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We introduce the definition of topological turning point of a function F(x, λ) : R × R → R,
then we propose a numerical method for calculating it. This new definition does not require
any regularity for F but its continuity, moreover topological turning point coincides with
turning point when F is sufficiently smooth. The numerical method that we introduce has
linear rate of convergence and it is of secure convergence.
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1. Introduction

An open issue in applied mathematics is finding the turning points of the equation

F(x, λ) = 0 (1)

where F maps Rn+1 in Rn, x ∈ Rn is a variable and λ ∈ R is a parameter.
The search for turning points arises in many physical problems as soon as the
mathematical description of phenomena leads to (1). This problem has a long
history but it is still of interest today, as it is shown by recent works on this topic
and on related arguments [1, 2]. In studying equation (1) other interesting questions
may arise such as the search for bifurcation points or the individual solution arcs to
name but a few. For a description of these problems we refer to [3, 4] and references
therein. A solution (xc, λc) of (1) is said to be a turning point if the Jacobian of F
with respect to x is singular at that point, whereas the complete Jacobian of F has
maximum rank [5]. Turning points can be further classified by taking into account
the number of successive null-derivatives (calculated at the turning point) of the
curve solution of (1) [6]. This number identifies the order of the turning point and
we can distinguish simple (first order) and double (second order) turning points
and so on. In [6] simple turning points are distinguished from non-simple turning
points.

We can identify two basic strategies for finding turning points, based on direct
and indirect methods. The first one consists in completing (1) with some additional
equations, which characterize turning points, in order to obtain a determined sys-
tem that can be solved by Newton method (or its modification): this strategy
is proposed in [5, 7–9] where different examples of characterizing equations for
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turning points are given (see also [10] and references therein). The second strat-
egy essentially applies methods developed for the arc following problem: one varies
the parameter λ and calculates the respective value of x such that (1) holds. This
is the strategy used, for example, in [3, 4, 11, 12] where the Newton method or
its modification is used to approximate the value of x. Another basic difference
between methods is in the use of derivatives of F . Derivatives of F are involved
in the definition of turning points and hence all the methods previously discussed
require certain data from them. However, it is possible to devise methods which in-
volve only suitable approximations when dealing with derivatives. These are called
free-derivative methods (see, for example, [3, 4]).

In this work we suggest the definition of topological turning points. The topolog-
ical approach to problems related to singular solution of (1) is not new: in [13],
this kind of problem is approached with linearization methods and differential-
topology arguments. We follow a different method, we base our investigations on
general-topology arguments we avoid any requests of regularity for F apart from
its continuity. We consider the variable x of F(x, λ) as a scalar variable: although
this choice is actually a limitation with respect to the general case where x is a
vector, it turns out to be useful to handle the new definition. The reason for this
new definition is that a topological turning point is a turning point (of odd order)
if F is sufficiently smooth and, conversely, any odd order turning point is a topo-
logical turning point. In particular, simple turning points are topological turning
points. Moreover, we introduce a numerical method for calculating a topological
turning point which represents the main result of the paper.

The method for calculating topological turning points inherits its properties from
traditional bisection: it has linear rate of convergence and it is of secure conver-
gence. It can be applied for the calculation of turning points and it requires fewer
conditions for F to be applied. As we shall see, it avoids derivatives of F as well as
their approximations, actually no data are required from derivatives of F neither
the existence of same derivatives. This feature is useful in several contexts: in [14]
the analytical definition of the function F is such involved that discourages the
computation of its derivatives so an earlier version of the method is employed to
overcome this difficulty.

We note that it is possible to apply the method to calculate cusp points and
other kind of singular points. Typical approach for calculating cusp points is to
augment the original equation with defining equations to obtain a specific type of
bifurcation points [15]. This strategy require the existence of Jacobian matrix in a
neighborhood of the cusp point and hence it fails when the involved function has
non differentiable points in any punctured neighborhood of the singular point. We
suggest some examples in the following of the paper.

The paper is organized as follows: in Section 2 we define the topological turning
point, in Section 3 we state theorems for its existence and uniqueness. In Section 4
we develop the iterative method for calculating a topological turning point and in
Section 5 we introduce a pseudo-code which elaborates the algorithm. In Section
6 we provide several examples of the method. Finally, in Section 7 we come to the
conclusions.

2. Defining Topological Turning Points

In the following we formally define topological turning points and motivate this
definition in a geometrical context. Before going on let us briefly recall the definition
of turning points.
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Definition 2.1 Let us suppose F is sufficiently smooth. A turning point (xc, λc)
solves the system of equations

F(x, λ) = 0 (2)

∂xF(x, λ) = 0 (3)

∂λF(x, λ) 6= 0 (4)

Equations (2)-(4) are the univariate case of more general conditions which identify
turning points for F . To distinguish simple turning points from turning points of
a different type a further condition is needed:

∂x2F(xc, λc) 6= 0. (5)

If equation (5) does not hold, the turning point is called non-simple. In this case
the condition

∂xiF(xc, λc) = 0 (6)

holds for every i = 2, . . . , n but i = n + 1 and the turning point has order n.

