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Abstract

We construct and we analyze two LBM schemes build on the D1Q2 lattice to solve the 1D (linear) convection-

diffusion equation. We obtain these LBM schemes by showing that the 1D convection-diffusion equation

is the fluid limit of a discrete velocity kinetic system. Then, we show in the periodic case that these LBM

schemes are equivalent to a finite difference type scheme named LFCCDF scheme. This allows us, firstly,

to prove the convergence in L∞ of these schemes, and to obtain discrete maximum principles for any time

step in the case of the 1D diffusion equation with different boundary conditions. Secondly, this allows us to

obtain most of these results for the Du Fort-Frankel scheme for a particular choice of the first iterate. We

also underline that these LBM schemes can be applied to the (linear) advection equation and we obtain a

stability result in L∞ under a classical CFL condition. Moreover, by proposing a probabilistic interpretation

of these LBM schemes, we also obtain Monte-Carlo algorithms which approach the 1D (linear) diffusion

equation. At last, we present numerical applications justifying these results.
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1. Introduction

Lattice Boltzmann Methods (LBM) come from an attempt to simulate the incompressible Navier-Stokes

system with cellular automata [1, 2] before being seen as deterministic schemes based on the resolution

of discrete velocity kinetic systems [3]. LBM schemes are now often used to solve many type of Partial

Differential Equations (PDEs) system. Among them, we find the heat equation with or without phase change

[4, 5, 6, 7], the heat equation with radiative source term [8], the hyperbolic heat equation (also named

telegraph equation) with or without radiative source term [9], the Richard equation for porous media [10],

the advection-diffusion equation [11, 12, 13, 14, 15, 16, 17], the advection equation [18], the incompressible

Navier-Stokes system [19] eventually applied in porous media with heat and mass transfer [20] or in a

diphasic situation [21, 22] or with a free-surface [23], the Bingham model for viscoplastic flows [24].

Among the reasons which justify the use of LBM schemes, we can cite its algorithmic simplicity, its time
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explicit nature, its scalability when the algorithm is parallelized. We can also cite the fact that all LBM

schemes are formulated in a common way. More precisely, when W(t, x) is the solution of a PDEs system

∂tW + L(W) = 0 where t ≥ 0 is the time, x ∈ Ω ⊂ R
d is the spacial variable (d ∈ {1, 2, 3}) and L(·) is a

spatial differential operator, the approximation Wn+1
i

of W(tn+1, xi) is obtained through a formula of the type

Wn+1
i =

qmax∑

q=1

ϕ(vq) f n+1
q,i

where ϕ(·) is a given function which depends on the PDEs system, where vq ∈ R
d belongs to a discrete and

finite set {vq}1≤q≤qmax
and where f n+1

q,i
∈ R is deduced from a scheme of the type

f n+1
q,i = Ln

q,i · fn
i .

Above, Ln
q,i
∈ R

1×M depends on {Wn
ji
} ji where ji belongs to a stencil { ji} centered on i (e.g. { ji} = {i−1, i, i+

1}) and fn
i

:= [( f1, ji) ji , . . . , ( fqmax, ji) ji] ∈ R
M×1. Here, M ∈ N is equal to qmax × card { ji} (let us note that

card { ji} – and, thus, M – may depend on i when the boundary conditions on ∂Ω are not periodic). In the

LBM realm, f n
q,i

is sometimes interpreted as a density of particles having the velocity vq at the time tn and

at the node xi of the spatial lattice.

Although the LBM schemes have proven their efficiency both in academical and industrial situations

(see for example the numerical applications in [23]), the numerical analysis of these schemes is not well

developed. Moreover, this numerical approach suffers sometimes of a lack of precision in the way to

introduce it. Nevertheless, there exists recent publications which give accurate informations on the LBM

approach from a mathematical point of view. Among them, we find in [25, 26] a justification of LBM

schemes applied to the 1D linear advection equation and to a 1D Navier-Stokes type model (which is a

p-system with diffusive term). In [27, 28], a Taylor expansion is applied to the LBM scheme to justify it

in the case of the 1D convection-diffusion equation and in the case of the 1D wave equation with diffusive

term. In [29], a Chapman-Enskog expansion is applied to a LBM scheme in the case of the incompressible

Navier-Stokes system. In [30, 31], a convergence result in L2 is proposed for LBM schemes in the case of

the incompressible Navier-Stokes system under some assumptions and a stability result in L2 is obtained by

linearizing the LBM schemes.

In this paper, we construct, we justify and we analyze two LBM schemes build on the D1Q2 lattice to

solve the 1D convection-diffusion equation



∂tρ + ∂x(uρ) = ν∂2
xxρ,

ρ(0, x) = ρ0(x)

(1)

where t ≥ 0 and x ∈ Ω ⊂ R, where ν > 0 is the (constant) diffusion coefficient, u(x) and ρ0(x) being given

functions. In the pure diffusive case (i.e. u = 0), one of these LBM schemes is classical and can be found

in [4, 6, 7, 32] (the second one seems to be less classical). As in [29], these LBM schemes are obtained

by discretizing a discrete velocity kinetic system whose the fluid limit is (1), this fluid limit being formally

obtained with a Chapman-Enskog expansion and with a Hilbert expansion. Then, we prove convergence

results in L∞ and discrete maximum principles when u = 0 satisfied by the proposed LBM schemes with

periodic, Neumann or Dirichlet boundary conditions. We also obtained two LBM schemes for the pure
2



advection equation (i.e. u is a constant and ν = 0) in the periodic case which converge in L∞ (under a

classical CFL condition). Let us note that the L2-stability of one of them is studied in [18] with a von

Neumann stability analysis.

We underline that these convergence results are obtained by using in particular an equivalence result be-

tween the proposed LBM schemes and a finite difference type scheme named LFCCDF scheme [33]. For

the classical LBM scheme that we propose, this equivalence was cited by Ancona [32] in the pure diffusive

case with periodic boundary conditions, the LFCCDF scheme being the Du Fort-Frankel scheme [35] in that

case. In the work by Suga [5] and by Ginzburg et al. [15, 16, 34], the possible existence of links between

LBM schemes (built on lattices different than the D1Q2 lattice) and finite difference type schemes is also

studied.

We also underline that our results in L∞ are stronger than any results in L2, and that they are obtained by

using convexity properties of the proposed LBM schemes and, thus, without using any discrete Fourier

transform (up to our knowledge, L2-stability results are obtained with von Neumann analysis in the LBM

realm: see for example [5, 11, 12, 13, 15, 16, 17, 18]). In particular, our approach allows us to study the

stability with non-periodic boundary conditions and to obtain discrete maximum principles, which is not

possible with a von Neumann analysis. This approach is possible because of the simplicity of the D1Q2

lattice. Nevertheless, it is not obvious that our approach would be possible for other lattices such as the

D1Q3 lattice studied (among other lattices) in [5, 13, 15, 16, 17].

At last, we propose Monte-Carlo algorithms for the diffusion equation with periodic boundary conditions.

These Monte-Carlo algorithms come from a probabilistic interpretation of the proposed LBM schemes

and have links with the Monte-Carlo algorithm proposed in [41] for the telegraph equation. Some basic

properties of these Monte-Carlo algorithms are proved (among them, we recover the discrete maximum

principles obtained with the LBM schemes in the periodic case). Like for the finite difference schemes

theory, we hope that this probabilistic approach will be a tool to analyze the LBM schemes.

The end of the paper is devoted to numerical simulations. These numerical results justify the discrete

maximum principles obtained with the proposed LBM schemes (with periodic or non-periodic boundary

conditions) and with the Monte-Carlo algorithms (with periodic boundary conditions). They also show the

convergence of these algorithms and their robustness.

The outline of this paper is the following. In Section 2, we introduce the discrete velocity kinetic system

and its fluid limit. In Section 3, we contruct the LBM schemes. In Section 4, we obtain the equivalence of

these LBM schemes with the LFCCDF scheme (which is the Du Fort-Frankel scheme [35] when u = 0).

In Section 5, we obtain stability and converence results in L∞. In Section 6, we prove discrete maximum

principles in the case of the diffusion equation. In Section 7, we present some limitations of the LBM

schemes. In Section 8, we extend the proposed LBM schemes to the convection equation. In Section 9,

a probabilistic interpretation of the LBM schemes is proposed in the case of the diffusion equation with

periodic boundary conditions. In Section 10, we present some numerical results. At last, we conclude the

paper in Section 11.
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2. Fluid limit of a discrete velocity kinetic system

Let us define the function

Mεq(t, x) :=
ρ(t, x)

2

[
1 +

u(x)

vεq

]
(2)

where ρ(t, x) ∈ R
+
∗ and u(x) ∈ R. The parameters t ∈ R

+ and x ∈ Ω := [xmin, xmax] (Ω ⊂ R) are the time

and space variables. The set {vεq}q∈{1,2} is a discrete and finite set of velocities defined by

vεq := (−1)qcε with q ∈ {1, 2} (3)

where cε ∈ R
+ depends on a parameter ε ∈ R

+ and will be defined later. In the LBM realm, {vεq}q∈{1,2} is

named D1Q2. The function Mεq verifies

∑

q∈{1,2}

(
1

vεq

)
Mεq =

(
ρ

ρu

)
. (4)

To solve the convection-diffusion equation (1), we will propose two schemes deduced from a numerical

integration of the discrete velocity kinetic system



∂t f ε1 + vε1∂x f ε1 =
1

ε
(Mε1 − f ε1 ),

∂t f ε2 + vε2∂x f ε2 =
1

ε
(Mε2 − f ε2 ),

(5)

and by previously noting that the fluid limit of (5) is (1) for a particular choice of vεq (see Proposition 2.1

below). These schemes will belong to the family of LBM schemes and will be explicited in §3. In §9, we

will show that the probabilistic interpretation of these LBM schemes are Monte-Carlo schemes which are

already known. System (5) may be considered as a kinetic system whose the kinetic velocities belong to

the discrete and finite set {vεq}q∈{1,2} and whose the collision operator is a BGK-type collision operator where

the classical maxwellian is replaced by Mεq defined with (2). Thus, Mεq will be named maxwellian in the

sequel, ρ(x) and u(x) being the macroscopic density and velocity associated to Mεq. A similar approach is

proposed in [29] in the case of the incompressible Navier-Stokes system. Nevertheless, the integration of

(5) is obtained with a second order integration formula instead of a third order integration formula, which

obliges the authors in [29] to correct the diffusion coefficient ν to obtain a consistent LBM scheme: this

point is a direct consequence of the stiffness of (5) when ε ≪ 1, and is clarified in §3.4.

At last, let us underline that most of the variables above depend on the collision time ε. Thus, to clearly

underline this dependency, we use the superscript ε in the notation. Nevertheless, we will simplify the

notations after this section by omiting the parameter ε.

2.1. The convection-diffusion equation as a fluid limit

The fluid limit is obtained for a particular choice of the kinetic velocity cε in (3):

Proposition 2.1. Let us suppose that Ω is periodic and let f εq be solution of the discrete velocity kinetic

system

∀q ∈ {1, 2} :



∂t f εq + vεq∂x f εq =
1

ε
(Mεq − f εq ),

f εq (t = 0, x) = f
ε,0
q (x)

(6)
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where Mεq :=
ρε(t,x)

2

[
1 +

u(x)
vεq

]
with ρε := f ε

1
+ f ε

2
. Let us also suppose that

vεq = (−1)q

√
ν

ε
(i.e. cε =

√
ν
ε
). (7)

Then, by admitting that there exists {gε
k,q

(t, x)}k≥1 in such a way

f εq = Mεq ·
(
1 +
√
εgε1,q + εg

ε
2,q + ε

3/2gε3,q

)
+ O(ε2) (8)

when ε ≪ 1, ρε is solution of 

∂tρ
ε + ∂x(uρε) = ν∂2

xxρ
ε + O(ε),

ρε(t = 0, x) = f
ε,0
1

(x) + f
ε,0
2

(x).

(9)

Moreover, we have

f εq (t, x) = Mεq+(−1)q+1

√
εν

2
∂xρ
ε+(−1)qε3/2

[
u

2
√
ν
· (∂x(uρε) − ν∂2

xxρ
ε) −

√
ν

2
∂2

xx(uρε) +
ν3/2

2
∂3

xxxρ
ε

]
+O(ε2).

(10)

Proposition 2.1 means that the convection-diffusion equation (1) is the fluid limit of the discrete velocity

kinetic system (6) when vεq is defined with (7). Let us note that ε ≪ 1 means that ε ≪ tfluid where

tfluid = O(1) is the time scale of the fluid limit (1), ε being the kinetic time scale ((1) and (6) are supposed

to be dimensionless). Let us also note that the initial condition f
ε,0
q should be close to the maxwellian

equilibrium Mεq in such a way the ansatz (8) is valid at t = 0 (e.g. f
ε,0
q = Mεq).

