�. �hal-00717918�

https://hal.science/hal-00717918
https://hal.archives-ouvertes.fr

For Peer Review
 O

nly

On the existence and unicity of stable models in normal
residuated logic programs-CMMSE'10

Journal: International Journal of Computer Mathematics

Manuscript ID: GCOM-2010-0739-A.R3

Manuscript Type: Original Article

Date Submitted by the
Author:

18-Mar-2011

Complete List of Authors: Ojeda-Aciego, Manuel; Universidad Malaga
Madrid, Nicolás; Universidad de Málaga

Keywords:
stable models, residuated logic programming, fuzzy logic
programming, existence of models, uniqueness of models

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–15

RESEARCH ARTICLE

On the existence and unicity of stable models

in normal residuated logic programs

Nicolás Madrida∗ and Manuel Ojeda-Aciegob∗

∗Dept. Matemática Aplicada. ETSI Informática, Campus de Teatinos. Málaga, Spain;
ae-mail: nmadrid@ctima.uma.es be-mail: aciego@ctima.uma.es

(Received 00 Month 200x; in final form 00 Month 200x)

We introduce a sufficient condition which guarantees the existence of stable models for a
normal residuated logic program interpreted on the truth-space [0, 1]n. Specifically, the conti-
nuity of the connectives involved in the program ensures the existence of stable models. Then,
we study conditions which guarantee the uniqueness of stable models in the particular case
of the product t-norm, its residuated implication, and the standard negation.

1. Introduction

Similarly to classical logic programming, the existence of fuzzy stable models can-
not be guaranteed for an arbitrary normal residuated logic program [13]. Necessary
conditions to ensure the existence of stable models have been widely studied in clas-
sical logic programming. In fact, a syntactic condition on crisp normal programs
to have stable models can be found in [3].

However the characterization in the fuzzy framework is much more complex
since it involves two different dimensions: “the syntactic structure of the normal
program” and “the choice of suitable connectives in the residuated lattice”. For
short, we will call them the syntactic and the semantic dimension, respectively.

In classical logic programming only syntactic conditions are available since the
connectives are fixed. However, for normal residuated logic program the semantic
dimension plays a crucial role as well; for example the program with only one rule

P = {〈p← ¬p; 1〉}

has a stable model if and only if the operator associated with ¬ has a fixpoint.
To the best of our knowledge, the problem of establishing semantic conditions for
guaranteeing the existence of fuzzy stable models has not been attempted so far,
although sufficient conditions underlie in some approaches; for example [16] proves
that every normal logic program has stable models in the 3-valued Kleene logic
and, more generally, [6, 10, 17–19] show that every normal residuated logic program
has stable models if the underlying residuated lattice has an appropriate bilattice
structure [8]. Concerning the latter, it is worth to note that not only multivalued
and fuzzy logics are often used in computer science and artificial intelligence, there
are other non-classical logics such as the temporal, modal, multimodal logics which
are receiving lots of attention in the recent years [1, 2, 9, 15].

Partially supported by the Spanish Ministry of Science project TIN09-14562-C05-01 and Junta de An-
dalućıa projects FQM-2049 and FQM-5233

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 200x Taylor & Francis
DOI: 10.1080/0020716YYxxxxxxxx
http://www.informaworld.com

Page 1 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

2 On the existence of stable models in normal residuated logic programs

In this paper we provide another condition on the residuated lattice to ensure
the existence of stable models, more specifically: if the underlying lattice is an Eu-
clidean space and the connectives ∗ and ¬ in the residuated lattice are continuous,
then the existence of at least a fuzzy stable model is guaranteed. Then, the problem
of uniqueness is studied and sufficient conditions for uniqueness, in the particular
framework of product t-norm and standard negation, have been obtained. These
conditions are stated in terms of a set of inequalities between several parameters
which can be easily obtained from a program P.

2. Preliminaries

Let us start this section by recalling the definition of residuated lattice, which
fixes the set of truth values and the relationship between the conjunction and the
implication (the adjoint condition) occurring in our logic programs.

Definition 2.1 A residuated lattice is a tuple (L,≤, ∗,←) such that:

(1) (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
(2) (L, ∗, 1) is a commutative monoid with unit element 1.
(3) (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

Remark 1 The adjoint pair is uniquely determined by the chosen t-norm ∗. In
other words, fixed a left-continuous t-norm ∗, the only operator ← which forms an
adjoint pair together with ∗ is that defined by:

x← y = sup{z ∈ L : y ∗ z ≤ x}

This is the reason why we usually present residuated lattices by simply mentioning
the operator ∗.

In the rest of the paper we will consider a residuated lattice enriched with a
negation operator, (L, ∗,←,¬). The negation ¬ will model the notion of default
negation often used in logic programming. As usual, a negation operator, over L,
is any decreasing mapping n : L→ L satisfying n(0) = 1 and n(1) = 0.

Definition 2.2 Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal
residuated logic program P is a finite set of weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols verifying
pi 6= pj for i, j = 1, . . . , n.

It is usual to denote the rules as 〈p← B;ϑ〉. The formula B is usually called the
body of the rule, p is called its head and ϑ is called its weight.

A fact is a rule with empty body, i.e facts are rules with the form 〈p ← ;ϑ〉.
The set of propositional symbols appearing in P is denoted by ΠP.

Definition 2.3 A fuzzy L-interpretation is a mapping I : ΠP → L; note that the
domain of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈p ← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(p) or,
equivalently, ϑ ≤ I(p← B). Finally, I is a model of P if it satisfies all rules (and
facts) in P.

Note that the ordering relation in the residuated lattice (L,≤) can be extended
over the set of all L-interpretations as follows: Let I and J be two L-interpretations,

Page 2 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

Nicolás Madrid, Manuel Ojeda-Aciego 3

then I ≤ J if and only if I(p) ≤ J(p) for all p ∈ ΠP.

2.1 On the Immediate Consequence Operator

The immediate consequence operator was successfully generalized for positive resid-
uated programs in [5] and can be applied straightforwardly to normal residuated
programs. Its definition is as follows:

Definition 2.4 Let P be a normal residuated logic program. The immediate conse-
quence operator maps every L-interpretation I to the L-interpretation TP(I) defined
below:

TP(I)(p) = sup{I(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P}

where p ∈ P.

Similarly to the positive case, the operator TP can be used to characterize the
models of normal residuated logic programs:

Proposition 2.5 Let P be a residuated logic program and let M be an L-
interpretation. M is a model of P if and only if TP(M) ≤M .

Proof Let M be a model of P. Then for every rule 〈p← B; ϑ〉 ∈ P:

M(p) ≥M(B) ∗ ϑ

This inequality implies that for every propositional symbol p, M(p) is an upper
bound of the set {M(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} and thus:

M(p) ≥ sup{M(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} = TP(M)(p)

Assume now that M(p) ≥ TP(M)(p) for every propositional symbol p, then for
every rule 〈p← B; ϑ〉 in P:

M(p) ≥ TP(M)(p) = sup{M(B′) ∗ ϑ′ : 〈p← B′; ϑ′〉 ∈ P} ≥M(B) ∗ ϑ

�

The immediate consequence operator is monotonic when is defined on positive
residuated logic programs [5]:

Theorem 2.6 Let P be a positive residuated logic program, then TP is monotonic.

The theorem above together with Knaster-Tarski’s fix-point theorem ensure that
the operator TP has a least fix-point; furthermore this least fix-point coincides with
the least model of P.

The main difference in the case of normal residuated logic programs, is that TP
is not necessarily monotonic. That feature implies that we cannot make use of the
least model semantics in arbitrary normal residuated logic programs.

Example 2.7 Consider the logic program 〈p← ¬q ; 1〉 interpreted on the residu-
ated lattice with negation ([0, 1],≤,min,←, 1−x). Then the immediate consequence
operator is the mapping:

TP(I)(x) =

{
1− I(q) if x = p
0 otherwise

Page 3 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

4 On the existence of stable models in normal residuated logic programs

where I is a [0, 1]-interpretation. Clearly this mapping is not monotonic with re-
spect to the order between [0, 1]-interpretations.

Certainly, the definition of TP can be simplified if for each propositional symbol p,
there exists only one rule whose head is p, since the operator sup can be removed
from the definition. Although that condition on a program P does not usually
hold, we can always obtain a partition of P such that the condition holds for each
partition and, then, the immediate consequence operator of P can be obtained by
using the immediate consequence operator of each partition. Formally:

Proposition 2.8 Let P be a normal residuated logic program. Then there exist a
partition {Pi}i∈I of the program P satisfying:

• For all i ∈ I, there are no rules in Pi with the same head.

• TP(I)(p) = supi∈I{TPi
(I)(p)}.

Proof The finest partition of P satisfies the statement of the proposition. Explicitly,
for each rule ri ∈ P we consider the normal residuated logic program with just one
rule Pi = {ri}. Then the partition {Pi}i∈I satisfies the first item. Now, for each Pi
the immediate consequence operator has the form

TPi
(I)(x) =

{
I(B) ∗ ϑ if x = p
0 otherwise

where 〈p← B; ϑ〉 is the only rule in Pi. Then:

TP(I)(p) = sup{I(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} = sup
i∈I
{TPi

(I)(p)}

�

This proposition will be crucial in the proof of the main result in Section 4.

2.2 Stable Models

We recall here the approach given in [12], which generalizes the stable model se-
mantics [7] to normal residuated logic programs.

Let us consider a normal residuated logic program P together with a fuzzy L-
interpretation I. To begin with, we will construct a new normal program PI by
substituting each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive, that is, does not contain any negation;
in fact, the construction closely resembles that of a reduct in the classical case, this
is why we introduce the following:

Definition 2.9 The program PI is called the reduct of P wrt the interpretation I.

1Note the overloaded use of the negation symbol, as a syntactic function in the formulas and as the
algebraic negation in the truth-values.

