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Abstract 
 

Steroid sulfatase plays a pivotal role in regulating the formation of biologically active 

steroids from inactive steroid sulfates.  It is responsible for the hydrolysis of estrone 

sulfate and dehydroepiandrosterone sulfate to estrone and dehydroepiandrosterone, 

respectively, both of which can be subsequently reduced to steroids with estrogenic 

properties (i.e. estradiol and androstenediol) that can stimulate the growth of tumors 

in hormone-responsive tissues of the breast, endometrium and prostate.  Hence, the 

action of steroid sulfatase is implicated in physiological processes and pathological 

conditions.  It has been five years since our group last reviewed the important role of 

this enzyme in steroid synthesis and the progress made in the development of potent 

inhibitors of this important enzyme target.  This timely review therefore concentrates 

on recent advances in steroid sulfatase research, and summarises the findings of 

clinical trials with Irosustat (BN83495), the only steroid sulfatase inhibitor that is 

being trialed in postmenopausal women with breast or endometrial cancer. 
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Introduction 

 

Breast cancer is the most commonly diagnosed neoplasm in women in the UK, 

causing over 45,000 new cases and 12,000 deaths annually (Office for National 

Statistics, 2009). In the 75% of invasive breast cancers that express the estrogen 

receptor (ER), estrogens are key promoters of tumorigenesis (Yager & Davidson, 

2006). It is surprising, therefore, that more than two-thirds of breast cancers occur in 

postmenopausal women when the ovaries cease to produce estrogen (Pasqualini, 

2004). However, despite the 90% reduction in plasma estradiol (E2) levels that occur 

with the menopause, the tissue concentrations of estrogens in normal breast tissue of 

pre- and post-menopausal women are comparable (Geisler, 2003; van Landeghem et 

al, 1985; Thijssen et al, 1986). This reflects extragonadal biosynthesis of estrogens, 

which occurs in a number of peripheral tissues, including not only breast, but also 

adipose tissue, muscle, skin and bone (Suzuki et al, 2005). These represent the main 

sites of estrogen synthesis beyond the menopause (Simpson et al, 1999), which is 

derived from the conversion of circulating precursor C19 steroids. These include the 

androgens, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS) and 

androstenedione (Adione), which are primarily of adrenal origin (Couzinet et al, 

2001). 

 

The importance of local breast tissue estradiol production in the pathogenesis of 

breast carcinoma is supported by numerous studies which have reported tumor tissue 

estrogen levels being 2-20 fold elevated when compared to corresponding plasma 

levels (van Landeghem et al, 1985; Vermeulen et al, 1986; Pasqualini et al, 1996). In 

fact, it has been demonstrated that in postmenopausal women, intratumoral estradiol 

levels are 2-3 fold higher than in areas considered as morphologically normal 
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(Bonney et al, 1983;  Chetrite et al, 2000).  This suggests an augmented local tumoral 

biosynthesis and accumulation of these hormones which is thought to play an 

important role in the development of hormone-dependent breast cancer.  Using in 

vitro approaches, a number of authors have confirmed the ability of human breast and 

its neoplasms to locally synthesize estrogens  (Perel et al, 1980; Miller et al, 1982;  

Adams & Li, 1975; Varela & Dao, 1978) and in fact, Yue and co-workers 

demonstrated that in situ estradiol synthesis predominates over uptake from plasma in 

the maintenance of elevated intratumoral hormone concentrations (Yue et al, 1998a, 

1998b).  Although there is overwhelming evidence for intracrine mechanisms of 

estrogen synthesis and action, the issue of quantitative contribution of local synthesis 

of estrogenic steroids versus uptake from circulation, remains controversial (Haynes 

et al, 2010).  These authors found a significantly higher concentration of E2 in tumors 

versus normal tissue which correlated significantly with ER+ status.  Other alternative 

factors which can influence intra-tumoral E2 disposition, such as EST, STS and 17β-

HSD1/7, cannot be excluded.  However, the improvement in the sensitivity of the 

assay procedures may explain the discrepancy between the findings of Lønning et 

al.(2009) and those reported by Thijssen et al. (1987).  Clearly, components of both 

uptake and local synthesis are physiologically important (Yue et al. 1998a). 