The idea behind the definition of a topological turning point is to characterize a
special solution of the critical point connection problem [16].

Problem 2.2 Critical-point connection problem: In a certain interval X, a one-
parameter family of functions {Fλ}λ is cut in half by the x-axis resulting in at
most two intersections with each function Fλ. The aim is to find, if it exists, the
value of parameter λ ∈ Λ in correspondence of the coalescence of two intersections
and the value of x where the two intersections actually coalesce.

A complete characterization of the solutions of the critical-point connection prob-
lem is beyond the scope of the paper, it is possible that even a point of horizontal
inflection for Fλ could solve the problem: hypotheses on the family of functions play
a key role in determining the solutions of the problem. If we let F(x, λ) := Fλ(x),
the special solution which rouses our interest is defined as follows:

Definition 2.3 Let F(x, λ) be a continuous function in a domain D. The point
(xc, λc) ∈ D is said to be a topological turning point for F if there exists a compact
rectangular domain X × Λ ⊂ D such that:

i) (xc, λc) ∈ X̊ × Λ (X̊ is the interior of X);
ii) xc is a global minimizer (maximizer) for F(x, λc) in X;
iii) the equation

F(xc, λc) = 0

holds.

It is clear that a turning point of odd order is a topological turning point. In
particular, a simple turning point satisfies the Conditions (2)-(5) and, therefore,
it also satisfies conditions in Definition 2.3. On the other hand, the regularity of
F ensures that a topological turning point is an odd order turning point, but this
is not enough to ensure that it is a simple turning point. We build up this trivial
counter-example:

F(x, λ) = x4 + λ
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in this case the point (0, 0) is a topological turning point and also a turning point
but it is not a simple turning point since (5) does not hold. As long as no derivatives
for F are required in the definition, also cusp points can be a topological turning
point.

The critical point connection problem also lies behind the basic idea of the nu-
merical method, we compute the distance between the two intersections and we
recursively operate to reduce it. The difference in the order of magnitude for the
approximations in λ and in x is remarkable (see Tables 1, 2). When the topological
turning point is a turning point, we should be able to recognize its order taking into
account the approximation ratio between λ and x, that is the polynomial degree
of their functional dependence. This will be investigated elsewere.

3. Existence and uniqueness results

Before continuing with the discussion we give some definitions and notations. Let
X × Λ be a compact rectangular domain in R2 and

F : X × Λ −→ R

(x, λ) 7−→ y

In the following we adopt the notation Fλ to emphasize the dependence of F on x
and Fx to emphasize the dependence of F on λ. We denote the graph of a generic
function ϕ : X → R by

GX (ϕ) = {(x, ϕ(x)) | x ∈ X}

and its epigraph by

EX (ϕ) := {(x, y) | x ∈ X, y ≥ ϕ(x)} .

With regard to the one-parameter family of functions Fλ, we set

En (X,Λ) = {λ ∈ Λ : ] (GX (Fλ) ∩ GX (y = 0)) = n} , n ∈ N.

We note that En (X,Λ) is the set of λ ∈ Λ for which the graph of Fλ has exactly
n intersections with the x−axis and the process of counting the intersections does
not take into account their multiplicity. We now recall two equivalent definitions,
widely used in the following.

Definition 3.1 [17, Definition 4.2.5] A function ϕ : [a, b] ⊂ R → R is strictly
quasiconvex on [a, b] if, for any t1, t2 ∈ [a, b] , t1 6= t2

ϕ (τt1 + (1− τ) t2) < max {ϕ (t1) , ϕ (t2)} , ∀τ ∈ (0, 1) .

Definition 3.2 [17, Definition 8.7.1] A function ϕ : [a, b] ⊂ R → R is strictly
unimodal on [a, b] if there exists a t∗ ∈ [a, b] such that ϕ (t∗) = min {ϕ (t) |t ∈ [a, b]},
and if, for any a ≤ t1 < t2 ≤ b,

{

t2 ≤ t∗ implies that ϕ (t1) > ϕ (t2) ,
t∗ ≤ t1 implies that ϕ (t2) > ϕ (t1) .

A result of Elkin [18], remarked in [17, 4.2.5], shows that the class of strictly qua-
siconvex functions coincides with the class of strictly unimodal functions: we will
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use them without distinction, depending on suitability. Clearly the strict convexity
implies the strict quasiconvexity but the converse is not true; we also remark that
a strictly quasiconvex function is not, in general, a continuous function [19].