The proof of Proposition 2.1 is formal and is written in Annex A. It is based on a Chapman-Enskog expan-

sion (Annex A.1) or on a Hilbert expansion (Annex A.2). The fact that the discrete velocity kinetic system

(6) is such that the kinetic velocity vεq depends on the collision time ε is not classical, and obliges us to per-

form carefully these expansions. We underline that if the boundary conditions were not periodic, this would

introduce difficulties which are note studied in this paper (because of the possible existence of a Knudsen

layer in the vicinity of ∂Ω in that case). Nevertheless, we will propose Neumann and Dirichlet boundary

conditions in the sequel although they will not be deduced from any asymptotic expansion applied to (6).

2.2. The diffusion equation as a fluid limit

Of course, we deduce from Proposition 2.1 the following corollary:

Corollary 2.1. Let us suppose thatΩ is periodic and let f εq be solution of the discrete velocity kinetic system



∂t f ε1 −
√
ν

ε
∂x f ε1 =

1

2ε
( f ε2 − f ε1 ),

∂t f ε2 +

√
ν

ε
∂x f ε2 =

1

2ε
( f ε1 − f ε2 ),

f ε
1

(t = 0, x) = f
ε,0
1

(x),

f ε
2

(t = 0, x) = f
ε,0
2

(x).

(11)

5



Then, when ε ≪ 1, ρε := f ε
1
+ f ε

2
is solution of



∂tρ
ε = ν∂2

xxρ
ε + O(ε),

ρε(t = 0, x) = f
ε,0
1

(x) + f
ε,0
2

(x).

(12)

Moreover, we have

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
εν

(
εν
∂3

xxxρ
ε

ρε
− ∂xρ

ε

ρε

)]
+ O(ε2). (13)

Let us note that it is proven in [36] that the fluid limit of



∂tρ + ∂xw = 0,

∂tw + ∂x p(ρ) = −w

ε

(14)

is given by

∂tρ = ε∂
2
xx p(ρ),

p(ρ) being a given function which does not depend on ε. On the other side, we can note that when p(ρ) = c2ρ

where c is a constant, by defining f1 and f2 in such a way ρ = f1 + f2 and w = c( f2 − f1), (14) is equivalent

to 

∂t f1 − c∂x f1 =
1

2ε
( f2 − f1),

∂t f2 + c∂x f2 =
1

2ε
( f1 − f2)

(15)

whose the fluid limit is given by

∂tρ = εc
2∂2

xxρ. (16)

The discrete velocity kinetic system (15) is similar to (11). Nevertheless, the kinetic velocity c in (15) is a

constant and, thus, does not depend on ε which is not the case of the kinetic velocity cε :=
√
ν
ε

in (11). As

a consequence, the fluid limits (12) and (16) are different.

3. Construction of two LBM schemes

To simplify the notations, we now omit ε in f εq and Mεq. Let us now define a 1D mesh {xi}i∈{1,...,N} of

the domain Ω := [xmin, xmax] whose the mesh size ∆x is constant, and let us define an uniform time step

∆t = tn+1 − tn such that

∆t := Cd

∆x2

ν
with Cd = O(1). (17)

This definition is justified by the fact that we want to discretize with an explicit scheme a convection-

diffusion equation. Proposition 2.1 encourages us to discretize

∀q ∈ {1, 2} :



∂t fq + (−1)q

√
ν

ε
∂x fq =

1

ε
(Mq − fq),

fq(t = 0, x) = f 0
q (x)

(18)

6



instead of 

∂tρ + ∂x(uρ) = ν∂2
xxρ,

ρ(t = 0, x) = ρ0(x).

(19)

The difficulty is to find an explicit scheme applied to (18) which is enough accurate to capture the fluid limit

(19) when ∆t = O(∆x2) ≪ 1 and ε ≪ 1. The solution will be to choose ε = O(∆t), which implies that ε

will depend on ∆t: this dependency makes difficult the analysis of the LBM schemes.

3.1. Integration of the kinetic system

We have the following result whose the proof is based on an idea that we can find in [37, 25]:

Proposition 3.1. Let c ∈ R and fq(t, x) be solution of the kinetic system

∀q ∈ {1, 2} : ∂t fq + (−1)qc∂x fq =
1

ε
(Mq − fq) := Qq( f )(t, x)

and let

gq(t, x) := fq(t, x) − ∆t

2
Qq( f )(t, x). (20)

Then, we have

g1 + g2 = f1 + f2

and

gq[t + ∆t, x + (−1)qc∆t] = gq(t, x)(1 − η) + Mq(t, x)η + O
(
∆t3

√
ε

)
when ∆t3 ≪

√
ε (21)

where

η =
1

ε

∆t
+

1

2

. (22)

Since g1 + g2 = f1 + f2 =: ρ, we will propose LBM schemes by using the approximation (21): this

point underlines also that the LBM scheme will be based on the intermediate variable gq instead of fq.

Nevertheless, it will be possible to deduce LBM schemes based on fq by applying the inverse transform of

(20) to the LBM schemes based on gq.

The proof of Proposition 3.1 is based on the following lemma:

Lemma 3.1. Let us define the BGK kernel

Q( f ) =
1

ε
(M f − f ) (ε ∈ R)

where the distribution f (v) is defined on a discrete or continuous velocity domain,M f being the maxwellian

distribution associated to f , and let us define the distribution

g := f − ε̃Q( f ) (̃ε ∈ R).

Then, when ε̃ , −ε:
Q( f ) =

ε

ε + ε̃
Q(g).

7



Let us underline that Lemma 3.1 is not restricted to a discrete velocity domain.

Proof of Proposition 3.1: The solution of the continuous EDP

∂t fq + (−1)qc∂x fq =
1

ε
(Mq − fq) =: Qq( f )(t, x)

is given by

fq[t + ∆t, x + (−1)qc∆t] = fq(t, x) +

∫ ∆t

0

Qq( f )[t + s, x + (−1)qcs]ds. (23)

Since f εq = Mεq + O(
√
ε) when ε ≪ 1 (see (10)), we can write that

Qεq = O
(

1
√
ε

)
when ε ≪ 1. (24)

This implies that

∫ ∆t

0

Qq( f )[t + s, x + (−1)qcs]ds = O
(
∆t
√
ε

)
when ε ≪ 1. (25)

Thus, the easiest numerical integration formula applied to (23) would give

fq[t + ∆t, x + (−1)qc∆t] = fq(t, x) + ∆tQq( f )(t, x) + O
(
∆t2

√
ε

)
. (26)

Nevertheless, the error O(∆t2/
√
ε) in (26) does not allow to obtain LBM schemes which are consistent with

the convection-diffusion equation (19). In fact, the integration error has to be of the order of ∆t3/
√
ε (or

lower) for reasons that we justify in §3.4: this point is important in the LBM realm and explains the classical

formula

ν = ∆t

(
1

η
− 1

2

)
c2

s

met in many LBM schemes (η and cs are defined in §3.2). Thus, instead of the second order integration

formula (26), we use the third order integration formula

fq[t + ∆t, x + (−1)qc∆t] = fq(t, x) +
∆t

2
[Qq( f )(t, x) + Qq( f )(t + ∆t, x + (−1)qc∆t)] + O

(
∆t3

√
ε

)
. (27)

Formula (27) is equivalent to gq[t + ∆t, x + (−1)qc∆t] = gq(t, x) + ∆tQq( f )(t, x) + O
(
∆t3√
ε

)
with gq := fq −

∆t
2
Qq( f ). Thus, by using Lemma 3.1 with ε̃ = ∆t/2, we obtain that (27) is equivalent to

gq[t + ∆t, x + (−1)qc∆t] = gq(t, x) +
ε

ε
∆t
+ 1

2

Qq(g)(t, x) + O
(
∆t3

√
ε

)
. (28)

We conclude by noting that Qq(g) = 1
ε
(Mq − gq).�
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Proof of Lemma 3.1: When ε̃ , −ε, we have

Q( f ) =
1

ε
(M f − f )

=
1

ε
[M f − g − ε̃Q( f )]

which allows to obtain

Q( f ) =
1

ε + ε̃
(M f − g).

We conclude by noting thatMg =M f .�

3.2. A first LBM scheme

Let us choose 

c =
∆x

∆t
, (a)

ε =
ν

c2
. (b)

(29)

Thus, we have

ε = Cd∆t (30)

since ∆t := Cd

∆x2

ν
(Cd ≥ 0). We deduce from (21) a first LBM scheme



gn+1
1,i
= gn

1,i+1
(1 − η) + Mn

1,i+1
η,

gn+1
2,i
= gn

2,i−1
(1 − η) + Mn

2,i−1
η,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

(31)

where

η :=
1

Cd +
1

2

=
1

ν∆t

∆x2
+

1

2

. (32)

Let us underline that (32) is equivalent to

ν = ∆t

(
1

η
− 1

2

)
c2

s (33)

with cs = K∆x/∆t (in the studied case, we have K = 1). In the LBM realm, the constant cs is named pseudo

sound speed of the lattice. Moreover, since Mq =
g1 + g2

2
·
[
1 + (−1)q ∆t

∆x
u(x)

]
, we see that the LBM scheme

(31) is equivalent to



gn+1
1,i = gn

1,i+1

[
1 − η

2

(
1 +
∆t

∆x
u(xi+1)

)]
+ gn

2,i+1

η

2

(
1 − ∆t

∆x
u(xi+1)

)
,

gn+1
2,i = gn

2,i−1

[
1 − η

2

(
1 − ∆t

∆x
u(xi−1)

)]
+ gn

1,i−1

η

2

(
1 +
∆t

∆x
u(xi−1)

)
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

(34)

9



and, thus, to 

gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i+1

η

2
−
ρn

i+1

2
· η ∆t

∆x
u(xi+1),

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i−1

η

2
+
ρn

i−1

2
· η ∆t

∆x
u(xi−1),

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
.

(35)

We will use the formulation (35) in the sequel. When u(x) = 0, the LBM scheme (35) is identical to the one

proposed in [4, 7, 32, 6] to solve the diffusion equation. When u(x) is a constant u0, (35) has similarities

with the LBM scheme proposed in [18] to solve the advection equation ∂tρ+u0∂xρ = 0: this point is studied

in Section 8.

Let us remark that η defined with (32) belongs to ]0, 2] since Cd ≥ 0 : we will use this property in the

sequel to obtain convergence results in L∞ and discrete maximum principles. Let us also remark that, due

to the relation (20), the LBM scheme (35) is equivalent to the LBM scheme (see Annex B)


f n+1
1,i =

f n
1,i+1

(16C2
d
− 1) + f n

2,i+1
(4Cd + 1) + f n

2,i−1
(4Cd − 1) + f n

1,i−1

16Cd(Cd +
1
2
)

, (a)

f n+1
2,i =

f n
1,i+1

(4Cd − 1) + f n
2,i+1
+ f n

2,i−1
(16C2

d
− 1) + f n

1,i−1
(4Cd + 1)

16Cd(Cd +
1
2
)

, (b)

ρn+1
i
= f n+1

1,i
+ f n+1

2,i
(c)

(36)

when u(x) = 0 and Cd , 0 (the transformation (20) is not defined when Cd = 0). The LBM scheme (36)

is not classical. Since (36) is more complex than (35) and is ill-defined when Cd = 0, we will study in the

sequel the LBM schemes expressed with the distribution gq and not with the distribution fq.

3.3. A second LBM scheme

By replacing ∆t by −∆t in (21) and (22), and by choosing again (29), we now deduce from (21) the

second LBM scheme 

gn−1
1,i+1
= gn

1,i
(1 − η̂) + Mn

1,i
η̂,

gn−1
2,i−1
= gn

2,i
(1 − η̂) + Mn

2,i
η̂,

ρn
i
= gn

1,i
+ gn

2,i

(37)

where η̂ := 1

−Cd+
1
2

= 1

− ν∆t

∆x2 +
1
2

. We have the following property proved in Annex C:

Property 3.1. When Cd , 1/2, the LBM scheme (37) is equivalent to


gn+1
1,i = gn

1,i+1

[
1 − η

2

(
1 +
∆t

∆x
u(xi)

)]
+ gn

2,i−1

η

2

(
1 − ∆t

∆x
u(xi)

)
,

gn+1
2,i = gn

2,i−1

[
1 − η

2

(
1 − ∆t

∆x
u(xi)

)]
+ gn

1,i+1

η

2

(
1 +
∆t

∆x
u(xi)

)
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

(38)
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where η is defined with (32). In the sequel, (38) is named LBM∗ scheme.

Contrary to the LBM scheme (35), the LBM∗ scheme (38) is not classical. Let us note that when Cd = 1/2,

(37) is not defined since |η̂| goes to the infinity when Cd goes to 1/2: this comes from the fact that Lemma

3.1 is valid only when ε̃ , −ε. Nevertheless, (38) is defined for any Cd ≥ 0 since η ∈]0, 2]. In the sequel,

we will show that the LBM∗ scheme (38) is valid for any Cd ≥ 0.

3.4. Justification of the use of a third order integration formula to obtain the LBM schemes

We now justify the use of the third order integration formula (28) – which is equivalent to (27) – instead

of the second order integration formula (26). This point is important in the LBM realm and justifies the

classical formula (33).

