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Abstract

We construct and we analyze two LBM schemes applied to a 1D convection-diffusion equation. We obtain

these LBM schemes by showing that the 1D convection-diffusion equation is the fluid limit of a discrete

velocity kinetic system. Then, we show that these LBM schemes are equivalent to a finite difference type

scheme for different boundary conditions. This allows us, firstly, to prove the convergence in L∞ of these

LBM schemes and to obtain discrete maximum principles in the case of the 1D heat equation for any ∆t of

the order of ∆x2. Secondly, this allows us to obtain most of these results for the Du Fort-Frankel scheme for

a particular choice of the first iterate. By proposing a probabilistic interpretation of these LBM schemes,

we also obtain Monte-Carlo algorithms which approach the 1D heat equation. At last, we present numerical

applications justifying these results.
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1. Introduction

Lattice Boltzmann Methods (LBM) come from an attempt to simulate the incompressible Navier-Stokes

system with cellular automata [1, 2] before being seen as deterministic schemes based on the resolution of

discrete velocity kinetic systems [3]. LBM schemes are now often used to solve many type of PDEs. Among

them, we find the heat equation [4] with or without phase change [5], the heat equation with radiative

source term [6], the hyperbolic heat equation (also named telegraph equation) with or without radiative

source term [7], the Richard equation for porous media [8], the incompressible Navier-Stokes system [9]

eventually applied in porous media with heat and mass transfer [10] or in a diphasic situation [11, 12] or

with a free-surface [13], the Bingham model for viscoplastic flows [14]. Among the reasons which justify

the use of LBM schemes, we can cite its algorithmic simplicity, its time explicit nature, its scalability when

the algorithm is parallelized. We can also cite the fact that all LBM schemes are formulated in a common

way. More precisely, when W(t, x) is the solution of a PDEs system where t ≥ 0 is the time and x ∈ Ω ⊂ R
d
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is the spacial variable (d ∈ {1, 2, 3}), the approximation Wn+1
i

of W(tn+1, xi) is obtained through a formula

of the type

Wn+1
i =

qmax∑

q=1

ϕ(vq) f n+1
q,i

where ϕ(·) is a given function which depends on the PDEs, where vq ∈ R
d belongs to a discrete and finite

set {vq}1≤q≤qmax
and where f n+1

q,i
is deduced from a scheme of the type

f n+1
q,i = Lq,i(W

n
i ) · fn

i

where Lq,i(W
n
i
) is a matrix which acts on fn

i
= ( f n

q′, ji
)q′, ji , where q′ ∈ {1, . . . , qmax} and where ji belongs to a

stencil centered on i ( ji ∈ {i−1, i, i+1} in 1D), and which does not depend on Wn
i

when the PDEs are linear.

Although the LBM schemes have proven their efficiency both in academical and industrial situations

(see for example the numerical applications in [13]), the numerical analysis of these schemes is not well

developed. Moreover, this numerical approach suffers sometimes of a lack of precision in the way to

introduce it. Nevertheless, there exists recent publications which give accurate informations on the LBM

approach from a mathematical point of view. Among them, we find in [15, 16] a justification of LBM

schemes applied to the 1D linear advection equation and to a 1D Navier-Stokes type model (which is a

p-system with diffusive term). In [17, 18], a Chapman-Enskog expansion is applied to the LBM scheme

to justify it in the case of the 1D convection-diffusion equation and in the case of the 1D wave equation

with diffusive term. In [19], a Chapman-Enskog expansion is also applied to a LBM scheme applied to the

incompressible Navier-Stokes system; moreover, a Chapman-Enskog expansion is also applied to a discrete

velocity kinetic system. In [20, 21], a converence result in L2 is proposed for LBM schemes in the case of

the incompressible Navier-Stokes system under some assumptions and a stability result in L2 is obtained by

linearizing the LBM schemes.

In this paper, we construct and we justify two LBM schemes in the case of the 1D convection-diffusion

equation

∂tρ + ∂x(uρ) = ν∂2
xxρ (1)

where ν > 0 and with periodic, Neumann or Dirichlet boundary conditions, u(x) being a given function.

When u(x) = 0, one of these LBM schemes is classical and can be found in [4]; the second one seems to

be less classical. These LBM schemes are obtained by discretizing a discrete velocity kinetic system whose

the fluid limit is (1), this fluid limit being formally obtained with a Chapman-Enskog expansion but also

with a Hilbert expansion. Then, we prove that in the case of the heat equation with periodic, Neumann or

Dirichlet boundary conditions, these LBM schemes converge in L∞ for any ∆t of the order of ∆x2 where ∆t

is the time step and where ∆x is the mesh size. This result is obtained by noting that these LBM schemes are

equivalent to a finite difference type scheme and by using the Lax Theorem. In the case of the heat equation,

this finite difference type scheme is a particular Du Fort-Frankel scheme [22]. As it is easy to obtain discrete

maximum principles with the LBM approach for any ∆t = O(∆x2) (in the periodic and Neumann cases),

due to this equivalence, we also obtain that this particular Du Fort-Frankel scheme converges in L∞ and

verifies discrete maximum principles (in the periodic and Neumann cases) for any ∆t = O(∆x2). These

results are also new for the Du Fort-Frankel scheme which has been known for a long time to converge

in L2 for any ∆t = O(∆x2). Thus, the LBM schemes have also been used in this study as a tool to give

new results for a classical finite difference type scheme. Let us note that the case of Dirichlet boundary

conditions is particular. Indeed, we have to modify the Dirichlet boundary conditions to obtain a discrete
2



maximum principle for any ∆t = O(∆x2). Nevertheless, we loss the equivalence with the Du Fort-Frankel

scheme which avoids to obtain the convergence of the LBM schemes by using the Lax Theorem. At last, we

also propose Monte-Carlo algorithms for the heat equation which come from a probabilistic interpretation

of the LBM schemes. Some basic properties of these Monte-Carlo algorithms are proposed. We hope that

this probabilistic approach will be also a tool to analyze the LBM schemes. The end of the paper is devoted

to numerical simulations which validate the proposed results.

The outline of this paper is the following. In §2, we introduce the discrete velocity kinetic system and its

fluid limit (which is formally obtained in Annex A). In §3, we contruct the LBM schemes. In §4, we obtain

the equivalence of these LBM schemes with a finite difference type scheme. In §5, we obtain the stability

and the converence in L∞ for any ∆t = O(∆x2) when u(x) = 0. In §6, we prove that discrete maximum

principles are verified for any ∆t = O(∆x2) when u(x) = 0. In §7, we present some limitations of the LBM

schemes. In §8, a probabilistic interpretation of the LBM schemes is proposed when u(x) = 0. In §9, we

present some numerical results. At last, we conclude the paper in §10.

2. Fluid limit of a discrete velocity kinetic system

Let us define the function

Mεq(t, x) :=
ρ(t, x)

2

[
1 +

u(x)

vεq

]
(2)

where ρ(t, x) ∈ R
+
∗ and u(x) ∈ R. The parameters t ∈ R

+ and x ∈ Ω := [xmin, xmax] (Ω ⊂ R) are the time

and space variables. The set {vεq}q∈{1,2} is a discrete and finite set of velocities defined by

vεq := (−1)qcε with q ∈ {1, 2} (3)

where cε ∈ R+ depends on a parameter ε ∈ R+ and will be defined later. In the LBM framework, {vεq}q∈{1,2}
is named D1Q2. The function Mεq verifies

∑

q∈{1,2}

(
1

vεq

)
Mεq =

(
ρ

ρu

)
. (4)

To solve the convection-diffusion equation (1), we will propose two schemes which are built from a study

of a system of equations of the type



∂t f ε1 + vε1∂x f ε1 =
1

ε
(Mε1 − f ε1 ),

∂t f ε2 + vε2∂x f ε2 =
1

ε
(Mε2 − f ε2 ).

(5)

These schemes will belong to the family of LBM schemes. System (5) may be considered as a kinetic

equation whose the kinetic velocities belong to the discrete and finite set {vεq}q∈{1,2} and whose the collision

operator if a BGK-type collision operator where the classical maxwellian is replaced by Mεq. Thus, Mεq will

be named ”maxwellian” in the sequel, ρ(x) and u(x) being the macroscopic density and velocity associated

to Mεq. We also define the normalized maxwellian

mεq :=
1

2

(
1 +

u

vεq

)
=

1

2

(
1 + (−1)q u

cε

)
. (6)
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By construction, we have Mεq = ρm
ε
q and mεq verifies

∑

q∈{1,2}

(
1

vεq

)
mεq =

(
1

u

)
. (7)

Let us underline that most of the variables above depend on the collision time ε. Thus, to clearly underline

this dependency, we introduce the parameter ε in the notation of these variables. We will simplify the

notations after this section by omiting the parameter ε.

The LBM schemes proposed to solve (1) will be deduced in §3 from a fluid limit of the discrete velocity

kinetic system (5). This fluid limit is obtained for a particular choice of the kinetic velocity cε:

Proposition 2.1. Let us suppose thatΩ is periodic and let f εq (t, x) be solution of the discrete velocity kinetic

system

∀q ∈ {1, 2} :



∂t f εq + vεq∂x f εq =
1

ε
(Mεq − f εq ),

f εq (t = 0, x) = f
ε,0
q (x)

(8)

where Mεq is given by

Mεq(t, x) :=
ρε(t, x)

2

[
1 +

u(x)

vεq

]

with ρε := f ε
1
+ f ε

2
and where vεq := (−1)qcε. Then, when ε ≪ 1, when f εq (t = 0, x) is close to the maxwellian

equilibrium Mεq in such a way

f εq (t = 0, x) = Mεq(t = 0, x) + O(
√
ε) (9)

and when

cε =

√
ν

ε
, (10)

ρε is solution of 

∂tρ
ε + ∂x(uρε) = ν∂2

xxρ
ε + O(ε),

ρε(t = 0, x) = f
ε,0
1

(x) + f
ε,0
2

(x).

(11)

Moreover, we have

f εq (t, x) = Mεq − (−1)q

√
εν

2
∂xρ
ε + (−1)qε3/2

[
u

2
√
ν
· (∂x(uρε) − ν∂2

xxρ
ε) −

√
ν

2
∂2

xx(uρε) +
ν3/2

2
∂3

xxxρ
ε

]
+O(ε2)

that is to say

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)qε3/2

(
u
√
ν
· ∂x(uρε) − ν∂2

xxρ
ε

ρε
−
√
ν
∂2

xx(uρε)

ρε
+ ν3/2

∂3
xxxρ

ε

ρε

)]
+ O(ε2).

(12)
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Let us note that we suppose that Ω is periodic since kinetic boundary conditions are difficult to analyze

when they are not periodic. Nevertheless, we will study in §4 how to take into account in the LBM schemes

proposed in §3 Neumann and Dirichlet boundary conditions applied to (1).

The proof is written in Annex A: it is based on a Chapman-Enskog expansion (Annex A.1) or on a Hilbert

expansion (Annex A.2). Proposition 2.1 means that the convection-diffusion equation (1) is the fluid limit

of the discrete velocity kinetic system (8). Let us note that ε ≪ 1 means that ε ≪ t f luid where t f luid =

O(1) is the time scale of the fluid limit (1), ε being the kinetic time scale ((1) and (8) are supposed to be

dimensionless).

Of course, we deduce from Proposition 2.1 the following corollary:

Corollary 2.1. Let us suppose that Ω is periodic and let f εq (t, x) be solution of the discrete velocity kinetic

system 

∂t f ε1 −
√
ν

ε
∂x f ε1 =

1

2ε
( f ε2 − f ε1 ),

∂t f ε2 +

√
ν

ε
∂x f ε2 =

1

2ε
( f ε1 − f ε2 ),

f ε
1

(t = 0, x) = f
ε,0
1

(x),

f ε
2

(t = 0, x) = f
ε,0
2

(x).

(13)

Then, when ε ≪ 1 and when f εq (t = 0, x) is close to the maxwellian equilibrium Mεq(t = 0, x) :=
f
ε,0
1

(x)+ f
ε,0
2

(x)

2

in such a way

f εq (t = 0, x) = Mεq(t = 0, x) + O(
√
ε), (14)

ρε := f ε
1
+ f ε

2
is solution of 

∂tρ
ε = ν∂2

xxρ
ε + O(ε),

ρε(t = 0, x) = f
ε,0
1

(x) + f
ε,0
2

(x).

(15)

Moreover, we have

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
εν

(
εν
∂3

xxxρ
ε

ρε
− ∂xρ

ε

ρε

)]
+ O(ε2). (16)

Let us note that it is proven in [23, 24] that the fluid limit of



∂tρ + c∂xw = 0,

∂tw + ∂x p(ρ) = −w

ε

(17)

is given by

∂tρ = ε∂
2
xx p(ρ),

5



p(ρ) being a given function which does not depend on ε. On the other side, we can note that when p(ρ) = cρ

where c is a constant, by defining f1 and f2 in such a way ρ = f1 + f2 and w = f2 − f1, (17) is equivalent to


∂t f1 − c∂x f1 =
1

2ε
( f2 − f1),

∂t f2 + c∂x f2 =
1

2ε
( f1 − f2)

(18)

whose the fluid limit is given by

∂tρ = εc
2∂2

xxρ + O(ε2). (19)

The discrete velocity kinetic system (18) is similar to (13). Nevertheless, the kinetic velocity c in (18) is a

constant and, thus, does not depend on ε which is not the case of the kinetic velocity cε :=
√
ν
ε

in (13). As

a consequence, the fluid limits (15) and (19) are different.

The fact that the discrete velocity kinetic system (8) is such that the kinetic velocity cε depends on the

collision time ε is not classical, and obliges us to perform carefully the expansions given the fluid limit (11)

and the approximation (12) of f εq (see Annex A). More precisely, this is a constraint imposed a posteriori by

the LBM schemes that we want to obtain and justify through an ad hoc discretization of a discrete velocity

kinetic system. Indeed, a LBM scheme is always characterized by the fact that cε = ∆x/∆t where ∆x and

∆t are respectively the mesh size and the time step. Moreover, the proposed LBM schemes will be such

that ∆t = O(∆x2) (which is natural for a convection-diffusion equation) and such that ε = O(∆t) (which is

not natural: the fact that the collision time depends on a discretization parameter makes often difficult the

analysis of the LBM schemes). As a consequence, we have to choose cε = O(1/
√
ε) and not cε = c to have

a chance to obtain and justify LBM schemes for the convection-diffusion equation (1).

3. Construction of two LBM schemes

We define a 1D mesh {xi}i∈{1,...,N} whose the mesh size ∆x is constant and we define an uniform time

step ∆t = tn+1 − tn such that

∆t := Cd

∆x2

ν
with Cd = O(1).

This definition is justified by the fact that we want to discretize a convection-diffusion equation whose the

kinematic viscosity is equal to ν. Proposition 2.1 encourages us to discretize

∀q ∈ {1, 2} :



∂t fq + (−1)q

√
ν

ε
∂x fq =

1

ε
(Mq − fq),

f εq (t = 0, x) = f 0
q (x)

(20)

(to simplify the notations, we now omit ε in f εq and Mεq) instead of



∂tρ + ∂x(uρ) = ν∂2
xxρ,

ρ(t = 0, x) = ρ0(x).

(21)

The difficulty is to find a numerical scheme applied to (20) which is enough accurate to capture the fluid

limit (21) when ∆t is of the order of ∆x2 and when ∆t ≪ 1 and ε ≪ 1. This also underlines that ε depends

on ∆t which makes difficult the analysis of the LBM schemes.
6



3.1. Integration of the kinetic system

We have the following result whose the proof is based on an idea that we can find in [25, 15]:

Proposition 3.1. Let f εq (t, x) be solution of the kinetic system

∀q ∈ {1, 2} : ∂t fq + (−1)qc∂x fq =
1

ε
(Mq − fq) := Qq( f )(t, x)

and let

gq(t, x) := fq(t, x) − ∆t

2
Qq( f )(t, x). (22)

Then, we have

g1 + g2 = f1 + f2

and

gq[t + ∆t, x + (−1)qc∆t] = gq(t, x)(1 − η) + Mq(t, x)η + O
(
∆t3

√
ε

)
when ∆t3 ≪

√
ε (23)

where

η =
1

ε
∆t
+ 1

2

.

Since g1 + g2 = f1 + f2 := ρ, we will propose LBM schemes by using the approximation (23): this point

underlines also that the LBM scheme will be based on the variable gq instead of fq. Nevertheless, it will

be possible to deduce the LBM scheme based on fq by applying the inverse transform of (22) to the LBM

scheme based on gq.

The proof of Proposition 3.1 is based on the following lemma:

Lemma 3.1. Let us define the BGK kernel

Q( f ) =
1

ε
(M f − f ) (ε ∈ R)

where the distribution f is defined on a discrete or continuous velocity domain,M f being the maxwellian

distribution associated to f , and let us define the distribution

g := f − ε̃Q( f ) (̃ε ∈ R).

Then, when ε̃ , −ε:
Q( f ) =

ε

ε + ε̃
Q(g).

Let us underline that the lemma 3.1 is not restricted to a discrete velocity domain.