 

Expression of enzymes involved in synthesis of estrogenic steroids 

 

A number of estrogen metabolizing enzymes are involved in the local synthesis of 

estrogens in breast tumors from circulating inactive steroid precursors (Figure 1.) 

Synthesis of steroids with estrogenic activity occurs via 2 main pathways: the 

aromatase and steroid sulfatase (STS) pathways. In the former, androstenedione 
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(Adione) is converted to estrone (E1) by aromatase (Miller et al, 1982). The latter 

pathway utilizes inactive sulfated steroids, including estrone sulfate (E1S), as 

precursors. E1S is the predominant estrogen found in the circulation of postmenopausal 

women (Santner et al, 1984). Although biologically inactive, its long half-life (Ruder et 

al, 1972) and high serum concentrations (Noel et al, 1981; Pasqualini, 2004) is thought 

to  create a large reservoir which is utilized by steroid sulfatase (STS) for the formation 

of E1 by desulfonation. Of note, E1S, carrying a net negative charge, is hydrophilic and 

unable to cross cell membranes. It is thought that its uptake into cells involves specific 

transporter proteins, and the organic anion transport polypeptide B (OATP-B), has 

received particular attention in this respect. OATP-B (OATP2B1, SLCO2B1) has been 

reported to be expressed in both normal and neoplastic breast tissue (Al Sarakbi et al, 

2006; Alcorn et al, 2002; Pizzagalli et al, 2003; Wlcek et al, 2008).  Additionally, 

immunoreactivity of human liver-specific transporter LST-2 (OATP8, SLCO1B3) was 

reported to be a potent prognostic factor in human breast cancer (Muto et al., 2007).  

Therefore, breast tumors express the necessary machinery for the uptake and 

conversion of sulfated steroids into biologically active estrogens. Estrone 

sulfotransferase (EST), a member of the superfamily of steroid sulfotransferases, is also 

expressed in breast tissue and opposes the action of STS by sulfating El to ElS (Sasano 

et al, 2009). El, formed either through the aromatase or sulfatase pathways, is 

subsequently reduced to the biologically potent estradiol (E2), by 17β-hydroxysteroid 

dehydrogenase type 1 (17β-HSD1). Oxidation (inactivation) of E2 to E1 is carried out 

by 17βHSD type 2 (17βHSD2) (Figure 1). 

 

The relevance and interplay between aromatase, STS, OATP-B and 17βHSDl to 

facilitate local synthesis of estrogenic steroids within breast and other tissues, is 
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detailed in several excellent reviews (Nussbaumer & Billich, 2005; Ghosh, 2007; 

Buono & Cosma, 2010; Lin et al, 2010; Bojarova & Williams, 2008; Suzuki et al, 

2009). 

  

Studies examining the expression, immunoreactivity and/or activity of the above 

proteins have revealed their importance in breast carcinoma. For example, intratumoral 

aromatase and STS mRNA levels have been shown to be significantly elevated when 

compared to adjacent non-malignant tissues (Utsumi et al, 1996; Miki et al, 2007; 

Utsumi et al, 2000;  Honma et al, 2006). Indeed, STS activity has been reported to be 

10-200 fold higher than that of aromatase in both pre- and postmenopausal breast 

cancer patients (Pasqualini et al, 1996; Chetrite et al, 2000; Santner et al, 1984). 

Additionally, STS immunoreactivity is detected more frequently in breast carcinomas 

(59-88% Suzuki et al, 2003; Tsunoda et al, 2006; Saeki et al, 1999) and compares well 

with that reported by others: 40-66.7% (Yamamoto et al 2003; Esteban et al, 1992; 

Santen et al, 1994; Lu et al, 1996; Shenton et al, 1998; Brodie et al, 2001) and it has 

been estimated that this pathway may be responsible for 10-fold greater intratumoral 

estradiol production (Santen et al, 1986). STS has also been associated with a number 

of clinicopathological parameters in breast cancer patients such as tumor size, risk of 

recurrence, poor prognosis, reduced disease free survival and disease progression, 

whereas the data for aromatase is less conclusive (Silva et al, 1989; Lipton et al, 1992; 