Page 4 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

Nicolás Madrid, Manuel Ojeda-Aciego 5

As a result of the definition, note that given two fuzzy L-interpretations I and J ,
then the reducts PI and PJ have the same rules, and might only differ in the values
of the weights. By the properties of ∗ and ¬, we have that if I ≤ J , then the weight
of a rule in PI is greater than or equal to its weight in PJ .

It is not difficult to prove that every model M of the program P is a model of
the reduct PM .

Recall that a fuzzy interpretation can be interpreted as an L-fuzzy subset. Now,
as usual, the notion of reduct allows for defining a stable set for a program.

Definition 2.10 Let P be a normal residuated logic program and let I be a fuzzy
L-interpretation; I is said to be a stable set of P iff I is a minimal model of PI .

Theorem 2.11 Any stable set of P is a minimal model of P.

Thanks to Theorem 2.11 we know that every stable set is a model, therefore we
will be able to use the term stable model to refer to a stable set. Obviously, this
approach is a conservative extension of the classical approach.

In the following example we use a simple normal logic program with just one
rule in order to clarify the definition of stable set (stable model).

Example 2.12 Consider the program 〈p← ¬q ;ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p ;ϑ ∗ ¬I(q)〉 for which
the least model is M(p) = ϑ∗¬I(q), and M(q) = 0. As a result, I is a stable model
of P if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0.

An important feature of the stable models, that holds as well in our extended
framework, is that a stable model is always a minimal fix-point of TP.

Proposition 2.13 Any stable model of P is a minimal fix-point of TP.

Proof We will refer here a rule 〈p ← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉 by
writing 〈p ← B+ ∗ B−; ϑ〉 where B+ is identified with p1 ∗ · · · ∗ pm and B− is
identified with ¬pm+1 ∗ · · · ∗ ¬pn. With this notation, the reduct PI can be seen
as the transformation which substitutes each rule 〈p ← B+ ∗ B−; ϑ〉 in P by
〈p← B+; I(B−) ∗ ϑ〉.

Let us see firstly that for every L-interpretation I, TP(I) = TPI
(I):

TP(I)(p) = sup{I(B+) ∗ I(B−) ∗ ϑ : 〈p← B+ ∗ B−; ϑ〉 ∈ P} =

= sup{I(B+) ∗ I(B−) ∗ ϑ : 〈p← B+; I(B−) ∗ ϑ〉 ∈ PI} = TPI(I)(p)

Now, let M be a stable model of P. Then, by definition, M = TPM
(M). By using

the equality above, we obtain M = TPM
(M) = TP(M); in other words, M is a

fix-point of TP.
Let us prove the minimality of M . Let N be a fix-point of TP such that N ≤ M ,
then N is a model of P by Proposition 2.5 . Now, applying Theorem 2.11, we obtain
N = M . �

Notice, however, that a minimal fix-point of TP is not necessarily a stable model
of P, as shown in the following example:

Example 2.14 Let P = {〈p ← p; 1〉, 〈q ← ¬p; 1〉} be a normal residuated logic
program defined on ([0, 1],≤,min,←, 1−x). Let us obtain firstly the stable models
of P. Let I = {(p, α), (q, β)} be a [0, 1]-interpretation, then the reduct PI is the
program PI = {〈p ← p; 1〉, 〈q ←; 1 − α〉}. The least model of PI is the [0, 1]-
interpretation M = {(p, 0), (q, 1 − α}. So I is a stable model of P if and only if
I = M , that is, if and only if I = {(p, 0), (q, 1)}.

Page 5 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

6 On the existence of stable models in normal residuated logic programs

Let us obtain now the set of fix-points of TP. The immediate consequence operator
of P is:

TP(I)(x) =

{
I(p) if x = p
1− I(p) if x = q

A [0, 1]-interpretation I = {(p, α), (q, β)} is a fix-point of TP if and only if I(p) =
I(p) and I(q) = 1 − I(p). Therefore the set of fix-points of TP is given by the
interpretations Iα such that Iα(p) = α and Iα(q) = 1 − α for all α ∈ [0, 1]. Note
that every [0, 1]-interpretation Iα is a minimal fix-point but only one of them is a
stable model.

3. On the existence of stable models in [0, 1]

The existence of stable models can be guaranteed by simply imposing conditions
on the underlying residuated lattice [14]:

Theorem 3.1 Let L ≡ ([0, 1],≤, ∗,←,¬) be a residuated lattice with negation. If
∗ and ¬ are continuous operators, then every finite normal program P defined over
L has at least a stable model.

Proof The idea is to apply Brouwer’s fix-point theorem. Specifically, we show that
the operator defined by R(I) = lfp(TPI

), for a given interpretation I, is continuous.
Note that this operator can be seen as a composition of two operators F1(I) = PI
and F2(P) = lfp(TP). Actually, we will show that F1 and F2 are continuous.

To begin with, note that F1 can be seen as an operator from the set of [0, 1]-
interpretations to the Euclidean space [0, 1]k where k is the number of rules in P.
This is due to the fact that F1 just changes the weights of P, and nothing else.
Now, the continuity of F1 is trivial since the weight of each rule in P is changed
only by using the continuous operators ¬ and ∗.

Concerning F2, the syntactic part of P can be considered fixed and positive.
This is due to the fact that its only inputs are of the form PI , therefore, the
number of rules is fixed, negation does not occur in P, and the only elements
which can change are the weights. As a result, F2 can be seen as a function from
[0, 1]k to the set of interpretations. Note that this restriction over F2 does not
affect the composition between F1 and F2. To prove that F2 is continuous note,
firstly, that the immediate consequences operator is continuous with respect to the
weights in P, since every operator in the definition of TP (namely sup and ∗) is
continuous. Secondly, a direct consequence of the termination result introduced
in [4, see Cor. 29] ensures that if P is a finite positive program, then lfp(TP) can
be obtained by iterating finitely many times the immediate consequence operator
on the bottom interpretation I⊥; in other words, lfp(TP) = T kP(I⊥) where k is
the number of rules in P. Therefore, as the operator F2 is a finite composition of
continuous operators, F2 is also continuous.

Finally, as R(I) = lfp(TPI
) is a composition of two continuous operators, R(I) is

continuous as well. Hence we can apply Brouwer’s fix-point theorem to R(I) and
ensure that it has at least a fix-point. To conclude, we only have to note that every
fix-point of R(I) is actually a stable model of P. �

Page 6 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

Nicolás Madrid, Manuel Ojeda-Aciego 7

Example 3.2 The existence of stable models for the normal residuated logic program
given below

〈p← ¬q ; 0.8〉

〈q ← ¬r ; 0.7〉

〈r ← ¬p ; 0.9〉

is not always guaranteed. For example, if we consider the residuated lattice L =
([0, 1], ∗,←,¬) determined by x ∗ y = x · y and

¬(x) =

{
0 if x > 0.5
1 if x ≤ 0.5

then the program has no stable model. However, if we consider the residuated lattice
L = ([0, 1], ∗,←,¬) determined by x ∗ y = x · y and ¬(x) = 1 − x the normal
residuated logic program has the following stable model1

M = {(p, 0.49); (q, 0.38); (r, 0.45)}

Obviously, the sufficient condition provided in Theorem 3.1 is not a necessary con-
dition. Considering the residuated lattice L = ([0, 1], ∗,←,¬) determined by

x ∗ y =

x if y = 1
y if x = 1
0 otherwise

¬(x) =

{
0 if x > 0.9
1 if x ≤ 0.9

the program above has one stable model, M = {(p, 0.8); (q, 0.7); (r, 0.9)}; although
the connectives ∗ and ¬ are not continuous.

Remark 1 It is important to recall that most connectives in fuzzy logic are defined
on the unit interval [0, 1]. Thus the condition about continuity on a Euclidean space
as sets of truth-values is not excessively restrictive. Moreover, most t-norms used
currently in fuzzy logic are continuous (Gödel, Lukasiewicz, product, . . .), therefore
the theorem establishes that in the most used fuzzy frameworks, the existence of
fuzzy stable models is always guaranteed, at least when considering the standard
negation.

4. On the unicity of stable models in a logic based on the product t-norm

In this section we introduce a condition which guarantees the unicity of stable
models for normal residuated logic programs defined with the product adjoint pair
and the standard negation. It is important to point out that there are just a few
results in crisp logic programming which guarantee the unicity of stable models
(some of them later extended in [11] for fuzzy logic programming). The condition
presented below combines the weights in the program and the syntax, allowing
that cycles with negation appear, provided that its rules have convenient weights.

1The values are approximated to two digits precision.

Page 7 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

8 On the existence of stable models in normal residuated logic programs

In the rest of the paper we use the residuated lattice L = ([0, 1], ∗,←, n) given by:

x ∗ y = x · y x← y =

{ y
x if x ≥ y
1 if x < y

n(x) = 1− x

Note that, as the operator ∗ and ¬ are continuous, the existence of at least a stable
model is guaranteed.

An advantage of working in [0, 1] is that, for finite programs, the operator TP
can be seen as a real function from [0, 1]n to [0, 1]n where n is the number of
propositional symbols in P, that is n = #ΠP. This can be done by paying attention
to the following considerations, which will be used hereafter:

• The propositional symbols occurring in P can be sorted as a list of n elements,
denoted by p1, . . . , pn.

• Each [0, 1]-interpretation can be seen as a tuple (I(p1), · · · , I(pn)) ∈ [0, 1]n.
Hence, the i-th component in a tuple a = (a1, . . . , an) represents the value of the
propositional symbol pi.

• As TP assigns [0, 1]-interpretations to [0, 1]-interpretations, with the above con-
sideration, TP assigns tuples in [0, 1]n to tuples in [0, 1]n; in other words, TP can
be seen as a real function from [0, 1]n to [0, 1]n.

• Finally, although the value of TP(I) for the i-th propositional symbol pi is usually
denoted by TP(I)(pi) within the logic programming community, we will use here
the usual notation used in real analysis. That is, TP(I) will be written as a tuple
(
(
TP)1(I), . . . , (TP)n(I)

)
and, thus, we will write (TP)i(I) instead of TP(I)(pi).