Theorem 3.3 Let us suppose that the function F is continuous in Λ×X and that

Fλ : X → R, x ∈ X is strictly unimodal for each λ ∈ Λ,
Fx : Λ→ R, λ ∈ Λ is strictly monotone for each x ∈ X.

(7)

If there exists a topological turning point in Λ×X, then it is unique.

Proof For each λ ∈ Λ the functions Fλ are strictly quasi convex (concave) and have
a global minimizer (or maximizer) in X: recalling the Definition 2.3 a topological
turning point (xc, λc) identifies a function Fλc

where xc is its global minimizer (or
maximizer) and the following equation holds

Fλc
(xc) = 0.

Using reductio ad absurdum, we can suppose (xc, λc) and (x′
c, λ

′
c) are two different

topological turning points in Λ×X: xc and x′
c are the minimum for Fλc

and Fλ′

c

respectively. The strict unimodality of Fλ excludes that λc = λ′
c and xc 6= x′

c

whereas the strict monotonicity of Fx excludes that λc 6= λ′
c and xc = x′

c: hence
we have to discuss the case where λ′

c 6= λc and x′
c 6= xc. Without loss of generality,

we can suppose λ′
c < λc and that all functions Fx are strictly increasing for each

x ∈ X. Consequently

0 = Fλ′

c
(x′

c) < Fλ′

c
(xc) < Fλc

(xc) = 0

which is absurd since the first inequality follows from the strict unimodality of Fλ

and the second from the strict monotonicity of Fx. �

Remark 1 We can compare the hypothesis of Theorem 3.3 with the conditions
required by the Newton method. More precisely, in order to apply the Newton
method to compute a simple turning point, among other conditions, it is required
that F is of class C2 and

∣

∣

∣

∣

∣

∣

∂F
∂λ

∣

∣

(λ,x)
∂F
∂x

∣

∣

(λ,x)

∂2F
∂λ∂x

∣

∣

∣

(λ,x)

∂2F
∂x2

∣

∣

∣

(λ,x)

∣

∣

∣

∣

∣

∣

6= 0 (8)

for each (x, λ) in a neighborhood X × Λ of its solution (xc, λc) [20]. Basically, we
note that condition (8) is equivalent to the following

∂2F

∂x2

∣

∣

∣

∣

(xc,λc)

6= 0 (9)

and

∂F

∂λ

∣

∣

∣

∣

(xc,λc)

6= 0 (10)

when evaluated at the point (xc, λc). Condition (9) implies the strict unimodality
of functions Fλ and condition (10) implies the strict monotony of functions Fx at
least in the neighborhood of (xc, λc).
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From the definition of unimodality each horizontal line intersects the graph of a
unimodal function at least twice, eventually by reducing the domain (X,Λ) and in
virtue of Theorem 3.3 we assume

En (X,Λ) = ∅, n > 2. (11)

On the other hand, the existence of a topological turning point is not ensured even
if the conditions

En (X,Λ) 6= ∅, n = 0, 2

are added to the hypothesis of Theorem 3.3, as in the counter example in Figure 1.
In order to ensure the existence of a topological turning point we need a further

−0.5 0 0.5
−1

−0.5

0

0.5

1

1.5

FλE2

FλE1

FλE0

Figure 1. E0 (Λ, X) 6= ∅, E1 (Λ, X) 6= ∅, E2 (Λ, X) 6= ∅ but there is no topological turning point.

condition on the mutual position of the graphs of the functions Fλ, as the following
theorem shows.

Theorem 3.4 Let the function F satisfy the hypothesis of Theorem 3.3; moreover
let En (X,Λ) 6= ∅ be for n = 0, 2. If in addition there exist λE0

∈ E0 (X,Λ) and
λE2
∈ E2 (X,Λ) such that

GX

(

FλE0

)

⊂ EX
(

FλE2

)

, (12)

then there exists a topological turning point in X × Λ.

Before demonstrating Theorem 3.4 we state the following

Lemma 3.5 In the hypothesis of Theorem 3.4 the sets E0 (X,Λ) , E2 (X,Λ) are
open with respect to the topology induced by the Euclidean topology on Λ =
[min{λE0

, λE2
},max{λE0

, λE2
}].

Proof Without loss of generality, suppose that all functions Fx are strictly increas-
ing functions for each x ∈ X.

In order to prove that λE0
∈ E̊0 (X,Λ) (E̊0 is the interior of E0) we set

δ := min
x∈X
{FλE0

}
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and therefore

FλE0
(x) ≥ δ > 0, ∀x ∈ X.