Proof of Proposition 3.1: The solution of the continuous EDP

∂t fq + (−1)qc∂x fq =
1

ε
(Mq − fq) =: Qq( f )(t, x)

is given by

fq[t + ∆t, x + (−1)qc∆t] = fq(t, x) +

∫ ∆t

0

Qq( f )[t + s, x + (−1)qcs]ds. (24)

7



Since f εq = Mεq + O(
√
ε) when ε ≪ 1 (see (12)), we can write that

Qεq = O
(

1
√
ε

)
when ε ≪ 1. (25)

This implies that

∫ ∆t

0

Qq( f )[t + s, x + (−1)qcs]ds = O
(
∆t
√
ε

)
when ε ≪ 1. (26)

Thus, the easiest numerical integration formula applied to (24) would give

fq[t + ∆t, x + (−1)qc∆t] = fq(t, x) + ∆tQq( f )(t, x) + O
(
∆t2

√
ε

)
. (27)

Nevertheless, the error O(∆t2/
√
ε) in (27) does not allow to obtain LBM schemes which are consistent with

the convection-diffusion equation (21). In fact, the integration error has to be of the order of ∆t3/
√
ε (or

lower) for reasons that we justify in §3.5: this point is important in the LBM framework and explains the

classical ”magic” formula (41) met in many LBM schemes. Thus, instead of the second order integration

formula (27), we use the third order integration formula

fq[t + ∆t, x + (−1)qc∆t] = fq(t, x) +
∆t

2
[Qq( f )(t, x) + Qq( f )(t + ∆t, x + (−1)qc∆t)] + O

(
∆t3

√
ε

)
. (28)

Formula (28) is equivalent to

gq[t + ∆t, x + (−1)qc∆t] = gq(t, x) + ∆tQq( f )(t, x) + O
(
∆t3

√
ε

)
(29)

with gq := fq − ∆t
2
Qq( f ). By using Lemma 3.1 with ε̃ = ∆t/2, we obtain that (29) is equivalent to

gq[t + ∆t, x + (−1)qc∆t] = gq(t, x) +
ε

ε
∆t
+ 1

2

Qq(g)(t, x) + O
(
∆t3

√
ε

)
.

We conclude by noting that Qq(g) = 1
ε
(Mq − gq).�

Proof of Lemma 3.1: When ε̃ , −ε, we have

Q( f ) =
1

ε
(M f − f )

=
1

ε
[M f − g − ε̃Q( f )]

=
1

ε + ε̃
(M f − g).

We conclude by noting thatMg =M f .�

8



3.2. A first LBM scheme

Let us choose 

c =
∆x

∆t
,

ε =
ν

c2
.

(30)

Thus, we have ε = Cd∆t since ∆t := Cd
∆x2

ν
(Cd ≥ 0). We deduce from (23) a first LBM scheme:



gn+1
1,i
= gn

1,i+1
(1 − η) + Mn

1,i+1
η,

gn+1
2,i
= gn

2,i−1
(1 − η) + Mn

2,i−1
η,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

. (31)

And since Mq =
g1 + g2

2
·
(
1 + (−1)q ∆t

∆x
u(x)

)
, we see that the LBM scheme (31) is equivalent to



gn+1
1,i = gn

1,i+1

[
1 − η

2

(
1 +
∆t

∆x
u(xi+1)

)]
+ gn

2,i+1

η

2

(
1 − ∆t

∆x
u(xi+1)

)
,

gn+1
2,i = gn

2,i−1

[
1 − η

2

(
1 − ∆t

∆x
u(xi−1)

)]
+ gn

1,i−1

η

2

(
1 +
∆t

∆x
u(xi−1)

)
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

(32)

and to



gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i+1

η

2
−
ρn

i+1

2
· η ∆t

∆x
u(xi+1),

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i−1

η

2
+
ρn

i−1

2
· η ∆t

∆x
u(xi−1),

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

(33)

(let us remark that η]0, 2] when Cd ≥ 0). We will use the formulation (33) in the sequel.

Let us remark that, due to the relation (22), the LBM scheme (33) when u = 0 and Cd , 0 is equivalent

to the LBM scheme (see Annex B)



f n+1
1,i =

f n
1,i+1

(16C2
d
− 1) + f n

2,i+1
(4Cd + 1) + f n

2,i−1
(4Cd − 1) + f n

1,i−1

16Cd(Cd +
1
2
)

, (a)

f n+1
2,i =

f n
1,i+1

(4Cd − 1) + f n
2,i+1
+ f n

2,i−1
(16C2

d
− 1) + f n

1,i−1
(4Cd + 1)

16Cd(Cd +
1
2
)

, (b)

ρn+1
i
= f n+1

1,i
+ f n+1

2,i
. (c)

(34)

9



The LBM scheme (34) is not classical. We can note that (33) is a two-points scheme and that (34) is a

four-points scheme. Moreover, when Cd = 0, (22) implies that fq = gq: this means that (34) is not a

continuous scheme with respect to the variable Cd. As a consequence, since (34) is more complex than

(33) and is ill-defined when Cd = 0, we will study in the sequel the LBM schemes expressed with the

distribution gq and not with the distribution fq. At last, let us underline that (33) and (34) are equivalent

when the boundary conditions are periodic; for other boundary conditions, the LBM schemes (33) and (34)

may not be equivalent. Nevertheless, we may think that (34) is better than (33) to take into account boundary

conditions which are not periodic: we do not study this point in this paper.

3.3. A second LBM scheme

By replacing ∆t by −∆t in (23) and by choosing again (30), we now deduce from (23) the second LBM

scheme 

gn−1
1,i+1
= gn

1,i
(1 − η̂) + Mn

1,î
η,

gn−1
2,i−1
= gn

2,i
(1 − η̂) + Mn

2,î
η,

ρn
i
= gn

1,i
+ gn

2,i

where η̂ :=
1

−Cd +
1
2

=
1

− ν∆t
∆x2 +

1
2

. (35)

We have the property:

Property 3.1. When Cd , 1/2, the LBM scheme (35) is equivalent to the LBM scheme



gn+1
1,i = gn

1,i+1

[
1 − η

2

(
1 +
∆t

∆x
u(xi)

)]
+ gn

2,i−1

η

2

(
1 − ∆t

∆x
u(xi)

)
,

gn+1
2,i = gn

2,i−1

[
1 − η

2

(
1 − ∆t

∆x
u(xi)

)]
+ gn

1,i+1

η

2

(
1 +
∆t

∆x
u(xi)

)
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

.

(36)

We name this scheme LBM∗ scheme.

Let us note that when Cd = 1/2, (35) is not defined since |̂η| goes to the infinity when Cd goes to 1/2: this

comes from the fact that Lemma 3.1 is valid only when ε̃ , −ε. Nevertheless, (36) is defined for any Cd ≥ 0

since η ∈]0, 2]. In the sequel, we will show that the LBM∗ scheme (36) is valid for any Cd ≥ 0.

Proof of Property 3.1: The scheme (35) is equivalent to the scheme



gn
1,i+1
= gn+1

1,i
(1 − η̂) + Mn+1

1,i
η̂,

gn
2,i−1
= gn+1

2,i
(1 − η̂) + Mn+1

2,i
η̂

that is to say to the scheme



gn
1,i+1 = gn+1

1,i

[
1 − η̂

2

(
1 +
∆t

∆x
u(xi)

)]
+ gn+1

2,i

η̂

2

(
1 − ∆t

∆x
u(xi)

)
,

gn
2,i−1 = gn+1

2,i

[
1 − η̂

2

(
1 − ∆t

∆x
u(xi)

)]
+ gn+1

1,i

η̂

2

(
1 +
∆t

∆x
u(xi)

)
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since Mq,i =
g1,i + g2,i

2

(
1 + (−1)q ∆t

∆x
u(xi)

)
. We end the proof by noting that



1 − η̂
2

(
1 + ∆t

∆x
u(xi)

)
η̂

2

(
1 − ∆t

∆x
u(xi)

)

η̂

2

(
1 + ∆t

∆x
u(xi)

)
1 − η̂

2

(
1 − ∆t

∆x
u(xi)

)



−1

=



1 − η
2

(
1 + ∆t

∆x
u(xi)

)
η

2

(
1 − ∆t

∆x
u(xi)

)

η

2

(
1 + ∆t

∆x
u(xi)

)
1 − η

2

(
1 − ∆t

∆x
u(xi)

)


.

which comes from the fact that η̂ + η = η̂η.�

3.4. First comparison between the LBM and LBM ∗ schemes

The LBM scheme (33) and the LBM∗ scheme (36) are not equivalent a priori since u(x) may not be a

constant and since gn
1,i−1
, gn

1,i+1
and gn

2,i−1
, gn

2,i+1
(compare (32) and (36)).

Moreover, the LBM scheme (33) with u(x) = 0 is a classical LBM scheme applied to the heat equation

[4, 5, 26]. But, the LBM∗ scheme (36) is not a classical LBM scheme.

On the other side, it will be easier to take into account non-periodic boundary conditions with the LBM∗

scheme (36) rather than with the LBM scheme (33). Indeed, for non-periodic boundary conditions in xmin,

we will have to define gn
2,i=0

in (36), but we will have to define gn
2,i=0

and gn
1,i=0

(and u(xi−1)) in (33). This

point explains why we will prove the results in the sequel with the LBM∗ scheme (36) and not with the

LBM scheme (33) although (33) with u(x) = 0 is a classical LBM scheme.

Nevertheless, we will show in §4 that the LBM scheme (33) and the LBM∗ scheme (36) are in fact equivalent

although they do not give the same gn
q,i

and, thus, the same ρn
i

(except for a particular choice of the initial

condition gn=0
q,i

). This equivalence will imply that the results obtained with the LBM∗ scheme (36) will be

also valid for the LBM scheme (33).

3.5. Justification of the use of a third order integration formula to obtain the LBM schemes

We now justify the use of the third order integration formula (28) instead of the second order integration

formula (27) through a basic property and some examples.

Since
∫ ∆t

0
Qq( f )[t + s, x+ (−1)qcs]ds in (24) is of the order of ∆t/

√
ε (see (26)), the error of the scheme

given an estimate of fq(t, x) has to be of the order of ∆ts/
√
ε with s > 1. Moreover, the LBM scheme (33)

and the LBM∗ scheme (36) are such that ∆t = O(ε). Thus, the error ∆ts/
√
ε is of the order of εs−1/2. We

now use the following property:

Property 3.2. Let us suppose that f εq is solution of (20) and that f
ε

q is an approximation of f εq which satisfies

f
ε

q = f εq + ε
kΨq(t, t/ε, x, x/

√
νε)

where Ψq(t1, t2, x1, x2) is a C∞-function. Thus, ρε := f
ε

1 + f
ε

2 is solution of

∂tρ
ε
+ ∂x(uρε) = ν∂2

xxρ
ε
+ O(ε)

when k ≥ 2.
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We deduce from this property that s has to be greater than 5/2 which implies that s = 3 since s ∈ N. This

justifies to use the third order integration formula (28) instead of the second order integration formula (27).

Of course, this property gives only a necessary condition to obtain consistent LBM schemes. It remains to

prove that s = 3 is also a sufficient condition: when u = 0, we will prove in §4 that this is also a sufficient

condition by prooving that the LBM schemes (33) and (36) converge to the solution of the heat equation.

Let us note that we impose that Ψq is a C∞-function to simplify the statement of Property 3.2. Indeed,

we could choose Ψq with less regularity. Moreover, the variables t/ε and x/
√
νε in Ψq underlines that this

perturbation may act at kinetic scales. Let us also note that the expansion (12) shows that f εq may have

variations at kinetic scales only at the order ε2, which is coherent with the previous result.

Proof of Property 3.2: Let us suppose that

f
ε

q = f εq + ε
kΨεq(t, t/ε, x, x/

√
νε).

In that case, we have 

∂tρ
ε
= ∂tρ

ε + O(εk−1),

∂x(uρε) = ∂x(uρε) + O(εk−1/2),

∂2
xxρ
ε
= ∂2

xxρ
ε + O(εk−1)

which allows to write that

∂tρ
ε
+ ∂x(uρε) − ν∂2

xxρ
ε
= ∂tρ

ε + ∂x(uρε) − ν∂2
xxρ
ε + O(εk−1).

Thus, we obtain that

∂tρ
ε
+ ∂x(uρε) = ν∂2

xxρ
ε
+ O(ε)

when k ≥ 2 by using (11).�

We now verify that the LBM schemes built by using (27) instead of (28) cannot be consistent with the

convection-diffusion equation (21) when ∆t = ∆x2

2ν
. When u = 0, the LBM and LBM∗ schemes using (27)

are respectively given by 

f n+1
1,i = f n

1,i+1

(
1 − 1

2Cd

)
+

f n
2,i+1

2Cd

,

f n+1
2,i = f n

2,i−1

(
1 − 1

2Cd

)
+

f n
1,i−1

2Cd

,

ρn+1
i = f n+1

1,i + f n+1
2,i

(37)

and 

f n+1
1,i = f n

1,i+1

(
1 − 1

2(1 −Cd)

)
+

f n
2,i−1

2(1 −Cd)
,

f n+1
2,i = f n

2,i−1

(
1 − 1

2(1 −Cd)

)
+

f n
1,i+1

2(1 −Cd)
,

ρn+1
i = f n+1

1,i + f n+1
2,i .

(38)

12



When Cd = 1/2 that is to say ∆t = ∆x2

2ν
, formula (37) gives



f n+1
1,i = f n

2,i+1,

f n+1
2,i = f n

1,i−1,

ρn+1
i = f n+1

1,i + f n+1
2,i

which is equivalent to 

f n+1
1,i = f n−1

1,i ,

f n+1
2,i = f n−1

2,i ,

ρn+1
i = f n+1

1,i + f n+1
2,i .

Finally, we obtain that

ρn+1
i = ρn−1

i when ∆t =
∆x2

2ν
. (39)

In the same way, we verify that when Cd = 1/2, formula (38) implies (39). Relation (39) shows that the

LBM schemes (37) and (38) cannot be consistent with the heat equation when ∆t = ∆x2

2ν
. By continuity, we

deduce that the LBM schemes built by using (27) instead of (28) cannot be consistent with the convection-

diffusion equation (21) when ∆t = ∆x2

2ν
. Let us also note that the LBM schemes (37) and (38) are not

bounded when Cd converges respectively to 0 (i.e. ∆t = 0) and to 1 (i.e. ∆t = ∆x2

ν
) which is not compatible

with a consistent scheme.

3.6. The “magic” formula

The LBM scheme (33) is equivalent to the scheme



gn+1
1,i
= gn

1,i+1
(1 − ∆t

ε̂
) + Mn

1,i+1
∆t
ε̂
,

gn+1
2,i
= gn

2,i−1
(1 − ∆t

ε̂
) + Mn

2,i−1
∆t
ε̂
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where ε̂ is such that ν =
(
ε̂ − ∆t

2

) (
∆x
∆t

)2
. And, by taking ∆x = ∆t = 1 and by noting gn

q,i
with the function

fq(t, x), we obtain the scheme



f1(t + 1, x − 1) = f1(t, x)(1 − 1
ε̂
) + M1(t, x) 1

ε̂
,

f2(t + 1, x + 1) = f2(t, x)(1 − 1
ε̂
) + M2(t, x) 1

ε̂

(40)

where

ν =

(
ε̂ − 1

2

)
c2

s (41)

with cs := 1. The scheme (40) and the “magic” formula (41) is classical in the field of LBM-type schemes

[4, 9]. The velocity cs is classicaly named ”pseudo sound speed of the lattice” [9]. It is not always equal
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to one (it depends on the type of PDE which is solved with the LBM scheme). Nevertheless, it seems that

the explanation of the formula (41) is not always clear. For example, it is written p. 129 in [9] that “(...)

there is a numerical-diffusion-related viscosity coefficient absorbed into ν by modifying ε̂ → ε̂ − 1
2
. This

coefficient is due to the first-order accuracy of the advection operator with the expansion fq(t+1, x+(−1)q) =∑+∞
k=0

ε̂k

k!
[∂t + (−1)q∂x]k fq(t, x).”. Formula (41) is explained in [27, 28] with a Chapman-Enskog expansion

applied to the scheme (40) but not to the continuous PDE (20) which makes difficult the understanding of

the expansions to our opinion. In the case of the heat equation, the explanation of the formula (41) is clear

and simple: it is a direct consequence of the third order integration formula (28) which allows to take into

account the stiff term 1
ε
(Mq − fq) in (20). More precisely, by using the formula (27) instead of the formula

(28), we would have the relation ν = ε̂c2
s (deduced from (30)) instead of (41) but the LBM scheme would

not capture the asymptotic regime (21) because of Property 3.2 (see the examples in §3.5).

3.7. Interpretation of the LBM and LBM∗ schemes with an operator splitting

We can see the LBM scheme (33) as a simple discretization of

∂tgq + (−1)qc∂xgq =
1

ε̂
(Mq − gq) with



ε̂ =
∆t

η
,

η =
1

Cd +
1
2

,

c =
∆x

∆t

(42)

based on the following collision-transport splitting:

Collision:

g∗q = gn
q(1 − ∆t

ε̂
) +
∆t

ε̂
Mn

q = gn
q(1 − η) + ηMn

q .

Transport: 

gn+1
1,i
= g∗

1,i+1
,

gn+1
2,i
= g∗

2,i−1
.

The LBM∗ scheme (36) may also be seen as a discretization of (42) based on a collision-transport splitting.

3.8. Some questions

We have proposed the LBM scheme (33) and the LBM∗ scheme (36). In the sequel, we will study the

following questions:

• Are these LBM schemes identical ?

• How to choose the initial conditions gn=0
1,i

and gn=0
2,i

?

• How to define Neumann and Dirichlet boundary conditions ?

• Are these LBM schemes unconditionally stable and are there discrete maximum principles ?

14



• Do these LBM schemes converge toward the solution of the convection-diffusion equation and what

is the order of the error ?