If at most one rule whose head is pi appears in P, then the immediate consequence
operator has the following simple form:

(TP)i(I) = I(q1) · · · · · I(qk) · (1− I(qk+1)) · · · · · (1− I(qm)) · ϑ (1)

where we assume that 〈pi ← q1 ∗ · · · ∗ qk ∗¬qk+1 ∗ · · · ∗¬qm, ϑ〉 is the only rule in P
with head pi.

Note that the occurrence of I as argument of (TP)i in equation (1) above, actually
means the tuple formed by

(
I(p1), . . . , I(pn)

)
for I being considered as a variable

interpretation. Note as well that the use of I(pi) to represent one variable argument
easily might lead to misunderstandings. In order to solve this potential problem,
we introduce the following

Notational conventions:

(1) Two different notations will be used, in order to denote whether we are
referring to a propositional symbol as an element of the domain of TP (we
will use the family pi in this case, as stated in the previous considerations)
or to a symbol occurring in the body of a rule (we will use qj). Note that
a given propositional symbol could be represented in two different forms
depending on the use we want to stress.

(2) As (TP)i will be used as a real valued function in the proofs of this section,
we will denote its variables by using directly the propositional symbols pi,
i.e. the formula (1) will be written as:

(TP)i(p1, . . . , pn) = q1 · . . . · qk · (1− qk+1) · . . . · (1− qm) · ϑ (2)

where each qj is actually some pi.

Page 8 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

Nicolás Madrid, Manuel Ojeda-Aciego 9

The following lemma, which states a certain inequality when considering the
immediate consequence operator as a differentiable real function, will be used to
prove the main result of this section.

Lemma 4.1 Let P be a normal residuated logic program such that at most one rule
which head is p appears in P. Let I and J be two [0, 1]-interpretations such that
J ≤ I, then:

n∑
j=1

∣∣∣∣∂(TP)i
∂pj

(J(p1), . . . , J(pn))

∣∣∣∣ ≤ h∑
j=1

I(q1) · . . . · I(qj−1) · I(qj+1) · . . . · I(qh) · ϑ +

+ (k − h)(I(q1) · . . . · I(qh) · ϑ)

where 〈pi ← q1 ∗ · · · ∗ qh ∗ ¬qh+1 ∗ · · · ∗ ¬qk ;ϑ〉 is the rule in P whose head is pi.

Proof We will use here the expression of (TP)i given by Equation (2) above. Clearly
(TP)i is differentiable, and its partial derivatives are:

∂(TP)i
∂pj

=


q1 · · · qt−1 · qt+1 · · · qh · (1− qh+1) · · · (1− qk) · ϑ if pj = qt for t ≤ h

−q1 · · · qh · (1− qh+1) · · · (1− qt−1) · (1− qt+1) · · · (1− qk) · ϑ if pj = qt for t > h

0 otherwise

Hence, the sum of all the partial derivatives of (TP)i evaluated on the point
(J(p1), . . . , J(pn)) satisfies the following inequality:

n∑
j=1

∣∣∣∣∂(TP)i
∂pj

(J(p1), . . . , J(pn))

∣∣∣∣ =

=

h∑
j=1

|J(q1) · · · J(qj−1) · J(qj+1) · · · J(qh) · (1− J(qh+1)) · · · (1− J(qk)) · ϑ|+

+

k∑
j=h+1

|−J(q1) · · · J(qh) · (1− J(qh+1)) · · · (1− J(qj−1)) · (1− J(qj+1)) · · · (1− J(qk)) · ϑ|

≤

 h∑
j=1

J(q1) · . . . · J(qj−1) · J(qj+1) · . . . · J(qh) · ϑ

+ (k − h)(J(q1) · . . . · J(qh) · ϑ)

≤

 h∑
j=1

I(q1) · . . . · I(qj−1) · I(qj+1) · . . . · I(qh) · ϑ

+ (k − h)(I(q1) · . . . · I(qh) · ϑ)

�

Now we are able to state and prove the main result of this section.

Theorem 4.2 Let P be a finite normal residuated logic program, and p a proposi-
tional symbol occurring in P, let us write ϑp = max{ϑj : 〈p← B ;ϑj〉 ∈ P}.1 If, for
every rule 〈p← q1 ∗ · · · ∗ qh ∗ ¬qh+1 ∗ · · · ∗ ¬qk ;ϑ〉 ∈ P, the inequality below holds h∑

j

ϑq1 · . . . · ϑqj−1
· ϑqj+1

· . . . · ϑqh · ϑ

+ (k − h)(ϑq1 · . . . · ϑqh · ϑ) < 1

1If p does not appear in the head of any rule then ϑp = 0.

Page 9 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

10 On the existence of stable models in normal residuated logic programs

then there is only one stable model of P.

Proof The structure of the proof is as follows:

• We will show that TP is a contractive map with respect to the norm ||.||∞ in a
specific subset A ⊆ [0, 1]n, for this part we will use that each element in A can be
seen as one [0, 1]-interpretation. Then, by applying Banach’s fix-point theorem,
TP has only one fix-point in A.

• We will show as well that, if I ∈ [0, 1]n is a fix-point of TP, then I necessarily
belongs to A. Therefore TP has only one fix-point in [0, 1]n.

• Finally, taking into account that:
(1) Every stable model of P is actually a fix-point of TP (Lemma 2.13)
(2) By Theorem 3.1, there exists at least one stable model of P

then the unique fix-point of TP has to be its unique stable model.

Let I be the [0, 1]-interpretation which assigns the value ϑp to each propositional
symbol p. Let us prove that TP is contractive in the set A = {J ∈ [0, 1]n : J ≤ I}.

To do that, we distinguish two cases, firstly that for every propositional symbol
p ∈ ΠP, there is at most one rule whose head is p in P; and secondly we prove the
general case for an arbitrary normal logic program.

Let us asume that P is a normal residuated logic program such that at most one
rule whose head is p appears in P. Then the hypothesis of Lemma 4.1 holds, and
it provides the following inequality for every J ∈ A:

n∑
j=1

∣∣∣∣∂(TP)i
∂pj

(J(p1), . . . , J(pn))

∣∣∣∣ ≤ h∑
j=1

I(q1) · . . . · I(qj−1) · I(qj+1) · . . . · I(qh) · ϑ +

+(k − h)(I(q1) · . . . · I(qh) · ϑ)

=

 h∑
j=1

ϑq1 · . . . · ϑqj−1
· ϑqj+1

· . . . · ϑqh · ϑ

+ (k − h)(ϑq1 · . . . · ϑqh · ϑ)

As a result, by hypothesis, we obtain for every J ∈ A

n∑
j=1

∣∣∣∣∂(TP)i
∂pj

(J(p1), . . . , J(pn))

∣∣∣∣ < 1 (3)

Now we make use of the mean value theorem for vector fields on Rn w.r.t ||.||∞
(see [20]): Given a differentiable function f on a set X, if the line segment [a, b] =
{(1− t) · a+ t · b : 0 ≤ t ≤ 1} is contained in X then:

||f(b)− f(a)||∞ ≤ ||b− a||∞ sup{||Df(z)||∞ : z ∈ [a, b]}

where Df denotes the differential of f , i.e the linear map associated to the Jacobian
matrix of f = (f1, . . . , fn): 

∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn



Page 10 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

Nicolás Madrid, Manuel Ojeda-Aciego 11

and the norm ||Df(z)||∞ is defined as:

||Df(z)||∞ = sup{||
(
Df(z)

)
(x)||∞ : ||x||∞ ≤ 1}

Before applying the mean value theorem to TP, let us consider the following:

• Note that for every [0, 1]-interpretation J ∈ A and for every vector x ∈ Rn such
that ||x||∞ = max{|xi| : x = (x1, . . . , xn)} ≤ 1 :

||
(
DTP(J)

)
(x)||∞ = max

i


n∑
j=1

∣∣∣∣∂(TP)i
∂pj

(J(p1), . . . , J(pn)) · xj
∣∣∣∣
 ≤

≤ max
i


n∑
j=1

∣∣∣∣∂(TP)i
∂pj

(J(p1), . . . , J(pn))

∣∣∣∣
 < 1

where the last inequality follows from (3).

• Note that A can be written as the n-cube [0, ϑp1]× · · · × [0, ϑpn]. As a result, A
is a compact set, and the supremum:

sup{||DTP(J)||∞ : J ∈ A}

is in fact a maximum.

• Note as well that for every J1, J2 ∈ A the line segment [J1, J2] is included in A.

Let us see now that TP is a contractive map in A. Let J1, J2 be two [0, 1]-
interpretations in A. Then by the mean value theorem:

||TP(J1)− TP(J2)||∞ ≤||J1 − J2||∞ sup{||DTP(J)||∞ : J ∈ [J1, J2]}

(by using the third consideration above)

≤||J1 − J2||∞ sup{||DTP(J)||∞ : J ∈ A}

(by the second note above)

≤||J1 − J2||∞max{||DTP(J)||∞ : J ∈ A}

(by the first note above)

≤||J1 − J2||∞ · λ for λ < 1

Therefore the function TP is a contractive mapping in A, as we wanted to prove.

We consider now the general case. Let us assume that P is an arbitrary normal
logic program. Then we consider a partition of normal logic programs {Pi}i∈I as
described in Lemma 2.8, that is,

• in each Pi there are not two rules with the same head.

• the equality TP(I)(p) = supi∈I{TPi
(I)(p)} holds.

Moreover as P is a finite normal logic program, the supremum is actually a
maximum; i.e TP(I)(p) = maxi∈I{TPi

(I)(p)}. By using the case above, we can
state that each TPi

is a contractive map in A (by using the values ϑpi defined
globally for P) with Lipschitz constant λi. Therefore, it is straightforward to prove
that TP is a contractive map in A with Lipschitz constant maxi∈I{λi}.