3.4.1. Heuristic justification of the third order formula

Let us suppose that the quantity
∫ ∆t

0
Qq( f )[t + s, x + (−1)qcs]ds in (23) is computed with an integration

formula of order m ∈ N. Since
∫ ∆t

0
Qq( f )[t + s, x + (−1)qcs]ds is of the order of ∆t/

√
ε (see (25)), the error

of the integration formula has to be of the order of ∆tm/
√
ε with m ≥ 2. Moreover, we construct the LBM

schemes with ∆t = O(ε) (see (30)). To summarize, the error ∆tm/
√
ε is of the order of εm−1/2 and m has to

be greater or equal to 2. We now use the following property:

Property 3.2. Let us suppose that f εq is solution of (18) and that f
ε

q is an approximation of f εq which satisfies

f
ε

q = f εq + ε
kΨq

(
t,

t

ε
, x,

x
√
νε

)

where Ψq(t1, t2, x1, x2) is a C∞-function. Thus, ρε := f
ε

1 + f
ε

2 is solution of

∂tρ
ε
+ ∂x(uρε) = ν∂2

xxρ
ε
+ O(ε)

when k ≥ 2.

By taking k = m − 1/2, we deduce from this property that m − 1/2 has to be greater than 2 which implies

that m ≥ 3 since m ∈ N. This justifies to use the third order integration formula (27) (i.e. m = 3) instead

of the second order integration formula (26) (i.e. m = 2). Of course, m ≥ 3 is only a necessary condition

to obtain consistent LBM schemes. It remains to prove that m = 3 is a sufficient condition, which will be

proved in §5.

Let us note that we impose that Ψq is a C∞-function to simplify the statement of Property 3.2. Indeed,

we could choose Ψq with less regularity. Moreover, the variables t/ε and x/
√
νε in Ψq underlines that this

perturbation may act at kinetic scales. Let us also note that the expansion (10) shows that f εq may have

variations at kinetic scales only at the order ε2, which is coherent with the previous result.

Proof of Property 3.2: Let us suppose that

f
ε

q = f εq + ε
kΨq

(
t,

t

ε
, x,

x
√
νε

)
.

11



In that case, we have 

∂tρ
ε
= ∂tρ

ε + O(εk−1),

∂x(uρε) = ∂x(uρε) + O(εk−1/2),

∂2
xxρ
ε
= ∂2

xxρ
ε + O(εk−1)

which allows to write that

∂tρ
ε
+ ∂x(uρε) − ν∂2

xxρ
ε
= ∂tρ

ε + ∂x(uρε) − ν∂2
xxρ
ε + O(εk−1).

Thus, we obtain that

∂tρ
ε
+ ∂x(uρε) = ν∂2

xxρ
ε
+ O(ε)

when k ≥ 2 by using (9).�

3.4.2. Concerning the second order integration formula

We now verify that the LBM schemes built by using (26) (i.e. m = 2) instead of (28) (i.e. m = 3) cannot

be consistent with the convection-diffusion equation (19) when ∆t =
∆x2

2ν
. When u(x) = 0, the LBM and

LBM∗ schemes using (26) are respectively given by



f n+1
1,i = f n

1,i+1

(
1 − 1

2Cd

)
+

f n
2,i+1

2Cd

,

f n+1
2,i = f n

2,i−1

(
1 − 1

2Cd

)
+

f n
1,i−1

2Cd

,

ρn+1
i = f n+1

1,i + f n+1
2,i

(39)

and 

f n+1
1,i = f n

1,i+1

(
1 − 1

2(1 −Cd)

)
+

f n
2,i−1

2(1 −Cd)
,

f n+1
2,i = f n

2,i−1

(
1 − 1

2(1 −Cd)

)
+

f n
1,i+1

2(1 −Cd)
,

ρn+1
i = f n+1

1,i + f n+1
2,i .

(40)

When Cd = 1/2 that is to say ∆t = ∆x2

2ν
, formula (39) gives



f n+1
1,i = f n

2,i+1,

f n+1
2,i = f n

1,i−1,

ρn+1
i = f n+1

1,i + f n+1
2,i

12



which is equivalent to 

f n+1
1,i = f n−1

1,i ,

f n+1
2,i = f n−1

2,i ,

ρn+1
i = f n+1

1,i + f n+1
2,i .

Finally, we obtain that

ρn+1
i = ρn−1

i when ∆t =
∆x2

2ν
. (41)

In the same way, we verify that when Cd = 1/2, formula (40) implies (41). Relation (41) shows that

the LBM schemes (39) and (40) cannot be consistent with the diffusion equation when ∆t = ∆x2

2ν
. By

continuity, we deduce that the LBM schemes built by using (26) instead of (28) cannot be consistent with

the convection-diffusion equation (19). We underline that Formula (33) is a direct consequence of the use of

(28). Moreover, we easily verify that (39) can be seen as the LBM scheme (35) used to solve the diffusion

equation ∂tρ = ν̃∂
2
xxρ with the diffusion coefficient

ν̃ = ν − ∆t

2
c2

s . (42)

In [29], a LBM scheme is proposed to solve the incompressible Navier-Stokes system. This LBM scheme

is constructed by using the second order formula (26) with ∆t > 0 (see (3) in [29]). This explains that

the kinematic viscosity in [29] of the PDEs system discretized by the LBM scheme is equal to a diffusion

coefficient ν̃ similar to (42) instead of ν: see (A.16) in [29] (note that ∆t = ∆x = 1 in [29]: see (24)).

Nevertheless, the authors in [29] underline the fact that (26) cannot give a good approximation of f εq (t, x)

when ε ≪ 1 although they use (26) (see p. 679 in [29]). In the same way, (40) can be seen as the LBM∗

scheme (38) used to solve the diffusion equation ∂tρ = ν̂∂
2
xxρ with the diffusion coefficient

ν̂ =
1

2

(
∆t

2
c2

s − ν
)
. (43)

Let us remark that ν̃ , ν̂ except when Cd = 1/2 (i.e. ∆t = ∆x2

2ν
). In this last case, we have ν̃ = ν̂ = 0 and ρn

i

deduced from the LBM schemes (39) or (40) is given by (41), which is coherent with ∂tρ = 0.

4. Link with a finite difference type scheme

We now prove that the LBM scheme (35) and the LBM∗ scheme (38) with the initial condition



g0
1,i = ρ

0
i ·

[
(1 − α) − β ∆t

∆x
u(xi)

]
,

g0
2,i = ρ

0
i ·

[
α + β

∆t

∆x
u(xi)

] (44)

(where (α, β) ∈ R
2) are identical (for the macroscopic quantity ρ) to the finite difference type scheme

ρn+1
i
− ρn−1

i

2∆t
+

1

2∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
=
ν

∆x2

(
ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1

)
(45)
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when the first iterate is given by

ρn=1
i := ξρ0

i−1 + (1 − ξ)ρ0
i+1 − γ

∆t

∆x

[
ρ0

i+1u(xi+1) − ρ0
i−1u(xi−1)

]
with



ξ =
η

2
+ α(1 − η),

γ =
η

2
+ β(1 − η)

(46)

in the case of the LBM scheme (35) (we recall that η is defined with (32) and belongs to ]0, 2]), and by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 − β

∆t

∆x

[
ρ0

i+1u(xi+1) − ρ0
i−1u(xi−1)

]
(47)

in the case of the LBM∗ scheme (38). We will use this equivalence in §5 and §6 to obtain new stability and

convergence results in L∞ and discrete maximum principles. Let us note that g0
q,i

is equal to the maxwellian

M0
q,i :=

ρ0
i

2

[
1 + (−1)q ∆t

∆x
u(xi)

]
(48)

(see (2), (3), (29)(a) and (44)) if and only if α = β = 1/2. At last, let us remark that ξ ∈ [0, 1]⇐⇒ α ∈ [0, 1],

and γ ∈ [0, 1]⇐⇒ β ∈ [0, 1].

Let us note that when u(x) is a constant u0, the finite difference type scheme (45) is the LFCCDF scheme

proposed in [33]: thus, (45) is also named LFCCDF scheme in the sequel. Moreover, when u(x) = 0, the

scheme (45) is the Du Fort-Frankel scheme [35]. Let us also underline that the first iterate (47) – which is

equivalent to (46) – is not classical. For example, the first iterate in [35] is defined with the classical scheme

ρn=1
i
− ρn

i

∆t
=
ν

∆x2

(
ρ0

i+1 − 2ρ0
i + ρ

0
i−1

)
(49)

(the first iterate is not defined in [33]). The first iterate (47) (resp. (46)) is essential, firstly, to obtain the

equivalence between the LBM scheme (38) (resp. (35)) with (45) and, secondly, to obtain convergence

results in L∞ and discrete maximum principles for any Cd ≥ 0 (see §5 and §6). At last, let us note that the

link between the LBM scheme (35) with the Du Fort-Frankel scheme was firstly cited in [32] in the case of

periodic boundary conditions.

The proof of lemmae proposed in this section are written in Annex D.

4.1. Periodic boundary conditions for the convection-diffusion equation

We have the following result:

Lemma 4.1. In the periodic case:

i) The LBM scheme (35)(44) is identical to the LFCCDF scheme (45)(46).

ii) The LBM∗ scheme (38)(44) is identical to the LFCCDF scheme (45)(47).

iii) The LBM scheme (35)(44) and the LBM∗ scheme (38)(44) are identical if and only if α = β = 1
2
.

We underline that when the LBM schemes (35)(44) and (38)(44) are said to be identical, this means that

they give the same ρn
i

for any (i, n). Nevertheless, this does not mean that they give the same gn
i

for any

(i, n).
14



4.2. Neumann boundary conditions for the diffusion equation

We suppose that u(x) = 0. To apply the Neumann boundary condition ∂xρ(t, xmin) = 0 in x = xmin,

we define the mesh xi = xmin + (i − 1
2
)∆x (i = 0, . . .). For the sake of simplicity, we forget the boundary

condition in x = xmax. The LBM scheme (35) is now given by



gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i+1

η

2
,

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i−1

η

2
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
.

(50)

And, the LBM∗ scheme (38) is now given by



gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i−1

η

2
,

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i+1

η

2
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
.

(51)

Moreover, the initial condition (44) is now given by



g0
1,i = (1 − α)ρ0

i , (a)

g0
2,i = αρ

0
i . (b)

(52)

We have the following result:

Lemma 4.2. The LBM∗ scheme (51)(52) with the boundary conditions



gn+1
2,i=0
= gn+1

1,i=1
+ (gn

2,i=0
− gn

1,i=1
)(1 − η), (a)

gn=0
2,i=0
= αρn=0

i=1
(b)

(53)

is identical to the Du Fort-Frankel scheme

∀i ≥ 1, ∀n ≥ 1 :
ρn+1

i
− ρn−1

i

2∆t
=
ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1) (54)

with the discrete Neumann boundary condition

∀n ≥ 0 : ρn
i=0 = ρ

n
i=1 (55)

when the first iterate is given by

∀i ≥ 1 : ρn=1
i = αρ0

i−1 + (1 − α)ρ0
i+1 where α ∈ R. (56)
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We have the same result for the LBM scheme (50)(52) by replacing the boundary conditions (53) with


gn+1
1,i=0 = gn+1

2,i=1 + (gn
1,i=1 − gn

2,i=0)(1 − η), (a)

gn+1
2,i=0 = gn+1

1,i=1 + (gn
2,i=0 − gn

1,i=1)(1 − η), (b)

gn=0
1,i=0
= (1 − α)ρn=0

i=1
, (c)

gn=0
2,i=0
= αρn=0

i=1
(d)

(57)

and by replacing the first iterate (56) with

∀i ≥ 1 : ρn=1
i := ξρ0

i−1 + (1 − ξ)ρ0
i+1 where ξ =

η

2
+ α(1 − η). (58)

Thus, the LBM scheme (50)(52)(57) and the LBM∗ scheme (51)(52)(53) are identical if and only if α = 1
2
.

When α , 1
2
, the boundary conditions (53) and (57) are not classical in the framework of the LBM

schemes. Nevertheless, when α = 1
2

that is to say when

g0
1,i = g0

2,i =
ρ0

i

2
, (59)

the boundary conditions (53) and (57) are respectively equivalent to

∀n ≥ 0 : gn
2,i=0 = gn

1,i=1 (60)

and

∀n ≥ 0 : gn
1,i=0 = gn

2,i=1 and gn
2,i=0 = gn

1,i=1. (61)

The boundary conditions (60) and (61) are classical in the framework of the LBM schemes: they are an

approximation at the discrete level on xmin := 1
2
(xi=0 + xi=1) of the bounce-back boundary conditions [38]

which corresponds to

∀t ≥ 0 : g1(t, x = xmin) = g2(t, x = xmin) (62)

in the studied case. For example, (61) is equivalent to the Neumann boundary condition proposed in [6, 39]

(more precisely, (21) in [6] is equivalent to (59), and we easily show that (28) with qb = 0 in [6] is equivalent

to (61) as soon as (61) is satisfied with n = 0). We can justify (62) – and, thus, (60) and (61) – with the

following heuristic argument. When ∂xρ(t, x = xmin) = 0, the asymptotic expansion (13) gives

∀t ≥ 0, ∀q ∈ {1, 2} : fq(t, x = xmin) =
ρ

2
(t, x = xmin) + O(ε3/2).