We consider the open covering of GX

(

FλE0

)

generated by the open balls with center
(

x,FλE0
(x)

)

and radius δ, for each x ∈ X. Let λ be such that the graph GX(Fλ)
lies entirely in the open covering above: then λ ∈ E0(X,Λ) and the set of such λ
is an open interval in Λ by the hypothesis on F . An analogous argument can be
repeated for each λ′

E0
∈ E0 (X,Λ). Consequently E0 (X,Λ) is open in Λ.

In order to prove that λE2
∈ E̊2 (X,Λ) we denote by xm ∈ X̊ the abscissa of the

global minimum of FλE2
. As long as λE2

∈ E2 (X,Λ), then

FλE2
(xm) < 0

because of the strict unimodality of the function. On the other hand

FλE0
(xm) > 0

since λE0
∈ E0 (X,Λ) and condition (12) holds. Because of the continuity of Fxm

there exists a λ̄ ∈ (λE2
, λE0

) such that

Fλ̄(xm) = 0.

Since FλE2
is nonnegative at the boundary points of X we find that

[

λE2
, λ̄

)

⊂
E2 (X,Λ) by the hypothesis on F . An analogous argument can be repeated for
each λ′

E2
∈ E2 (X,Λ). Consequently E2 (X,Λ) is open in Λ. �

Now we can prove Theorem 3.4.

Proof Taking into account the fact that Λ is an interval and that E0 (X,Λ) ∩

E2 (X,Λ) = ∅, in virtue of Lemma 3.5 there must exist a λc ∈ E1 (X,Λ) ⊂ Λ̊.
Let xc ∈ X be the unique zero of the function Fλc

. Due to the strict monotonicity

of Fxc
, the point xc lies between the two zeros of FλE2

and hence xc ∈ X̊ . Now we
have to prove that xc is the global minimizer of Fλc

. Through reductio ad absurdum,
let xm be the global minimizer of Fλc

: it would satisfy the condition

Fλc
(xm) < 0

and consequently, from the hypothesis on F , there would exist two distinct zeros
of Fλc

which is a contradiction. Therefore the pair (λc, xc) is a topological turning
point. �

Remark 2 Theorem 3.4 only claims explicitly the existence of a topological turning
point. However, under the same hypotheses, Theorem 3.3 holds and hence the
topological turning point is also unique.

Remark 3 We can compare the hypothesis of Theorem 3.4 with the conditions
required by the Newton method. More precisely, in order to apply the Newton
method to compute a simple turning point we assume F is sufficiently smooth and
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we expand it using Taylor series centered at (λc, xc):

F(x, λ) ≈ − ∂F
∂λ

∣

∣

(λc,xc)
(λ− λc) + 1

2
∂2F
∂x2

∣

∣

∣

(λc,xc)
(x− xc)

2

− ∂2F
∂x∂λ

∣

∣

∣

(λc,xc)
(x− xc) (λ− λc)−

1
2

∂2F
∂λ2

∣

∣

∣

(λc,xc)
(λ− λc)

2 (13)

where the constant as well as the linear term in x − xc are zero by (2) and (3)
respectively. We note that the right hand side of (13) can be read as a polynomial
in x and its discriminant is a function in λ:

∆ (λ− λc) =

[

(

∂2F
∂x∂λ

∣

∣

∣

(λc,xc)

)2

+ ∂2F
∂x2

∣

∣

∣

(λc,xc)

∂2F
∂λ2

∣

∣

∣

(λc,xc)

]

(λ− λc)
2

+ ∂2F
∂x2

∣

∣

∣

(λc,xc)

∂F
∂λ

∣

∣

(λc,xc)
(λ− λc) . (14)

Because of Conditions (9) and (10), required by the Newton method, this dis-
criminant has a single zero at λc. In turn the number of zeroes of the quadratic
polynomial, with respect to the variable x ∈ X at the r.h.s. of (13), ranges from
0 to 2 in the neighborhood Λ of λc. Consequently, E0 (X,Λ) and E2 (X,Λ) are
non-empty sets while the critical value λc is an isolated point of E1 and it lies in
the closure of En n = 0, 2: as required in Theorem 3.4.

4. The converging sequences

This section is devoted to introducing sequences
{

(xn, λn)
}

which converge to a
topological turning point (xc, λc) in the hypotheses of Theorem 3.4. We prove that
if (x1, x2) is the open interval between the two roots x1, x2 of a certain Fλ, then
xc ∈ (x1, x2): an ad hoc modification of the bisection method (which is further
discussed in Section5) ensures the linear convergence to xc. At the same time we
take into account the convergence of λ towards λc. Finally, a map C links together
every x ∈ (x1, x2) with a uniquely determined value of λ.

Before going on with the discussion we shall introduce some notations. Let λE0
∈

E0 (X,Λ), λE2
∈ E2 (X,Λ) and without loss of generality assume λE0

< λc < λE2
.