Finally, to conclude the proof, we only have to show that every fix-point of TP
belongs to A. But this is easy, since for every [0, 1]-interpretation I, TP(I)(p) ≤

Page 11 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

12 On the existence of stable models in normal residuated logic programs

max{ϑj : 〈p← B ;ϑj〉 ∈ P}; i.e TP([0, 1]n) ⊆ A.
�

The following example shows how we can apply Theorem 4.2 to a given normal
residuated logic program.

Example 4.3 Consider the following program

r1 : 〈p← q ∗ ¬s ; 0.7〉 r2 : 〈q ← ¬t ; 0.4〉

r3 : 〈t← ¬q ; 0.8〉 r4 : 〈s← t ∗ u ∗ ¬p ; 0.5〉

r5 : 〈p← q ∗ t ; 0.7〉 r6 : 〈u← ; 0.5〉

In order to check that this program satisfies the hypotheses of Theorem 4.2, firstly
we need to obtain the values ϑx = max{ϑj : 〈x← B ;ϑj〉 ∈ P} for each propositional
symbol x.

x p q s t u
ϑx 0.7 0.4 0.5 0.8 0.5

Secondly we must check that the inequality shown in Theorem 4.2 holds for every
rule in the program: by writing ϑri for the weight of each rule ri in the program,
the following expressions are obtained for any rule:
For r1:

ϑr1 + ϑr1 · ϑq = 0.7 + 0.7 · 0.4 = 0.98 < 1

For r2 and r3:

ϑr2 = 0.4 < 1 ϑr3 = 0.8 < 1

For r4:

ϑr4 · ϑu + ϑr4 · ϑt + ϑr4 · ϑt · ϑu = 0.5 · 0.5 + 0.8 · 0.5 + 0.8 · 0.5 · 0.5 = 0.85 < 1

For r5:

ϑr5 · ϑt + ϑr5 · ϑq = 0.7 · 0.4 + 0.7 · 0.8 = 0.84 < 1

As r6 is a fact, the inequality does not impose any restriction.
Therefore, we can apply Theorem 4.2 and obtain that this program has only one

stable model.

At first sight, the hypothesis required in Theorem 4.2 might seem too involved.
The following corollary provides a sufficient condition for the inequality required
in Theorem 4.2.

Corollary 4.4 Consider a rule 〈p← q1 ∗ · · · ∗ qh ∗ ¬q1 ∗ · · · ∗ ¬qk ;ϑ〉 in a finite
normal residuated logic program P. If the following inequality holds

h · (max{ϑq1 , . . . , ϑqh , ϑ})h + k · (max{ϑq1 , . . . , ϑqh , ϑ})h+1 < 1

then the rule satisfies the inequality required in the statement of Theorem 4.2.

Page 12 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

Nicolás Madrid, Manuel Ojeda-Aciego 13

Proof The result follows from the following inequality: h∑
j

ϑq1 · . . . · ϑqj−1
· ϑqj+1

· . . . · ϑqh · ϑ

+k(ϑq1 · . . . · ϑqh · ϑ) ≤

≤

 h∑
j

(max{ϑq1 , . . . , ϑqh , ϑ})h
+ k(max{ϑq1 , . . . , ϑqh , ϑ})h+1

= h · (max{ϑq1 , . . . , ϑqh , ϑ})h + k · (max{ϑq1 , . . . , ϑqh , ϑ})h+1

�

Corollary 4.5 Let P be a finite normal residuated logic program. If every rule
in P has a weight strictly less than 1 and at most one propositional symbol appears
in the body of each rule, then P has only one stable model.

Proof It follows as an application of Corollary 4.4.
Let r be a rule in P. If r is a fact, the hypothesis holds trivially.
If r has any of the forms 〈p← q ;ϑ〉 or 〈p← ¬q ;ϑ〉, the inequality to be verified

is ϑ < 1; which holds by the hypothesis of this corollary. �

In the following examples we stress the fact that the underlying residuated lattice
should be based on the product t-norm for the uniqueness results stated in this
section.

Example 4.6 Corollary 4.5 guarantees that the program P

〈p← ¬q ; 0.9〉 〈q ← ¬p ; 0.9〉

has only one stable model when considering the product t-norm.
However, the same normal logic program interpreted with Gödel t-norm, its resid-

uated implication, and the standard negation, has infinitely many stable models,
specifically every interpretation in the set {Mα = {(p, α); (q, 1−α)} : 0.1 ≤ α ≤ 0.9}
would be a stable model.

Example 4.7 Consider the following normal residuated logic program on LP :

〈p← ¬q ∗ ¬r ; 0.9〉

〈q ← ¬r ∗ ¬p ; 0.9〉

〈r ← ¬p ∗ ¬q ; 0.9〉

It is not difficult to check that it has only one stable model M which is given,
approximately, by {(p, 0.3608); (q, 0.3608); (r, 0.3608)}. However the program does
not satisfy the hypothesis of Theorem 4.2 since for the first rule we have that
2 · 0.9 = 1.8 ≥ 1.

Computing the unique stable model of P

Banach’s fix-point theorem plays a crucial role in the proof of Theorem 4.2; more-
over, Banach’s theorem not only provides a proof of uniqueness, but a method to
compute it as well. Specifically, if P is a normal residuated logic program which
satisfies the hypothesis of Theorem 4.2, we can compute its unique stable model

Page 13 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

14 REFERENCES

by computing the limit of the following sequence:

Ii+1 = TP(Ii)

where I0 is any [0, 1]-interpretation.

Theorem 4.8 Under the hypothesis of Theorem 4.2, the sequence I0 = I⊥, Ii+1 =
TP(Ii) converges to the unique stable model of P, although it may require ω many
steps.

Example 4.9 Continuing with Example 4.3, the computation of the unique stable
model of P by using the above sequence is given in the following table:

x TP(x)(p) TP(x)(q) TP(x)(s) TP(x)(t) TP(x)(u)

I0 0 0 0 0 0
I1 0 0.4 0 0.8 0.5
I2 0.28 0.079999999999 0.2 0.48 0.5
...

...
...

...
...

...
I100 0.068820224719 0.11764705882 0.16432584269 0.70588235294 0.5
I101 0.068820224719 0.11764705882 0.16432584269 0.70588235294 0.5

Thus I100 is the unique stable model of P.

5. Conclusions

We have introduced results on existence and uniqueness of stable models for normal
residuated logic programs. The first one determines that every normal residuated
logic program defined in [0, 1] in terms of continuous operators has at least one
stable model; as a result, inconsistencies (that is, lack of stable models) can be
avoided by simply considering continuous operators. The second result provides
sufficient conditions under which a normal logic program has only one stable model
which can be computed as a fix-point of the immediate consequences operator.

References

[1] A. Burrieza, I. P. de Guzmán, and E. Muñoz-Velasco. Generalization of some properties of relations
in the context of functional temporal×modal logic. Intl J of Computer Mathematics 85(3):371–383,
2007.

[2] A. Burrieza, A. Mora, M. Ojeda-Aciego, and E. Or lowska. An implementation of a dual tableaux
system for order-of-magnitude qualitative reasoning. Intl J of Computer Mathematics 86(10):1852–
1866, 2009.

[3] S. Costantini. On the existence of stable models of non-stratified logic programs. Journal of Theory
and Practice of Logic Programming, 6(1-2):169–212, 2006.

[4] C. Damásio, J. Medina, and M. Ojeda-Aciego. Termination of logic programs with imperfect infor-
mation: applications and query procedure. Journal of Applied Logic, 5(3):435–458, 2007.

[5] C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’01, pages 748–759. Lect. Notes
in Artificial Intelligence, 2143, 2001.

[6] M. Fitting. The family of stable models. The Journal of Logic Programming, 17(2-4):197 – 225, 1993.
[7] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of ICLP-88,

pages 1070–1080, 1988.
[8] M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence. Com-

putational Intelligence, 4:265–316, 1988.
[9] J. Golińska-Pilarek and E. Muñoz-Velasco. Dual tableau for a multimodal logic for order of magnitude

qualitative reasoning with bidirectional negligibility. Intl J of Computer Mathematics 86(10):1707–
1718, 2009.

[10] Y. Loyer and U. Straccia. Epistemic foundation of stable model semantics. Journal of Theory and
Practice of Logic Programming, 6:355–393, 2006.

Page 14 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

March 18, 2011 11:59 International Journal of Computer Mathematics Madrid-Ojeda-R2

REFERENCES 15

[11] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the semantic
web. Fundamenta Informaticae, 82(3):289–310, 2008.

[12] N. Madrid and M. Ojeda-Aciego. Towards a fuzzy answer set semantics for residuated logic programs.
In Web Intelligence/IAT Workshops, pages 260–264, 2008.

[13] N. Madrid and M. Ojeda-Aciego. On coherence and consistence in fuzzy answer set semantics for
residuated logic programs. Lect. Notes in Computer Science, 5571:60–67, 2009.

[14] N. Madrid and M. Ojeda-Aciego. On the existence of stable models in normal residuated logic
programs. In Proc of Computational Methods in Mathematics, Science, and Engineering. CMMSE,
pages 598-604, 2010.

[15] A. Mora, E. Muñoz-Velasco, and J. Golińska-Pilarek. Implementing a relational theorem prover for
modal logic K. Intl J of Computer Mathematics, 2011.
iFirst http://dx.doi.org/10.1080/00207160.2010.493211

[16] T. Przymusinski. Well-founded semantics coincides with three-valued stable semantics. Fundamenta
Informaticae, 13:445–463, 1990.

[17] U. Straccia. Query answering in normal logic programs under uncertainty. Lect. Notes in Computer
Science, 3571:687–700, 2005.

[18] U. Straccia. Query answering under the any-world assumption for normal logic programs. Lect. Notes
in Computer Science, 3571:687–700, 2006.

[19] U. Straccia. A top-down query answering procedure for normal logic programs under the any-world
assumption. Proc. of the 10th Intl Conf on Principles of Knowledge Representation, 329–339, AAAI
Press, 2006.