This incites us to impose f1(t, x = xmin) = f2(t, x = xmin) =
ρ

2
(t, x = xmin) that is to say

∀t ≥ 0, ∀q ∈ {1, 2} : gq(t, x = xmin) =
ρ

2
(t, x = xmin)

by using the transformation (20), which is equivalent to (62) since g1+g2 = ρ. Unfortunatly, this justification

cannot be satisfactory from a theoretical point of view. Indeed, the asymptotic expansion (13) is valid with

periodic boundary condition on ∂Ω. With other boundary conditions (such as Neumann and Dirichlet

boundary conditions), we would have to study a Knudsen layer created by the discrete velocity kinetic

system (11) in the vicinity of ∂Ω, which would make much more difficult the analysis ([40] could be a

starting point). Nevertheless, Lemma 4.2 justifies (60) and (61) through the equivalence with the Du Fort-

Frankel scheme.
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4.3. Dirichlet boundary conditions for the diffusion equation

We also suppose that u(x) = 0 and we also forget the boundary conditions in xmax for the sake of

simplicity. To apply the Dirichlet boundary condition ρ(t, xmin) = ρxmin
, we now define the mesh xi =

xmin + i∆x (i = 0, . . .).

We have the following result:

Lemma 4.3. The LBM∗ scheme (51)(52) with the boundary conditions



gn+1
2,i=0 =

ρxmin

2
+

(
ρxmin

2
− gn

1,i=1

)
(1 − η), (a)

gn=0
2,i=0
= αρxmin

(b)

(63)

is identical to the Du Fort-Frankel scheme (54) with the Dirichlet boundary condition

∀n ≥ 0 : ρn
i=0 = ρxmin

(64)

when the first iterate is given by (56). We have the same result for the LBM scheme (50)(52) by replacing

the boundary conditions (63) with



gn+1
1,i=0 = gn

1,i=1

(
1 − η

2

)
+ gn

2,i=1

η

2
, (a)

gn+1
2,i=0
= ρxmin

− gn+1
1,i=0
, (b)

gn=0
1,i=0
= (1 − α)ρxmin

, (c)

gn=0
2,i=0
= αρxmin

(d)

(65)

and by replacing the first iterate (56) with (58). Thus, the LBM scheme (50)(52)(65) and the LBM∗ scheme

(51)(52)(63) are identical if and only if α = 1
2
.

The boundary condition (65) is identical to the one proposed in [6] when α = 1/2 (see (21) and (25) in [6]).

Let us also note that (65) is equivalent to



gn+1
1,i=0 =

ρn
i=1

2
+

(
ρn

i=1

2
− gn

2,i=1

)
(1 − η), (a)

gn+1
2,i=0 = ρxmin

−
ρn

i=1

2
+

(
ρn

i=1

2
− gn

1,i=1

)
(1 − η), (b)

gn=0
1,i=0
= (1 − α)ρxmin

, (c)

gn=0
2,i=0
= αρxmin

(d)

(66)

which underlines that (65)(b) is not exactly equal to (63)(a).
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We may think that the boundary condition (63) for the LBM∗ scheme (51) should be replaced by

∀n ≥ 0 : gn
2,i=0 =

ρxmin

2
, (67)

and that the boundary condition (65) for the LBM scheme (50) should be replaced by

∀n ≥ 0 : gn
1,i=0 = gn

2,i=0 =
ρxmin

2
(68)

since (67) and (68) seem to be more simple. In §6.2, we will explain why we should replace (63) (resp.

(65)) by (67) (resp. (68)) when the number of cells is low even if we lose the equivalence with the Du

Fort-Frankel (54) scheme when we use (67) (resp. (68)).

5. Stability and convergence in L∞ for the LBM schemes

We now prove stability and convergence results in L∞. We recall that the time step ∆t ≥ 0 and η ∈ ]0, 2]

are respectively defined with (17) and (32).

The proof of propositions proposed in this section are written in Annex E.

5.1. Periodic boundary conditions for the advection-diffusion equation with constant velocity

We are now interested in the advection-diffusion equation



∂tρ + u0∂xρ = ν∂
2
xxρ,

ρ(0, x) = ρ0(x)

(69)

where u0 ∈ R is a constant velocity. We prove the following result:

Proposition 5.1. Let us suppose that the boundary conditions are periodic and that u(x) is constant and

equal to u0. Then, under the condition



∆x ∈
]
0,

min(1, 2Cd)

Cd

· ν|u0|

]
, (a)

α ∈ [0, 1], (b)

β = 0 or β = min(1 − α, α), (c)

(70)

for any Cd > 0:

i) The LBM scheme (35)(44) and the LBM∗ scheme (38)(44) converge in L∞ and verify the discrete maximum

principle

∀i, ∀n ≥ 0 : min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j . (71)

ii) The LFCCDF scheme (45)(47) converges in L∞ and verifies (71).

iii) The error of the schemes (35)(44), (38)(44) and (45)(47) is of order ∆x2 if and only if α = β = 1
2
.
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The case Cd = 0 is particular since the schemes satisfy ρn+2
i
= ρn

i
when Cd = 0: see Lemma 7.1. Neverthe-

less, this property allows to write that the schemes are stable in L∞ for any ∆x > 0, α ∈ R and β ∈ R, and

for any non-constant periodic velocity u(x) when Cd = 0. Moreover, when u(x) is also a constant u0, it is

proved in [33] with a von Neumann stability analysis that the LFCCDF scheme (45) is stable in L2 under

the CFL condition ∆t ≤ ∆x

|u0|
(see (16c) in [33]). Here, we obtain the stability in L∞ for any ∆t > 0 when ∆x

is enough small (see (70)(a), which can be seen as a low Reynolds number condition). At last, let us note

that when u0 = 0, we obtain the convergence in L∞ for any Cd ≥ 0, for any ∆x > 0 and for any α ∈ R: see

below Proposition 5.2.

5.2. Periodic, Neumann and Dirichlet boundary conditions for the diffusion equation

We are now interested in the diffusion equation



∂tρ = ν∂
2
xxρ,

ρ(0, x) = ρ0(x).

(72)

In the periodic, Neumann and Dirichlet cases, the LBM scheme (50)(52) and the LBM∗ scheme (51)(52)

are equivalent to the Du Fort-Frankel scheme (54) when the first iterate is given by (56) that is to say by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 where α ∈ R

(see Lemmae 4.1, 4.2 and 4.3). This will allow us to obtain for any Cd ≥ 0, firstly, the stability in L∞ and,

secondly, the convergence in L∞.

For the sake of simplicity, we forget the boundary condition in x = xmax in the cases of Neumann and

Dirichlet boundary conditions. We have the following result:

Proposition 5.2.

i) The LBM∗ scheme (51)(52) with periodic, Neumann or Dirichlet boundary conditions converge in L∞ and

verifies:



Periodic: max
i
|ρn

i | ≤ 2 max(|1 − α|, |α|) ·max
i
|ρ0

i | when

{
Cd ≥ 0,

α ∈ R.
(a)

Neumann:



max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | + 2|2α − 1| |1 − η|
1 − |1 − η| |ρ

0
1| when

{
Cd > 0,

α ∈ R.

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | when

{
Cd ≥ 0,

α = 1
2

or

{
Cd = 0,

α ∈ R.

(b)

Dirichlet:



max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max

(
max
i≥1
|ρ0

i |, |ρxmin
|
)
+

2

(
1 − η

2

)

1 − |η − 1| |ρxmin
| when

{
Cd > 0,

α ∈ R.

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | when

{
Cd = 0,

α ∈ R.

(c)

(73)
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We have the same results for the LBM scheme (50)(52) by replacing α with ξ =
η

2
+ α(1 − η) in (73).

ii) The Du Fort-Frankel scheme (54) with periodic, Neumann or Dirichlet boundary conditions converges

in L∞ when the first iterate is given by (56), and verifies (73).

iii) The error of the LBM schemes and of the Du Fort-Frankel scheme is of order ∆x when α , 1
2

and is of

order ∆x2 if and only if α = 1
2
.

It is known since 1953 that the Du Fort-Frankel scheme with periodic boundary conditions is stable

– and, thus, is convergent – in L2 for any Cd ≥ 0 (this result is obtained with a von Neumann stability

analysis). Since the Du Fort-Frankel scheme may be written with

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1)

(see (155) with u(x) = 0), we have also the stability in L∞ under the stability condition η ∈ [1, 2] that is to

say when 0 ≤ Cd ≤ 1/2 (for a reasonable choice of the first iterate: with (49) for example). Here, we obtain

the stability in L∞ of the Du Fort-Frankel scheme – and, thus, the convergence in L∞ – for any Cd ≥ 0 when

the first iterate is defined with (56).

Moreover, when the boundary conditions is a Dirichlet boundary condition in x = xmin and a Neumann

boundary condition in x = xmax, due to the linearity of the scheme, we easily deduce from the proof of

Proposition 5.2 that we simply have to replace (73)(b,c) by

max
1≤i≤N

|ρn+1
i | ≤ 2 max(|1 − α|, |α|) ·max

(
max
1≤i≤N

|ρ0
i |, |ρxmin

|
)
+

2

(
1 − η

2

)

1 − |η − 1| |ρxmin
| + 2|2α − 1| |1 − η|

1 − |1 − η| |ρ
0
N |

(when Cd > 0 and α ∈ R) where N is the number of cells. The other possible cases are similar. At last,

let us remark that (73)(b,c) with Cd = 0 (that is to say when ∆t = 0) is studied because the schemes do not

verify ρn
i
= ρ0

i
when Cd = 0: we will discuss about this question in §7.1.

6. Discrete maximum principles for the LBM schemes applied to the diffusion equation

It is easy to obtain a discrete maximum principle for the Du Fort-Frankel scheme (54) when Cd ∈ [0, 1
2
]

(we recall that ∆t := Cd
∆x2

ν
). Indeed, this scheme can be rewritten with

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1)

(see (155) with u(x) = 0) which allows to obtain discrete maximum principles when η ∈ [1, 2] that is to say

when Cd ∈ [0, 1
2
] since η = 1

Cd+
1
2

.

On the other side, we proved in Proposition 5.2 the stability in L∞ for any Cd ≥ 0. Thus, we may think that

we could also obtain discrete maximum principles for any Cd ≥ 0. Unfortunatly, Inequalities (73) do not

allow to conclude. Moreover, when Cd goes to the infinity (that is to say when η = 0), the constants in the

right hand sides of (73)(b,c) go to the infinity (except when α = 1
2

in the Neumann case).
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Moreover, the LBM schemes are often applied in complex porous media which may contain areas where the

number of cells is low. Thus, it is important to obtain discrete maximum principles (to preserve for example

the positivity of the temperature or of the mass fraction when these quantities are solution of a diffusion

equation) and, by the same time, to have Cd at least greater than 1
2

to justify the use of the LBM schemes

(or of the Du Fort-Frankel scheme) instead of the classical three-points finite difference type scheme (which

satisfies discrete maximum principles when Cd ∈ [0, 1
2
]).

We show below that it is possible to obtain discrete maximum principles for any Cd ≥ 0 with the LBM

scheme (50)(52) and with the LBM∗ scheme (51)(52) in the periodic and Neumann cases. Thus, this is also

the case for the Du Fort-Frankel scheme. In the Dirichlet case, we will show that we have to change the

boundary conditions (63) and (65) to obtain a discrete maximum principle for any Cd ≥ 0. Unfortunatly,

we will lose in that case the equivalence between the LBM schemes and the Du Fort-Frankel scheme, and

the error of the LBM schemes will not be of order ∆x2 but should be of order ∆x. As a consequence, this

modified Dirichlet boundary conditions will have to be applied only in areas where the number of cells is

low. This point underlines the utility of the LBM schemes to obtain robust schemes.

As before, for the sake of simplicity, we forget the boundary condition in x = xmax in the cases of

Neumann and Dirichlet boundary conditions.

The proof of the results proposed in this section are written in Annex F.

6.1. Periodic and Neumann boundary conditions

We have the following result:

Proposition 6.1. For any Cd ≥ 0:

i) When α ∈ [0, 1], the LBM scheme (50)(52) and the LBM∗ scheme (51)(52) with periodic boundary

conditions verify the discrete maximum principle

∀i, ∀n ≥ 0 : min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j . (74)

ii) When α = 1
2
, the LBM scheme (50)(52) and the LBM∗ scheme (51)(52) with Neumann boundary condi-

tions verify the discrete maximum principle

∀i ≥ 1, ∀n ≥ 0 : min
j≥1
ρ0

j ≤ ρn
i ≤ max

j≥1
ρ0

j . (75)

Thus, this is also the case for the Du Fort-Frankel scheme (54) with periodic or Neumann boundary condi-

tion when the first iterate is given by (56).