For each λ ∈ E2 (X,Λ) we denote by xλ
1 , xλ

2 , with xλ
1 < xλ

2 , the two roots of the

equation Fλ = 0. Finally, by reducing the rectangle, we assume X =
[

x
λE2

1 , x
λE2

2

]

and Λc = (λc, λE2
] ⊂ Λ = [λE0

, λE2
]. In the following we suppose the hypotheses

of Theorem 3.4 hold.

Lemma 4.1 Let be λ ∈ Λc ⊂ E2(X,Λ), let xλ
1 and xλ

2 be the two roots of Fλ = 0.
Then:

xc ∈
(

xλ
1 , xλ

2

)

, (15)

lim
λ→λ+

c

∣

∣

∣
xλ

2 − xλ
1

∣

∣

∣
= 0+ ⇔ lim

|xλ
2−xλ

1 |→0+

λ = λ+
c (16)

and for each λ1, λ2 ∈ Λc

|λ1 − λc| < |λ2 − λc| ⇔
(

xλ1

1 , xλ1

2

)

(
(

xλ2

1 , xλ2

2

)

⊂ X. (17)
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Proof In order to prove (15) let us assume by reductio ad absurdum that xc /∈
[

xλ
1 , xλ

2

]

. Let xλ
m ∈

[

xλ
1 , xλ

2

]

be s.t. Fλ

(

xλ
m

)

= min
{

Fλ (x) : x ∈
[

xλ
1 , xλ

2

]}

. The
strict unimodality yields

Fλ

(

xλ
m

)

< 0 < Fλc

(

xλ
m

)

=⇒ Fλ

(

xλ
m

)

−Fλc

(

xλ
m

)

< 0

and the strict monotony yields

Fλ (xc) > Fλc
(xc) = 0 =⇒ Fλ (xc)−Fλc

(xc) > 0.

Hence there exists a point x̄ ∈
(

min
{

xλ
m, xc

}

,max
{

xλ
m, xc

} )

such that

Fλ(x̄) = Fλc
(x̄)

against the monotony of Fx.
The proofs of conditions (16) and (17) are straightforward if we recall that (16)

follows from Theorem 3.3 while (17) can be proven analogously to condition (15).
�

We define the map

C : Λc → Λ̄c = Λc ∪ {λc}

as follows: let λ ∈ Λc, xλ
1 and xλ

2 be the associated roots. We select the middle
point x̄ ∈ (xλ

1 , xλ
2 ) and determine the unique λ̄ such that Fx̄

(

λ̄
)

= 0. We set

C (λ) = λ̄.

We remark that λ̄ is actually unique for the monotonicity of the functions Fx, then
we can prove the following:

Theorem 4.2 For each λ ∈ Λc and for each ε > 0 there exists n ∈ N such that

|Cn(λ)− λc| < ε. (18)

Proof For each couple λ1, λ2 ∈ Λ̄c we associate the positive real number

d (λ1, λ2) =
∣

∣

∣

∣

∣

∣
xλ1

1 − xλ1

2

∣

∣

∣
−

∣

∣

∣
xλ2

1 − xλ2

2

∣

∣

∣

∣

∣

∣
.

We can state that function d is a distance and
(

Λ̄c, d
)

is a metric space. In fact,
the nonnegativity and the symmetry of d follows from its definition, the identity
of indiscernible follows by (17) and by the strict monotonicity of Fx; finally, the
triangle inequality follows from the fact that from (17) each set {λ1, λ2, λ3} is
strictly ordered by distance d (λi, λc).

We conclude the proof remarking that if C(λ) = λc condition (18) is trivial;
otherwise, if Cn−1 (λ) belongs to Λc, the iterates of map C satisfy the inequality

d (Cn (λ) , λc) ≤
1

2
d

(

Cn−1 (λ) , λc

)

.

�
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The above discussion shows that the map C has an attractive fixed point in λc

and more importantly:

xλ
1 < x

C(λ)
1 ≤ xc ≤ x

C(λ)
2 < xλ

2 ∀λ ∈ Λc. (19)

Hence to attain sequences {(xn, λn)} which converge to a topological turning point
it is sufficient to set λ0 = λE2

and to pair the terms of the sequence {Cn (λ0)} , n ≥

0, with the corresponding ones in sequences
{

x
Cn(λ0)
1

}

,
{

x
Cn(λ0)
2

}

.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

Figure 2. Fλc
is neither convex nor concave and it has a countable number of points with horizontal

(circle) or vertical (star) tangent line in any punctured neighborhood of xc = 0.

5. The pseudocode

Here we introduce a pseudo-code which elaborates the method: to help the reader
we split it into three macro-steps and discuss, separately, the procedures involved
in each one of them. Then we shall introduce the main procedure which actually
yields the topological turning point.

step 1 Given λn and the roots xλn

1 , xλn

2 of the equation Fλn
(x) = 0, we set x̄ the

midpoint of (xλn

1 , xλn

2 ).