[20] M. Tsoy-Wo. Classical Analysis on Normed Spaces. World Scientific Publishing, 1995.

Page 15 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–15

RESEARCH ARTICLE

On the existence and unicity of stable models

in normal residuated logic programs

Nicolás Madrida∗ and Manuel Ojeda-Aciegob∗

∗Dept. Matemática Aplicada. ETSI Informática, Campus de Teatinos. Málaga, Spain;
ae-mail: nmadrid@ctima.uma.es be-mail: aciego@ctima.uma.es

(Received 00 Month 200x; in final form 00 Month 200x)

We introduce a sufficient condition which guarantees the existence of stable models for a
normal residuated logic program interpreted on the truth-space [0, 1]n. Specifically, the conti-
nuity of the connectives involved in the program ensures the existence of stable models. Then,
we study conditions which guarantee the uniqueness of stable models in the particular case
of the product t-norm, its residuated implication, and the standard negation.

1. Introduction

Similarly to classical logic programming, the existence of fuzzy stable models can-
not be guaranteed for an arbitrary normal residuated logic program [13]. Necessary
conditions to ensure the existence of stable models have been widely studied in clas-
sical logic programming. In fact, a syntactic condition on crisp normal programs
to have stable models can be found in [3].

However the characterization in the fuzzy framework is much more complex
since it involves two different dimensions: “the syntactic structure of the normal
program” and “the choice of suitable connectives in the residuated lattice”. For
short, we will call them the syntactic and the semantic dimension, respectively.

In classical logic programming only syntactic conditions are available since the
connectives are fixed. However, for normal residuated logic program the semantic
dimension plays a crucial role as well; for example the program with only one rule

P = {〈p← ¬p; 1〉}

has a stable model if and only if the operator associated with ¬ has a fixpoint.
To the best of our knowledge, the problem of establishing semantic conditions for
guaranteeing the existence of fuzzy stable models has not been attempted so far,
although sufficient conditions underlie in some approaches; for example [16] proves
that every normal logic program has stable models in the 3-valued Kleene logic
and, more generally, [6, 10, 17–19] show that every normal residuated logic program
has stable models if the underlying residuated lattice has an appropriate bilattice
structure [8]. Concerning the latter, it is worth to note that not only multivalued
and fuzzy logics are often used in computer science and artificial intelligence, there
are other non-classical logics such as the temporal, modal, multimodal logics which
are receiving lots of attention in the recent years [1, 2, 9, 15].

Partially supported by the Spanish Ministry of Science project TIN09-14562-C05-01 and Junta de An-
dalućıa projects FQM-2049 and FQM-5233

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 200x Taylor & Francis
DOI: 10.1080/0020716YYxxxxxxxx
http://www.informaworld.com

Page 16 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

2 On the existence of stable models in normal residuated logic programs

In this paper we provide another condition on the residuated lattice to ensure
the existence of stable models, more specifically: if the underlying lattice is an Eu-
clidean space and the connectives ∗ and ¬ in the residuated lattice are continuous,
then the existence of at least a fuzzy stable model is guaranteed. Then, the problem
of uniqueness is studied and sufficient conditions for uniqueness, in the particular
framework of product t-norm and standard negation, have been obtained. These
conditions are stated in terms of a set of inequalities between several parameters
which can be easily obtained from a program P.

2. Preliminaries

Let us start this section by recalling the definition of residuated lattice, which
fixes the set of truth values and the relationship between the conjunction and the
implication (the adjoint condition) occurring in our logic programs.

Definition 2.1 A residuated lattice is a tuple (L,≤, ∗,←) such that:

(1) (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
(2) (L, ∗, 1) is a commutative monoid with unit element 1.
(3) (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

Remark 1 The adjoint pair is uniquely determined by the chosen t-norm ∗. In
other words, fixed a left-continuous t-norm ∗, the only operator ← which forms an
adjoint pair together with ∗ is that defined by:

x← y = sup{z ∈ L : y ∗ z ≤ x}

This is the reason why we usually present residuated lattices by simply mentioning
the operator ∗.

In the rest of the paper we will consider a residuated lattice enriched with a
negation operator, (L, ∗,←,¬). The negation ¬ will model the notion of default
negation often used in logic programming. As usual, a negation operator, over L,
is any decreasing mapping n : L→ L satisfying n(0) = 1 and n(1) = 0.

Definition 2.2 Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal
residuated logic program P is a finite set of weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols verifying
pi 6= pj for i, j = 1, . . . , n.

It is usual to denote the rules as 〈p← B; ϑ〉. The formula B is usually called the
body of the rule, p is called its head and ϑ is called its weight.

A fact is a rule with empty body, i.e facts are rules with the form 〈p ← ; ϑ〉.
The set of propositional symbols appearing in P is denoted by ΠP.

Definition 2.3 A fuzzy L-interpretation is a mapping I : ΠP → L; note that the
domain of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈p ← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(p) or,
equivalently, ϑ ≤ I(p← B). Finally, I is a model of P if it satisfies all rules (and
facts) in P.

Note that the ordering relation in the residuated lattice (L,≤) can be extended
over the set of all L-interpretations as follows: Let I and J be two L-interpretations,

Page 17 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

Nicolás Madrid, Manuel Ojeda-Aciego 3

then I ≤ J if and only if I(p) ≤ J(p) for all p ∈ ΠP.

2.1 On the Immediate Consequence Operator

The immediate consequence operator was successfully generalized for positive resid-
uated programs in [5] and can be applied straightforwardly to normal residuated
programs. Its definition is as follows:

Definition 2.4 Let P be a normal residuated logic program. The immediate conse-
quence operator maps every L-interpretation I to the L-interpretation TP(I) defined
below:

TP(I)(p) = sup{I(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P}

where p ∈ P.

Similarly to the positive case, the operator TP can be used to characterize the
models of normal residuated logic programs:

Proposition 2.5 Let P be a residuated logic program and let M be an L-
interpretation. M is a model of P if and only if TP(M) ≤M .

Proof Let M be a model of P. Then for every rule 〈p← B; ϑ〉 ∈ P:

M(p) ≥M(B) ∗ ϑ

This inequality implies that for every propositional symbol p, M(p) is an upper
bound of the set {M(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} and thus:

M(p) ≥ sup{M(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} = TP(M)(p)

Assume now that M(p) ≥ TP(M)(p) for every propositional symbol p, then for
every rule 〈p← B; ϑ〉 in P:

M(p) ≥ TP(M)(p) = sup{M(B′) ∗ ϑ′ : 〈p← B′; ϑ′〉 ∈ P} ≥M(B) ∗ ϑ

�

The immediate consequence operator is monotonic when is defined on positive
residuated logic programs [5]:

Theorem 2.6 Let P be a positive residuated logic program, then TP is monotonic.

The theorem above together with Knaster-Tarski’s fix-point theorem ensure that
the operator TP has a least fix-point; furthermore this least fix-point coincides with
the least model of P.

The main difference in the case of normal residuated logic programs, is that TP

is not necessarily monotonic. That feature implies that we cannot make use of the
least model semantics in arbitrary normal residuated logic programs.

Example 2.7 Consider the logic program 〈p← ¬q ; 1〉 interpreted on the residu-
ated lattice with negation ([0, 1],≤, min,←, 1−x). Then the immediate consequence
operator is the mapping:

TP(I)(x) =

{

1− I(q) if x = p

0 otherwise

Page 18 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

4 On the existence of stable models in normal residuated logic programs

where I is a [0, 1]-interpretation. Clearly this mapping is not monotonic with re-
spect to the order between [0, 1]-interpretations.

Certainly, the definition of TP can be simplified if for each propositional symbol p,
there exists only one rule whose head is p, since the operator sup can be removed
from the definition. Although that condition on a program P does not usually
hold, we can always obtain a partition of P such that the condition holds for each
partition and, then, the immediate consequence operator of P can be obtained by
using the immediate consequence operator of each partition. Formally:

Proposition 2.8 Let P be a normal residuated logic program. Then there exist a
partition {Pi}i∈I of the program P satisfying:

• For all i ∈ I, there are no rules in Pi with the same head.

• TP(I)(p) = supi∈I{TPi
(I)(p)}.

Proof The finest partition of P satisfies the statement of the proposition. Explicitly,
for each rule ri ∈ P we consider the normal residuated logic program with just one
rule Pi = {ri}. Then the partition {Pi}i∈I satisfies the first item. Now, for each Pi

the immediate consequence operator has the form

TPi
(I)(x) =

{

I(B) ∗ ϑ if x = p

0 otherwise

where 〈p← B; ϑ〉 is the only rule in Pi. Then:

TP(I)(p) = sup{I(B) ∗ ϑ : 〈p← B; ϑ〉 ∈ P} = sup
i∈I

{TPi
(I)(p)}

�

This proposition will be crucial in the proof of the main result in Section 4.

2.2 Stable Models

We recall here the approach given in [12], which generalizes the stable model se-
mantics [7] to normal residuated logic programs.

Let us consider a normal residuated logic program P together with a fuzzy L-
interpretation I. To begin with, we will construct a new normal program PI by
substituting each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive, that is, does not contain any negation;
in fact, the construction closely resembles that of a reduct in the classical case, this
is why we introduce the following:

Definition 2.9 The program PI is called the reduct of P wrt the interpretation I.

1Note the overloaded use of the negation symbol, as a syntactic function in the formulas and as the
algebraic negation in the truth-values.

Page 19 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

Nicolás Madrid, Manuel Ojeda-Aciego 5

As a result of the definition, note that given two fuzzy L-interpretations I and J ,
then the reducts PI and PJ have the same rules, and might only differ in the values
of the weights. By the properties of ∗ and ¬, we have that if I ≤ J , then the weight
of a rule in PI is greater than or equal to its weight in PJ .

It is not difficult to prove that every model M of the program P is a model of
the reduct PM .

Recall that a fuzzy interpretation can be interpreted as an L-fuzzy subset. Now,
as usual, the notion of reduct allows for defining a stable set for a program.