Let us note that the Du Fort-Frankel scheme is equivalent to

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1)
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(see (155) with u(x) = 0). Thus, when ρn=1
i

:= αρ0
i−1
+ (1 − α)ρ0

i+1
, we obtain

ρ2
i
= [αρ0

i + (1 − α)ρ0
i+2]

(
1 − η

2

)
+ [αρ0

i−2 + (1 − α)ρ0
i ]

(
1 − η

2

)
+ ρ0

i (η − 1)

= [αρ0
i−2 + (1 − α)ρ0

i+2]

(
1 − η

2

)
+ ρ0

i

η

2
.

This proves that min
j
ρ0

j
≤ ρ2

i
≤ max

j
ρ0

j
for any Cd ≥ 0 in the periodic case when α ∈ [0, 1]. Nevertheless, it

is a priori more difficult to obtain a similar result for ρn≥3
i

without using the equivalence between the LBM∗

scheme and the Du Fort-Frankel scheme. This remark shows that the LBM schemes may also be seen as a

numerical analysis tool to study properties of classical finite difference schemes.

6.2. Modified Dirichlet boundary conditions

We have the following result:

Lemma 6.1. For any Cd ∈ [0, 1
2
] and when α = 1

2
, the LBM scheme (50)(52)(65) and the LBM∗ scheme

(51)(52)(63) verify the maximum principle

∀i ≥ 1, ∀n ≥ 0 : min(ρxmin
,min

j≥1
ρ0

j) ≤ ρn
i ≤ max(ρxmin

,max
j≥1
ρ0

j). (76)

Thus, this is also the case for the Du Fort-Frankel scheme (54) with Dirichlet boundary conditions when the

first iterate is given by (56).

Lemma 6.1 is less interesting than Proposition 6.1 since the discrete maximum principle (76) is satisfied

under the condition Cd ∈ [0, 1
2
]. Nevertheless, by modifying the Dirichlet boundary conditions (63) and

(65), we obtain the following result:

Proposition 6.2. For any Cd ≥ 0 and when α = 1
2
, the LBM∗ scheme (51)(52) with the modified Dirichlet

boundary condition

∀n ≥ 0 : gn
2,i=0 =

ρxmin

2
(77)

verifies the maximum principle

∀i ≥ 1, ∀n ≥ 0 : min(ρxmin
,min

j≥1
ρ0

j) ≤ ρn
i ≤ max(ρxmin

,max
j≥1
ρ0

j). (78)

We have the same result for the LBM scheme (50)(52) with the modified Dirichlet boundary conditions

∀n ≥ 0 : gn
1,i=0 = gn

2,i=0 =
ρxmin

2
. (79)

Let us remark that when Cd = α =
1
2
, the modified Dirichlet boundary condition (77) is equivalent to the

Dirichlet boundary conditions (63) firstly proposed and which make equivalent the LBM∗ scheme and the

Du Fort-Frankel scheme (see Lemma 4.2). This is coherent with the fact that it is possible to easily prove

that the Du Fort-Frankel scheme with Dirichlet boundary condition satisfies the maximum principle when

α ∈ [0, 1] and 0 ≤ Cd ≤ 1/2.
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By supposing that Expansion (13) is valid near the boundary x = xmin – which is not proven since the

boundary conditions are periodic in Corollary 2.1 –, we obtain that

ρ

2
− fq = O(

√
∆t) = O(∆x)

since ε = O(∆t) (cf. §3.2) and ∆t = O(∆x2). In the same way, we obtain that

∆t

2
Qq( f ) = O(∆x).

As a consequence, by using (20) and since ρxmin
− ρn

i=1
= O(∆x), we obtain that

(
ρxmin

2
− gn

1,i=1

)
(1 − η) = (1 − η)O(∆x). (80)

Although this term goes to zero when ∆x goes to zero, it is important in the Dirichlet boundary con-

ditions (63) to obtain the equivalence between the LBM∗ scheme (51)(52)(63) and the Du Fort-Frankel

scheme (54)(56) with Dirichlet boundary condition. Moreover, when α = 1
2
, the error of the LBM∗ scheme

(51)(52)(63) is of the order of ∆x2 (see point iii of Proposition 5.2).

Thus, when we replace (63) by (77) in the LBM∗ scheme:

• The error of the LBM∗ scheme with α = 1
2

should be of the order of ∆x instead of ∆x2.

• Near the boundary x = xmin, we lose the equivalence between the LBM∗ scheme and the Du Fort-

Frankel scheme. This avoids to obtain the convergence in L∞ for any Cd ≥ 0 of the LBM∗ scheme

with modified Dirichlet boundary condition by using the Lax Theorem.

Of course, we have the same remarks when we replace (65) by (79) in the LBM scheme. Nevertheless,

Proposition 6.2, estimation (80) (which remains to be proven) and the fact that the equivalence with the Du

Fort-Frankel scheme remains valid far from the boundary x = xmin incite us to conjecture the following

result:

Conjecture 6.1. For any Cd ≥ 0 and when α = 1
2
, the LBM∗ scheme (51)(52) with the modified Dirichlet

boundary conditions (77) converges in L∞ with an error of the order of ∆x. We have the same result for the

LBM scheme (50)(52) with the modified Dirichlet boundary conditions (79).

Numerical results proposed in §10.1 will justify this conjecture.

7. Limitations of the LBM schemes

7.1. Preservation of the initial condition

We have the following result:

Lemma 7.1. When Cd = 0, the LBM∗ scheme (38)(44) with periodic boundary conditions preserve the

initial condition in the sense

∀i, ∀n ≥ 0 : ρn+2
i = ρn

i .

Thus, this is also the case for the LBM scheme (35)(44) and for the LFCCDF scheme (45) when the first

iterate is given by (47).
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In the case of the diffusion equation with Neumann or Dirichlet boundary conditions, we obtain the

following lemma:

Lemma 7.2. When Cd = 0, the LBM∗ scheme (51)(52) with periodic, Neumann, Dirichlet or modified

Dirichlet boundary conditions preserve the initial condition in the sense

∀i, ∀n ≥ 0 : ρn+2
i = ρn

i .

Thus, this is also the case for the LBM scheme (50)(52) and for the Du Fort-Frankel scheme (54) when the

first iterate is given by (56).

These lemmae show that the proposed LBM schemes do not satisfy ρn+1
i
= ρn

i
when Cd = 0 i.e. when

∆t = 0. Nevertheless, we deduce from (47) that ρ1
i
− ρexact(∆t, xi) = O(∆xβ) with β = 1 when α , 1

2
and

with β = 2 when α = 1
2
. Thus, the proposed LBM schemes preserve the initial condition when ∆t = 0 with

an error of order ∆xβ. As a consequence, we cannot say that this property is an important limitation of the

proposed LBM schemes.

Proof of Lemma 7.1: When Cd = 0, we deduce from the LBM∗ scheme (38) that

gn+1
1,i = gn

2,i−1 and gn+1
2,i = gn

1,i+1.

As a consequence, we have

gn+1
1,i = gn−1

1,i and gn+1
2,i = gn−1

2,i

which concludes the proof. We obtain the result for the LBM scheme and for the finite difference type

scheme (45) by using Lemma 4.1.�

Proof of Lemma 7.2: The proof in the case of periodic boundary conditions is a direct application of

Lemma 7.1.

• The case of Neumann boundary conditions:

For the LBM∗ scheme, we deduce from (53)(a) that gn+1
2,0
= gn+1

1,1
− (gn

2,0
− gn

1,1
) when Cd = 0. On the other

side, we have also gn+1
1,1
= gn

2,0
for any i ≥ 1 by using (51) with Cd = 0. Thus, we obtain gn+1

2,0
= gn

1,1
that

is to say gn+1
2,0
= gn

1,1
= gn−1

2,0
which allows to obtain the result. We obtain the result for the LBM and Du

Fort-Frankel schemes by applying Lemma 4.2.

• The case of Dirichlet boundary conditions:

For the LBM∗ scheme, we deduce from (63)(a) that gn+1
2,0 = gn

1,1 when Cd = 0. We conclude as in the

Neumann case. We obtain the result for the LBM and Du Fort-Frankel schemes by applying Lemma 4.3.

• The case of modified Dirichlet boundary conditions for the LBM and LBM∗ schemes:

Since the boundary conditions (77) and (79) do not depend on the time, we obtain the result as in the other

cases.�
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7.2. Consistency condition

We proved in Lemma 4.1 that the LBM scheme (35)(44) and the LBM∗ scheme (38)(44) are equivalent

to the finite difference type scheme (45) (when the first iterate is defined with (45)(47)). On the other side,

we know that the consistency error E of the Du Fort-Frankel scheme (54) is given by [35]

E = −ν ∆t2

∆x2
∂2

ttρ + O(∆x2). (81)

As a consequence, the (first order) equivalent equation associated to the Du Fort-Frankel scheme is the

telegraph equation

∂tρ = ν

(
∂2

xxρ −
∂2

ttρ

c2

)
with c =

∆x

∆t
(82)

which implies that the Du Fort-Frankel scheme is consistent with the diffusion equation if and only if

∆t = O(∆xβ) with β > 1. (83)

As a consequence, the LBM scheme (35)(44) and the LBM∗ scheme (38)(44) cannot be consistent with the

convection-diffusion equation (1) when O(Cd∆x) ≥ 1.

The consistency condition (83) limits the range of the unconditionnal stability in L∞ of the LBM schemes

(50) and (51) obtained in the case of the diffusion equation (see Proposition 5.2; see also the discrete

maximum principles obtained in §6) and which makes robust these LBM schemes. Let us note that the

LBM schemes (50) and (51) are equivalent to



gn+1
1,i = gn

1,i+1, (a)

gn+1
2,i = gn

2,i−1, (b)

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
(c)

(84)

when η :=
1

Cd +
1
2

= 0 that is to say when Cd → +∞. This confirms the fact that the LBM schemes (50) and

(51) cannot be consistent with the diffusion equation when O(Cd∆x) ≥ 1 since (84)(a,b) are two convective

schemes with CFL = 1.

8. LBM schemes applied to the convection equation with periodic boundary conditions

By linking ∆t and ∆x with

∆t := Cc

∆x

max
j
|u(x j)|

with Cc = O(1) (85)

(Cc is the CFL constant) instead of (17), and by replacing η defined with (32) with

η̂ :=
2

Cc + 1
=

2

∆t

∆x
max

j
|u(x j)| + 1

∈ ]0, 2], (86)
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we now explain that the results obtained in the case of the convection-diffusion equation (1) allow to prove

without any new difficulties that the LBM schemes (35)(44) and (38)(44) solve the convection equation



∂tρ + ∂x(uρ) = 0,

ρ(0, x) = ρ0(x),

(87)

and that these LBM schemes are now equivalent to the finite difference type scheme

ρn+1
i
− ρn−1

i

2∆t
+

1

2∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
=

max j |u(x j)|
2∆x

(
ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1

)
. (88)

In particular, when u(x) is a constant u0 in (88), the previous results allow to obtain the convergence in L∞

and a discrete maximum principle under a classical CFL condition.

8.1. Link with a finite difference type scheme

The following result is a corollary of Lemma 4.1:

Lemma 8.1. In the periodic case:

i) The LBM scheme (35)(44) with η replaced by η̂ is identical to the finite difference type scheme (46)(88).

ii) The LBM∗ scheme (38)(44) with η replaced by η̂ is identical to the finite difference type scheme (47)(88).

iii) The LBM scheme (35)(44) and the LBM∗ scheme (38)(44) with η replaced by η̂ are identical if and only

if α = β = 1
2
.

Before proving a convergence result in L∞, we can already say that Lemma 7.1 is also verified by the LBM

schemes (35)(44) and (38)(44) with η replaced by η̂, and thus by the scheme (47)(88).

Proof of Lemma 8.1: We just have to apply the proof of Proposition 4.1 with

ν := max
j
|u(x j)|

∆x

2
. (89)

In particular, (17) and (85) with (89) imply that Cc = 2Cd, which means that (32) has to be replaced by

(86).�

8.2. Convergence in L∞ and discrete maximum principle with constant velocity

We are now interested in the advection equation



∂tρ + u0∂xρ = 0,

ρ(0, x) = ρ0(x)

(90)

where u0 ∈ R is a constant velocity. Let us note that when u0 ≥ 0, the LBM schemes (35)(44) and (38)(44)

are respectively given by 

gn+1
1,i
= (η̂ − 1)gn

2,i+1
,

gn+1
2,i
= (2 − η̂)gn

2,i−1
+ gn

1,i−1
,

ρn+1
i
= gn+1

1,i
+ gn+1

1,i

(91)
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and 

gn+1
1,i
= (η̂ − 1)gn

2,i−1
,

gn+1
2,i
= (2 − η̂)gn

2,i−1
+ gn

1,i+1
,

ρn+1
i
= gn+1

1,i
+ gn+1

1,i

(92)

(we have similar formulae when u0 < 0). The following result is a corollary of Proposition 5.1:

Proposition 8.1. Let us suppose that the boundary conditions are periodic and that u(x) is constant and

equal to u0. Then, under the condition


Cc ∈ [0, 1], (a)

α ∈ [0, 1], (b)

β = 0 or β = min(1 − α, α), (c)

(93)

we have:

i) The LBM scheme (35)(44) and the LBM∗ scheme (38)(44) with η replaced by η̂ converge in L∞ and verify

the discrete maximum principle

∀i, ∀n ≥ 0 : min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j . (94)

ii) The scheme (47)(88) converges in L∞ and verifies (94).

iii) The error of the schemes (35)(44) and (38)(44) with η replaced by η̂, and of (47)(88) is of order ∆x for

any (α, β) ∈ R
2.