• Is it possible to give a probabilistic interpretation of these LBM schemes ?

We will give clear or partial answers to each of these questions by showing that there is a deep relation of

the LBM scheme (33) and of the LBM∗ scheme (36) with a finite difference type scheme.

4. Link with a finite difference type scheme

We now prove that the LBM scheme (33) and the LBM∗ scheme (36) with the initial condition



g0
1,i = (1 − α)ρ0

i ·
(
1 − ∆t

∆x
u(xi)

)
,

g0
2,i = αρ

0
i ·

(
1 +
∆t

∆x
u(xi)

) (43)

are equivalent to the finite difference type scheme

ρn+1
i
− ρn−1

i

2∆t
+
∆t

2∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) =

ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1) (44)

when the first iterate is given by

ρn=1
i := ξρ0

i−1 + (1− ξ)ρ0
i+1 −

∆t

∆x

[
(1 − α)ρ0

i+1u(xi+1) − αρ0
i−1u(xi−1)

]
where ξ =

η

2
+ α(1− η) (45)

in the case of the LBM scheme (33) and by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 −

∆t

∆x

[
(1 − α)ρ0

i+1u(xi+1) − αρ0
i−1u(xi−1)

]
where α ∈ R (46)

in the case of the LBM∗ scheme (36). When u(x) = 0, the scheme (44) is a Du Fort-Frankel scheme [22].

We will use this property in §5 and §6 to obtain new stability and convergence results in L∞ and discrete

maximum principles. Let us underline that the first iterate (46) is not classical for the Du Fort-Frankel. For

example, in [22], the first iterate is defined with

ρn=1
i
− ρn

i

∆t
=
ν

∆x2
(ρ0

i+1 − ρ
0
i − ρ0

i + ρ
0
i−1). (47)

Nevertheless, the first iterates (45) and (46) are essential, firstly, to obtain the equivalence between the LBM

schemes (33) and (36) with (44) and, secondly, to obtain for any Cd ≥ 0 stability and convergence results in

L∞ and discrete maximum principles (when u(x) = 0).

The link between the LBM scheme (33) with the Du Fort-Frankel scheme was firstly cited in [26] in the

case of periodic boundary conditions. More generally, in the LBM litterature:

• Only the LBM scheme (33) is proposed. The LBM∗ scheme (36) seems to have not been proposed.

Yet, the numerical analysis of the LBM∗ scheme is easier than the one of the LBM scheme.
15



• The cases of Neumann and Dirichlet boundary conditions are not studied.

• Stability and convergence results as well as discrete maximum principles are not proposed.

• The link between the initial condition g0
q and the order of the error of the LBM schemes is not under-

lined.

And, up to now, it seems that the importance of the choice of the first iterate ρn=1
i

to obtain good properties

in L∞ for the Du Fort-Frankel scheme was not underlined.

In the sequel of this section, in §5 and §6, we will study all these points. In particular, we will recover in this

section the bounced-back boundary conditions which are classical in the framework of the LBM schemes,

and we will define Neumann and Dirichlet boundary conditions for the LBM schemes (33) and (36) that are

not classical.

At last, we recall that η =
1

Cd +
1
2

and that ∆t := Cd
∆x2

ν
where Cd ≥ 0.

4.1. Periodic boundary conditions for the convection-diffusion equation

We have the following result:

Lemma 4.1. In the periodic case:

i) The LBM scheme (33)(43) is equivalent to the finite difference type scheme (44)(45).

ii) The LBM∗ scheme (36)(43) is equivalent to the finite difference type scheme (44)(46).

iii) The LBM scheme (33)(43) and the LBM∗ scheme (36)(43) are identical if and only if α = 1
2
.

The proof is written in §4.4. Let us remark that ξ ∈ [0, 1]⇐⇒ α ∈ [0, 1] since η ∈ [0, 2].

4.2. Neumann boundary conditions for the heat equation

We now suppose that u(x) = 0. Thus, the LBM scheme (33) is now given by



gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i+1

η

2
,

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i−1

η

2
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

(48)

and the LBM∗ scheme (36) is now given by



gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i−1

η

2
,

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i+1

η

2
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

. (49)
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Moreover, the initial condition (43) is now given by



g0
1,i = (1 − α)ρ0

i , (a)

g0
2,i = αρ

0
i . (b)

(50)

Here, we define the mesh xi = xmin + (i − 1
2
)∆x (i = 1, . . .) and we apply the Neumann boundary condition

∂xρ(t, xmin) = 0. For the sake of simplicity, we forget the boundary condition in xmax.

We have the following result:

Lemma 4.2. The LBM∗ scheme (49)(50) with the boundary conditions



gn+1
2,i=0
= gn+1

1,i=1
+ (gn

2,i=0
− gn

1,i=1
)(1 − η), (a)

gn=0
2,i=0
= αρn=0

i=1
(b)

(51)

is equivalent to the Du Fort-Frankel scheme

∀i ≥ 1 :
ρn+1

i
− ρn−1

i

2∆t
=
ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1) (52)

with the Neumann boundary condition

ρn
i=0 = ρ

n
i=1 (53)

when the first iterate is given by

∀i ≥ 1 : ρn=1
i = αρ0

i−1 + (1 − α)ρ0
i+1 where α ∈ R. (54)

We have the same result for the LBM scheme (48)(50) by replacing the boundary conditions (51) with



gn+1
1,i=0 = gn+1

2,i=1 + (gn
1,i=1 − gn

2,i=0)(1 − η), (a)

gn+1
2,i=0 = gn+1

1,i=1 + (gn
2,i=0 − gn

1,i=1)(1 − η), (b)

gn=0
1,i=0
= (1 − α)ρn=0

i=1
, (c)

gn=0
2,i=0
= αρn=0

i=1
(d)

(55)

and by replacing the first iterate (54) with

ρn=1
i := ξρ0

i−1 + (1 − ξ)ρ0
i+1 where ξ =

η

2
+ α(1 − η). (56)

Thus, the LBM scheme (48)(50)(55) and the LBM∗ scheme (49)(50)(51) are identical if and only if α = 1
2
.

The proof is written in §4.4. Let us note that when α = 1
2

that is to say when

g0
1,i = g0

2,i =
ρ0

i

2
,
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the boundary conditions (51) and (55) are respectively equivalent to

gn
2,i=0 = gn

1,i=1 (57)

and

gn
1,i=0 = gn

2,i=1 and gn
2,i=0 = gn

1,i=1. (58)

The boundary conditions (57) and (58) are classical in the framework of the LBM schemes and are named

bounce-back boundary conditions. Nevertheless, when α , 1
2
, the boundary conditions (51) and (55) are

not classical in the framework of the LBM schemes.

4.3. Dirichlet boundary conditions for the heat equation

To apply the Dirichlet boundary condition ρ(t, xmin) = ρxmin
, we now define the mesh xi = xmin + i∆x

(i = 1, . . .). For the sake of simplicity, we forget the boundary conditions in xmax.

We have the following result:

Lemma 4.3. The LBM∗ scheme (49)(50) with the boundary conditions


gn+1
2,i=0 =

ρxmin

2
+

(
ρxmin

2
− gn

1,i=1

)
(1 − η), (a)

gn=0
2,i=0
= αρxmin

(b)

(59)

is equivalent to the Du Fort-Frankel scheme (52) with the Dirichlet boundary condition

ρn
i=0 = ρxmin

(60)

when the first iterate is given by (54). We have the same result for the LBM scheme (48)(50) by replacing

the boundary conditions (59) with


gn+1
1,i=0 = gn

1,i=1

(
1 − η

2

)
+ gn

2,i=1

η

2
, (a)

gn+1
2,i=0
= ρxmin

− gn+1
1,i=0
, (b)

gn=0
1,i=0
= (1 − α)ρxmin

, (c)

gn=0
2,i=0
= αρxmin

(d)

(61)

and by replacing the first iterate (54) with (56). Thus, the LBM scheme (48)(50)(61) and the LBM∗ scheme

(49)(50)(59) are identical if and only if α = 1
2
.

The proof is written in §4.4. Let us note that the boundary conditions (59) and (61) are not classical in the

framework of the LBM schemes. Let us also note that (61) is equivalent to


gn+1
1,i=0 =

ρn
i=1

2
+

(
ρn

i=1

2
− gn

2,i=1

)
(1 − η), (a)

gn+1
2,i=0 = ρxmin

−
ρn

i=1

2
+

(
ρn

i=1

2
− gn

1,i=1

)
(1 − η), (b)

gn=0
1,i=0
= (1 − α)ρxmin

, (c)

gn=0
2,i=0
= αρxmin

(d)

(62)
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which underlines that (61)(b) is not exactly equal to (59)(a). Moreover, we may think that the boundary

conditions should be

∀n ≥ 0 : gn
2,i=0 =

ρxmin

2
(63)

for the LBM∗ scheme (49) instead of (59) and

∀n ≥ 0 : gn
1,i=0 = gn

2,i=0 =
ρxmin

2
(64)

for the LBM scheme (48) instead of (62). In §6.2, we will explain why we should replace (59) and (61)

respectively by (63) and (64) when the number of cells is low even if we lose the equivalence with the Du

Fort-Frankel scheme when we use this simple boundary conditions.

4.4. Proof of Lemmae 4.1, 4.2 and 4.3

In the following proof, we firstly focus on the LBM∗ scheme. Then, we focus on the LBM scheme

which is less easy to study.

Proof of Lemma 4.1:

• Study of the LBM∗ scheme:

We deduce from the LBM∗ scheme (36) that ρn+1
i
= gn

1,i+1
+ gn

2,i−1
(n ≥ 0). Thus, by applying again (36),

we find

ρn+1
i

= gn−1
1,i+2

[
1 − η

2

(
1 +
∆t

∆x
u(xi+1)

)]
+ gn−1

2,i

η

2

(
1 − ∆t

∆x
u(xi+1)

)

+gn−1
2,i−2

[
1 − η

2

(
1 − ∆t

∆x
u(xi−1)

)]
+ gn−1

1,i

η

2

(
1 +
∆t

∆x
u(xi−1)

)
with n ≥ 1.

(65)

By noting that 

ρn
i+1
= gn−1

1,i+2
+ gn−1

2,i
,

ρn
i−1
= gn−1

1,i
+ gn−1

2,i−2

with n ≥ 1, (66)

we deduce from (65) that

ρn+1
i

= (ρn
i+1 − gn−1

2,i )

(
1 − η

2

)
+ gn−1

2,i

η

2
+ (ρn

i−1 − gn−1
1,i )

(
1 − η

2

)
+ gn−1

1,i

η

2

−η
2
· ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1

that is to say

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ρn

i−1

(
1 − η

2

)
+ρn−1

i (η−1)− η
2
· ∆t

∆x
(u(xi+1)ρn

i+1−u(xi−1)ρn
i−1) with n ≥ 1. (67)

By using the fact that η =
1

Cd +
1
2

, we obtain

(2Cd + 1)ρn+1
i = 2Cd(ρn

i+1 + ρ
n
i−1) + (1 − 2Cd)ρn−1

i − ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1
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that is to say

ρn+1
i − ρn−1

i = 2Cd(ρn
i+1 − ρ

n+1
i − ρn−1

i + ρn
i−1) − ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1

which is equivalent to

ρn+1
i
− ρn−1

i

2∆t
=
ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1) − ∆t

2∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1.

We conclude the proof by noting that



g0
1,i = (1 − α)ρ0

i ·
(
1 − ∆t

∆x
u(xi)

)
,

g0
2,i = αρ

0
i ·

(
1 +
∆t

∆x
u(xi)

)

coupled to the LBM∗ scheme (36) implies that

ρ1
i = αρ

0
i−1 + (1 − α)ρ0

i+1 −
∆t

∆x

[
(1 − α)ρ0

i+1u(xi+1) − αρ0
i−1u(xi−1)

]
.

• Study of the LBM scheme:

We deduce from the LBM scheme (33) that

ρn+1
i = (gn

1,i+1 + gn
2,i−1)

(
1 − η

2

)
+ (gn

1,i−1 + gn
2,i+1)

η

2
− η

2
· ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1).

Thus, by applying again (33), we find

ρn+1
i

=

gn−1
1,i+2

(
1 − η

2

)
+ gn−1

2,i+2

η

2
−
ρn−1

i+2

2
· η ∆t

∆x
u(xi+2) + gn−1

2,i−2

(
1 − η

2

)
+ gn−1

1,i−2

η

2
+
ρn−1

i−2

2
· η ∆t

∆x
u(xi−2)


(
1 − η

2

)

gn−1
1,i

(
1 − η

2

)
+ gn−1

2,i

η

2
−
ρn−1

i

2
· η ∆t

∆x
u(xi) + gn−1

2,i

(
1 − η

2

)
+ gn−1

1,i

η

2
+
ρn−1

i

2
· η ∆t

∆x
u(xi)


η

2

−η
2
· ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1

which is equivalent to

ρn+1
i

=

[
(gn−1

1,i+2 + gn−1
2,i )

(
1 − η

2

)
+ (gn−1

1,i + gn−1
2,i+2)

η

2
− η

2
· ∆t

∆x
(u(xi+2)ρn−1

i+2 − u(xi)ρ
n−1
i )

] (
1 − η

2

)

+

[
(gn−1

1,i + gn−1
2,i−2)

(
1 − η

2

)
+ (gn−1

1,i−2 + gn−1
2,i )
η

2
− η

2
· ∆t

∆x
(u(xi)ρ

n−1
i − u(xi−2)ρn−1

i−2 )

] (
1 − η

2

)

+(gn−1
1,i + gn−1

2,i )(η − 1) − η
2
· ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1.

(68)

20



Moreover, we have



ρn
i+1 = (gn−1

1,i+2 + gn−1
2,i )

(
1 − η

2

)
+ (gn−1

1,i + gn−1
2,i+2)

η

2
− η

2
· ∆t

∆x
(u(xi+2)ρn−1

i+2 − u(xi)ρ
n−1
i ),

ρn
i−1 = (gn−1

1,i + gn−1
2,i−2)

(
1 − η

2

)
+ (gn−1

1,i−2 + gn−1
2,i )
η

2
− η

2
· ∆t

∆x
(u(xi)ρ

n−1
i − u(xi−2)ρn−1

i−2 )

with n ≥ 1

which allows to obtain (67) by using (68). We conclude the proof as for the LBM∗ scheme by noting that



g0
1,i = (1 − α)ρ0

i ·
(
1 − ∆t

∆x
u(xi)

)
,

g0
2,i = αρ

0
i ·

(
1 +
∆t

∆x
u(xi)

)

coupled to the LBM scheme (33) implies that

ρ1
i
=

[
(1 − α)ρ0

i+1 ·
(
1 − ∆t

∆x
u(xi+1)

)
+ αρ0

i−1 ·
(
1 +
∆t

∆x
u(xi−1)

)] (
1 − η

2

)

+

[
(1 − α)ρ0

i−1 ·
(
1 − ∆t

∆x
u(xi−1)

)
+ αρ0

i+1 ·
(
1 +
∆t

∆x
u(xi+1)

)]
η

2

−η
2
· ∆t

∆x
(u(xi+1)ρ0

i+1 − u(xi−1)ρ0
i−1)

=

[
(1 − α)

(
1 − η

2

)
+ α
η

2

]
ρ0

i−1 +

[
α

(
1 − η

2

)
+ (1 − α)

η

2

]
ρ0

i+1

− ∆t

∆x
ρ0

i+1u(xi+1)

[
(1 − α)

(
1 − η

2

)
− αη

2
+
η

2

]
+
∆t

∆x
ρ0

i−1u(xi−1)

[
α

(
1 − η

2

)
− (1 − α)

η

2
+
η

2

]

that is to say

ρ1
i = ξρ

0
i−1 + (1 − ξ)ρ0

i+1 −
∆t

∆x

[
(1 − α)ρ0

i+1u(xi+1) − αρ0
i−1u(xi−1)

]

where ξ =
η

2
+ α(1 − η).�

Proof of Lemma 4.2:

• Study of the LBM∗ scheme:

To prove Lemma 4.1 in the case of the LBM∗ scheme (36), we used (65) and (66) which come from an

application of the LBM∗ scheme in the cells i and i ± 1. Thus, to obtain the equivalence between the LBM∗

scheme (49) (obtained when u(x) = 0) and the Du Fort-Frankel scheme (52) in the cell i = 1, the LBM∗

scheme has to be applied when i = 0, i = 1 and i = 2. When i = 2, we do not have any difficulty to apply

the LBM∗ scheme (49). Nevertheless, when i = 0 and i = 1, gn
2,−1

and gn
2,0

have to be defined. When the

boundary conditions are periodic, gn
2,−1

and gn
2,0

are defined. But, when the boundary conditions are not
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periodic, gn
2,−1

and gn
2,0

are not defined a priori. We will define these quantities in such a way the Neumann

boundary condition

ρn
i=0 = ρ

n
i=1 (69)

is satified. Let us apply the LBM∗ scheme (49) when i = 0. We have

ρn+1
0 = gn

1,1 + gn
2,−1

which implies by using (69) at the time tn+1 that

gn
2,−1 = ρ

n+1
1 − gn

1,1.

But, we have also

gn+1
2,0 = gn

2,−1

(
1 − η

2

)
+ gn

1,1

η

2
.

Thus, we have

gn+1
2,0 = (ρn+1

1 − gn
1,1)

(
1 − η

2

)
+ gn

1,1

η

2
.

Let us now apply the LBM∗ scheme (49) when i = 1. We have

ρn+1
1 = gn

1,2 + gn
2,0.