PROCEDURE: firstx

xλn

1 , xλn

2 (input)

x̄← xλn

1 +
(

xλn

2 − xλn

1

)

/2

x̄ (output)

step 2 We determine the unique λn+1 such that Fλn+1
(x̄) = 0.

PROCEDURE: nextlambda

F , λE0
, λn, x̄ (input)

λn+1 ← Solve[Fλ(x̄) = 0]
λn+1 (output)
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The procedure Solve is a zero finding method and a standard bisection can
be used in order to achieve λn+1. In fact, the assumptions on the function F
assure that λn+1 ∈ [min {λE0

, λn} ,max {λE0
, λn}], where λE0

∈ E0(X,Λ), and the
computation of λn+1 can be realized in order to assure that λn+1 ∈ E2(X,Λ).
Moreover, if Fλ(x) is algebraic in λ, it may be possible to compute the value λn+1

directly. In this case the input datum λE0
is not really needed.

step 3 We approximate the second root z of the equation Fλn+1
(x) = 0 by ¯̄x; then we

renominate x̄ and ¯̄x as x
λn+1

1 and x
λn+1

2 from the left to the right.

The variable C in input assumes the values 1, −1 according to the assignment
in the procedure tpoint; as a consequence of its definition, the value of C is the
opposite of the sign of (9) when it is meaningful.

PROCEDURE: nextx

F , λn+1, xλn

1 , xλn

2 , x̄, C (input)

xl ← xλn

1 +
(

x̄− xλn

1

)

/2;

xr ← x̄ +
(

xλn

2 − x̄
)

/2;

l ← Fλn+1
(xl);

r ← Fλn+1
(xr);

while l · r > 0
xλn

1 ← xl;

xλn

2 ← xr;

xl ← xλn

1 +
(

x̄− xλn

1

)

/2;

xr ← x̄ +
(

xλn

2 − x̄
)

/2;

l← Fλn+1
(xl);

r ← Fλn+1
(xr);

end
If l · r = 0

If l = 0
x

λn+1

1 ← xl;

x
λn+1

2 ← x̄;
else

x
λn+1

1 ← x̄;

x
λn+1

2 ← xr;
end

else
if C · l < 0

x
λn+1

1 ← xλn

1

x
λn+1

2 ← x̄;
else

x
λn+1

1 ← x̄;

x
λn+1

2 ← xλn

2
end

end
x

λn+1

1 , x
λn+1

2 (output)

The choice of ¯̄x as approximation of the zero z is a critical issue: here an ad hoc
modification of the standard bisection is needed. The zero z must belong to the
interval with end-points x̄, ¯̄x, i.e. z must belong to the calculated interval. This
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feature ensures that the sequence of intervals bounded by the exact zeroes of Fλn+1

converges to xc when
∣

∣

∣
x

λn+1

2 − x
λn+1

1

∣

∣

∣
tends to zero. For this reason point ¯̄x must

be a left or a right approximation of z depending on the position of z with respect
to x̄. The point x̄ can be considered an exact approximation of the corresponding
zero.

We note that the error | ¯̄x− z| need not be small with respect to
∣

∣

∣
xλn

2 − xλn

1

∣

∣

∣
:

the algorithm improves its efficiency by decreasing the quantity | ¯̄x− z| but, at the
same time, the amount of evaluations of the function Fλn+1

increases together with
this precision. On the other hand, knowledge of the mutual position of the zeros
per se allows us to choose the values xλn

1 or xλn

2 as left or right approximation of
z respectively. In fact, it follows that

∣

∣

∣
x̄− xλn

1

∣

∣

∣
=

∣

∣

∣
x̄− xλn

2

∣

∣

∣
=

1

2

(

xλn

2 − xλn

1

)

which still ensures a linear speed of convergence. To determine a value between
xλn

1 and xλn

2 which may approximate z, the procedure nextx determines if z is

greater than or equal to x̄ in order to choose a narrow interval, namely
(

xλn

1 , xl

)

or
(

xr, x
λn

2

)

, containing z. The procedure fixes the auxiliary points

xl =
(

xλn

1 + x̄
)

/2, xr =
(

x̄ + xλn

2

)

/2

and considers the product of evaluations l · r where

l := Fλn+1
(xl), r := Fλn+1

(xr).

From the unimodality of Fλ, in the interval
(

xλn

1 , xλn

2

)

, the function Fλn+1
can

be approximated by a certain parabola with zeroes in x̄ and in z: if xl and xr

are both outside the interval (x̄, z), then l · r is positive so that we may consider
only the narrower interval (xl, xr) and proceed along the same line of reasoning.
Conversely, if the sign of l·r is negative, only one among xl, xr lies between x̄, z: this
case ensures that the root z lies outside the interval (xl, xr) whereas x̄ ∈ (xl, xr).