The LBM scheme (35)(44) with constant velocity u0 and with g0
q,i
= M0

q,i
(that is to say with α = β = 1/2:

see (44) and (48)) is also proposed in [18] to solve the advection equation (90). It is proved in [18] with

the von Neumann stability analysis that this LBM scheme is stable in L2 under the condition |u0| ≤ 1 (see

Theorem 2 in [18]): this condition is the CFL condition (93)(a) since ∆t = ∆x in [18] (which implies that

Cc = |u0|). At last, let us note that (86) implies that the CFL condition (93)(a) is equivalent to the condition

η̂ ∈ [1, 2] (the link between η̂ – noted ω in [18] –, ∆t and ∆x is not detailed in [18]).

Proof of Proposition 8.1: We just have to apply the proof of Proposition 5.1 with ν given by (89) and by

noting that the condition (70)(a) is now given by

∆x ∈
]
0,

min(1, 2Cd)

2Cd

∆x

]
,

which is satisfied if and only if Cd ∈]0, 1/2] that is to say if and only if Cc ∈ ]0, 1] since Cc = 2Cd. We

conclude the proof of points i and ii by noting that the case Cc = 0 is a consequence of Lemma 7.1. At last,

we prove the point iii by showing that the consistency error E is given by

E = |u0|
∆x

2

(
1 −C2

c

)
∂2

xxρ + O(∆x2)

(see §8.3) and by noting that the error of the first iterate (47) is also of order ∆x for any (α, β) ∈ R
2 and any

Cc ≥ 0.�
27



8.3. Consistency error with constant velocity

When the solution ρ(t, x) of the advection equation (90) is enough regular, it also satisfies

∂2
ttρ − |u0|2∂2

xxρ = 0. (95)

On the other side, the consistency error of the centered discretization of u0∂xρ in (88) is of order ∆x2. Thus,

by using the consistency error (81) of the Du Fort-Frankel scheme, the relations (89) and (95), we obtain

that the consistency error E of (88) with u(x) = u0 is given by

E = |u0|
∆x

2

∂2
xxρ −

(
∆t

∆x

)2

∂2
ttρ

 + O(∆x2)

= |u0|
∆x

2

(
1 −C2

c

)
∂2

xxρ + O(∆x2)

which implies that the (first order) equivalent equation associated to the scheme (88) with u(x) = u0 is

∂tρ + u0∂xρ = |u0|
∆x

2

(
1 −C2

c

)
∂2

xxρ. (96)

This result underlines that (88) with u(x) = u0 is a first order scheme applied to (90), and is coherent with

the CFL condition (93)(a). Let us note that by using (33) (with η̂ instead of η) and (89), we can write that

E =
(

1
η̂
− 1

2

) (
1 −C2

c

)
∆x2

∆t
∂2

xxρ + O(∆x2). This formula is exactly the one obtained in [18] (see (23)-(25) in

[18] with ω := η̂ and |a| = Cc; we recall that ∆t = ∆x in [18], which implies in particular that the velocity

|u0| noted |a| in [18] is equal to our CFL constant Cc).

8.4. Exact solution with constant velocity

The equivalent equation (96) suggests that when Cc = 1 (i.e. ∆t = ∆x/|u0|), the scheme (88) (and the

LBM schemes) with u(x) = u0 solves exactly the advection equation (90). Indeed, we have the following

property:

Property 8.1. Let us suppose that the boundary conditions are periodic and that u(x) is constant and equal

to u0. Then, when Cc = 1:

i) For any (α, β) ∈ R
2, the LBM scheme (35)(44) with η replaced by η̂ and the finite difference type scheme

(46)(88) verify 

ρn+1
i
= ρn

i−1
when u0 > 0,

ρn+1
i
= ρn

i+1
when u0 < 0.

(97)

ii) When α = β = 1
2
, the LBM∗ scheme (38)(44) with η replaced by η̂ and the finite difference type scheme

(47)(88) verify (97).

Let us recall that when Cc = 1, (97) is also satisfied by the classical upwind scheme applied to (90).

Proof of Property 8.1: Let us suppose that Cc = 1, that is to say η̂ = 1. We also suppose that u0 ≥ 0 (the

proof is identical when u0 < 0).
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• Proof of point i: We deduce from (91) that



gn+1
1,i
= 0,

gn+1
2,i
= gn

2,i−1
+ gn

1,i−1
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i

which implies that ρn+1
i
= gn

2,i−1
+ gn

1,i−1
= ρn

i−1
. We obtain the result for the scheme (46)(88) by using the

point i of Lemma 8.1.

• Proof of point ii: This is a consequence of points ii and iii of Lemma 8.1.�

9. Probabilistic interpretation of the LBM schemes for the diffusion equation

We now propose two Monte-Carlo algorithms deduced from the LBM scheme (50) and from the LBM∗

scheme (51) in the case of periodic boundary conditions. To obtain these Monte-Carlo algorithms, we define

gn(x, v) = w

K∑

k=1

δ(x − Xn
k ) · δ(v − Vn

k )

where the numerical particles k ∈ {1, . . . ,K} are characterized by the position Xn
k
∈ {x1, . . . , xN} (xi ∈ Ω),

the velocity Vn
k
∈

{
−∆x
∆t
, ∆x
∆t

}
and the weight w ∈ R supposed to be constant, ({Xn

k
}k, {Vn

k
}k) being a random

process which will be defined below and δ(·) being the Dirac distribution. The weak formulation of gn(x, v)

is given by ∫

Ω×R

gn(x, v)ϕ(x, v)dxdv =
∑

i

[
gn

1,iϕ

(
xi,−
∆x

∆t

)
+ gn

2,iϕ

(
xi,
∆x

∆t

)]
∆x

with 

gn
1,i =

w

∆x
card

({
k/Xn

k = xi and Vn
k = −

∆x

∆t

})
,

gn
2,i =

w

∆x
card

({
k/Xn

k = xi and Vn
k =
∆x

∆t

})
.

The density ρn
i
= gn

1,i
+ gn

2,i
is thus given by

ρn
i =

w

∆x
card

({
k/Xn

k = xi

})
.

Moreover, we initialize the particles with the random process



X0
k
= xi with the discrete probability P(X0

k = xi) =
ρ(0, xi) −minl ρ(0, xl)∑
j[ρ(0, x j) −minl ρ(0, xl)]

,

V0
k
=
∆x

∆t
with the probability α,

= −∆x

∆t
with the probability 1 − α

(98)

29



which is a consequence of the initial condition (52), ρ(0, x) being the initial condition (due to the random

nature of (98), we only have ρ0
i
≃ ρ(0, xi)). The random process (98) implies that we have to impose

α ∈ [0, 1].

At last, the weight w is defined with

w =

∑
i ρ

0
i

K ∆x

which comes from the conservation constraint
∫

Ω×R

gn(x, v)dxdv =
∑

i

ρ0
i ∆x.

9.1. Monte-Carlo algorithm for the LBM scheme

The LBM scheme (50) can be written with the following splitting collision-transport:

Collision:



g∗1,i = gn
1,i

(
1 − η

2

)
+ gn

2,i

η

2
,

g∗2,i = gn
2,i

(
1 − η

2

)
+ gn

1,i

η

2
.

(99)

Transport: 

gn+1
1,i
= g∗

1,i+1
,

gn+1
2,i
= g∗

2,i−1
.

(100)

This incites us to approach (99)(100) with the random algorithm



Vn+1
k

= Vn
k with the probability 1 − η

2
,

= −Vn
k with the probability

η

2
,

Xn+1
k

= Xn
k + ∆tVn+1

k

(101)

where

η =
1

Cd +
1
2

.

We recall that ∆t := Cd
∆x2

ν
with Cd ≥ 0. Let us underline that since η ∈]0, 2], the random process (101)

is always defined. Moreover, it describes a 1D Brownian motion. Let us note that a similar Monte-Carlo

algorithm has been proposed in [41] for the telegraph equation (82).
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9.2. Monte-Carlo algorithm for the LBM∗ scheme

In the same way, the LBM∗ scheme (51) can be written with the following splitting transport-collision:

Transport: 

g∗
1,i
= gn

1,i+1
,

g∗
2,i
= gn

2,i−1
.

(102)

Collision:



gn+1
1,i = g∗1,i

(
1 − η

2

)
+ g∗2,i

η

2
,

gn+1
2,i = g∗2,i

(
1 − η

2

)
+ g∗1,i

η

2
.

(103)

This incites us to approach (102)(103) with the random algorithm



Xn+1
k

= Xn
k + ∆tVn

k ,

Vn+1
k

= Vn
k with the probability 1 − η

2
,

= −Vn
k with the probability

η

2
.

(104)

We show below the relation between the Monte-Carlo algorithms (98)(101) and (98)(104).

9.3. Some properties of the Monte-Carlo algorithms

We present some properties satisfied by the Monte-Carlo algorithms (98)(101) and (98)(104).

9.3.1. Discrete maximum principle

We have the following result:

Lemma 9.1. For any Cd ≥ 0, the Monte-Carlo algorithms (98)(101) and (98)(104) verify the discrete

maximum principle

∀i, ∀n ≥ 0 : min
j
ρ0

j ≤ ρn
i ≤ max

j
ρ0

j . (105)

We recall that the Monte-Carlo algorithms (98)(101) and (98)(104) are defined when α ∈ [0, 1]. Lemma 9.1

is coherent with the fact that the LBM schemes (50)(52) and (51)(52) with periodic boundary conditions

verify the discrete maximum principle (105) when α ∈ [0, 1] (see point i of Proposition 6.1).

Proof of Lemma 9.1: We have ρn
i = Nn

i

w

∆x
where Nn

i
is the number of particles in the cell i at the time tn.

Since w =

∑
j ρ

0
j

K ∆x, we obtain ρn
i
=

Nn
i

K
∑

j ρ
0
j

that is to say

ρn
i =

Nn
i∑

i Nn
i

∑

j

ρ0
j

since K = ∑
i Nn

i
. Thus, ρn

i
is a convex combination of {ρ0

j
} j which allows to conclude.�

31



9.3.2. Link between the Monte-Carlo algorithms

We can remark that the Monte-Carlo algorithms (98)(101) and (98)(104) are similar. More precisely,

the LBM scheme (98)(101) can be rewritten with


X0
k
= xi with the discrete probability P(X0

k = xi) =
ρ(0, xi) −minl ρ(0, xl)∑
j[ρ(0, x j) −minl ρ(0, xl)]

,

V
0

k =
∆x

∆t
with the probability α,

= −∆x

∆t
with the probability 1 − α,

V0
k
= V

0

k with the probability 1 − η
2
,

= −V
0

k with the probability
η

2

(106)

and 

Xn+1
k

= Xn
k + ∆tVn

k ,

Vn+1
k

= Vn
k with the probability 1 − η

2
,

= −Vn
k with the probability

η

2
.

(107)

But, the random process 

V
0

k =
∆x

∆t
with the probability α,

= −∆x

∆t
with the probability 1 − α,

V0
k
= V

0

k with the probability 1 − η
2
,

= −V
0

k with the probability
η

2

is equivalent to the random process


V0
k
=
∆x

∆t
with the probability ξ,

= −∆x

∆t
with the probability 1 − ξ

with ξ = α

(
1 − η

2

)
+ (1 − α)

η

2
that is to say with

ξ =
η

2
+ α(1 − η)

which belongs to [0, 1] since α ∈ [0, 1] and η ∈]0, 2]. To summarize, the LBM scheme (98)(101) is equiv-

alent to the LBM∗ scheme (98)(104) by replacing α with ξ in (98). This result is coherent with the fact

that the LBM schemes (50)(52) and (51)(52) are equivalent to the Du Fort-Frankel scheme whose the first

iterate is respectively given by

ρn=1
i := ξρ0

i−1 + (1 − ξ)ρ0
i+1

and by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1

(see Lemma 4.1).
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9.3.3. Other properties

Let us suppose that Cd = 0. Thus, we have η = 2 which implies that the Monte-Carlo algorithms (101)

and (104) are deterministic and verify Vn+1
k
= −Vn

k
. As a consequence, we obtain

∀i, ∀n ≥ 0 : ρn+2
i = ρn

i

which corresponds to Lemma 7.2.

We now suppose that Cd → +∞. In that case, we have η = 0. Again, the Monte-Carlo algorithms (101)

and (104) are deterministic but verify now Vn+1
k
= Vn

k
. Thus, the particles move to the left or to the right

without changing their initial velocity: in that case, the Monte-Carlo algorithms (98)(101) and (98)(104)

do not converge toward the solution of the diffusion equation. This situation is related to the consistency

condition of the LBM schemes described in §7.2.