Definition 2.10 Let P be a normal residuated logic program and let I be a fuzzy
L-interpretation; I is said to be a stable set of P iff I is a minimal model of PI .

Theorem 2.11 Any stable set of P is a minimal model of P.

Thanks to Theorem 2.11 we know that every stable set is a model, therefore we
will be able to use the term stable model to refer to a stable set. Obviously, this
approach is a conservative extension of the classical approach.

In the following example we use a simple normal logic program with just one
rule in order to clarify the definition of stable set (stable model).

Example 2.12 Consider the program 〈p← ¬q ; ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p ; ϑ ∗ ¬I(q)〉 for which
the least model is M(p) = ϑ∗¬I(q), and M(q) = 0. As a result, I is a stable model
of P if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0.

An important feature of the stable models, that holds as well in our extended
framework, is that a stable model is always a minimal fix-point of TP.

Proposition 2.13 Any stable model of P is a minimal fix-point of TP.

Proof We will refer here a rule 〈p ← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉 by
writing 〈p ← B+ ∗ B−; ϑ〉 where B+ is identified with p1 ∗ · · · ∗ pm and B− is
identified with ¬pm+1 ∗ · · · ∗ ¬pn. With this notation, the reduct PI can be seen
as the transformation which substitutes each rule 〈p ← B+ ∗ B−; ϑ〉 in P by
〈p← B+; I(B−) ∗ ϑ〉.

Let us see firstly that for every L-interpretation I, TP(I) = TPI
(I):

TP(I)(p) = sup{I(B+) ∗ I(B−) ∗ ϑ : 〈p← B+ ∗ B−; ϑ〉 ∈ P} =

= sup{I(B+) ∗ I(B−) ∗ ϑ : 〈p← B+; I(B−) ∗ ϑ〉 ∈ PI} = TPI
(I)(p)

Now, let M be a stable model of P. Then, by definition, M = TPM
(M). By using

the equality above, we obtain M = TPM
(M) = TP(M); in other words, M is a

fix-point of TP.
Let us prove the minimality of M . Let N be a fix-point of TP such that N ≤ M ,
then N is a model of P by Proposition 2.5 . Now, applying Theorem 2.11, we obtain
N = M . �

Notice, however, that a minimal fix-point of TP is not necessarily a stable model
of P, as shown in the following example:

Example 2.14 Let P = {〈p ← p; 1〉, 〈q ← ¬p; 1〉} be a normal residuated logic
program defined on ([0, 1],≤, min,←, 1−x). Let us obtain firstly the stable models
of P. Let I = {(p, α), (q, β)} be a [0, 1]-interpretation, then the reduct PI is the
program PI = {〈p ← p; 1〉, 〈q ←; 1 − α〉}. The least model of PI is the [0, 1]-
interpretation M = {(p, 0), (q, 1 − α}. So I is a stable model of P if and only if
I = M , that is, if and only if I = {(p, 0), (q, 1)}.

Page 20 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

6 On the existence of stable models in normal residuated logic programs

Let us obtain now the set of fix-points of TP. The immediate consequence operator
of P is:

TP(I)(x) =

{

I(p) if x = p

1− I(p) if x = q

A [0, 1]-interpretation I = {(p, α), (q, β)} is a fix-point of TP if and only if I(p) =
I(p) and I(q) = 1 − I(p). Therefore the set of fix-points of TP is given by the
interpretations Iα such that Iα(p) = α and Iα(q) = 1 − α for all α ∈ [0, 1]. Note
that every [0, 1]-interpretation Iα is a minimal fix-point but only one of them is a
stable model.

3. On the existence of stable models in [0, 1]

The existence of stable models can be guaranteed by simply imposing conditions
on the underlying residuated lattice [14]:

Theorem 3.1 Let L ≡ ([0, 1],≤, ∗,←,¬) be a residuated lattice with negation. If
∗ and ¬ are continuous operators, then every finite normal program P defined over
L has at least a stable model.

Proof The idea is to apply Brouwer’s fix-point theorem. Specifically, we show that
the operator defined by R(I) = lfp(TPI

), for a given interpretation I, is continuous.
Note that this operator can be seen as a composition of two operators F1(I) = PI

and F2(P) = lfp(TP). Actually, we will show that F1 and F2 are continuous.
To begin with, note that F1 can be seen as an operator from the set of [0, 1]-

interpretations to the Euclidean space [0, 1]k where k is the number of rules in P.
This is due to the fact that F1 just changes the weights of P, and nothing else.
Now, the continuity of F1 is trivial since the weight of each rule in P is changed
only by using the continuous operators ¬ and ∗.

Concerning F2, the syntactic part of P can be considered fixed and positive. This
is due to the fact that its only inputs are of the form PI , therefore, the number of
rules is fixed, negation does not occur in P, and the only elements which can change
are the weights. As a result, F2 can be seen as a function from [0, 1]k to the set of
interpretations. Note that this restriction over F2 does not affect the composition
between F1 and F2. To prove that F2 is continuous note, firstly, that the immediate
consequences operator is continuous with respect to the weights in P, since every
operator in the definition of TP (namely sup and ∗) is continuous. Secondly, a direct
consequence of the termination result introduced in [4, see Cor. 29] ensures that if P

is a finite positive program, then lfp(TP) can be obtained by iterating finitely many
times the immediate consequence operator on the bottom interpretation I⊥; in
other words, lfp(TP) = T k

P
(I⊥) where k is the number of rules in P. Therefore, as the

operator F2 is a finite composition of continuous operators, F2 is also continuous.
Finally, as R(I) = lfp(TPI

) is a composition of two continuous operators, R(I) is
continuous as well. Hence we can apply Brouwer’s fix-point theorem to R(I) and
ensure that it has at least a fix-point. To conclude, we only have to note that every
fix-point of R(I) is actually a stable model of P. �

Page 21 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

Nicolás Madrid, Manuel Ojeda-Aciego 7

Example 3.2 The existence of stable models for the normal residuated logic program
given below

〈p← ¬q ; 0.8〉

〈q ← ¬r ; 0.7〉

〈r ← ¬p ; 0.9〉

is not always guaranteed. For example, if we consider the residuated lattice L =
([0, 1], ∗,←,¬) determined by x ∗ y = x · y and

¬(x) =

{

0 if x > 0.5
1 if x ≤ 0.5

then the program has no stable model. However, if we consider the residuated lattice
L = ([0, 1], ∗,←,¬) determined by x ∗ y = x · y and ¬(x) = 1 − x the normal
residuated logic program has the following stable model1

M = {(p, 0.49); (q, 0.38); (r, 0.45)}

Obviously, the sufficient condition provided in Theorem 3.1 is not a necessary con-
dition. Considering the residuated lattice L = ([0, 1], ∗,←,¬) determined by

x ∗ y =







x if y = 1
y if x = 1
0 otherwise

¬(x) =

{

0 if x > 0.9
1 if x ≤ 0.9

the program above has one stable model, M = {(p, 0.8); (q, 0.7); (r, 0.9)}; although
the connectives ∗ and ¬ are not continuous.

Remark 1 It is important to recall that most connectives in fuzzy logic are defined
on the unit interval [0, 1]. Thus the condition about continuity on a Euclidean space
as sets of truth-values is not excessively restrictive. Moreover, most t-norms used
currently in fuzzy logic are continuous (Gödel, Lukasiewicz, product, . . .), therefore
the theorem establishes that in the most used fuzzy frameworks, the existence of
fuzzy stable models is always guaranteed, at least when considering the standard
negation.

4. On the unicity of stable models in a logic based on the product t-norm

In this section we introduce a condition which guarantees the unicity of stable
models for normal residuated logic programs defined with the product adjoint pair
and the standard negation. It is important to point out that there are just a few
results in crisp logic programming which guarantee the unicity of stable models
(some of them later extended in [11] for fuzzy logic programming). The condition
presented below combines the weights in the program and the syntax, allowing
that cycles with negation appear, provided that its rules have convenient weights.

1The values are approximated to two digits precision.

Page 22 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

8 On the existence of stable models in normal residuated logic programs

In the rest of the paper we use the residuated lattice L = ([0, 1], ∗,←, n) given by:

x ∗ y = x · y x← y =

{

y
x

if x ≥ y

1 if x < y
n(x) = 1− x

Note that, as the operator ∗ and ¬ are continuous, the existence of at least a stable
model is guaranteed.

An advantage of working in [0, 1] is that, for finite programs, the operator TP

can be seen as a real function from [0, 1]n to [0, 1]n where n is the number of
propositional symbols in P, that is n = #ΠP. This can be done by paying attention
to the following considerations, which will be used hereafter:

• The propositional symbols occurring in P can be sorted as a list of n elements,
denoted by p1, . . . , pn.

• Each [0, 1]-interpretation can be seen as a tuple (I(p1), · · · , I(pn)) ∈ [0, 1]n.
Hence, the i-th component in a tuple a = (a1, . . . , an) represents the value of the
propositional symbol pi.

• As TP assigns [0, 1]-interpretations to [0, 1]-interpretations, with the above con-
sideration, TP assigns tuples in [0, 1]n to tuples in [0, 1]n; in other words, TP can
be seen as a real function from [0, 1]n to [0, 1]n.

• Finally, although the value of TP(I) for the i-th propositional symbol pi is usually
denoted by TP(I)(pi) within the logic programming community, we will use here
the usual notation used in real analysis. That is, TP(I) will be written as a tuple
(
(

TP)1(I), . . . , (TP)n(I)
)

and, thus, we will write (TP)i(I) instead of TP(I)(pi).