Hence z is the only root in the interval
(

xλn

1 , xl

)

or in
(

xr, x
λn

2

)

depending on the

sign of C and the sign of l (or r): consequently the procedure assigns to ¯̄x the value

of xλn

1 or xλn

2 .

Finally we introduce the procedure tpoint which calculates the topological turn-
ing point; in fact, we employ all the procedures previously introduced. Recalling
the definition of Λc ×X (see Section 4) we initialize the variables.

PROCEDURE: tpoint

F , λE0
, λE2

, x
λE2

1 , x
λE2

2 (input)

xλ
1 ← x

λE2

1

xλ
2 ← x

λE2

2
λold ← λE0

λ← λE2

x̄←firstx

C ← −sign (Fλ (x̄))
while |λ− λold| > eps

x̄←firstx
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Table 1. Numerical results for the two-bar Framework

Iterations λ |λ− λold|
(

xλ
1 + xλ

2

)

/2
∣

∣xλ
1 − xλ

2

∣

∣

26 3.079201435678002 1.7E-15 0.845299444414370 1.0E-07
27 -3.079201435678005 1.7E-15 3.154700516871277 2.6E-08

λold ← λ
λ←nextlambda

xλ
1 ←nextx((1))

xλ
2 ←nextx((2))

end
λ, xλ

1 , xλ
2 (output)

6. Numerical experiments

In this section we test the method in several cases. The first two examples are
well-known in the literature; in particular, Example 1 is reported also in [21] and
can serve as a comparison with other methods. Example 3 introduces several cases
of cusp point. Example 4 introduces a function with non differentiable points in
any punctured neighborhood of the topological turning point. Examples 3 and 4
are especially chosen in order to emphasize the peculiarity of the proposed method.
A Matlab code is developed to run the method.

Example 1. Oden [22] introduced an example of a two bar framework con-
structed of an isotropic Hookean material. A standard finite element approximation
leads to the equilibrium equations for the displacement vector y = (y1, y2) ∈ R2.
The equilibrium equations F (y, t) = (0, 0) are linear in parameter t and also de-
pend on the given load vector p = (p1, p2) ∈ R2 as well as on a further scalar
parameter µ which must be fixed. We test our method on the first component of
F :

(

y2
1 − 3µy1 + 2µ2

)

y1 + (y1y2 − µy2) y2 − tp1 = 0

in correspondence of p1 = 1, µ = 2 (as in [21]) and we set y2 = 0 in order to make
the problem unidimensional. We run the Matlab code of the algorithm two times

with the initial values λE0
= 16

3
√

3
+ 1, λE2

= − 16
3
√

3
, x

λE2

1 = 2− 4√
3
, x

λE2

2 = 2 + 2√
3

and λE0
= − 16

3
√

3
− 1, λE2

= 16
3
√

3
, x

λE2

1 = 2− 2√
3
, x

λE2

2 = 2 + 4√
3
.

The two runs generate the output values given in Table 1. These values corre-

spond to turning points T1 =
(

2− 2√
3
, 0,+ 16

3
√

3

)

, T2 =
(

2 + 2√
3
, 0,− 16

3
√

3

)

reported

in [21].

Example 2. Spence and Werner [6] study nonlinear operators motivated by two
parameter problems which arise from physical applications, such as the theory of
thermal ignition. In introducing the notion of simple and double turning points
they discuss the map

F (x, λ) := x3 − µx + λ

where µ is a fixed constant. This map is the polynomial realization of the so called
cusp catastrophe [23, p. 174]. For µ > 0 there are two simple turning points (λc, xc),
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Table 2. Numerical results for the one parameter family F (λ, x) = x3 − µx + λ, µ = 1

Iterations λ |λ− λold|
(

xλ
1 + xλ

2

)

/2
∣

∣xλ
1 − xλ

2

∣

∣

15 0.384900179459748 0.0E-16 5.773503035306931E-01 1.5E-07
15 -0.384900179459748 0.0E-16 -5.773503035306931E-01 1.5E-07

λc = ±2 (µ/3)3/2, xc = ± (µ/3)1/2. We tested our method on

F (x, λ) = 0

for the special case µ = 1 (see Figure 3).

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

F+2(µ/3)3/2

F
−2(µ/3)3/2

Figure 3. The one parameter family F (λ, x) = x3 − µx + λ, µ = 1

We run the Matlab code of the algorithm two times, with the initial values λE0
=

1, λE2
= 0, x

λE2

1 = −.5, x
λE2

2 = 2 and λE0
= −1, λE2

= 0, x
λE2

1 = −2, x
λE2

2 = .5.
The outcomes are reported in the first and in the second line of the Table 2,
respectively.