This means that

gn+1
2,0

= (gn
1,2 + gn

2,0 − gn
1,1)

(
1 − η

2

)
+ gn

1,1

η

2

= gn
1,2

(
1 − η

2

)
+ gn

2,0

η

2
+ (gn

2,0 − gn
1,1)(1 − η).

But, we have also

gn+1
1,1 = gn

1,2

(
1 − η

2

)
+ gn

2,0

η

2
.

Thus

gn+1
2,0 = gn+1

1,1 + (gn
2,0 − gn

1,1)(1 − η)

which gives (51)(a). We conclude by noting that (51)(b) is a consequence of (50)(b) and (53).

• Study of the LBM scheme: Let us apply the LBM scheme (48) when i = 0 and i = 1. We have

ρn+1
0 = (gn

1,1 + gn
2,−1)

(
1 − η

2

)
+ (gn

1,−1 + gn
2,1)
η

2

and

ρn+1
1 = (gn

1,2 + gn
2,0)

(
1 − η

2

)
+ (gn

1,0 + gn
2,2)
η

2
.

Thus, by taking into account (69) at the time tn+1, we obtain

(gn
1,1 + gn

2,−1)

(
1 − η

2

)
+ (gn

1,−1 + gn
2,1)
η

2
= (gn

1,2 + gn
2,0)

(
1 − η

2

)
+ (gn

1,0 + gn
2,2)
η

2
. (70)

We have also

gn+1
1,1 = gn

1,2

(
1 − η

2

)
+ gn

2,2

η

2
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and

gn+1
2,0 = gn

2,−1

(
1 − η

2

)
+ gn

1,−1

η

2
.

Thus, we deduce from (70) that

gn+1
2,0 = gn+1

1,1 + (gn
2,0 − gn

1,1)

(
1 − η

2

)
+ (gn

1,0 − gn
2,1)
η

2

that is to say

gn+1
2,0

= gn+1
1,1 + (gn

2,0 − gn
1,1)(1 − η) + [(gn

2,0 − gn
1,1) + (gn

1,0 − gn
2,1)]
η

2

= gn+1
1,1 + (gn

2,0 − gn
1,1)(1 − η) + (ρn

0 − ρ
n
1)
η

2

which gives (55)(b) by taking into account (69). By using (55)(b), we obtain

gn+1
1,0 + gn+1

2,0 = gn+1
1,0 + gn+1

1,1 + (gn
2,0 − gn

1,1)(1 − η).

Thus, by using (69) at the time tn+1, we obtain

gn+1
1,1 + gn+1

2,1 = gn+1
1,0 + gn+1

1,1 + (gn
2,0 − gn

1,1)(1 − η)

which gives (55)(a). Moreover, (55)(c,d) is a consequence of (50) and (53). At last, we obtain that

ρ1
i = ξρ

0
i−1 + (1 − ξ)ρ0

i+1

as in the periodic case.�

Proof of Lemma 4.3: The proof is similar to the one of Lemma 4.2.

• Study of the LBM∗ scheme:

Let us apply the LBM∗ scheme (49) when i = 0. We have

ρn+1
0 = gn

1,1 + gn
2,−1.

Thus, by applying the boundary condition

ρn
i=0 = ρxmin

(71)

at the time tn+1, we obtain that

gn
2,−1 = ρxmin

− gn
1,1.

But, we have also

gn+1
2,0 = gn

2,−1

(
1 − η

2

)
+ gn

1,1

η

2
.

Thus, we have

gn+1
2,0 = (ρxmin

− gn
1,1)

(
1 − η

2

)
+ gn

1,1

η

2

that is to say

gn+1
2,0 =

ρxmin

2
+

(
ρxmin

2
− gn

1,1

)
(1 − η)
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which gives (59)(a). We conclude the proof as in the periodic case.

• Study of the LBM scheme:

Let us apply the LBM scheme (48) when i = 0. We have

gn+1
1,0 = gn

1,1

(
1 − η

2

)
+ gn

2,1

η

2

which gives (61)(a). We obtain (61)(b) by appling (71) at the time tn+1. We conclude the proof as in the

periodic case.�

5. Stability and convergence in L∞ for the LBM schemes applied to the heat equation

In the periodic, Neumann and Dirichlet cases , the LBM scheme (48)(50) and the LBM∗ scheme (49)(50)

are equivalent to the Du Fort-Frankel scheme (52) when the first iterate is given by (54) that is to say by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 where α ∈ R

(see Lemmae 4.1, 4.2 and 4.3). This will allow us, firstly, to obtain the stability in L∞ for any Cd ≥ 0 of

the LBM and Du Fort-Frankel schemes and, secondly, to prove the convergence in L∞ of these schemes

also for any Cd ≥ 0. This will also allow us to obtain discrete maximum principles for the LBM and Du

Fort-Frankel schemes for any Cd ≥ 0 (we study this point in §6). Let us recall that the first iterate (54) of

the Du Fort-Frankel scheme is not classical; in [22], it is defined with the classical three-points scheme

ρn=1
i
− ρn

i

∆t
=
ν

∆x2
(ρ0

i+1 − ρ
0
i − ρ0

i + ρ
0
i−1). (72)

The first iterate (72) is more natural than (54). Nevertheless, when we do not use (54), we obtain that the

Du Fort-Frankel scheme is stable for any Cd ≥ 0 in L2 (at least when n ≥ 2) [22] and, thus, not in L∞.

Moreover, it seems difficult to obtain discrete maximum principles for any Cd ≥ 0 without using (54).

For the sake of simplicity, we forget the boundary condition in x = xmax in the cases of Neumann and

Dirichlet boundary conditions. Moreover, we recall that ∆t := Cd

∆x2

ν
and that η :=

1

Cd +
1
2

∈]0, 2] where

Cd ≥ 0. We have the following result:

Proposition 5.1.

i) The LBM∗ scheme (49)(50) with periodic, Neumann or Dirichlet boundary conditions converge in L∞ and
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verifies:



Periodic case: max
i
|ρn

i | ≤ 2 max(|1 − α|, |α|) ·max
i
|ρ0

i | when

{
Cd ≥ 0,

α ∈ R. (a)

Neumann case:



max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | + 2|2α − 1| |1 − η|
1 − |1 − η| |ρ

0
1| when

{
Cd > 0,

α ∈ R.

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | when

{
Cd ≥ 0,

α = 1
2
.

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | when

{
Cd = 0,

α ∈ R.

(b)

Dirichlet case: max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max

(
max
i≥1
|ρ0

i |, |ρxmin
|
)
+

2

(
1 − η

2

)

1 − |η − 1| |ρxmin
| when

{
Cd ≥ 0,

α ∈ R. (c)

(73)

We have the same results for the LBM scheme (48)(50) by replacing α with ξ =
η

2
+ α(1 − η) in (73).

ii) The Du Fort-Frankel scheme (52) with periodic, Neumann or Dirichlet boundary conditions converges

in L∞ when the first iterate is given by (54), and verifies (73).

iii) The error of the LBM schemes and of the Du Fort-Frankel scheme is of order ∆x when α , 1
2

and is of

order ∆x2 if and only if α = 1
2
.

When the boundary conditions is a Dirichlet boundary condition in x = xmin and a Neumann boundary

condition in x = xmax, due to the linearity of the scheme, we easily deduce from the proof of Proposition

5.1 that we simply have to replace (73)(b,c) by

max
1≤i≤N

|ρn+1
i | ≤ 2 max(|1 − α|, |α|) ·max

(
max
1≤i≤N

|ρ0
i |, |ρxmin

|
)
+

2

(
1 − η

2

)

1 − |η − 1| |ρxmin
| + 2|2α − 1| |1 − η|

1 − |1 − η| |ρ
0
N |

(when Cd > 0 and α ∈ R) where N is the number of cells. The other possible cases are similar. It is known

since 1953 that the Du Fort-Frankel scheme with periodic boundary conditions is stable – and, thus, is

convergent – in L2 for any Cd ≥ 0 (this result is obtained via a Fourier analysis). Since the Du Fort-Frankel

scheme may be written with

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1)

(see (67) with u(x) = 0), we have also the stability in L∞ under the stability condition η ∈ [1, 2] that is to

say when 0 ≤ Cd ≤ 1/2 (for a reasonable choice of the first iterate: with (47) for example). Here, we obtain

the stability in L∞ of the Du Fort-Frankel scheme – and, thus, the convergence in L∞ – for any Cd ≥ 0 when

the first iterate is defined with (54).

At last, let us remark that (73)(b) with Cd = 0 (that is to say when ∆t = 0) seems strange in the sense that

we do not write ρn
i
= ρ0

i
when Cd = 0: we will discuss about this question in §7.1.
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Proof of Proposition 5.1:

Firstly, we prove the stability in L∞ for any Cd ≥ 0 of the LBM∗ scheme (49). Indeed, it is more simple to

analyze this scheme than the LBM scheme (48). Then, by applying Lemmae 4.1, 4.2 and 4.3 (and the Lax

Theorem), we easily obtain the other results.

• Stability in L∞ of the LBM∗ scheme with periodic boundary conditions:

Since η ∈]0, 2], we deduce from (49) that

max
i

(|gn+1
1,i |, |g

n+1
2,i |) ≤ max

i
(|gn

1,i|, |g
n
2,i|) (74)

which proves the unconditionnal stability in L∞ as soon as the initial condition is bounded. Moreover, since

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
, we have

max
i
|ρn

i | ≤ 2 max
i

(|gn+1
1,i |, |g

n+1
2,i |).

Thus, we deduce from (74) that

max
i
|ρn

i | ≤ 2 max
i

(|g0
1,i|, |g

0
2,i|)

that is to say

max
i
|ρn

i | ≤ 2 max(|1 − α|, |α|) ·max
i
|ρ0

i | (75)

by using the initial condition (50).

• Stability in L∞ of the LBM∗ scheme with Neumann boundary conditions:

Since η ∈]0, 2], we deduce from (49) that

max
i≥1

(|gn+1
1,i |, |g

n+1
2,i |) ≤ max[|gn

2,0|,max
i≥1

(|gn
1,i|, |g

n
2,i|)]. (76)

Inequalities (74) and (76) are different because of the boundary term |gn
2,0
| in (76) which does not exist when

the boundary conditions are periodic. The difficulty to obtain the stability in L∞ comes from this term. We

deduce from the boundary condition (51)(a) that

gn+1
2,0

= gn+1
1,1
+ (1 − η)gn

2,0
− (1 − η)gn

1,1

= gn+1
1,1
+ (1 − η)[gn

1,1
+ (1 − η)gn−1

2,0
− (1 − η)gn−1

1,1
] − (1 − η)gn

1,1

= gn+1
1,1
+ (1 − η)2gn−1

2,0
− (1 − η)2gn−1

1,1

= . . .

= gn+1
1,1
+ (1 − η)n+1g0

2,0
− (1 − η)n+1g0

1,1

that is to say

gn+1
2,0 = gn+1

1,1 + (1 − η)n+1(g0
2,0 − g0

1,1). (77)
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On the other side, we have

gn+1
1,1 = gn

1,2

(
1 − η

2

)
+ gn

2,0

η

2
.

Thus, by using (77), we obtain

gn+1
2,0 ≤ max(|gn

1,2|, |g
n
2,0|) + |1 − η|

n+1 · |g0
2,0 − g0

1,1|.

By injecting this inequality in (76), we find

max[|gn+1
2,0 |,max

i≥1
(|gn+1

1,i |, |g
n+1
2,i |)] ≤ max

[
max(|gn

1,2|, |g
n
2,0|) + |1 − η|

n+1 · |g0
2,0 − g0

1,1|, |g
n
2,0|,max

i≥1
(|gn

1,i|, |g
n
2,i|)

]
.

(78)

Let us now define

Gn := max[|gn
2,0|,max

i≥1
(|gn

1,i|, |g
n
2,i|)]. (79)

We deduce from (78) that

Gn+1 ≤ Gn + |1 − η|n+1 · |g0
2,0 − g0

1,1|

that is to say

Gn+1 ≤ G0 + |1 − η|S n · |g0
2,0 − g0

1,1| (80)

where

S n :=

n∑

k=0

|1 − η|k. (81)

Let us now suppose that η ∈]0, 2[ that is to say Cd > 0. By noting that S n ≤ 1
1−|η−1| when η ∈]0, 2[, we

obtain

Gn+1 ≤ G0 +
|1 − η|

1 − |1 − η| |g
0
2,0 − g0

1,1| (82)

which proves the unconditionnal stability in L∞ as soon as the initial condition is bounded. Moreover, by

applying the arguments used to obtain (75) in the periodic case, we deduce from (82) that

max
i≥0
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥0
|ρ0

i | + 2|2α − 1| |1 − η|
1 − |1 − η| |ρ

0
1|

that is to say

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | + 2|2α − 1| |1 − η|
1 − |1 − η| |ρ

0
1|

when η ∈]0, 2[ since ρn
0
= ρn

1
. Let us now suppose that η = 2 that is to say Cd = 0. We deduce from (49)

and (51) that gn+1
q,i
= gn−1

q,i
for any i ≥ 1 and q ∈ {1, 2}, and that gn+1

2,0
= gn−1

2,0
which allows to obtain

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i |. (83)

At last, when α = 1
2

and for any η ∈]0, 2], we have g0
2,0
= g0

1,1
which implies that Gn+1 ≤ G0 by using (80).

Thus, (83) is also astisfied.

• Stability in L∞ of the LBM∗ scheme with Dirichlet boundary conditions:
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Inequality (76) is still satisfied. Moreover, we deduce from the boundary condition (59)(a) that

|gn+1
2,0 | ≤

(
1 − η

2

)
|ρxmin

| + |η − 1| · |gn
1,1|.

Thus, by using (76), we obtain

max[|gn+1
2,0 |,max

i≥1
(|gn+1

1,i |, |g
n+1
2,i |)] ≤ max

[(
1 − η

2

)
|ρxmin

| + |η − 1| · |gn
1,1|, |g

n
2,0|,max

i≥1
(|gn

1,i|, |g
n
2,i|)

]
. (84)

We deduce from (84) that

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn,Gn
]
. (85)

where Gn is defined with (79). Thus, we have also

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

| + |η − 1|max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−1,Gn−1
]
,

(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−1,Gn−1
]

that is to say

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

| · (1 + |η − 1|) + |η − 1|2Gn−1,

(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−1,Gn−1
]
.

The previous inequalities incite us to prove that

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1Gn−m,

(
1 − η

2

)
|ρxmin

|S m−1 + |η − 1|mGn−m,

. . . ,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|Gn−m,

Gn−m]

(86)

where S m is defined with (81). We know that (86) is verified when m = 0 and m = 1. Let us now suppose

that (86) is verified at the rank m. By injecting (85) in (86), we obtain

Gn+1 ≤ max

{(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1 max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]
,

(
1 − η

2

)
|ρxmin

|S m−1 + |η − 1|m max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]
,

. . . ,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]
,

max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]}
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which gives

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

|(S m + |η − 1|m+1) + |η − 1|m+2Gn−m−1,

(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1Gn−m−1

(
1 − η

2

)
|ρxmin

|(S m−1 + |η − 1|m) + |η − 1|m+1Gn−m−1,

(
1 − η

2

)
|ρxmin

|S m−1 + |η − 1|mGn−m−1

. . . ,

(
1 − η

2

)
|ρxmin

|(S 0 + |η − 1|) + |η − 1|2Gn−m−1,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|Gn−m−1

(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]

that is to say

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

|S m+1 + |η − 1|m+2Gn−m−1,

(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1Gn−m−1,

. . . ,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|Gn−m−1,

Gn−m−1
]
.

Thus, (86) is also verified at the rank m + 1, which proves (86) for any m ∈ {0, . . . , n − 1}. By applying (86)

at the rank n − 1, by noting that S m ≤ 1
1−|η−1| and that |η − 1|m ≤ 1 for any m ∈ N (we recall that η ∈]0, 2]),

we obtain that

Gn+1 ≤
1 − η

2

1 − |η − 1| |ρxmin
| +G0 (87)

which proves the unconditionnal stability in L∞ as soon as the initial condition is bounded. Moreover, by

applying the arguments used to obtain (75) in the periodic case, we deduce from (87) that

max
i≥0
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) max
i≥0
|ρ0

i | +
2

(
1 − η

2

)

1 − |η − 1| |ρxmin
|

that is to say

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max

(
max
i≥1
|ρ0

i |, |ρxmin
|
)
+

2

(
1 − η

2

)

1 − |η − 1| |ρxmin
|

since ρn
i
= ρxmin

.

• Stability in L∞ of the Du Fort-Frankel scheme:
29



By using the unconditionnal stability in L∞ of the LBM∗ scheme (49)(50) and by using Lemmae 4.1, 4.2

and 4.3, we obtain the unconditionnal stability in L∞ of the Du Fort-Frankel scheme (52)(54).

• Stability in L∞ of the LBM scheme:

By using the unconditionnal stability in L∞ of the Du Fort-Frankel scheme (52)(56) and by using again

Lemmae 4.1, 4.2 and 4.3, we obtain the unconditionnal stability in L∞ of the LBM scheme (48)(50).

• Consistency and order of the error:

When n ≥ 2 and when ∆t = Cd

∆x2

ν
(Cd ≥ 0), the Du Fort-Frankel scheme (52) is consistent and its error is

of order ∆x2 [22]. Let us study the first iterate (54). We have

ρ1
i
= αρ0

i−1
+ (1 − α)ρ0

i+1

= ρexact(0, xi) + O(∆xβ)

= ρexact(∆t, xi) + O(∆t,∆xβ)

with 

α , 1/2 =⇒ β = 1,

α = 1/2 =⇒ β = 2

where ρexact is the exact solution of the heat equation. Thus, we have the consistency for any α ∈ R.