Miyoshi et al, 2003; Suzuki et al, 2003, Utsumi et al, 1999; Yoshimura et al, 2004) 

 

The literature also suggests a trend towards elevated OATP-B expression in malignant 

breast tissue, and higher mRNA levels of this transporter have been linked with 

increasing tumor grade (Al Sarakbi et al, 2006). Although not necessarily over-
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expressed in breast cancer, several immunohistochemical studies have reported 17β-

HSDl expression in approximately 50 to 60% of breast neoplasms (Poutanen et al, 

1992; Sasano et al, 1996; Suzuki et al, 2000). Additionally, 17β-HSDl gene 

amplification and expression have been associated with poor prognosis (Gunnarsson et 

al, 2008; Oduwole et al, 2004). By contrast, 17β-HSD2 mRNA or immunoreactivity is 

frequently not detected in breast carcinomas (Suzuki et al, 2000; Gunnarsson et al, 

2001), and low expression, in conjunction with a high levels of 17β-HSD1, has 

prognostic significance and is associated with higher rates of recurrence in ER positive 

patients (Gunnarsson et al, 2001; Gunnarsson et al, 2005). From these studies it is clear 

that 17β-HSD2, by inactivating E2, protects against tumor progression in normal breast 

tissue. 

In recent years, the expression of other isoforms of 17β-HSD such as 17β-HSD7 and 

17β-HSD12 has been described in breast cancer tissue and cell lines (Haynes et al, 

2010; Day et al, 2009; Shehu et al, 2011). The relative contribution of each of these 

isoforms to intra-tumoral E2 synthesis remains to be determined.  The enzyme kinetic 

activities of each of these isoforms has not been independently determined.  Selective 

knockdown with siRNA will further highlight the contribution of each isoform. In 

addition, in contrast to 17β-HSD1/2, the prognostic significance of these recent 

isoforms remains to be assessed. 
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Therapeutic relevance of steroid sulfatase 

 
 
(a) Androstenediol: the underappreciated product of the steroid sulfatase pathway 
 
 

Apart from E1, the STS pathway is also responsible for the production of another 

steroid with estrogenic properties, namely androstenediol (Adiol). DHEAS, secreted 

exclusively by the adrenal cortex (Panjari & Davis, 2007), is converted to DHEA by 

STS, which can subsequently be reduced to Adiol by 17β-HSD1. Adiol, although an 

androgen, can bind to the estrogen receptor, and has been shown to stimulate the 

proliferation of a number of ER-positive breast cancer cells in an ER-dependent 

manner (Poulin & Labrie, 1986; Aspinall et al,  2004). Despite its lower affinity for the 

ER (Poulin & Labrie, 1986), the 100-fold higher circulating concentrations of this 

hormone have led some to speculate that it may have equipotent estrogenic properties 

to E2 (Spinola et al, 1986). In vivo rodent models of carcinogen induced mammary 

carcinomas have demonstrated the ability of Adiol to stimulate tumor growth, even in 

the presence of aromatase inhibitors, confirming that this hormone does not need to be 

further aromatized to reveal its estrogenic effects (Dauvois & Labrie, 1989). Billich and 

colleagues demonstrated for the first time that inhibition of STS blocked DHEAS- 

stimulated growth of MCF-7 breast cancer cells, an effect which was not reproduced by 

concurrent treatment with aromatase inhibitors (Billich et al, 2000). This confirms that 

the STS pathway is responsible for the production of the estrogenic compound Adiol 

from DHEAS, and that this occurs in an aromatase-independent fashion. This is of 

clinical significance because in postmenopausal breast cancer patients treated with 

aromatase inhibitors, unrestrained production of Adiol can occur via the STS pathway 

and may promote tumor progression. Furthermore, Masamura et al (1995) reported that 
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ER positive breast cancer cells become sensitized under very low estrogen exposure. 