At last, let us suppose that Cd =
1
2
. In that case, we easily verify that the Du Fort-Frankel scheme is

equivalent to the classical three points finite difference scheme for the diffusion equation (see (155) with

η = 1 and u(x) = 0). On the other side, the Monte-Carlo algorithms (101) and (104) describe a discrete

brownian motion which is the Monte-Carlo version of the three points scheme for the diffusion equation.

These remarks are coherent with the fact that the LBM schemes (50) and (51) are equivalent to the Du

Fort-Frankel scheme and, thus, are equivalent to the three points scheme when Cd =
1
2
.

9.4. Convergence of the Monte-Carlo algorithms

It remains to prove that the Monte-Carlo algorithms (98)(101) and (98)(104) converge to the solution of

the diffusion equation with probabilistic tools, which would be a probabilistic version of Proposition 5.2 in

the periodic case. More generally, it would be interesting to extend the Monte-Carlo algorithms (98)(101)

and (98)(104) to the Neumann and Dirichlet cases, and to verify the convergence of these schemes with

probabilistic tools. Moreover, it would be also interesting to prove the convergence of the LBM schemes

(50) and (51) with modified Dirichlet boundary conditions (see Conjecture 6.1) by using a probabilistic

approach. At last, the case of the LBM schemes (35) and (38) with u(x) , 0 should be also studied with a

probabilistic approach. A starting point could be [41, 42].

10. Numerical results

We now present numerical results which illustrate some of the results presented before in the case of

the diffusion equation. In the following test-cases, we choose xmax = −xmin = 10 and ν = 1. Moreover, N

is the number of cells: in the periodic or Neumann cases, we have N∆x = xmax − xmin and in the Dirichlet

case, we have (N + 1)∆x = xmax − xmin. At last, we recall that ∆t = Cd
∆x2

ν
and that η = 1

Cd+
1
2

.

10.1. LBM∗ scheme

• Test-case 1: Discrete maximum principle with Dirichlet boundary conditions

We test the the LBM∗ scheme (51)(52) with α = 1
2

when we apply the Dirichlet boundary conditions

ρ(t, xmin) = ρxmin
and ρ(t, xmax) = ρxmax

. At the discrete level, we use the Dirichlet boundary conditions (63)
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in x = xmin and its extension in x = xmax that is to say



gn+1
2,i=0 =

ρxmin

2
+

(
ρxmin

2
− gn

1,i=1

)
(1 − η),

gn=0
2,i=0
=
ρxmin

2
,

gn+1
1,i=N+1 =

ρxmax

2
+

(
ρxmax

2
− gn

2,i=N

)
(1 − η),

gn=0
1,i=N+1

=
ρxmax

2
.

(108)

We also use the modified Dirichlet boundary conditions (77) in x = xmin and its extension in x = xmax that

is to say

∀n ≥ 0 :



gn
2,i=0 =

ρxmin

2
,

gn
1,i=N+1 =

ρxmax

2
.

(109)

We recall that the boundary conditions (109) allow to satisfy a discrete maximum principle for any Cd ≥ 0

which is not the case of (108): see Lemma 6.1 and Proposition 6.2. To illustrate this result, we choose

N = 10 – that is to say a low number of cells –, we define the following initial condition

ρ0
i
=

1

4
if i < {5, 6},

=
3

4
if i ∈ {5, 6}

and we choose Cd = 4. Figures 1-2 show the results respectively with ρxmin
= ρxmax

= 1 and ρxmin
= ρxmax

= 0

when we use (108) (Figures 1-2 show also the initial condition and the stationary solution). Figures 3-4 show

these results when we replace (108) by (109). We see on Figures 1-2 that the discrete maximum principle

∀i ∈ {1, . . . ,N} : min(ρxmin
, ρxmax

, min
1≤ j≤N

ρ0
j) ≤ ρn

i ≤ max(ρxmin
, ρxmax

, max
1≤ j≤N

ρ0
j)

is not satisfied, and that it is satisfied on Figures 3-4: this is coherent with Lemma 6.1 and Proposition 6.2.

Let us underline that although the discrete maximum principle is not satisfied on Figures 1-2, these fig-

ures show that the LBM∗ scheme (51)(52)(108) is stable in L∞ although Cd = 4, which is coherent with

Proposition 5.2.

• Test-case 2: Convergence order of the modified Dirichlet boundary conditions (109)

The test-case 1 shows that to make robust the LBM∗ scheme when the number of cells is low, it is better to

use (109) than (108). Nevertheless, we may think that (108) is more accurate than (109). Indeed, the error

of the LBM∗ scheme using (108) is in ∆x2 since α = 1
2

(see Proposition 5.2) and we conjectured that the

order of the LBM∗ scheme using (109) is in ∆x (see Conjecture 6.1). To verify these convergence orders,

we use the exact solution ρexact(t, x) of the diffusion equation

ρexact(t, x) = erf

[
x − xmin√
4ν(t + 1)

]
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Fig. 1: LBM∗ scheme with (108) Fig. 2: LBM∗ scheme with (108)

when ρxmin
= ρxmax

= 1 when ρxmin
= ρxmax

= 0

Fig. 3: LBM∗ scheme with (109) Fig. 4: LBM∗ scheme with (109)

when ρxmin
= ρxmax

= 1 when ρxmin
= ρxmax

= 0

Fig. 5: LBM∗ scheme with (108) Fig. 6: LBM∗ scheme with (109)
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with the unstationary Dirichlet boundary conditions



ρn
xmin
= ρexact(t

n, xmin),

ρn
xmax
= ρexact(t

n, xmax).

Moreover, we choose Cd = 2, t f inal = 15 and the number of cells N ∈ {50, 100, 200}. Figure 5 shows the

function y = x2 and the normalized L2 error

e(∆x) :=

√∑

i

|ρn
i
− ρexact(tn, xi)|2∆x

√∑

i

|ρexact(tn, xi)|2∆x

in function of ∆x in (log-log scale) when we use (108); Figure 6 shows the function y = x and e(∆x) when

we use (109). These figures confirm that the error is in ∆x2 when we use (108) and that it is in ∆x when we

use (109).

• Test-case 3: Influence of the first iterate ρn=1
i

on the Du Fort-Frankel scheme in the periodic case

We know that the LBM∗ scheme (51)(52) and the Du Fort-Frankel scheme (54) are equivalent when the first

iterate ρn=1
i

of the Du Fort-Frankel scheme is given by

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 where α ∈ R (110)

(see Lemma 4.1). Moreover, these schemes verify the discrete maximum principle when α ∈ [0, 1] in

the periodic case (see (74) in Proposition 6.1). Here, we verify the influence of the choice of (110) when

α ∈ [0, 1] on the Du Fort-Frankel scheme by comparing with the results obtained by replacing (110) with

ρn=1
i := ρ0

i . (111)

Let us underline that the Du Fort-Frankel scheme (54) is not equivalent to the LBM∗ scheme (51)(52) when

the first iterate is given by (111) instead of (110). As a consequence, the discrete maximum principle may

not be satisfied when we use (111). To verify this, we choose Cd = 4 and a number of cells N equal to 100,

and we define the initial condition with the discrete Dirac distribution

ρ0
i
= 0 if i , 50

= 1 if i = 50.

Figures 7-9 show the results after some time steps when we use the Du Fort-Frankel scheme (54) with (110)

by choosing respectively α = 0, α = 1 and α = 1
2
: these figures confirm Proposition 6.1. Figure 10 shows

the result when we replace (110) by (111): this figure shows that the discrete maximum principle is not

satisfied by the Du Fort-Frankel scheme.

These results underline the importance of the choice of the first iterate ρn=1
i

to obtain for any Cd ≥ 0 the

stability in L∞ and a discrete maximum principle with the Du Fort-Frankel scheme.
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Fig. 7: Du Fort Frankel scheme Fig. 8: Du Fort Frankel scheme

with (110) and α = 0 with (110) and α = 1

Fig. 9: Du Fort Frankel scheme Fig. 10: Du Fort Frankel scheme

with (110) and α = 1
2

with (111)

10.2. Monte-Carlo algorithm

We now test the Monte-Carlo algorithm (98)(104) which is the random version of the LBM∗ scheme

(51)(52). The initial condition ρ(t = 0, x) is a gaussian function centered in x = 0, the boundary conditions

are periodic and we choose α = 1
2
.

Figures 11-14 show the result after some time steps obtained with 100, 1000, 5000 and 10000 particles

when Cd = 2 and when the number of cells N is equal to 100 (we also represent on these figures the initial

condition and the result obtained with the LBM∗ scheme). These results confirm that the Monte-Carlo

algorithm converges to the LBM∗ scheme when the number of particles goes to the infinity.

Figures 15 shows the result when Cd = 2, when the number of cells N and the number of particles K are

equal to 1000: by comparing Figure 12 (N = 100 and K = 1000) and Figure 15 (N = K = 1000), we see

thatK has to be greater than N to obtain a good convergence of the Monte-Carlo algorithm. This behaviour

is classical and can be justified by the fact that when K < N, there exists at any time tn at least one cell

where the number of particles is equal to zero.

10.3. On the consistency condition

Figure 16 shows the result of the test-case presented in §10.2 when Cd = 100, N = 100 and K = 1000

(we also represent on these figures the initial condition and the result obtained with the LBM∗ scheme when

Cd = 2). Figure 17 show the result obtained with the LBM∗ scheme when Cd = 1000.

Figures 16 and 17 show that when Cd → +∞, the Monte-Carlo algorithm and the LBM∗ scheme do not

approach the solution of the diffusion equation. This confirms the importance of the consistency condition

∆t = Cd
∆x2

ν
(see §7.2 and §9.3.3).
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Fig. 11: 100 particles Fig. 12: 1000 particles

Fig. 13: 5000 particles Fig. 14: 10000 particles

Fig. 15: 1000 cells and 1000 particles Fig. 16: 100 cells, 1000 particles and Cd = 100 Fig. 17: LBM∗ scheme, 100 cells and Cd = 1000

11. Conclusion

In order to construct and to justify LBM schemes for the 1D convection-diffusion equation, we have

firstly studied the fluid limit of a discrete velocity kinetic system whose kinetic velocities belong to a discrete

and finite set {vεq}q∈{1,2} and whose the collision term is a BGK-type operator characterized by the collision

time ε. This fluid limit – which is the 1D convection-diffusion equation – has been formally obtained with

a Chapman-Enskog expansion and with a Hilbert expansion. The originality of this kinetic system relies on

the fact that the kinetic velocity vεq is proportional to 1/
√
ε.

Then, we have constructed two LBM schemes for the 1D convection-diffusion equation by discretizing the

kinetic system with a third order integration formula. With periodic boundary conditions, we have shown

that theses LBM schemes are equivalent to a finite difference type scheme (initiated by a particular first

iterate) which is named LFCCDF scheme. This equivalence has allowed us to obtain the convergence in L∞

of the LBM and LFCCDF schemes. For the diffusion equation, we have also obtained discrete maximum

principles with periodic, Neumann or Dirichlet boundary conditions. These discrete maximum principles

are thus satisfied by the Du Fort-Frankel (DFF) scheme since the LFCCDF scheme is a DFF scheme in

the pure diffusive case. We underline that these results in L∞ are new for the LBM schemes but also for

the LFCCDF scheme and, thus, especially for the DFF scheme which has been known for a long time

to converge only in L2 in the periodic case [35]. Moreover, by modifying the diffusion coefficient of the

proposed LBM schemes, we obtained LBM schemes in the pure advective case and we again obtained

stability results in L∞. In [18], one of these LBM schemes has been studied. Nevertheless, only stability

results in L2 in the periodic case were proved in [18].
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In the same spirit, we have proposed two Monte-Carlo algorithms for the resolution of the diffusion equation

coming from a probabilistic interpretation of the proposed LBM schemes in the periodic case. Discrete

maximum principles are also obtained. These results encourage us to think that it will be possible to obtain

theoretical results for the LBM schemes by also using probabilistic tools.

At last, we expect that it will be possible to analyze the properties of LBM schemes applied to more compli-

cate equations as non-linear equations of the type ∂tρ = Φ(t, x, ρ, ∂xρ, ∂
2
xxρ) where Φ(·) is a given function

by using an approach similar to the one proposed in this paper. Beyond the potential existence of links

between LBM schemes, finite difference type schemes and Monte-Carlo algorithms for simple PDEs, we

also expect to find links between LBM schemes applied to the incompressible Navier-Stokes system and

theoretical works on discrete velocity kinetic systems [43].

Acknowledgements: We wish to thank François Drolet, David Vidal and Dominique Diplomate for helpfull

discussions. We wish also to thank Christophe Le Potier who helped us to prove the equivalence between

the proposed LBM schemes and the Du Fort-Frankel scheme.

A. Proof of Proposition 2.1

We now give two (formal) proofs which allow to write that the fluid limit of the kinetic system

∀q ∈ {1, 2} : ∂t f εq + vεq∂x f εq =
1

ε
(Mεq − f εq ) with vεq = (−1)q

√
ν

ε
(112)

is the equation

∂tρ
ε + ∂x(uρε) = ν∂2

xxρ
ε + O(ε), (113)

and, thus, is the convection-diffusion equation (1) since we can neglect the error of the order of ε in (113).