Moreover, the error is of order ∆x when α , 1
2

and is of order ∆x2 if and only if α = 1
2
.

• Convergence in L∞:

When ∆t = Cd

∆x2

ν
, we obtain the convergence in L∞ of the Du Fort-Frankel scheme for any Cd ≥ 0 by

applying the Lax Theorem. Thus, by using again Lemmae 4.1, 4.2 and 4.3, we also obtain the convergence

in L∞ of the LBM and LBM∗ schemes for any Cd ≥ 0.�

6. Discrete maximum principles for the LBM schemes applied to the heat equation

It is easy to obtain a discrete maximum principle for the Du Fort-Frankel scheme (52) when Cd ∈ [0, 1
2
]

(we recall that ∆t := Cd
∆x2

ν
). Indeed, this scheme can be rewritten with

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1)

(see (67) with u(x) = 0) which allows to obtain discrete maximum principles when η ∈ [1, 2] that is to say

when Cd ∈ [0, 1
2
] since η = 1

Cd+
1
2

.

On the other side, we proved in Proposition 5.1 the stability in L∞ for any Cd ≥ 0. Thus, we may think that

we could also obtain discrete maximum principles for any Cd ≥ 0. Unfortunatly, Inequalities (73) do not
30



allow to conclude. Moreover, when Cd goes to the infinity (that is to say when η = 0), the constants in the

right hand sides of (73)(b,c) go to the infinity (except when α = 1
2

in the Neumann case).

Moreover, the LBM schemes are often applied in complex porous media which may contain areas where

the number of cells is low. Thus, it is important to obtain discrete maximum principles (to preserve for

example the positivity of the temperature or of the mass fraction when these quantities are solution of a heat

equation) and, by the same time, to have Cd at least greater than 1
2

to justify the use of the LBM schemes

(or of the Du Fort-Frankel scheme) instead of the classical three-points finite difference type scheme (which

satisfies discrete maximum principles when Cd ∈ [0, 1
2
]).

We show below that it is possible to obtain discrete maximum principles for any Cd ≥ 0 with the LBM

scheme (48)(50) and with the LBM∗ scheme (49)(50) in the periodic and Neumann cases. Thus, this is also

the case for the Du Fort-Frankel scheme. In the Dirichlet case, we will show that we have to change the

boundary conditions (59) and (61) to obtain a discrete maximum principle for any Cd ≥ 0. Unfortunatly,

we will lose in that case the equivalence between the LBM schemes and the Du Fort-Frankel scheme, and

the error of the LBM schemes will not be of order ∆x2 but should be of order ∆x. As a consequence, this

modified Dirichlet boundary conditions will have to be applied only in areas where the number of cells is

low. This point underlines the utility of the LBM schemes to obtain robust schemes.

As before, for the sake of simplicity, we forget the boundary condition in x = xmax in the cases of

Neumann and Dirichlet boundary conditions.

6.1. Periodic and Neumann boundary conditions

We have the following result:

Proposition 6.1. For any Cd ≥ 0:

i) When α ∈ [0, 1], the LBM scheme (48)(50) and the LBM∗ scheme (49)(50) with periodic boundary

conditions verify the discrete maximum principle

min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j . (88)

ii) When α = 1
2
, the LBM scheme (48)(50) and the LBM∗ scheme (49)(50) with Neumann boundary condi-

tions verify the discrete maximum principle

∀i ≥ 1 : min
j≥1
ρ0

j ≤ ρn
i ≤ max

j≥1
ρ0

j . (89)

Thus, this is also the case for the Du Fort-Frankel scheme (52) with periodic or Neumann boundary condi-

tion when the first iterate is given by (54).

The proof is written in §6.3. Let us note that the Du Fort-Frankel scheme is equivalent to

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1)
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(see (67) with u(x) = 0). Thus, when ρn=1
i

:= αρ0
i−1
+ (1 − α)ρ0

i+1
, we obtain

ρ2
i
= [αρ0

i + (1 − α)ρ0
i+2]

(
1 − η

2

)
+ [αρ0

i−2 + (1 − α)ρ0
i ]

(
1 − η

2

)
+ ρ0

i (η − 1)

= [αρ0
i−2 + (1 − α)ρ0

i+2]

(
1 − η

2

)
+ ρ0

i

η

2
.

This proves that min
j
ρ0

j
≤ ρ2

i
≤ max

j
ρ0

j
for any Cd ≥ 0 in the periodic case when α ∈ [0, 1]. Nevertheless, it

is a priori more difficult to obtain a similar result for ρn≥3
i

without using the equivalence between the LBM∗

scheme and the Du Fort-Frankel scheme. This remark shows that the LBM schemes may also be seen as a

numerical analysis tool to study properties of classical finite difference schemes.

6.2. Modified Dirichlet boundary conditions

We have the following result:

Lemma 6.1. For any Cd ∈ [0, 1
2
] and when α = 1

2
, the LBM scheme (48)(50)(61) and the LBM∗ scheme

(49)(50)(59) verify the maximum principle

∀i ≥ 1 : min(ρxmin
,min

j≥1
ρ0

j) ≤ ρn
i ≤ max(ρxmin

,max
j≥1
ρ0

j). (90)

Thus, this is also the case for the Du Fort-Frankel scheme (52) with Dirichlet boundary conditions when the

first iterate is given by (54).

The proof is written in §6.3. Lemma 6.1 is less interesting than Proposition 6.1 since the discrete maximum

principle (90) is satisfied under the condition Cd ∈ [0, 1
2
]. Nevertheless, by modifying the Dirichlet boundary

conditions (59) and (61), we obtain the following result:

Proposition 6.2. For any Cd ≥ 0 and when α = 1
2
, the LBM∗ scheme (49)(50) with the modified Dirichlet

boundary condition

∀n ≥ 0 : gn
2,i=0 =

ρxmin

2
(91)

verifies the maximum principle

∀i ≥ 1 : min(ρxmin
,min

j≥1
ρ0

j) ≤ ρn
i ≤ max(ρxmin

,max
j≥1
ρ0

j). (92)

We have the same result for the LBM scheme (48)(50) with the modified Dirichlet boundary conditions

∀n ≥ 0 : gn
1,i=0 = gn

2,i=0 =
ρxmin

2
. (93)

The proof is written in §6.3. Let us remark that when Cd = α =
1
2
, the modified Dirichlet boundary condition

(91) is equivalent to the Dirichlet boundary conditions (59) firstly proposed and which make equivalent the

LBM∗ scheme and the Du Fort-Frankel scheme (see Lemma 4.2). This is coherent with the fact that it is

possible to easily prove that the Du Fort-Frankel scheme with Dirichlet boundary condition satisfies the

maximum principle when α ∈ [0, 1] and 0 ≤ Cd ≤ 1/2.
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By supposing that Expansion (16) is valid near the boundary x = xmin – which is not proven since the

boundary conditions are periodic in Corollary 2.1 –, we obtain that

ρ

2
− fq = O(

√
∆t) = O(∆x)

since ε = O(∆t) (cf. §3.2) and ∆t = O(∆x2). In the same way, we obtain that

∆t

2
Qq( f ) = O(∆x).

As a consequence, by using (22) and since ρxmin
− ρn

i=1
= O(∆x), we obtain that

(
ρxmin

2
− gn

1,i=1

)
(1 − η) = (1 − η)O(∆x). (94)

Although this term goes to zero when ∆x goes to zero, it is important in the Dirichlet boundary con-

ditions (59) to obtain the equivalence between the LBM∗ scheme (49)(50)(59) and the Du Fort-Frankel

scheme (52)(54) with Dirichlet boundary condition. Moreover, when α = 1
2
, the error of the LBM∗ scheme

(49)(50)(59) is of the order of ∆x2 (see point iii of Proposition 5.1).

Thus, when we replace (59) by (91) in the LBM∗ scheme:

• The error of the LBM∗ scheme with α = 1
2

should be of the order of ∆x instead of ∆x2.

• Near the boundary x = xmin, we lose the equivalence between the LBM∗ scheme and the Du Fort-

Frankel scheme. This avoids to obtain the convergence in L∞ for any Cd ≥ 0 of the LBM∗ scheme

with modified Dirichlet boundary condition by using the Lax Theorem.

Of course, we have the same remarks when we replace (61) by (93) in the LBM scheme. Nevertheless,

Proposition 6.2, estimation (94) (which remains to be proven) and the fact that the equivalence with the Du

Fort-Frankel scheme remains valid far from the boundary x = xmin incite us to conjecture the following

result:

Conjecture 6.1. For any Cd ≥ 0 and when α = 1
2
, the LBM∗ scheme (49)(50) with the modified Dirichlet

boundary conditions (91) converges in L∞ with an error of the order of ∆x. We have the same result for the

LBM scheme (48)(50) with the modified Dirichlet boundary conditions (93).

Numerical results proposed in §9.1 will justify this conjecture.

6.3. Proof of Propositions 6.1 and 6.2, and of Lemma 6.1

Proof of Proposition 6.1:

We focus on the LBM∗ scheme (49) since this scheme is more simple than the LBM scheme (48). Then, by

applying Lemmae 4.1 and 4.2, we obtain the results for the Du Fort-Frankel scheme and, then, for the LBM

scheme (48) (this approach was also used for the proof of Proposition 5.1).

• Discrete Maximum principle with periodic boundary conditions for the LBM∗ scheme when α = 1
2
:
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The LBM∗ scheme (49) implies that

min
j

(gn
1, j, g

n
2, j) ≤ gn+1

q,i ≤ max
j

(gn
1, j, g

n
2, j) (q ∈ {1, 2})

since η ∈]0, 2].Thus, we have

min
j

(g0
1, j, g

0
2, j) ≤ gn+1

q,i ≤ max
j

(g0
1, j, g

0
2, j) (q ∈ {1, 2}). (95)

Thus, by using (50),we obtain

min[(1 − α), α] ·min
j
ρ0

j ≤ gn
q,i ≤ max[(1 − α), α] ·max

j
ρ0

j (q ∈ {1, 2}) (96)

when α ∈ [0, 1]. Since ρn
i
= gn

1,i
+ gn

2,i
, we deduce from (96) that

2 min[(1 − α), α] ·min
j
ρ0

j ≤ ρn
i ≤ 2 max[(1 − α), α] ·max

j
ρ0

j (q ∈ {1, 2}). (97)

Thus, we deduce from (97) that the discrete maximum principle (88) is verified when α = 1
2
.

• Discrete Maximum principle with periodic boundary conditions for the LBM∗ scheme when α ∈ [0, 1]:

The discrete maximum principle (88) cannnot be deduced from (97) when α , 1
2
. Nevertheless, we now

prove that (88) is still satisfied when α ∈ [0, 1]. To obtain this result, we prove that


gn
1,i =

∑

k

Γn
kg0

1,i1
k

+
∑

k

Γ̃n
kg0

2,i2
k

, (a)

gn
2,i =

∑

k

Γ̃n
kg0

1,i1
k

+
∑

k

Γn
kg0

2,i2
k

, (b)

∑

k

(Γn
k + Γ̃

n
k) = 1, (c)

Γn
k
≥ 0, (d)

Γ̃k ≥ 0 (e)

(98)

where {i1
k
}k et {i2

k
}k are two sequences which depend on i, and where {Γn

k
}k and {̃Γn

k
}k are two positive real

sequences. It is obvious that (98) is verified when n = 1 since


g1
1,i = g0

1,i+1

(
1 − η

2

)
+ g0

2,i−1

η

2
,

g1
2,i = g0

2,i−1

(
1 − η

2

)
+ g0

1,i+1

η

2
.

Let us suppose that (98) is satisfied at the rank n. Then, the LBM∗ scheme (49) can be written with


gn+1
1,i =

(
1 − η

2

) 
∑

k

Γn
kg0

1,i1
k
+1
+

∑

k

Γ̃n
kg0

2,i2
k
+1

 +
η

2


∑

k

Γ̃n
kg0

1,i1
k
−1
+

∑

k

Γn
kg0

2,i2
k
−1

 ,

gn+1
2,i =

η

2


∑

k

Γn
kg0

1,i1
k
+1
+

∑

k

Γ̃n
kg0

2,i2
k
+1

 +
(
1 − η

2

) 
∑

k

Γ̃n
kg0

1,i1
k
−1
+

∑

k

Γn
kg0

2,i2
k
−1
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that is to say with


gn+1
1,i =

∑

k

[(
1 − η

2

)
Γn

kg0

1,i1
k
+1
+
η

2
Γ̃n

kg0

1,i1
k
−1

]
+

∑

k

[(
1 − η

2

)
Γ̃n

kg0

2,i2
k
+1
+
η

2
Γn

kg0

2,i2
k
−1

]
,

gn+1
2,i =

∑

k

[
η

2
Γn

kg0

1,i1
k
+1
+

(
1 − η

2

)
Γ̃n

kg0

1,i1
k
−1

]
+

∑

k

[
η

2
Γ̃n

kg0

2,i2
k
+1
+

(
1 − η

2

)
Γn

kg0

2,i2
k
−1

]
.

(99)

But, (99) can be written with (98)(a,b) at the rank n + 1 after a reorganization of the sequences. Moreover,

we have ∑

k

[(
1 − η

2

)
Γn

k +
η

2
Γ̃n

k

]
+

∑

k

[
η

2
Γn

k +

(
1 − η

2

)
Γ̃n

k

]
=

∑

k

(Γn
k + Γ̃

n
k) = 1

and 

(
1 − η

2

)
Γn

k ≥ 0,

η

2
Γ̃n

k ≥ 0,

η

2
Γn

k ≥ 0,

(
1 − η

2

)
Γ̃n

k ≥ 0

since η ∈]0, 2]. Thus, (98) is satisfied for any n ≥ 1. By using the fact that ρn
i
= gn

1,i
+ gn

2,i
and by using (50),

(98)(a,b) implies that

ρn
i
=

∑

k

(Γn
k + Γ̃

n
k)(g0

1,i1
k

+ g0

2,i2
k

)

=
∑

k

(Γn
k + Γ̃

n
k)[(1 − α)ρ0

i1
k

+ αρ0

i2
k

]

since ρn
i
= gn

1,i
+ gn

2,i
. Thus, because of (98)(c,d,e), we obtain that ρn

i
is a convex combination of {ρ0

j
} j when

α ∈ [0, 1] which allows to obtain (88).

• Discrete Maximum principle with Neumann boundary conditions for the LBM∗ scheme when α = 1
2
:

A priori, the proof in the periodic case when α ∈ [0, 1] is not valid in the Neumann case because of the

boundary conditions (51) in x = xmin. Nevertheless, when α = 1
2
, the boundary conditions (51) are given by

∀n ≥ 0 : gn
2,0 = gn

1,1 (100)

since α = 1
2
=⇒ g0

1,1
= g0

2,1
=
ρ0

1

2
and g0

2,0
=
ρ0

1

2
that is to say g0

2,0
= g0

1,1
. As a consequence, the proof in the

periodic case with α = 1
2

becomes valid in the Neumann case.�

Proof of Lemma 6.1: In the Dirichlet case, the bounday conditions (59) in x = xmin can be rewritten with


gn+1
2,i=0 =

ρxmin

2
(2 − η) + gn

1,i=1(η − 1), (a)

gn=0
2,i=0
= αρxmin

. (b)

(101)

35



We deduce from (101) that when η ∈ [1, 2] that is to say when Cd ∈ [0, 1
2
], we have

min

[
ρxmin

2
, gn

1,i=1

]
≤ gn+1

2,i=0 ≤ max

[
ρxmin

2
, gn

1,i=1

]
.

Thus, the proof in the periodic case with α = 1
2

can be applied.�

Proof of Proposition 6.2: The proof is identical to the periodic case with α = 1
2

by replacing (95) with

min

[
ρxmin

2
,min

j≥1
(gn

1, j, g
n
2, j)

]
≤ gn+1

1,i ≤ max

[
ρxmin

2
,max

j≥1
(gn

1, j, g
n
2, j)

]
.

�

7. Limitations of the LBM schemes

7.1. Preservation of the initial condition

We have the following result:

Lemma 7.1. When Cd = 0, the LBM∗ scheme (36)(43) with periodic boundary conditions preserve the

initial condition in the sense

∀n ∈ N : ρn+2
i = ρn

i .

Thus, this is also the case for the LBM scheme (33)(43) and for the finite difference type scheme (44) when

the first iterate is given by (46).

In the case of the heat equation with Neumann or Dirichlet boundary conditions, we obtain the following

lemma:

Lemma 7.2. When Cd = 0, the LBM∗ scheme (49)(50) with periodic, Neumann, Dirichlet or modified

Dirichlet boundary conditions preserve the initial condition in the sense

∀n ∈ N : ρn+2
i = ρn

i .

Thus, this is also the case for the LBM scheme (48)(50) and for the Du Fort-Frankel scheme (52) when the

first iterate is given by (54).

These lemmae show that the proposed LBM schemes do not satisfy ρn+1
i
= ρn

i
when Cd = 0 i.e. when

∆t = 0. Nevertheless, we deduce from (46) that ρ1
i
− ρexact(∆t, xi) = O(∆xβ) with β = 1 when α , 1

2
and

with β = 2 when α = 1
2
. Thus, the proposed LBM schemes preserve the initial condition when ∆t = 0 with

an error of order ∆xβ. As a consequence, we cannot say that this property is an important limitation of the

proposed LBM schemes.