Taken together, this could translate to potentiation of the estrogenic effects of Adiol in 

patients on aromatase inhibitors in whom E2 levels are virtually undetectable. Further 

support for the role of STS in utilization of DHEAS in human adipose tissue has been 

recently reported by Dalla Valle et al (2006).  These investigators found tissue-specific 

transcripts and activity of STS in human adipose tissue and corresponding expression 

of OATPs B, D and E.  In line with this, uptake plus desulfation of 3H-DHEAS could 

be measured, whereas sulfotransferase expression was not found.  It is interesting to 

speculate whether excessive fat may therefore provide an important source of 

estrogenic Adiol. This provides further rationale and motivation for the development of 

STS inhibitors (reviewed by  Woo,L.W et al in this issue. 2010; Reed et al, 2005) 

 

Although much in vitro and in vivo evidence exists regarding the role of DHEAS-

derived estrogenic hormones in supporting breast cancer progression, there are few 

studies investigating their importance in women. A raised serum DHEAS has been 

demonstrated in postmenopausal women with breast cancer when compared to controls 

(Aspinall et al, 2003), suggesting that increased adrenal secretion of this androgen may 

have a role in the pathogenesis of breast cancer, possibly due to its conversion to Adiol. 

Higher concentrations of DHEAS and DHEA have also been associated with an 

increased risk of breast cancer in postmenopausal women, especially in ER+/PR+ cases 

(Key et al, 2002;  Dorgan et al, 1997; Missmer et al, 2004;  Morris et al, 2001). 

 

At this junction, it is important to emphasise that the affinities of the substrates for the 

aromatase or STS are very different.  For example, the Km of androstenedione for 

aromatase is 8-10 nM whereas that of E1S or DHEAS for STS is 7-14 µM.  The 
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numerical value of Km is important as it establishes an approximate value for the 

intracellular level of the substrate (Segal 1975).  There is no physiological sense in 

maintaining a substrate concentration much lower or much higher than the Km as the 

catalytic potential of the enzyme would be wasted or the enzyme would function 

inefficiently.  The median plasma concentrations of androstenedione and DHEAS in 

postmenopausal women in our study were 2-4 nM and 1-2 µM, respectively (Stanway 

et al., 2006).  These are proportional to the corresponding Km values, although the 

tissue concentrations can be much higher.  The physiological relevance of the substrate 

affinities (i.e. Km values) and the substrate concentrations is highlighted by Santner et 

al. (1984).  These authors reported that comparison of STS with aromatase activity in 

human tumors at physiological levels of substrate revealed that 10 times more E1 was 

formed from the STS pathway than the aromatase pathway.  This finding would hold 

true even more in those tumors where STS mRNA expression is significantly increased. 

 

 

b) Resistance to endocrine therapy 

 

A common problem with the available endocrine therapies is that of acquired resistance 

(Musgrove & Sutherland, 2009). There is a growing body of evidence to suggest that 

hormonal adaptations, and the emergence of alternative intratumoral estrogen 

production pathways, may contribute to this. Indeed, studies in breast cancer patients 

treated in the adjuvant setting with aromatase inhibitors or tamoxifen have 

demonstrated that those with elevated DHEAS were associated with disease 

progression (Calhoun et al, 2003; Morris et al, 2001). It is tempting to speculate that 

this may be due to increased synthesis of Adiol, although this was not investigated 
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directly in these studies. DHEAS levels have also been reported to increase equally 

with 12 months of adjuvant tamoxifen and letrozole treatment, again supporting the 

notion of a compensatory increase in the production of this adrenal androgen to 

overcome the endocrine blockade (Rossi et al, 2009).  

 

Very recently, in elegant studies carried out by Chanplakorn et al (2010), it has been 

reported that neoadjuvant treatment with exemestane caused a significant increment in 

intratumoral 17β-HSDl and STS immunoreactivity, suggesting an upregulation of 

estrogen synthesizing enzymes in response to estrogen depletion. Exemestane was 

given daily at 25mg/day for 16-24 weeks to 116 Japanese postmenopausal patients with 

primary invasive ductal carcinoma.  Status of STS, EST, 17β-HSD1, ER, PR, Her2 and 

Ki67 in 49 pre- and post-exemestane specimens was evaluated by 

immunohistochemistry.  A significant increase in STS and 17β-HSD1 

immunohistological scoring following AI neoadjuvant therapy was demonstrated for 

the first time.  The authors hypothesise that this increase in STS and 17β-HSD1 may be 

a compensatory response of the breast tumors to estrogen depletion, particularly as the 

significant increment was only detected in the group associated with decreased Ki67 

labelling index.  The same researchers also demonstrated increased intratumoral 5α-

dihydrotestosterone (DHT) concentration and 17β-HSD2 expression following 

exemestane therapy (Takagi et al, 2010).  The important role of androgens in apocrine 

breast cancer is reviewed by Suzuki et al (2010). 