If at most one rule whose head is pi appears in P, then the immediate consequence
operator has the following simple form:

(TP)i(I) = I(q1) · · · · · I(qk) · (1− I(qk+1)) · · · · · (1− I(qm)) · ϑ (1)

where we assume that 〈pi ← q1 ∗ · · · ∗ qk ∗¬qk+1 ∗ · · · ∗¬qm, ϑ〉 is the only rule in P

with head pi.
Note that the occurrence of I as argument of (TP)i in equation (1) above, actually

means the tuple formed by
(

I(p1), . . . , I(pn)
)

for I being considered as a variable
interpretation. Note as well that the use of I(pi) to represent one variable argument
easily might lead to misunderstandings. In order to solve this potential problem,
we introduce the following

Notational conventions:

(1) Two different notations will be used, in order to denote whether we are
referring to a propositional symbol as an element of the domain of TP (we
will use the family pi in this case, as stated in the previous considerations)
or to a symbol occurring in the body of a rule (we will use qj). Note that
a given propositional symbol could be represented in two different forms
depending on the use we want to stress.

(2) As (TP)i will be used as a real valued function in the proofs of this section,
we will denote its variables by using directly the propositional symbols pi,
i.e. the formula (1) will be written as:

(TP)i(p1, . . . , pn) = q1 · . . . · qk · (1− qk+1) · . . . · (1− qm) · ϑ (2)

where each qj is actually some pi.

Page 23 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

Nicolás Madrid, Manuel Ojeda-Aciego 9

The following lemma, which states a certain inequality when considering the
immediate consequence operator as a differentiable real function, will be used to
prove the main result of this section.

Lemma 4.1 Let P be a normal residuated logic program such that at most one rule
which head is p appears in P. Let I and J be two [0, 1]-interpretations such that
J ≤ I, then:

n
∑

j=1

∣

∣

∣

∣

∂(TP)i

∂pj

(J(p1), . . . , J(pn))

∣

∣

∣

∣

≤

h
∑

j=1

I(q1) · . . . · I(qj−1) · I(qj+1) · . . . · I(qh) · ϑ +

+ (k − h)(I(q1) · . . . · I(qh) · ϑ)

where 〈pi ← q1 ∗ · · · ∗ qh ∗ ¬qh+1 ∗ · · · ∗ ¬qk ; ϑ〉 is the rule in P whose head is pi.

Proof We will use here the expression of (TP)i given by Equation (2) above. Clearly
(TP)i is differentiable, and its partial derivatives are:

∂(TP)i

∂pj

=















q1 · · · qt−1 · qt+1 · · · qh · (1 − qh+1) · · · (1 − qk) · ϑ if pj = qt for t ≤ h

−q1 · · · qh · (1 − qh+1) · · · (1 − qt−1) · (1 − qt+1) · · · (1 − qk) · ϑ if pj = qt for t > h

0 otherwise

Hence, the sum of all the partial derivatives of (TP)i evaluated on the point
(J(p1), . . . , J(pn)) satisfies the following inequality:

n
∑

j=1

∣

∣

∣

∣

∂(TP)i

∂pj

(J(p1), . . . , J(pn))

∣

∣

∣

∣

=

=

h
∑

j=1

|J(q1) · · ·J(qj−1) · J(qj+1) · · · J(qh) · (1 − J(qh+1)) · · · (1 − J(qk)) · ϑ|+

+

k
∑

j=h+1

|−J(q1) · · ·J(qh) · (1 − J(qh+1)) · · · (1 − J(qj−1)) · (1 − J(qj+1)) · · · (1 − J(qk)) · ϑ|

≤





h
∑

j=1

J(q1) · . . . · J(qj−1) · J(qj+1) · . . . · J(qh) · ϑ



 + (k − h)(J(q1) · . . . · J(qh) · ϑ)

≤





h
∑

j=1

I(q1) · . . . · I(qj−1) · I(qj+1) · . . . · I(qh) · ϑ



 + (k − h)(I(q1) · . . . · I(qh) · ϑ)

�

Now we are able to state and prove the main result of this section.

Theorem 4.2 Let P be a finite normal residuated logic program, and p a proposi-
tional symbol occurring in P, let us write ϑp = max{ϑj : 〈p← B ; ϑj〉 ∈ P}.1 If, for
every rule 〈p← q1 ∗ · · · ∗ qh ∗ ¬qh+1 ∗ · · · ∗ ¬qk ; ϑ〉 ∈ P, the inequality below holds





h
∑

j

ϑq1
· . . . · ϑqj−1

· ϑqj+1
· . . . · ϑqh

· ϑ



 + (k − h)(ϑq1
· . . . · ϑqh

· ϑ) < 1

1If p does not appear in the head of any rule then ϑp = 0.

Page 24 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

10 On the existence of stable models in normal residuated logic programs

then there is only one stable model of P.

Proof The structure of the proof is as follows:

• We will show that TP is a contractive map with respect to the norm ||.||∞ in a
specific subset A ⊆ [0, 1]n, for this part we will use that each element in A can be
seen as one [0, 1]-interpretation. Then, by applying Banach’s fix-point theorem,
TP has only one fix-point in A.

• We will show as well that, if I ∈ [0, 1]n is a fix-point of TP, then I necessarily
belongs to A. Therefore TP has only one fix-point in [0, 1]n.

• Finally, taking into account that:
(1) Every stable model of P is actually a fix-point of TP (Lemma 2.13)
(2) By Theorem 3.1, there exists at least one stable model of P

then the unique fix-point of TP has to be its unique stable model.

Let I be the [0, 1]-interpretation which assigns the value ϑp to each propositional
symbol p. Let us prove that TP is contractive in the set A = {J ∈ [0, 1]n : J ≤ I}.

To do that, we distinguish two cases, firstly that for every propositional symbol
p ∈ ΠP, there is at most one rule whose head is p in P; and secondly we prove the
general case for an arbitrary normal logic program.

Let us asume that P is a normal residuated logic program such that at most one
rule whose head is p appears in P. Then the hypothesis of Lemma 4.1 holds, and
it provides the following inequality for every J ∈ A:

n
∑

j=1

∣

∣

∣

∣

∂(TP)i

∂pj

(J(p1), . . . , J(pn))

∣

∣

∣

∣

≤

h
∑

j=1

I(q1) · . . . · I(qj−1) · I(qj+1) · . . . · I(qh) · ϑ +

+(k − h)(I(q1) · . . . · I(qh) · ϑ)

=





h
∑

j=1

ϑq1
· . . . · ϑqj−1

· ϑqj+1
· . . . · ϑqh

· ϑ



 + (k − h)(ϑq1
· . . . · ϑqh

· ϑ)

As a result, by hypothesis, we obtain for every J ∈ A

n
∑

j=1

∣

∣

∣

∣

∂(TP)i

∂pj

(J(p1), . . . , J(pn))

∣

∣

∣

∣

< 1 (3)

Now we make use of the mean value theorem for vector fields on R
n w.r.t ||.||∞

(see [20]): Given a differentiable function f on a set X, if the line segment [a, b] =
{(1 − t) · a + t · b : 0 ≤ t ≤ 1} is contained in X then:

||f(b)− f(a)||∞ ≤ ||b− a||∞ sup{||Df(z)||∞ : z ∈ [a, b]}

where Df denotes the differential of f , i.e the linear map associated to the Jacobian
matrix of f = (f1, . . . , fn):













∂f1

∂x1
· · ·

∂f1

∂xn
...

...
∂fn

∂x1
· · ·

∂fn

∂xn













Page 25 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

Nicolás Madrid, Manuel Ojeda-Aciego 11

and the norm ||Df(z)||∞ is defined as:

||Df(z)||∞ = sup{||
(

Df(z)
)

(x)||∞ : ||x||∞ ≤ 1}

Before applying the mean value theorem to TP, let us consider the following:

• Note that for every [0, 1]-interpretation J ∈ A and for every vector x ∈ R
n such

that ||x||∞ = max{|xi| : x = (x1, . . . , xn)} ≤ 1 :

||
(

DTP(J)
)

(x)||∞ = max
i







n
∑

j=1

∣

∣

∣

∣

∂(TP)i

∂pj

(J(p1), . . . , J(pn)) · xj

∣

∣

∣

∣







≤

≤ max
i







n
∑

j=1

∣

∣

∣

∣

∂(TP)i

∂pj

(J(p1), . . . , J(pn))

∣

∣

∣

∣







< 1

where the last inequality follows from (3).

• Note that A can be written as the n-cube [0, ϑp1
]× · · · × [0, ϑpn

]. As a result, A

is a compact set, and the supremum:

sup{||DTP(J)||∞ : J ∈ A}

is in fact a maximum.

• Note as well that for every J1, J2 ∈ A the line segment [J1, J2] is included in A.

Let us see now that TP is a contractive map in A. Let J1, J2 be two [0, 1]-
interpretations in A. Then by the mean value theorem:

||TP(J1)− TP(J2)||∞ ≤||J1 − J2||∞ sup{||DTP(J)||∞ : J ∈ [J1, J2]}

(by using the third consideration above)

≤||J1 − J2||∞ sup{||DTP(J)||∞ : J ∈ A}

(by the second note above)

≤||J1 − J2||∞ max{||DTP(J)||∞ : J ∈ A}

(by the first note above)

≤||J1 − J2||∞ · λ for λ < 1

Therefore the function TP is a contractive mapping in A, as we wanted to prove.

We consider now the general case. Let us assume that P is an arbitrary normal
logic program. Then we consider a partition of normal logic programs {Pi}i∈I as
described in Lemma 2.8, that is,

• in each Pi there are not two rules with the same head.

• the equality TP(I)(p) = supi∈I{TPi
(I)(p)} holds.

Moreover as P is a finite normal logic program, the supremum is actually a
maximum; i.e TP(I)(p) = maxi∈I{TPi

(I)(p)}. By using the case above, we can
state that each TPi

is a contractive map in A (by using the values ϑpi
defined

globally for P) with Lipschitz constant λi. Therefore, it is straightforward to prove
that TP is a contractive map in A with Lipschitz constant maxi∈I{λi}.

Finally, to conclude the proof, we only have to show that every fix-point of TP

belongs to A. But this is easy, since for every [0, 1]-interpretation I, TP(I)(p) ≤

Page 26 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

12 On the existence of stable models in normal residuated logic programs

max{ϑj : 〈p← B ; ϑj〉 ∈ P}; i.e TP([0, 1]n) ⊆ A.
�

The following example shows how we can apply Theorem 4.2 to a given normal
residuated logic program.