Proof of Lemma 7.1: When Cd = 0, we deduce from the LBM∗ scheme (36) that

gn+1
1,i = gn

2,i−1 and gn+1
2,i = gn

1,i+1.

As a consequence, we have

gn+1
1,i = gn−1

1,i and gn+1
2,i = gn−1

2,i
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which concludes the proof. We obtain the result for the LBM scheme and for the finite difference type

scheme (44) by using Lemma 4.1.�

Proof of Lemma 7.2: The proof in the case of periodic boundary conditions is a direct application of

Lemma 7.1.

• The case of Neumann boundary conditions:

For the LBM∗ scheme, we deduce from (51)(a) that gn+1
2,0
= gn+1

1,1
− (gn

2,0
− gn

1,1
) when Cd = 0. On the other

side, we have also gn+1
1,1
= gn

2,0
for any i ≥ 1 by using (49) with Cd = 0. Thus, we obtain gn+1

2,0
= gn

1,1
that

is to say gn+1
2,0
= gn−2

1,1
= gn−1

2,0
which allows to obtain the result. We obtain the result for the LBM and Du

Fort-Frankel schemes by applying Lemma 4.2.

• The case of Dirichlet boundary conditions:

For the LBM∗ scheme, we deduce from (59)(a) that gn+1
2,0 = gn

1,1 when Cd = 0. We conclude as in the

Neumann case. We obtain the result for the LBM and Du Fort-Frankel schemes by applying Lemma 4.3.

• The case of modified Dirichlet boundary conditions for the LBM and LBM∗ schemes:

Since the boundary conditions (91) and (93) do not depend on the time, we obtain the result as in the other

cases.�

7.2. Consistency condition

We proved in Lemma 4.1 that the LBM scheme (33)(43) and the LBM∗ scheme (36)(43) are equivalent

to the finite difference type scheme (44) (when the first iterate is defined with (44)(46)). On the other side,

we know that the consistency error E of the Du Fort-Frankel scheme (52) is given by [22]

E = −ν ∆t2

∆x2
∂2

ttρ + O(∆x2).

As a consequence, the equivalent equation of the Du Fort-Frankel scheme is the telegraph equation

∂tρ = ν

(
∂2

xxρ −
1

c
∂2

ttρ

)
with c =

∆x

∆t
(102)

which implies that the Du Fort-Frankel scheme is consistent with the heat equation if and only if

∆t = O(∆xβ) with β > 1. (103)

As a consequence, the LBM scheme (33)(43) and the LBM∗ scheme (36)(43) cannot be consistent with the

convection-diffusion equation (1) when O(Cd∆x) ≥ 1.

The consistency condition (103) limits the range of the unconditionnal stability in L∞ of the LBM schemes

(48) and (49) obtained in the case of the heat equation (see Proposition 5.1; see also the discrete maximum
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principles obtained in §6) and which makes robust these LBM schemes. Let us note that the LBM schemes

(48) and (49) are equivalent to 

gn+1
1,i = gn

1,i+1, (a)

gn+1
2,i = gn

2,i−1, (b)

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
(c)

(104)

when η :=
1

Cd +
1
2

= 0 that is to say when Cd → +∞. This confirms the fact that the LBM schemes (48)

and (49) cannot be consistent with the heat equation when O(Cd∆x) ≥ 1 since (104)(a,b) are two convective

schemes with CFL = 1.

7.3. High Reynolds flows

The discrete convection operator in (44) is obtained with an explicit centered scheme. This should

impact the stability of the LBM schemes (33) and (36) when u(x) , 0 and when ν is low that is to say when

the Reynolds number Re :=
Lu

ν
is high (we use the definitions u := max

Ω
|u(x)|, L := xmax − xmin where

Ω := [xmin, xmax]) and when ∆t = O(∆x) independently of the consistency condition (103). We do not

study this point in this paper. This remark underlines that the LBM schemes applied to the incompressible

Navier-Stokes system may present numerical instabilities and consistency errors for high Reynolds number

flows when ∆t = O(∆x).

8. Probabilistic interpretation of the LBM schemes

We now propose two Monte-Carlo algorithms deduced from the LBM scheme (48) and from the LBM∗

scheme (49) in the case of periodic boundary conditions. To obtain these Monte-Carlo algorithms, we define

gn(x, v) = w

K∑

k=1

δ(x − Xn
k ) · δ(v − Vn

k )

where the particles k ∈ {1, . . . ,K} are characterized by the position Xn
k
∈ Ω, the velocity Vn

k
∈ R and the

weight w supposed to be constant, and where δ(·) is the Dirac distribution, ({Xn
k
}k, {Vn

k
}k) being a random

process which will be defined below. Thus, we approach gn
q,i

and ρn
i

with



gn
1,i =

w

∆x
·Card

({
k/Xn

k = xi and v = −∆x

∆t

})
,

gn
2,i =

w

∆x
·Card

({
k/Xn

k = xi and v =
∆x

∆t

})
,

ρn
i =

w

∆x
·Card

({
k/Xn

k = xi

})
.
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Moreover, we initialize the particles with the random process


X0
k
= xi with the discrete probability P(X0

k = xi) =
ρ(0, xi) −minl ρ(0, xl)∑
j[ρ(0, x j) −minl ρ(0, xl)]

,

V0
k
=
∆x

∆t
with the probability α,

= −∆x

∆t
with the probability 1 − α

(105)

which is a consequence of the initial condition (50), ρ(0, x) being the initial condition (due to the random

nature of (105), we only have ρ0
i
≃ ρ(0, xi)). The random process (105) implies that we have to impose

α ∈ [0, 1].

At last, the weight w is defined with

w =

∑
i ρ

0
i

K ∆x

which comes from the conservation constraint∫

Ω×R
gn(x, v)dxdv =

∫

Ω

ρ(0, x)dx =
∑

i

ρ0
i ∆x.

8.1. Monte-Carlo algorithm for the LBM scheme

The LBM scheme (48) can be written with the following splitting collision-transport:

Collision:



g∗1,i = gn
1,i

(
1 − η

2

)
+ gn

2,i

η

2
,

g∗2,i = gn
2,i

(
1 − η

2

)
+ gn

1,i

η

2
.

(106)

Transport: 

gn+1
1,i
= g∗

1,i+1
,

gn+1
2,i
= g∗

2,i−1
.

(107)

This incites us to approach (106)(107) with the random algorithm



Vn+1
k

= Vn
k with the probability 1 − η

2
,

= −Vn
k with the probability

η

2
,

Xn+1
k

= Xn
k + ∆tVn+1

k

(108)

where

η =
1

Cd +
1
2

.

We recall that ∆t := Cd
∆x2

ν
with Cd ≥ 0. Let us underline that since η ∈]0, 2], the random process (108) is

always defined. Let us note that a similar Monte-Carlo algorithm has been proposed in [29] for the telegraph

equation (102).
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8.2. Monte-Carlo algorithm for the LBM∗ scheme

In the same way, the LBM∗ scheme (49) can be written with the following splitting transport-collision:

Transport: 

g∗
1,i
= gn

1,i+1
,

g∗
2,i
= gn

2,i−1
.

(109)

Collision:



gn+1
1,i = g∗1,i

(
1 − η

2

)
+ g∗2,i

η

2
,

gn+1
2,i = g∗2,i

(
1 − η

2

)
+ g∗1,i

η

2
.

(110)

This incites us to approach (109)(110) with the random algorithm



Xn+1
k

= Xn
k + ∆tVn

k ,

Vn+1
k

= Vn
k with the probability 1 − η

2
,

= −Vn
k with the probability

η

2
.

(111)

We show below the relation between the Monte-Carlo algorithms (105)(108) and (105)(111).

8.3. Some properties of the Monte-Carlo algorithms

We present some properties satisfied by the Monte-Carlo algorithms (105)(108) and (105)(111).

8.3.1. Discrete maximum principle

We have the following result:

Lemma 8.1. For any Cd ≥ 0, the Monte-Carlo algorithms (105)(108) and (105)(111) verify the discrete

maximum principle

min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j . (112)

We recall that the Monte-Carlo algorithms (105)(108) and (105)(111) are defined when α ∈ [0, 1]. Lemma

8.1 is coherent with the fact that the LBM schemes (48)(50) and (49)(50) with periodic boundary conditions

verify the discrete maximum principle (112) when α ∈ [0, 1] (see point i of Proposition 6.1).

Proof of Lemma 8.1: We have ρn
i
= Nn

i
w
∆x

where Nn
i

is the number of particles in the cell i at the time tn.

Since w =

∑
j ρ

0
j

K ∆x, we obtain ρn
i
=

Nn
i

K
∑

j ρ
0
j

that is to say

ρn
i =

Nn
i∑

i Nn
i

∑

j

ρ0
j

since K = ∑
i Nn

i
. Thus, ρn

i
is a convex combination of {ρ0

j
} j which allows to conclude.�
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8.3.2. Link between the Monte-Carlo algorithms

We can remark that the Monte-Carlo algorithms (105)(108) and (105)(111) are similar. More precisely,

the LBM scheme (105)(108) can be rewritten with


X0
k
= xi with the discrete probability P(X0

k = xi) =
ρ(0, xi) −minl ρ(0, xl)∑
j[ρ(0, x j) −minl ρ(0, xl)]

,

V
0

k =
∆x

∆t
with the probability α,

= −∆x

∆t
with the probability 1 − α,

V0
k
= V

0

k with the probability 1 − η
2
,

= −V
0

k with the probability
η

2

(113)

and 

Xn+1
k

= Xn
k + ∆tVn

k ,

Vn+1
k

= Vn
k with the probability 1 − η

2
,

= −Vn
k with the probability

η

2
.

(114)

But, the random process 

V
0

k =
∆x

∆t
with the probability α,

= −∆x

∆t
with the probability 1 − α,

V0
k
= V

0

k with the probability 1 − η
2
,

= −V
0

k with the probability
η

2

is equivalent to the random process


V0
k
=
∆x

∆t
with the probability ξ,

= −∆x

∆t
with the probability 1 − ξ

with ξ = α

(
1 − η

2

)
+ (1 − α)

η

2
that is to say with

ξ =
η

2
+ α(1 − η)

which belongs to [0, 1] since α ∈ [0, 1] and η ∈]0, 2]. To summarize, the LBM scheme (105)(108) is

equivalent to the LBM∗ scheme (105)(111) by replacing α with ξ in (105). This result is coherent with the

fact that the LBM schemes (48)(50) and (49)(50) are equivalent to the Du Fort-Frankel scheme whose the

first iterate is respectively given by

ρn=1
i := ξρ0

i−1 + (1 − ξ)ρ0
i+1

and by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1

(see Lemma 4.1).
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8.3.3. Other properties

Let us suppose that Cd = 0. Thus, we have η = 2 which implies that the Monte-Carlo algorithms (108)

and (111) are deterministic and verify Vn+1
k
= −Vn

k
. As a consequence, we obtain

∀n ∈ N : ρn+2
i = ρn

i

which corresponds to Lemma 7.1.

We now suppose that Cd → +∞. In that case, we have η = 0. Again, the Monte-Carlo algorithms (108)

and (111) are deterministic but verify now Vn+1
k
= Vn

k
. Thus, the particles move to the left or to the right

without changing their initial velocity: in that case, the Monte-Carlo algorithms (105)(108) and (105)(111)

do not converge toward the solution of the heat equation. This situation is related to the consistency condi-

tion of the LBM schemes described in §7.2.

At last, let us suppose that Cd =
1
2
. In that case, we easily verify that the Du Fort-Frankel scheme is

equivalent to the classical three points finite difference scheme for the heat equation (see (67) with η = 1

and u(x) = 0). On the other side, the Monte-Carlo algorithms (108) and (111) describe a discrete brownian

motion which is the Monte-Carlo version of the three points scheme for the heat equation. These remarks

are coherent with the fact that the LBM schemes (48) and (49) are equivalent to the Du Fort-Frankel scheme

and, thus, are equivalent to the three points scheme when Cd =
1
2
.

8.4. Convergence of the Monte-Carlo algorithms

It remains to prove that the Monte-Carlo algorithms (105)(108) and (105)(111) converge to the solution

of the heat equation with probabilistic tools, which would be a probabilistic version of Proposition 5.1 in

the periodic case. More generally, it would be interesting to extend the Monte-Carlo algorithms (105)(108)

and (105)(111) to the Neumann and Dirichlet cases, and to verify the convergence of these schemes with

probabilistic tools. Moreover, it would be also interesting to prove the convergence of the LBM schemes

(48) and (49) with modified Dirichlet boundary conditions (see Conjecture 6.1) by using a probabilistic

approach. At last, the case of the LBM schemes (33) and (36) with u(x) , 0 should be also studied with a

probabilistic approach. A starting point could be [29, 30].

9. Numerical results

We now present numerical results which illustrate some of the results presented before in the case of

the heat equation. In the following test-cases, we choose xmax = −xmin = 10 and ν = 1. Moreover, N is the

number of cells: in the periodic or Neumann cases, we have N∆x = xmax − xmin and in the Dirichlet case,

we have (N + 1)∆x = xmax − xmin. At last, we recall that ∆t = Cd
∆x2

ν
and that η = 1

Cd+
1
2

.

9.1. LBM∗ scheme

• Test-case 1: Discrete maximum principle with Dirichlet boundary conditions

We test the the LBM∗ scheme (49)(50) with α = 1
2

when we apply the Dirichlet boundary conditions

ρ(t, xmin) = ρxmin
and ρ(t, xmax) = ρxmax

. At the discrete level, we use the Dirichlet boundary conditions (59)
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in x = xmin and its extension in x = xmax that is to say



gn+1
2,i=0 =

ρxmin

2
+

(
ρxmin

2
− gn

1,i=1

)
(1 − η),

gn=0
2,i=0
=
ρxmin

2
,

gn+1
1,i=N+1 =

ρxmax

2
+

(
ρxmax

2
− gn

2,i=N

)
(1 − η),

gn=0
1,i=N+1

=
ρxmax

2
.

(115)

We also use the modified Dirichlet boundary conditions (59) in x = xmin and its extension in x = xmax that

is to say

∀n ≥ 0 :



gn
2,i=0 =

ρxmin

2
,

gn
1,i=N+1 =

ρxmax

2
.

(116)

We recall that the boundary conditions (116) allow to satisfy a discrete maximum principle for any Cd ≥ 0

which is not the case of (115): see Lemma 6.1 and Proposition 6.2. To illustrate this result, we choose

N = 10 – that is to say a low number of cells –, we define the following initial condition

ρ0
i
=

1

4
if i < {5, 6},

=
3

4
if i ∈ {5, 6}

and we choose Cd = 4. Figures 1-2 show the results respectively with ρxmin
= ρxmax

= 1 and ρxmin
= ρxmax

= 0

when we use (115) (Figures 1-2 show also the initial condition and the stationary solution). Figures 3-4 show

these results when we replace (115) by (116). We see on Figures 1-2 that the discrete maximum principle

∀i ∈ {1, . . . ,N} : min(ρxmin
, ρxmax

, min
1≤ j≤N

ρ0
j) ≤ ρn

i ≤ max(ρxmin
, ρxmax

, max
1≤ j≤N

ρ0
j)

is not satisfied, and that it is satisfied on Figures 3-4: this is coherent with Lemma 6.1 and Proposition 6.2.

Let us underline that although the discrete maximum principle is not satisfied on Figures 1-2, these fig-

ures show that the LBM∗ scheme (49)(50)(115) is stable in L∞ although Cd = 4, which is coherent with

Proposition 5.1.

• Test-case 2: Convergence order of the modified Dirichlet boundary conditions (116)

The test-case 1 shows that to make robust the LBM∗ scheme when the number of cells is low, it is better to

use (116) than (115). Nevertheless, we may think that (115) is more accurate than (116). Indeed, the error

of the LBM∗ scheme using (115) is in ∆x2 since α = 1
2

(see Proposition 5.1) and we conjectured that the

order of the LBM∗ scheme using (116) is in ∆x (see Conjecture 6.1). To verify these convergence orders,

we use the exact solution ρexact(t, x) of the heat equation

ρexact(t, x) = er f

[
xi − xmin√
4ν(t + 1)

]
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Fig. 1: LBM∗ scheme with (115) Fig. 2: LBM∗ scheme with (115)

when ρxmin
= ρxmax

= 1 when ρxmin
= ρxmax

= 0

Fig. 3: LBM∗ scheme with (116) Fig. 4: LBM∗ scheme with (116)

when ρxmin
= ρxmax

= 1 when ρxmin
= ρxmax

= 0
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Fig. 5: LBM∗ scheme with (115) Fig. 6: LBM∗ scheme with (116)

with the unstationary Dirichlet boundary conditions



ρn
xmin
= ρexact(t

n, xmin),

ρn
xmax
= ρexact(t

n, xmax).

Moreover, we choose Cd = 2, t f inal = 15 and the number of cells N ∈ {50, 100, 200}. Figure 5 shows the

function y = x2 and the normalized L2 error

e(∆x) :=

√∑

i

|ρn
i
− ρexact(tn, xi)|2∆x

√∑

i

|ρexact(tn, xi)|2∆x

in function of ∆x in (log-log scale) when we use (115); Figure 6 shows the function y = x and e(∆x) when

we use (116). These figures confirm that the error is in ∆x2 when we use (115) and that it is in ∆x when we

use (116).