 

In vitro, cancer cells exposed to a long-term E2-deprived environment, adapted by up-

regulation of signalling pathways involving ERα, HER-2/neu, EGFR and IGFR.  These 

pathways signal through MAPK, PI3K and mTOR and the cross-talk between these 
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pathways is believed to drive proliferation.  These pathways have also been shown to 

be activated in in vivo models of development of resistance to aromatase inhibitors by 

the group of Angela Brodie.  A combination of traztuzumab with letrozole is found to 

be superior to the aromatase inhibitor alone in these xenograft models (reviewed in: 

Santen et al. 2009). 

 

Lessons learnt from clinical trials with enzyme inhibitors 

 

Many clinical trials have now been carried out with the third-generation aromatase 

inhibitors but so far only one phase I trial with a STS inhibitor has been conducted 

(Smith & Dowsett, 2003; Coombes et al. 2004; Stanway et al. 2006).  Measurement of 

serum oestrogen concentrations by RIA, employed as a surrogate marker of the 

effectiveness of AIs, is not straight forward and in some early studies it was difficult to 

detect the real effects of aromatase inhibitors from such measurements.  More recently, 

very sensitive RIAs have been developed involving solvent extraction and 

chromatographic separation of oestrogens prior to RIA (Lonning & Ekse, 1995; 

Lonning et al, 1997).   However, a ‘gold standard’ GC-MS/MS method has now been 

developed for the measurement of serum oestrogens (Sundaram et al, 2003).  Using 

highly sensitive RIAs, there is no doubt that in most cases, plasma or serum levels of 

E1 and E2 are suppressed to below the limits of quantitation of the assays by third-

generation aromatase inhibitors (Geisler et al, 2002).   For E1S, while levels has been 

found to be suppressed by >98% by third-generation aromatase inhibitors, the 

geometric mean E1S concentrations after 16 weeks treatment with letrozole was 

3.9pmol/l (Geisler et al, 2008).  As most patients treated with aromatase inhibitors will 

eventually progress, it is possible that the low levels of E1S still detectable may 
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contribute to tumor cells becoming resistant to this form of therapy.   Although these 

plasma levels of E1S are very low it is now well documented that breast cancer cells, 

grown in an estrogen-deprived environment, can become sensitive to extremely low 

estrogen concentrations (Masamura et al, 1995). 

 

In contrast to the problems associated with measuring aromatase activity in patients, the 

effects of STS inhibitors can be readily assessed.   STS is present in peripheral blood 

lymphocytes (PBLs) and the extent and duration of STS inhibition can be readily 

determined by measuring its activity in these cells (Purohit et al, 1995).   In the first 

ever phase I trial of Irosustat (STX64, BN83495), STS activity, as measured in PBLs, 

was suppressed by >95% at the 5 mg/day and 20 mg/day doses tested (Stanway et al,  

2006).   This level of STS inhibition was associated with moderate, but significant, 

reductions in the median concentrations of E1 (57-76%), E2 (38-39%) and testosterone 

(27-30%).   In addition, the median concentration of the steroid with oestrogenic 

properties, Adiol, decreased by 70-74%.  Unexpectedly, serum Adione median 

concentrations also decreased by 62-72% indicating that, at least in postmenopausal 

women, a significant proportion of this steroid is derived from the peripheral 

conversion of DHEAS. The results from the STX64 phase I trial therefore show that 

while median serum concentrations of Adiol, Adione and E1 all decreased by 

approximately 70%, the reductions for testosterone and E2 were less, at about 30%.  