Example 4.3 Consider the following program

r1 : 〈p← q ∗ ¬s ; 0.7〉 r2 : 〈q ← ¬t ; 0.4〉

r3 : 〈t← ¬q ; 0.8〉 r4 : 〈s← t ∗ u ∗ ¬p ; 0.5〉

r5 : 〈p← q ∗ t ; 0.7〉 r6 : 〈u← ; 0.5〉

In order to check that this program satisfies the hypotheses of Theorem 4.2, firstly
we need to obtain the values ϑx = max{ϑj : 〈x← B ; ϑj〉 ∈ P} for each propositional
symbol x.

x p q s t u

ϑx 0.7 0.4 0.5 0.8 0.5

Secondly we must check that the inequality shown in Theorem 4.2 holds for every
rule in the program: by writing ϑri

for the weight of each rule ri in the program,
the following expressions are obtained for any rule:
For r1:

ϑr1
+ ϑr1

· ϑq = 0.7 + 0.7 · 0.4 = 0.98 < 1

For r2 and r3:

ϑr2
= 0.4 < 1 ϑr3

= 0.8 < 1

For r4:

ϑr4
· ϑu + ϑr4

· ϑt + ϑr4
· ϑt · ϑu = 0.5 · 0.5 + 0.8 · 0.5 + 0.8 · 0.5 · 0.5 = 0.85 < 1

For r5:

ϑr5
· ϑt + ϑr5

· ϑq = 0.7 · 0.4 + 0.7 · 0.8 = 0.84 < 1

As r6 is a fact, the inequality does not impose any restriction.
Therefore, we can apply Theorem 4.2 and obtain that this program has only one

stable model.

At first sight, the hypothesis required in Theorem 4.2 might seem too involved.
The following corollary provides a sufficient condition for the inequality required
in Theorem 4.2.

Corollary 4.4 Consider a rule 〈p← q1 ∗ · · · ∗ qh ∗ ¬q1 ∗ · · · ∗ ¬qk ; ϑ〉 in a finite
normal residuated logic program P. If the following inequality holds

h · (max{ϑq1
, . . . , ϑqh

, ϑ})h + k · (max{ϑq1
, . . . , ϑqh

, ϑ})h+1 < 1

then the rule satisfies the inequality required in the statement of Theorem 4.2.

Page 27 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

Nicolás Madrid, Manuel Ojeda-Aciego 13

Proof The result follows from the following inequality:





h
∑

j

ϑq1
· . . . · ϑqj−1

· ϑqj+1
· . . . · ϑqh

· ϑ



 +k(ϑq1
· . . . · ϑqh

· ϑ) ≤

≤





h
∑

j

(max{ϑq1
, . . . , ϑqh

, ϑ})h



 + k(max{ϑq1
, . . . , ϑqh

, ϑ})h+1

= h · (max{ϑq1
, . . . , ϑqh

, ϑ})h + k · (max{ϑq1
, . . . , ϑqh

, ϑ})h+1

�

Corollary 4.5 Let P be a finite normal residuated logic program. If every rule
in P has a weight strictly less than 1 and at most one propositional symbol appears
in the body of each rule, then P has only one stable model.

Proof It follows as an application of Corollary 4.4.
Let r be a rule in P. If r is a fact, the hypothesis holds trivially.
If r has any of the forms 〈p← q ; ϑ〉 or 〈p← ¬q ; ϑ〉, the inequality to be verified

is ϑ < 1; which holds by the hypothesis of this corollary. �

In the following examples we stress the fact that the underlying residuated lattice
should be based on the product t-norm for the uniqueness results stated in this
section.

Example 4.6 Corollary 4.5 guarantees that the program P

〈p← ¬q ; 0.9〉 〈q ← ¬p ; 0.9〉

has only one stable model when considering the product t-norm.
However, the same normal logic program interpreted with Gödel t-norm, its resid-

uated implication, and the standard negation, has infinitely many stable models,
specifically every interpretation in the set {Mα = {(p, α); (q, 1−α)} : 0.1 ≤ α ≤ 0.9}
would be a stable model.

Example 4.7 Consider the following normal residuated logic program on LP :

〈p← ¬q ∗ ¬r ; 0.9〉

〈q ← ¬r ∗ ¬p ; 0.9〉

〈r← ¬p ∗ ¬q ; 0.9〉

It is not difficult to check that it has only one stable model M which is given,
approximately, by {(p, 0.3608); (q, 0.3608); (r, 0.3608)}. However the program does
not satisfy the hypothesis of Theorem 4.2 since for the first rule we have that
2 · 0.9 = 1.8 ≥ 1.

Computing the unique stable model of P

Banach’s fix-point theorem plays a crucial role in the proof of Theorem 4.2; more-
over, Banach’s theorem not only provides a proof of uniqueness, but a method to
compute it as well. Specifically, if P is a normal residuated logic program which
satisfies the hypothesis of Theorem 4.2, we can compute its unique stable model

Page 28 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

14 REFERENCES

by computing the limit of the following sequence:

Ii+1 = TP(Ii)

where I0 is any [0, 1]-interpretation.

Theorem 4.8 Under the hypothesis of Theorem 4.2, the sequence I0 = I⊥, Ii+1 =
TP(Ii) converges to the unique stable model of P, although it may require ω many
steps.

Example 4.9 Continuing with Example 4.3, the computation of the unique stable
model of P by using the above sequence is given in the following table:

x TP(x)(p) TP(x)(q) TP(x)(s) TP(x)(t) TP(x)(u)

I0 0 0 0 0 0
I1 0 0.4 0 0.8 0.5
I2 0.28 0.079999999999 0.2 0.48 0.5
...

...
...

...
...

...
I100 0.068820224719 0.11764705882 0.16432584269 0.70588235294 0.5
I101 0.068820224719 0.11764705882 0.16432584269 0.70588235294 0.5

Thus I100 is the unique stable model of P.

5. Conclusions

We have introduced results on existence and uniqueness of stable models for normal
residuated logic programs. The first one determines that every normal residuated
logic program defined in [0, 1] in terms of continuous operators has at least one
stable model; as a result, inconsistencies (that is, lack of stable models) can be
avoided by simply considering continuous operators. The second result provides
sufficient conditions under which a normal logic program has only one stable model
which can be computed as a fix-point of the immediate consequences operator.

References

[1] A. Burrieza, I. P. de Guzmán, and E. Muñoz-Velasco. Generalization of some properties of relations
in the context of functional temporal×modal logic. Intl J of Computer Mathematics 85(3):371–383,
2007.

[2] A. Burrieza, A. Mora, M. Ojeda-Aciego, and E. Or lowska. An implementation of a dual tableaux
system for order-of-magnitude qualitative reasoning. Intl J of Computer Mathematics 86(10):1852–
1866, 2009.

[3] S. Costantini. On the existence of stable models of non-stratified logic programs. Journal of Theory
and Practice of Logic Programming, 6(1-2):169–212, 2006.

[4] C. Damásio, J. Medina, and M. Ojeda-Aciego. Termination of logic programs with imperfect infor-
mation: applications and query procedure. Journal of Applied Logic, 5(3):435–458, 2007.

[5] C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’01, pages 748–759. Lect. Notes
in Artificial Intelligence, 2143, 2001.

[6] M. Fitting. The family of stable models. The Journal of Logic Programming, 17(2-4):197 – 225, 1993.
[7] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of ICLP-88,

pages 1070–1080, 1988.
[8] M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence. Com-

putational Intelligence, 4:265–316, 1988.
[9] J. Golińska-Pilarek and E. Muñoz-Velasco. Dual tableau for a multimodal logic for order of magnitude

qualitative reasoning with bidirectional negligibility. Intl J of Computer Mathematics 86(10):1707–
1718, 2009.

[10] Y. Loyer and U. Straccia. Epistemic foundation of stable model semantics. Journal of Theory and
Practice of Logic Programming, 6:355–393, 2006.

Page 29 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

April 11, 2011 22:14 International Journal of Computer Mathematics Madrid-Ojeda-R3

REFERENCES 15

[11] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the semantic
web. Fundamenta Informaticae, 82(3):289–310, 2008.

[12] N. Madrid and M. Ojeda-Aciego. Towards a fuzzy answer set semantics for residuated logic programs.
In Web Intelligence/IAT Workshops, pages 260–264, 2008.

[13] N. Madrid and M. Ojeda-Aciego. On coherence and consistence in fuzzy answer set semantics for
residuated logic programs. Lect. Notes in Computer Science, 5571:60–67, 2009.

[14] N. Madrid and M. Ojeda-Aciego. On the existence of stable models in normal residuated logic
programs. In Proc of Computational Methods in Mathematics, Science, and Engineering. CMMSE,
pages 598-604, 2010.

[15] A. Mora, E. Muñoz-Velasco, and J. Golińska-Pilarek. Implementing a relational theorem prover for
modal logic K. Intl J of Computer Mathematics, 2011.
iFirst http://dx.doi.org/10.1080/00207160.2010.493211

[16] T. Przymusinski. Well-founded semantics coincides with three-valued stable semantics. Fundamenta
Informaticae, 13:445–463, 1990.

[17] U. Straccia. Query answering in normal logic programs under uncertainty. Lect. Notes in Computer
Science, 3571:687–700, 2005.

[18] U. Straccia. Query answering under the any-world assumption for normal logic programs. Lect. Notes
in Computer Science, 3571:687–700, 2006.

[19] U. Straccia. A top-down query answering procedure for normal logic programs under the any-world
assumption. Proc. of the 10th Intl Conf on Principles of Knowledge Representation, 329–339, AAAI
Press, 2006.

[20] M. Tsoy-Wo. Classical Analysis on Normed Spaces. World Scientific Publishing, 1995.

Page 30 of 30

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