• Test-case 3: Influence of the first iterate ρn=1
i

on the Du Fort-Frankel scheme in the periodic case

We know that the LBM∗ scheme (49)(50) and the Du Fort-Frankel scheme (52) are equivalent when the first

iterate ρn=1
i

of the Du Fort-Frankel scheme is given by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 where α ∈ R (117)

(see Lemma 4.1). Moreover, these schemes verify the discrete maximum principle

min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j

when α ∈ [0, 1] in the periodic case (see Proposition 6.1). Here, we verify the influence of the choice of

(117) when α ∈ [0, 1] on the Du Fort-Frankel scheme by comparing with the results obtained by replacing

(117) with

ρn=1
i := ρ0

i . (118)
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Fig. 7: Du Fort Frankel scheme Fig. 8: Du Fort Frankel scheme

with (117) and α = 0 with (117) and α = 1

Fig. 9: Du Fort Frankel scheme Fig. 10: Du Fort Frankel scheme

with (117) and α = 1
2

with (118)

Let us underline that the Du Fort-Frankel scheme (52) is not equivalent to the LBM∗ scheme (49)(50) when

the first iterate is given by (118) instead of (117). As a consequence, the discrete maximum principle may

not be satisfied when we use (118). To verify this, we choose Cd = 4 and a number of cells N equal to 100,

and we define the initial condition with the discrete Dirac distribution

ρ0
i
= 0 if i , 50

= 1 if i = 50.

Figures 7-9 show the results after some time steps when we use the Du Fort-Frankel scheme (52) with (117)

by choosing respectively α = 0, α = 1 and α = 1
2
: these figures confirm Proposition 6.1. Figure 10 shows

the result when we replace (117) by (118): this figure shows that the discrete maximum principle is not

satisfied by the Du Fort-Frankel scheme.

These results underline the importance of the choice of the first iterate ρn=1
i

to obtain for any Cd ≥ 0 the

stability in L∞ and a discrete maximum principle with the Du Fort-Frankel scheme.
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9.2. Monte-Carlo algorithm

We now test the Monte-Carlo algorithm (105)(111) which is the random version of the LBM∗ scheme

(49)(50). The initial condition ρ(t = 0, x) is a gaussian function centered in x = 0, the boundary conditions

are periodic and we choose α = 1
2
.

Figures 11-14 show the result after some time steps obtained with 100, 1000, 5000 and 10000 particles

when Cd = 2 and when the number of cells N is equal to 100 (we also represent on these figures the initial

condition and the result obtained with the LBM∗ scheme). These results confirm that the Monte-Carlo

algorithm converges to the LBM∗ scheme when the number of particles goes to the infinity.

Figures 15 shows the result when Cd = 2, when the number of cells N and the number of particles K are

equal to 1000: by comparing Figure 12 (N = 100 and K = 1000) and Figure 15 (N = K = 1000), we see

thatK has to be greater than N to obtain a good convergence of the Monte-Carlo algorithm. This behaviour

is classical and can be justified by the fact that when K < N, there exists at any time tn at least one cell

where the number of particles is equal to zero.

9.3. On the consistency condition

Figure 16 shows the result of the test-case presented in §9.2 when Cd = 100, N = 100 and K = 1000

(we also represent on these figures the initial condition and the result obtained with the LBM∗ scheme when

Cd = 2). Figure 17 show the result obtained with the LBM∗ scheme when Cd = 1000.

Figures 16 and 17 show that when Cd → +∞, the Monte-Carlo algorithm and the LBM∗ scheme do not

approach the solution of the heat equation. This confirms the importance of the consistency condition

∆t = Cd
∆x2

ν
(see §7.2 and §8.3.3).

10. Conclusion

In order to construct and to justify LBM schemes for the 1D convection-diffusion equation, we have

firstly studied the fluid limit of a discrete velocity kinetic system whose kinetic velocities belong to a discrete

and finite set {vεq}q∈{1,2} and whose the collision term is a BGK-type operator characterized by the collision

time ε. This fluid limit – which is the 1D convection-diffusion equation – has been formally obtained with

a Chapman-Enskog expansion and with a Hilbert expansion. The originality of this kinetic system relies on

the fact that the kinetic velocity vεq is proportional to 1/
√
ε. We have imposed this constraint by previously

noting that all LBM schemes use a discrete and finite set of velocities {vq}q (that can be assigned to virtual

particles) and that the discrete velocity vq is proportional to ∆x
∆t

(where ∆x and ∆t are respectively the mesh

size and the time step) and, thus, is proportional to 1/
√
∆t in the case of the heat equation (for which

∆t = O(∆x2)).

Then, we have constructed two LBM schemes for the 1D convection-diffusion equation by discretizing

the kinetic system with a third order integration formula. We have also underlined that a second order inte-

gration formula cannot capture the fluid limit because of the dependency of vεq with ε. This third integration

formula explains the classical ”magic” formula ν =
(
ε̂ − ∆t

2

)
× c2

s which relates the diffusion coefficient ν to

cs := C × ∆x
∆t

(named ”pseudo sound speed of the lattice”) where C is a constant and to a corrected collision

time ε̂. Then, for periodic, Neumann and Dirichlet boundary conditions, we have shown that theses LBM

47



Fig. 11: 100 particles Fig. 12: 1000 particles

Fig. 13: 5000 particles Fig. 14: 10000 particles

Fig. 15: 1000 cells and 1000 particles
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Fig. 16: 100 cells, 1000 particles and Cd = 100 Fig. 17: LBM∗ scheme, 100 cells and Cd = 1000

schemes are equivalent to a finite difference type scheme. In the case of the heat equation, this finite dif-

ference type scheme is a Du Fort-Frankel scheme initiated by a particular first iterate. This equivalence has

allowed us to obtain for these schemes the convergence in L∞ for any ∆t of the order of ∆x2.

These results are new for the LBM schemes but also for the Du Fort-Frankel scheme (which has been

known for a long time to converge in L2 when ∆t = O(∆x2) [22]). Moreover, we have also obtained

discrete maximum principles for the LBM schemes with periodic and Neumann boundary conditions for

any ∆t = O(∆x2), which are thus also verified by this particular Du Fort-Frankel scheme. Nevertheless,

in the case of the Dirichlet boundary conditions, the discrete maximum principle is verified only under

the classical stability condition ∆t ≤ C∆x2 (where C is a constant). Thus, we have modified the Dirichlet

boundary conditions applied to the LBM schemes in such a way the discrete maximum principle is verified

for any ∆t = O(∆x2). The price to pay is that these LBM schemes cannot be equivalent to the Du Fort-

Frankel scheme and that their convergence error should be only of the order of ∆x (instead of ∆x2). As

a consequence, the proposed LBM schemes with these modified Dirichlet boundary conditions should be

used only in areas where the number of cells are low to make robust the algorithm, and not in areas where

the number of cells is high.

To summarize, the LBM schemes have been used as a tool to give new results for a finite difference type

scheme and, at the same time, the classical theory of finite difference type schemes has allowed us to obtain

convergence results for the LBM schemes.

In the same spirit, we have proposed two Monte-Carlo algorithms for the resolution of the heat equa-

tion coming from a probabilistic interpretation of the proposed LBM schemes in the periodic case. Thus,

we expect that it will be possible to justify the modified Dirichlet boundary conditions and the order of

convergence in ∆x by using probabilistic tools.

We also expect that in the case of the convection-diffusion equation, it will be possible to extend the

previous LBM schemes, firstly, to 2D/3D cartesian meshes and, secondly, to non-cartesian meshes (let us

underline that we cannot extend the previous LBM schemes to the 2D/3D case on cartesian meshes by using

a simple directional splitting). The case of non-isotropic diffusion matrix should be also studied. Moreover,

we also expect that it will be possible to propose high order LBM schemes by using a larger set of kinetic
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velocities and by using other integration formulae for the resolution of the discrete velocity kinetic system

and, then, to eventualy obtain similarities with the generalization of Du Fort-Frankel schemes proposed in

[31]. The case of boundary conditions of the type α(t)ρ + β(t)∂xρ = γ(t) should be also studied to see

connections with [32].

At last, we expect that it will be possible to analyze the properties of LBM schemes applied to more compli-

cate equations as non-linear equations of the type ∂tρ = Φ(t, x, ρ, ∂xρ, ∂
2
xxρ) where Φ(·) is a given function

(let us note that the Du Fort-Frankel scheme is generalized to this type of equation in [22]) by using an

approach similar to the one proposed in this paper. Beyond the potential existence of links between LBM

schemes, finite difference type schemes and Monte-Carlo algorithms for simple PDEs, we may also expect

to find links between LBM schemes applied to the incompressible Navier-Stokes system and theoretical

works on discrete velocity kinetic systems [33].

Acknowledgements: We wish to thank François Drolet, David Vidal and Dominique Diplomate for helpfull

discussions. We wish also to thank Christophe Le Potier who helps us to prove the equivalence between the

proposed LBM schemes and the Du Fort-Frankel scheme.

A. Proof of Proposition 2.1

We now give two (formal) proofs which allow to write that the fluid limit of the kinetic system

∀q ∈ {1, 2} : ∂t f εq + vεq∂x f εq =
1

ε
(Mεq − f εq ) with vεq := (−1)q

√
ν

ε
(119)

is the convection-diffusion equation

∂tρ
ε + ∂x(uρε) = ν∂2

xxρ
ε + O(ε). (120)

One of the difficulties is linked to the fact that the kinetic velocity vεq := (−1)q
√
ν
ε

depends on the collision

time ε which is not at all classical in the framework of the kinetic theory. This characteristic is a constraint

imposed by the LBM schemes that we want to obtain or to justify through an ad hoc discretization of (119).

The first proof is based on a Chapman-Enskog expansion; the second proof is based on a Hilbert ex-

pansion. The proof based on the Chapman-Enskog expansion is easier than the one based on the Hilbert

expansion. Moreover, the Chapman-Enskog expansion allows to obtain

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)qε3/2

(
u
√
ν
· ∂x(uρε) − ν∂2

xxρ
ε

ρε
−
√
ν
∂2

xx(uρε)

ρε
+ ν3/2

∂3
xxxρ

ε

ρε

)]
+ O(ε2).

(121)

With the Hilbert expansion, we only obtain

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)]
+ O(ε3/2) (122)

which is less accurate than (121).
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The fact that the Chapman-Enskog approach is easier than the Hilbert approach is classical in the kinetic

theory. In fact, the compressible Navier-Stokes system – which is the fluid limit of the classical Boltzmann

equation – is obtained with a Chapman-Enskog expansion and not with a Hilbert expansion which is too

complicate to give the result. Here, it is possible to obtain the fluid limit with a Hilbert expansion because

the kinetic velocity set is a discrete and finite set, which implies that the linear operators are simple 2 × 2

matrix. Moreover, it seems to us that the Hilbert expansion is more adapted than the Chapman-Enskog

expansion to clearly justify the fluid limit (120) of the kinetic system (119) because the Hilbert approach is

based on a sequence of PDEs that we can study a posteriori (we do not try to do such theoretical study in the

present paper). At last, the Hilbert expansion can also be seen as a (formal) justification of the Chapman-

Enskog expansion since both expansions give the same result. That is why we also write the proof based on

the Hilbert expansion.

At last, let us note that in the following analysis, we forget any possible influence of boundary conditions

on ∂Ω: that is why we suppose that Ω ⊆ R is periodic. An analysis of the influence of boundary conditions

on ∂Ω which are not periodic on the fluid limit of (119) is really complicate because of possible Knudsen

layers in the vicinity of ∂Ω where the distribution f εq (t, x) is not close to the maxwellian Mεq even when

ε ≪ 1. As a consequence, here, we can only expect that the fluid limit (120) is valid far from the boundary

∂Ω when the boundary conditions are not periodic.

A.1. Proof based on a Chapman-Enskog expansion

Let us suppose that the solution f εq of (119) can be expanded with the Chapman-Enskog expansion

f εq = Mεq ·
(
1 +
√
εgε1,q + εg

ε
2,q + ε

3/2gε3,q

)
+ O(ε2) (123)

under the constraints ∑

q∈{1,2}
Mεq(gε1,q +

√
εgε2,q) = 0 (124)

and ∑

q∈{1,2}
Mεqgε3,q = 0 (125)

where gε
k,q

is supposed to be of order one. We recall that the maxwellian Mεq is given by

Mεq :=
ρε

2

[
1 +

u

vεq

]
=
ρε

2

[
1 + (−1)q

√
ε

ν
· u

]

where ρε := f ε
1
+ f ε

2
and verifies

∑

q∈{1,2}

(
1

vεq

)
Mεq =

(
ρε

ρεu

)
. (126)

It is important to note that the constraint (124) is not classical in the framework of Chapman-Enskog expan-

sions. Indeed, we should a priori impose

∑

q∈{1,2}
Mεqgε1,q = 0 and

∑

q∈{1,2}
Mεqgε2 = 0. (127)
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Here, we replace (127) by (124) because the set of kinetic velocities {vεq}q∈{1,2} depends on
√
εwhich implies

that Mεqgε
1,q

has a term of order
√
ε (and, thus, of order

√
εgε

2,q
) since gε

1,q
(and gε

2,q
) is of order one.

By injecting expansion (123) into (119), we obtain:

• Order
√
ε−1: We obtain the equality

Mεqgε1,q = −
√
εvεq∂xMεq = −(−1)q

√
ν∂xMεq (128)

that is to say

Mεqgε1,q = −(−1)q
√
ν
∂xρ
ε

2
−
√
ε
∂x(uρε)

2
(129)

since Mεq =
ρε

2

[
1 + (−1)q

√
ε

ν
· u

]
.

• Order
√
ε0: We obtain the equality

Mεqgε2,q = −
[
∂t M

ε
q +
√
εvεq∂x(Mεqgε1,q)

]
. (130)

• Order
√
ε: We obtain the equality

Mεqgε3,q = −
[
∂t(Mεqgε1,q) +

√
εvεq∂x(Mεqgε2,q)

]
. (131)

Moreover, by summing (119) over the set {vεq}q∈{1,2} and by injecting the expansion (123), we obtain

∂tρ
ε + ∂x(uρε) = −∂x


∑

q∈{1,2}
(vεq − u) f εq

 (since
∑

q∈{1,2}
u f εq = uρε and

∑
q∈{1,2}

1
ε
(Mεq − f εq ) = 0)

= −∂x


∑

q∈{1,2}
(vεq − u)Mεq

 −
√
ε∂x


∑

q∈{1,2}
(vεq − u)Mεqgε1,q

 − ε∂x


∑

q∈{1,2}
(vεq − u)Mεqgε2,q

 + O(ε)

= −∂x


∑

q∈{1,2}
(vεq − u)Mεq

 −
√
ε∂x


∑

q∈{1,2}
vεqMεqgε1,q

 − ε∂x


∑

q∈{1,2}
vεqMεqgε2,q



+
√
ε∂x

u
∑

q∈{1,2}
Mεq(gε1,q +

√
εgε2)

 + O(ε).

(132)
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By taking into account (126), (128) and (130), we obtain

ε∂x


∑

q∈{1,2}
vεqMεqgε2,q

 = −ε∂x


∑

q∈{1,2}
vεq

[
∂t M

ε
q +
√
εvεq∂x(Mεqgε1,q)

]


= −ε∂2
xt(uρ

ε) + ε∂x


∑

q∈{1,2}
vεq
√
εvεq∂x(

√
εvεq∂xMεq)



= −ε∂2
xt(uρ

ε) + εν∂3
xxx(uρε)

= O(ε).

Thus, by also taking into account (124), we obtain

∂tρ
ε + ∂x(uρε) = −

√
ε∂x


∑

q∈{1,2}
vεqMεqgε1,q

 + O(ε)

= ε∂x


∑

q∈{1,2}

(
vεq

)2
∂xMεq

 + O(ε)

= ν∂2
xx


∑

q∈{1,2}
Mεq

 + O(ε)

= ν∂2
xxρ
ε + O(ε)

which gives (120) that is to say

∂tρ
ε + ∂x(uρε) = ν∂2

xxρ
ε + O(ε). (133)

We deduce from (129), (130) and (133) that

Mεqgε
2,q
= −∂t M

ε
q + ν∂

2
xxMεq

= −∂tρ
ε

2
− (−1)q

√
ε

ν
· ∂t(uρ

ε)

2
+ ν
∂2

xxρ
ε

2
+ (−1)q

√
εν · ∂

2
xx(uρε)

2

=
∂x (uρε)

2
+ (−1)q

√
ε

ν
u · ∂x(uρε) − ν∂2

xxρ
ε

2
+ (−1)q

√
εν · ∂

2
xx(uρε)

2
+ O(ε)

(134)

(we also use the fact that u(x) does not depend on the time t). This last equality encourages us to take

Mεqgε2,q =
∂x (uρε)

2
+ (−1)q

√
ε

ν
u · ∂x(uρε) − ν∂2

xxρ
ε

2
+ (−1)q

√
εν · ∂

2
xx(uρε)

2
(135)

since the term of order ε in (134) is a term of order ε2 in (123) and, thus, of order ε in (133). We deduce

from (129) and (135) that

Mεq · (
√
εgε1,q + εg

ε
2,q) =

ρε

2

[
−(−1)q

√
εν
∂xρ
ε

ρε
+ (−1)q ε

3/2

√
ν

u · ∂x(uρε) − ν∂2
xxρ
ε

ρε
+ (−1)qε3/2

√
ν · ∂

2
xx(uρε)

ρε

]
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which verifies the constraint (124). We deduce from (129), (131) and (135) that

Mεqgε3,q = (−1)q
√
ν
∂2

txρ
ε

2
− (−1)q

√
ν
∂2

xx (uρε)

2
+ O(

√
ε)

which allows to obtain

Mεqgε
3,q
= (−1)q

√
ν
ν∂3

xxxρ
ε − ∂2

xx(uρε)

2
− (−1)q

√
ν
∂2

xx (uρε)

2
+ O(

√
ε)

= (−1)qν3/2
∂3

xxxρ
ε

2
− (−1)q

√
ν∂2

xx

(
uρε

)
+ O(

√
ε)

(136)

by using (133). This last equality encourages us to take

Mεqgε3,q = (−1)qν3/2
∂3

xxxρ
ε

2
− (−1)q

√
ν∂2

xx

(
uρε

)
(137)

since the term of order
√
ε in (136) is a term of order ε2 in (123) and, thus, of order ε in (133). Let us note

that (137) verifies the constraint (125). Thus, by taking into account (133), we obtain

Mεq · (
√
εgε

1,q
+ εgε

2,q
+ ε3/2gε

3,q
) =

ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)q ε
3/2

√
ν

u · ∂x(uρε) − ν∂2
xxρ
ε

ρε
+ (−1)qε3/2

√
ν
∂2

xx(uρε)

ρε

+(−1)qε3/2ν3/2
∂3

xxxρ
ε

ρε
− 2(−1)qε3/2

√
ν
∂2

xx (uρε)

ρε

]

that is to say

Mεq · (
√
εgε

1,q
+ εgε

2,q
+ ε3/2gε

3,q
) =

ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)qε3/2

(
u
√
ν
· ∂x(uρε) − ν∂2

xxρ
ε

ρε
−
√
ν
∂2

xx(uρε)

ρε
+ ν3/2

∂3
xxxρ

ε

ρε

)]

which gives (121) by using (123).