Example 3. For each (α, β) ∈ N× N we set:

Fα,β (x) := |x|
α

β (20)

and

P (x) := −1 + (x− .5)2 .

The one-parameter family of functions

Fα,β (x, λ) := Fα,β (x)− λ (Fα,β (x)− P (x)) , (α, β) ∈ N× N

are linear homotopies between the functions y = Fα,β (x) (obtained in correspon-
dence with the value λ = 0 of the parameter) and the parabola y = P (x) (which
corresponds to λ = 1). We have tested the method on

Fα,β (λ, x) = 0
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for different values of α, β and their graphic representations are given in Figures
4, 5, 6: if α > β the point (0, 0) is a turning point, but if α ≤ β the point (0, 0)
is only a topological turning point (a cusp, in these cases). The Matlab code of

the algorithm with the initial values λE0
= 0.2, λE2

= 1, x
λE2

1 = −.5, x
λE2

2 = 1
generates the output values with their respective number of iterations given in
Table 3

−0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

Fλc

Figure 4. The one parameter family F2,1 − λ (P − F2,1) with F2,1 defined as in eq. (20)

−0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

Fλc

Figure 5. The one parameter family F1,1 − λ (P − F1,1) with F1,1 defined as in eq. (20)

Example 4. For each x ∈ R\ {0} we set n (x) = (1/ |x|) and consider the
function F on [−1, 1] defined as

F (x) =























1
n(x)+1 +

√

1
n(x)2(n(x)+1)2

−
(

|x| − 1
n(x)

)2
, (n (x) , 2) = 1

1
n(x) −

√

1
n(x)2(n(x)+1)2

−
(

|x| − 1
n(x)+1

)2
, (n (x) , 2) = 0

0, x = 0

(21)
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−0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

Fλc

Figure 6. The one parameter family F1,2 − λ (P − F1,2) with F1,2 defined as in eq. (20)

Table 3. Numerical results for the sheaf Fα,β − λ (P − Fα,β) , α + β ≤ 5

(α, β) Iterations λ |λ− λold|
(

xλ
1 + xλ

2

)

/2
∣

∣xλ
1 − xλ

2

∣

∣

(1, 1) 52 3.0E-16 0.0E-16 -1.1E-16 6.6E-16
(2, 1) 26 1.6E-16 1.8E-16 -7.5E-09 4.5E-08
(1, 2) 100 7.1E-16 1.8E-16 2.0E-31 1.2E-30
(3, 1) 18 1.1E-16 0.0E-16 -1.9E-06 1.1E-05
(1, 3) 150 7.7E-16 1.8E-16 1.7E-46 1.0E-45
(4, 1) 14 6.3E-17 0.0E-16 -2.9E-05 1.8E-04
(3, 2) 35 7.5E-17 1.8E-16 1.4E-11 8.7E-11
(2, 3) 76 6.2E-16 1.8E-16 -6.5E-24 3.9E-23
(1, 4) 197 1.6E-15 1.8E-16 -1.2E-60 7.5E-60

Table 4. Numerical results for the one parameter family F − λ (P − F )

Iterations λ |λ− λold|
(

xλ
1 + xλ

2

)

/2
∣

∣xλ
1 − xλ

2

∣

∣

52 3.0E-16 0.0E-16 -1.1E-16 6.6E-16

whose graph is given in Figure 2. This function does not satisfy conditions of con-
vexity or differentiability in any punctured neighborhood of 0; outside the interval
[−1, 1] the function F is extended by two arc of parabola in order to preserve the
continuity and the strict unimodality. The one parameter family

F (x, λ) = F (x)− λ
(

F (x) + 1− (x− .5)2
)

(22)

is a linear homotopy between the function y = F (x) and the parabola y = 1 −
(x− .5)2. The graphic representation of the one parameter family is given in Figure
7. In this case (0, 0) is only a topological turning point and the Matlab code of

the algorithm with the initial values λE0
= 0.2, λE2

= 1, x
λE2

1 = −.5, x
λE2

2 = 1
generates the output values with their respective number of iterations given in
Table 4.
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Fλc

Figure 7. The one parameter family F − λ (P − F ) with F defined as in eq. (21)

7. Conclusions

The main result of the paper is a numerical method of linear convergence rate
and of secure convergence for calculating turning points, as well as cusp points
and other kind of singular points. This wide range of applicability is due to the
definition of topological turning point, which is introduced in the Section 2 of the
paper.

The numerical method proposed here belongs to the class of free derivative meth-
ods since it does not only avoids the use of derivatives, but also their approximation
and even their existence. In particular, this last feature is a novelty in dealing with
turning points. Numerical examples are provided and confirm theoretical results.
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