Similar results were obtained in a second dose-escalation study of Irosustat in 

postmenopausal women with ER+ve metastatic breast cancer (Coombes et al, 2009).  

Patients were recruited into 5 sequential dose cohorts (1, 5, 20, 40 and 80mg).  The 

optimum biological dose was determined to be 40mg.  At this dose, Adiol 

concentrations decreased by 34-74% and E2 concentrations decreased by 7-27%.  
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Disease stabilization of 7-13 months was demonstrated in 3 of 14 patients who received 

>3 months treatment.  Considering that the aromatase pathway of estrogen synthesis 

was not inhibited in these patients, the reduction in serum hormone concentrations and 

the disease stabilization obtained in some patients, were very encouraging. Currently, 

Phase II studies in women with endometrial cancer are in progress (www.ipsen.com).  

Endometrial cancer is the most common gynecological malignancy with an unmet need 

for better therapy.  When measured by validated mass spectrometry assays, circulating 

levels of E1, E2 and E1S were found to be significantly higher in women with 

endometrial cancer when compared with unaffected controls.  Enhanced E2 synthesis in 

tumors was supported by increased expression of STS and 17β-HSD1 in peritumoral 

normal endometrium. The expression of these enzymes was significantly increased in 

tumors (Lepine et al, 2010) again highlighting the importance of this pathway for the 

synthesis of estrogenic steroids. 

 

Summary and Future perspectives 
 

Steroid sulfates are now acknowledged to have an important role as prohormones for 

the formation of biological active steroids. In recent years, a wealth of evidence has 

emerged, particularly from the Japanese groups of H. Sasano, T. Suzuki and N. Harada, 

strongly supporting the important role of STS expression and immunoreactivity in 

breast cancer progression and in the development of resistance to endocrine therapy. 

Although much work has been carried out to characterize the expression of the main 

enzymes involved in the synthesis of estrogenic steroids breast and other cancers, most 

studies have investigated these genes in isolation. It is essential to study the 

simultaneous expression of these genes, and compare this to the level in normal tissue, 

in an attempt to improve our understanding of how these proteins are expressed in 
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concert and how their levels may be altered in the tumor microenvironment. 

Information from such studies may also facilitate the identification and selection of 

patients who are most likely to benefit from treatment with STS inhibitors.  In addition, 

important structural information derived from the x-ray crystallographic studies of STS 

pioneered by D. Ghosh and co-workers, will aid to design novel inhibitors. 

 

Currently, Phase I clinical trials of Irusustat are in progress in women with advanced 

breast or endometrial cancer. Additional phase II/III trials will be required to confirm 

whether STS inhibitors are to have a place in the armory against breast and other 

hormone-dependent cancers.  Future trials of STS inhibitors in combination with 

aromatase inhibitors, or other agents including dual-target inhibitors (Woo et al, 2010), 

will be required to determine whether such combinations offer any advantage over the 

use of single-agent therapy.  The trend in breast cancer therapy is towards personalised 

medicine.  Therefore, patient enrichment by evaluation of the expression of aromatase, 

STS and other enzymes and receptors in tumor tissue by immunostaining and/or 

combined laser capture microdissection/qRT-PCR will be essential.  These techniques 

have been successfully developed and thoroughly validated in the laboratories of Drs. 

Sasano and Harada (Sasano et al. 2009). 

 

Although this review has focused on the potential use of STS inhibitors for the 

treatment of hormone-dependent cancers, they could also have therapeutic efficacy in a 

number of other conditions that still remain to be explored.   STS is ubiquitously 

distributed throughout the body and may have important roles in regulating the 

production of androgens in a number of skin conditions (Reed et al, 2008) and part of 

the immune response (Rook et al. 1994; Reed et al. 2003).   In addition, little is known 

about the role of STS in normal male and female reproduction although there is 
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evidence that STS inhibitors could be effective in conditions such as endometriosis 

(Purohit et al. 2008).   With the advent of potent STS inhibitors it will, for the first time, 

be possible to explore their therapeutic potential in a wide range of normal and 

abnormal conditions. 
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Fig. 1. Pathways of local synthesis of estrogenic steroids in neoplastic breast tissue.  
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