A.2. Proof based on a Hilbert expansion

Let us suppose that the solution f εq of (119) can be expanded with the Hilbert expansion

f εq = mεq · (gε0,q +
√
εgε1,q +

√
ε

2
gε2,q + . . .) (138)

where

mεq := 1 +
u

vεq
= 1 + (−1)q

√
ε

ν
· u.

The density ρε := f ε
1
+ f ε

2
is given by

ρε = ρε0 +
√
ερε1 +

√
ε

2
ρε2 + . . .
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with

∀n : ρεn =
∑

q∈{1,2}
mεqgεn,q. (139)

And, the maxwellian Mεq defined with

Mεq :=
ρε

2

[
1 +

u

vεq

]
=
ρε

2

[
1 + (−1)q

√
ε

ν
· u

]

whose density is equal to ρε is given by

Mεq = mεq · (ρε0 +
√
ερε1 +

√
ε

2
ρε2 + . . .).

In the sequel, we will prove that when the Hilbert expansion (138) is valid, the density ρε is necessarily

solution of (120). Moreover, by computing gε
0,q

, gε
1,q

and gε
2,q

, we will obtain (122).

Let us note that the difference between the Chapman-Enskog expansion (123) and the Hilbert expansion

(138) can be underlined by comparing the constraints (124)(125) and the relations (139) which are not

constraints, ρεn being unknows which are solution of a sequence of PDEs (see below).

By injecting expansion (138) into (119), we obtain:

• Order ε−1: We obtain the equality

gε0,1 = gε0,2 = ρ
ε
0(t, x). (140)

• Order (
√
ε)n−1/2 (n ∈ N): We obtain the following PDEs whose {gεn,q}n≥0 is solution:

(
√
ε)n[∂t(m

ε
qgεn,q) + vεq∂x(mεqgεn,q)] = mεq(

√
ε)n−1


∑

k∈{1,2}
mεkgεn+1,k − gεn+1,q

 . (141)

We recall thatO(|vεq|) = 1/
√
εwhich implies that (

√
ε)nvεq∂x(mεqgεn,q) and mεq(

√
ε)n−1

( ∑
k∈{1,2}

mε
k
gε

n+1,k
− gε

n+1,q

)

are formally of the same order. Moreover, we keep the unstationary term (
√
ε)n∂t(m

ε
qgεn,q) to obtain

an initial value problem for mεqgεn,q. PDEs (141) can be written with the equivalent formulation

∀n ≥ 0 : Aε · Gn+1 = Bε(Gεn) (142)

where Gεn = (gε
n,1
, gε

n,2
)T , Bε = (bε

1
, bε

2
)T and where



Aε =

(
−mε

2
mε

2

mε
1
−mε

1

)
, (a)

bεq(Gεn) =

√
ε

mεq
· [∂t(m

ε
qgεn,q) + vεq∂x(mεqgεn,q)]. (b)

(143)

Since the matrix Aε is not invertible, we have to study carrefuly linear system (142). By applying the

Fredholm alternative, we obtain the following result:
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Lemma A.1. Let Gε−1
= 0 and

Gε0 =
(

1

1

)
ρε0. (144)

Then, Equation (142) has an unique solution under the constraints

∀n ≥ 0 : ∂tρ
ε
n + ∂x(uρεn) = F ε(Gεn−1) (145)

where

∀n ≥ 0 : F ε(Gεn−1) := ∂x


∑

q∈{1,2}
(vεq − u)mεqbεq(Gεn−1)

 . (146)

Moreover, {Gεn}n≥1 is given by the recurrence relation

∀n ≥ 1 : Gεn = −Bε(Gεn−1) + ρεn

(
1

1

)
. (147)

Thus, the construction process to obtain {Gεn}n≥0 is the following:



Firstly, we note that F ε(Gε−1
) = 0 since Gε−1

= 0;

secondly, we compute ρε
0

with (145);

thirdly, we compute Gε
0

with (144).

→



Firstly, we compute F ε(Gε
0
) with (146);

secondly, we compute ρε
1

with (145);

thirdly, we compute Gε
1

with (147).

→ . . .

. . .→



Firstly, we compute F ε(Gε
n−1

) with (146);

secondly, we compute ρεn with (145);

thirdly, we compute Gεn with (147).

→ . . . (148)

By using (145), we obtain that



∂tρ
ε
0
+ ∂x(uρε

0
) = 0 (constraint (145) with n = 0), (a)

∂tρ
ε
1
+ ∂x(uρε

1
) = F ε(Gε

0
) (constraint (145) with n = 1) (b)

∂tρ
ε
2
+ ∂x(uρε

2
) = F ε(Gε

1
) (constraint (145) with n = 2) (c)

(149)

that is to say

∂tρ
ε + ∂x(uρε) =

√
εF ε(Gε0) + εF ε(Gε1) + O(ε) (150)

since ρε = ρ0 +
√
ερ1 + ερ2 +O(ε3/2). Let us note that the term of order ε in (150) is obtained by supposing

that F ε(Gεn) = O(1/
√
ε) (∀n ≥ 0) because of the velocity vεq in (146). Thus, we obtain (120) by using the

following lemma:

Lemma A.2. We have 

F ε(Gε0) =
ν
√
ε
∂2

xxρ
ε
0 + O(

√
ε), (a)

F ε(Gε1) =
ν
√
ε
∂2

xxρ
ε
1 + O(1). (b)

(151)

Moreover, we have the following result which will allow us to obtain (122):
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Lemma A.3. We have



gε1,q =
√
ε∂x(uρε0) − (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
+ ρε1, (a)

gε2,q = −ν
∂

2
xxρ
ε
0 −
∂2

xx

(
mεqρ

ε
0

)

mεq

 − (−1)q
√
ν
∂x

(
mεqρ

ε
1

)

mεq
+ ρε2 + O(

√
ε). (b)

(152)

Thus, by using (152), we obtain

mεq(gε
0,q
+
√
εgε

1,q
+ εgε

2,q
) =

1

2

(
1 + (−1)q

√
ε

ν
u

)
×

×
{
ρε0 +

√
ερε1 + ερ

ε
2 − (−1)q

√
εν

mεq
∂x

[
mεq

(
ρε0 +

√
ερε1

)]

+ε∂x(uρε0) − εν
∂

2
xxρ0 −

∂2
xx

(
mεqρ

ε
0

)

mεq




+ O(ε3/2).

By noting that ∂xmεq = (−1)q
√
ε
ν
· u′(x)

2
, we deduce from the previous equality that

mεq(gε
0,q
+
√
εgε

1,q
+ εgε

2,q
) =

1

2

(
1 + (−1)q

√
ε

ν
u

)
×

×
[
ρε0 +

√
ερε1 + ερ

ε
2 − (−1)q

√
εν∂x(ρε0 +

√
ερε1) − ερε0

u′(x)

2mεq
+ ε∂x(uρε0)

]
+ O(ε3/2)

=
1

2

(
ρε0 +

√
ερε1 + ερ

ε
2

) (
1 + (−1)q

√
ε

ν
u

)

−(−1)q

√
εν

2
∂x(ρε0 +

√
ερε1) − ε

2

[
ρε0

u′(x)

2mεq
+ u∂xρ

ε
0 + ∂x(uρε0)

]
+ O(ε3/2)

that is to say

f εq =
ρε

2

(
1 + (−1)q

√
ε

ν
u

)
− (−1)q

√
εν

2
∂xρ
ε − ε

2

[
ρε0

u′(x)

2mεq
+ u∂xρ

ε
0 − ∂x(uρε0)

]
+ O(ε3/2).

Since ρε
0

u′(x)
2mεq
+ u∂xρ

ε
0
= ∂x(uρε

0
) + O(

√
ε), we obtain

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u(x)
√
ν
−
√
ν
∂xρ
ε

ρε

)]
+ O(ε3/2) (153)

which is exactly the expansion (122).

It remains to prove Lemmae A.1, A.2 and A.3:

Proof of lemma A.1: The matrix Aε is not invertible and its kernel is given by

KerAε =
{
X ∈ R2 such that X = µ(1, 1)T , µ ∈ R

}
.
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Moreover, Aε admits the eigenvalue λ = −1 whose eigenspace is given by

Eε,λ=−1 =
{
X ∈ R2 such that X = µ(mε

2
,−mε

1
)T , µ ∈ R

}
(a)

=

X ∈ R2 such that
∑

q∈{1,2}
Xqmεq = 0

 . (b)

(154)

Let us note that Eε,λ=−1 depends on ε – which is not the case of KerAε –, that KerAε ⊕ Eε,λ=−1 = R
2 and

that Eε,λ=−1 ⊥ (mε
1
,mε

2
)T . The linear application Aε : X 7→ Aε · X defines a bijection from Eε,λ=−1 into

Eε,λ=−1. Thus, we can solve linear system (142) if and only if

∀n ≥ 0 : Bε(Gεn) ∈ Eε,λ=−1. (155)

This corresponds to the Fredholm alternative in finite dimension. Thus, by using (154)(b), the vectorBε(Gεn)

has to verify the constraint

∀n ≥ 0 :
∑

q∈{1,2}
mεqbεq(Gεn) = 0 (156)

that is to say

∀n ≥ 0 :
∑

q∈{1,2}

[
∂t(m

ε
qgεn,q) + vεq∂x(mεqgεn,q)

]
= 0

which is equivalent to

∀n ≥ 0 : ∂tρ
ε
n + ∂x(uρεn) = −∂x


∑

q∈{1,2}
(vεq − u)mεqgεn,q

 (157)

by using (139). Moreover, we have

∀n ≥ 0 : Aε · Gεn+1 = B
ε(Gεn) and Bε(Gεn) ∈ Eε,λ=−1 =⇒ Gεn+1 = −B

ε(Gεn) + µn+1

(
1

1

)

where µn+1 ∈ R. Thus, by using (139) and (156), we obtain ρε
n+1
=

∑
q∈{1,2}

mεqgε
n+1,q

= 0+µn+1 which implies

that Gε
n+1

is given by (147). As a consequence, we have

−∂x


∑

q∈{1,2}
(vεq − u)mεqgεn,q

 = −∂x


∑

q∈{1,2}
(vεq − u)mεq

[
−bεq(Gεn−1) + ρεn

]


= F ε(Gε
n−1

) + 0

by using the fact that
∑

q∈{1,2}

(
1

vεq

)
mεq =

(
1

u

)

and Definition (146), which allows to obtain (145) by taking into account (157). Finally, we have proven

that (142) admits a solution {Gεn}n≥0 under the constraints (145). Moreover, this solution is unique since

(145) are linear PDEs which admit an unique solution.�

58



Proof of Lemmae A.2 and A.3: We firstly prove (151)(a) and (152)(a); then, we prove (151)(b) and

(152)(b). We have

F ε(G0) = ∂x


∑

q∈{1,2}
(vεq − u)mεqbεq(Gε0)



=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tρ

ε
0

 +
√
ε∂x


∑

q∈{1,2}
(vεq − u)vεq∂x(mεqρ

ε
0)



= 0 +
√
ε∂x


∑

q∈{1,2}
vεq

2
∂x(mεqρ

ε
0)

 −
√
ε∂x

u∂x


∑

q∈{1,2}
vεqmεqρ

ε
0





=
ν
√
ε
∂x


∑

q∈{1,2}
∂x(mεqρ

ε
0)

 −
√
ε∂x

[
u∂x(uρε0)

]

=
ν
√
ε
∂2

xxρ
ε
0 + O(

√
ε)

which gives (151)(a). Moreover, we have

bεq(Gε
0
) =

√
ε
∂t

(
mεqρ

ε
0

)

mεq
+
√
εvεq

∂x

(
mεqρ

ε
0

)

mεq

=
√
ε∂tρ

ε
0 + (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq

= −
√
ε∂x(uρε0) + (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
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by using (149)(a). We obtain (152)(a) by using (147). In the same way, we have

F ε(Gε
1
) = ∂x


∑

q∈{1,2}
(vεq − u)mεqbεq(G1)



=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
√
ε∂x


∑

q∈{1,2}
(vεq − u)vεq∂x(mεqgε1,q)



=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
√
ε∂x


∑

q∈{1,2}
vεq

2
∂x(mεqgε1,q)

 −
√
ε∂x

u∂x


∑

q∈{1,2}
vεqmεqgε1,q





=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
ν
√
ε
∂x


∑

q∈{1,2}
∂x(mεqgε1,q)

 + O(1)

=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
ν
√
ε
∂2

xxρ
ε
1 + O(1).

But, by using (152)(a), we have also

√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 =
√
ε∂2

tx

∑

q∈{1,2}
(vεq − u)mεq


√
ε∂x(uρε0) − (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
+ ρε1



= 0 −
√
εν∂2

tx

∑

q∈{1,2}
(−1)q(vεq − u)∂x

(
mεqρ

ε
0

)

= O(1).

Thus, we can write that

F ε(Gε1) =
ν
√
ε
∂2

xxρ
ε
1 + O(1)
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which gives (151)(b). Moreover, by taking into account (152)(a), we obtain

bεq(Gε
1
) =

√
ε
∂t

(
mεqgε

1,q

)

mεq
+
√
εvεq
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√
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+(−1)q
√
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mεq


√
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0
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mεq
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ε
1 − ν

∂2
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mεqρ

ε
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)

mεq
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√
ν
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= ν∂2
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0 − ν

∂2
xx
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mεqρ
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0

)

mεq
+ (−1)q

√
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∂x

(
mεqρ

ε
1

)

mεq
+ O(

√
ε)

by also using (149)(b) and (151)(a). Then, we obtain (152)(b) by using (147). �

B. The LBM scheme written in function of fq when u(x) = 0

When u(x) = 0, the LBM scheme (33) is given by



gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i+1

η

2
,

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i−1

η

2
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

where η :=
1

Cd +
1
2

=
1

ν∆t
∆x2 +

1
2

. (158)

On the other side, by using (22), we have gq = fq −
∆t

2ε
(Mq − fq) that is to say



g1 = f1

(
1 +

1

4Cd

)
− f2

4Cd

,

g2 = f2

(
1 +

1

4Cd

)
− f1

4Cd

(159)

since ε = Cd∆t and M1 =
f1 + f2

2
. By injecting (159) in (158), we obtain

A

(
f1
f2

)n+1

i

= b
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with

A =



1 +
1

4Cd

− 1

4Cd

− 1

4Cd

1 +
1

4Cd



and

b =



[
f n
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2

)
+

[
f n
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)
−
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]
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2



.

By using the fact that

A−1 =
1

Cd + 1/2


Cd + 1/4 1/4

1/4 Cd + 1/4



and that η =
1

Cd + 1/2
, we obtain
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]
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1

2

[
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(
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1
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)
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+
1

4(Cd + 1/2)2

{
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[
f n
2,i−1

(
1 +
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f n
1,i−1

4Cd
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+

1

2

[
f n
1,i−1

(
1 +

1

4Cd

)
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f n
2,i−1

4Cd

]}

that is to say

f n+1
1,i =

4Cd + 1

4(Cd + 1/2)2

 f n
1,i+1 ·

8C2
d
+ 2Cd − 1

8Cd

+ f n
2,i+1 ·
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+
1

4(Cd + 1/2)2

 f n
2,i−1 ·

8C2
d
+ 2Cd − 1

8Cd

+ f n
1,i−1 ·
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 .

By noting that 8C2
d
+ 2Cd − 1 = 2(4Cd − 1) · (Cd + 1/2), we finally obtain

f n+1
1,i =

f n
1,i+1

(16C2
d
− 1) + f n

2,i+1
(4Cd + 1) + f n

2,i−1
(4Cd − 1) + f n

1,i−1

16Cd(Cd +
1
2
)

which gives (34)(a). We obtain (34)(b) by symmetry.
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