One of the difficulties is linked to the fact that the kinetic velocity vεq := (−1)q
√
ν
ε

depends on the collision

time ε which is not at all classical in the framework of the kinetic theory.

The first proof is based on a Chapman-Enskog expansion; the second proof is based on a Hilbert ex-

pansion. The proof based on the Chapman-Enskog expansion is easier than the one based on the Hilbert

expansion. Moreover, the Chapman-Enskog expansion allows to obtain

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)qε3/2

(
u
√
ν
· ∂x(uρε) − ν∂2

xxρ
ε

ρε
−
√
ν
∂2

xx(uρε)

ρε
+ ν3/2

∂3
xxxρ

ε

ρε

)]
+ O(ε2).

(114)

With the Hilbert expansion, we only obtain

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)]
+ O(ε3/2) (115)

which is less accurate than (114).
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The fact that the Chapman-Enskog approach is easier than the Hilbert approach is classical in the kinetic

theory. In fact, the compressible Navier-Stokes system – which is the fluid limit of the classical Boltzmann

equation – is obtained with a Chapman-Enskog expansion and not with a Hilbert expansion which is too

complicate to give the result. Here, it is possible to obtain the fluid limit with a Hilbert expansion because

the kinetic velocity set is a discrete and finite set, which implies that the linear operators are simple 2 × 2

matrix. Moreover, it seems to us that the Hilbert expansion is more adapted than the Chapman-Enskog

expansion to clearly justify the fluid limit (113) of the kinetic system (112) because the Hilbert approach is

based on a sequence of PDEs that we can study a posteriori (we do not try to do such theoretical study in the

present paper). At last, the Hilbert expansion can also be seen as a (formal) justification of the Chapman-

Enskog expansion since both expansions give the same result. That is why we also write the proof based on

the Hilbert expansion.

At last, let us note that in the following analysis, we forget any possible influence of boundary conditions

on ∂Ω: in other words, we suppose that Ω ⊂ R is periodic. Any analysis of the influence of non-periodic

boundary conditions on ∂Ω on the fluid limit of (112) is really complicate because of possible Knudsen

layers in the vicinity of ∂Ω where the distribution f εq is not close to the maxwellian Mεq even when ε ≪ 1.

As a consequence, we can only expect that the fluid limit (113) is valid far from the boundary ∂Ω when the

boundary conditions are not periodic.

A.1. Proof based on a Chapman-Enskog expansion

Let us suppose that the solution f εq of (112) can be expanded with the Chapman-Enskog expansion

f εq = Mεq ·
(
1 +
√
εgε1,q + εg

ε
2,q + ε

3/2gε3,q

)
+ O(ε2) (116)

under the constraints ∑

q∈{1,2}
Mεq(gε1,q +

√
εgε2,q) = 0 (117)

and ∑

q∈{1,2}
Mεqgε3,q = 0 (118)

where gε
k,q

is supposed to be of order one. We recall that the maxwellian Mεq is given by

Mεq :=
ρε

2

(
1 +

u

vεq

)
=
ρε

2

[
1 + (−1)q

√
ε

ν
· u

]

where ρε := f ε
1
+ f ε

2
and verifies

∑

q∈{1,2}

(
1

vεq

)
Mεq =

(
ρε

ρεu

)
. (119)

It is important to note that the constraint (117) is not classical in the framework of Chapman-Enskog expan-

sions. Indeed, we should a priori impose
∑

q∈{1,2}
Mεqgε1,q = 0 and

∑

q∈{1,2}
Mεqgε2 = 0. (120)

Here, we replace (120) by (117) because the set of kinetic velocities {vεq}q∈{1,2} depends on
√
εwhich implies

that Mεqgε
1,q

has a term of order
√
ε (and, thus, of order

√
εgε

2,q
) since gε

1,q
(and gε

2,q
) is of order one.

By injecting expansion (116) into (112), we obtain:
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• Order
√
ε−1: We obtain the equality

Mεqgε1,q = −
√
εvεq∂xMεq = −(−1)q

√
ν∂xMεq (121)

that is to say

Mεqgε1,q = −(−1)q
√
ν
∂xρ
ε

2
−
√
ε
∂x(uρε)

2
(122)

since Mεq =
ρε

2

[
1 + (−1)q

√
ε

ν
· u

]
.

• Order
√
ε0: We obtain the equality

Mεqgε2,q = −
[
∂t M

ε
q +
√
εvεq∂x(Mεqgε1,q)

]
. (123)

• Order
√
ε: We obtain the equality

Mεqgε3,q = −
[
∂t(Mεqgε1,q) +

√
εvεq∂x(Mεqgε2,q)

]
. (124)

Moreover, by summing (112) over the set {vεq}q∈{1,2} and by injecting the expansion (116), we obtain

∂tρ
ε + ∂x(uρε) = −∂x


∑

q∈{1,2}
(vεq − u) f εq

 (since
∑

q∈{1,2}
u f εq = uρε and

∑
q∈{1,2}

1
ε
(Mεq − f εq ) = 0)

= −∂x


∑

q∈{1,2}
(vεq − u)Mεq

 −
√
ε∂x


∑

q∈{1,2}
(vεq − u)Mεqgε1,q

 − ε∂x


∑

q∈{1,2}
(vεq − u)Mεqgε2,q

 + O(ε)

= −∂x


∑

q∈{1,2}
(vεq − u)Mεq

 −
√
ε∂x


∑

q∈{1,2}
vεqMεqgε1,q

 − ε∂x


∑

q∈{1,2}
vεqMεqgε2,q



+
√
ε∂x

u
∑

q∈{1,2}
Mεq(gε1,q +

√
εgε2)

 + O(ε).

(125)

By taking into account (119), (121) and (123), we obtain

ε∂x


∑

q∈{1,2}
vεqMεqgε2,q

 = −ε∂x



∑

q∈{1,2}
vεq

[
∂t M

ε
q +
√
εvεq∂x(Mεqgε1,q)

]


= −ε∂2
xt(uρ

ε) + ε∂x


∑

q∈{1,2}
vεq
√
εvεq∂x(

√
εvεq∂xMεq)



= −ε∂2
xt(uρ

ε) + εν∂3
xxx(uρε) = O(ε).
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Thus, by also taking into account (117), we obtain

∂tρ
ε + ∂x(uρε) = −

√
ε∂x


∑

q∈{1,2}
vεqMεqgε1,q

 + O(ε) = ε∂x


∑

q∈{1,2}

(
vεq

)2
∂xMεq

 + O(ε)

= ν∂2
xx


∑

q∈{1,2}
Mεq

 + O(ε) = ν∂2
xxρ
ε + O(ε)

which gives (113) that is to say

∂tρ
ε + ∂x(uρε) = ν∂2

xxρ
ε + O(ε). (126)

We deduce from (122), (123) and (126) that

Mεqgε
2,q
= −∂t M

ε
q + ν∂

2
xxMεq

= −∂tρ
ε

2
− (−1)q

√
ε

ν
· ∂t(uρ

ε)

2
+ ν
∂2

xxρ
ε

2
+ (−1)q

√
εν · ∂

2
xx(uρε)

2

=
∂x (uρε)

2
+ (−1)q

√
ε

ν
u · ∂x(uρε) − ν∂2

xxρ
ε

2
+ (−1)q

√
εν · ∂

2
xx(uρε)

2
+ O(ε)

(127)

(we also use the fact that u(x) does not depend on the time t). This last equality encourages us to take

Mεqgε2,q =
∂x (uρε)

2
+ (−1)q

√
ε

ν
u · ∂x(uρε) − ν∂2

xxρ
ε

2
+ (−1)q

√
εν · ∂

2
xx(uρε)

2
(128)

since the term of order ε in (127) is a term of order ε2 in (116) and, thus, of order ε in (126). We deduce

from (122) and (128) that

Mεq · (
√
εgε1,q + εg

ε
2,q) =

ρε

2

[
−(−1)q

√
εν
∂xρ
ε

ρε
+ (−1)q ε

3/2

√
ν

u · ∂x(uρε) − ν∂2
xxρ
ε

ρε
+ (−1)qε3/2

√
ν · ∂

2
xx(uρε)

ρε

]

which verifies the constraint (117). We deduce from (122), (124) and (128) that

Mεqgε3,q = (−1)q
√
ν
∂2

txρ
ε

2
− (−1)q

√
ν
∂2

xx (uρε)

2
+ O(

√
ε)

which allows to obtain

Mεqgε
3,q
= (−1)q

√
ν
ν∂3

xxxρ
ε − ∂2

xx(uρε)

2
− (−1)q

√
ν
∂2

xx (uρε)

2
+ O(

√
ε)

= (−1)qν3/2
∂3

xxxρ
ε

2
− (−1)q

√
ν∂2

xx

(
uρε

)
+ O(

√
ε)

(129)

by using (126). This last equality encourages us to take

Mεqgε3,q = (−1)qν3/2
∂3

xxxρ
ε

2
− (−1)q

√
ν∂2

xx

(
uρε

)
(130)
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since the term of order
√
ε in (129) is a term of order ε2 in (116) and, thus, of order ε in (126). Let us note

that (130) verifies the constraint (118). Thus, by taking into account (126), we obtain

Mεq · (
√
εgε

1,q
+ εgε

2,q
+ ε3/2gε

3,q
) =

ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)q ε
3/2

√
ν

u · ∂x(uρε) − ν∂2
xxρ
ε

ρε
+ (−1)qε3/2

√
ν
∂2

xx(uρε)

ρε

+(−1)qε3/2ν3/2
∂3

xxxρ
ε

ρε
− 2(−1)qε3/2

√
ν
∂2

xx (uρε)

ρε

]

that is to say

Mεq · (
√
εgε

1,q
+ εgε

2,q
+ ε3/2gε

3,q
) =

ρε

2

[
1 + (−1)q

√
ε

(
u
√
ν
−
√
ν
∂xρ
ε

ρε

)

+(−1)qε3/2

(
u
√
ν
· ∂x(uρε) − ν∂2

xxρ
ε

ρε
−
√
ν
∂2

xx(uρε)

ρε
+ ν3/2

∂3
xxxρ

ε

ρε

)]

which gives (114) by using (116).

A.2. Proof based on a Hilbert expansion

Let us suppose that the solution f εq of (112) can be expanded with the Hilbert expansion

f εq = mεq · (gε0,q +
√
εgε1,q +

√
ε

2
gε2,q + . . .) (131)

where

mεq := 1 +
u

vεq
= 1 + (−1)q

√
ε

ν
· u.

The density ρε := f ε
1
+ f ε

2
is given by

ρε = ρε0 +
√
ερε1 +

√
ε

2
ρε2 + . . .

with

∀n : ρεn =
∑

q∈{1,2}
mεqgεn,q. (132)

And, the maxwellian Mεq defined with

Mεq :=
ρε

2

[
1 +

u

vεq

]
=
ρε

2

[
1 + (−1)q

√
ε

ν
· u

]

whose density is equal to ρε is given by

Mεq = mεq · (ρε0 +
√
ερε1 +

√
ε

2
ρε2 + . . .).

In the sequel, we will prove that when the Hilbert expansion (131) is valid, the density ρε is necessarily

solution of (113). Moreover, by computing gε
0,q

, gε
1,q

and gε
2,q

, we will obtain (115).
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Let us note that the difference between the Chapman-Enskog expansion (116) and the Hilbert expansion

(131) can be underlined by comparing the constraints (117)(118) and the relations (132) which are not

constraints, ρεn being unknows which are solution of a sequence of PDEs (see below).

By injecting expansion (131) into (112), we obtain:

• Order ε−1: We obtain the equality

gε0,1 = gε0,2 = ρ
ε
0(t, x). (133)

• Order (
√
ε)n−1/2 (n ∈ N): We obtain the following PDEs whose {gεn,q}n≥0 is solution:

(
√
ε)n[∂t(m

ε
qgεn,q) + vεq∂x(mεqgεn,q)] = mεq(

√
ε)n−1


∑

k∈{1,2}
mεkgεn+1,k − gεn+1,q

 . (134)

We recall thatO(|vεq|) = 1/
√
εwhich implies that (

√
ε)nvεq∂x(mεqgεn,q) and mεq(

√
ε)n−1

( ∑
k∈{1,2}

mε
k
gε

n+1,k
− gε

n+1,q

)

are formally of the same order. Moreover, we keep the unstationary term (
√
ε)n∂t(m

ε
qgεn,q) to obtain

an initial value problem for mεqgεn,q. PDEs (134) can be written with the equivalent formulation

∀n ≥ 0 : Aε · Gn+1 = Bε(Gεn) (135)

where Gεn = (gε
n,1
, gε

n,2
)T , Bε = (bε

1
, bε

2
)T and where



Aε =

(
−mε

2
mε

2

mε
1
−mε

1

)
, (a)

bεq(Gεn) =

√
ε

mεq
· [∂t(m

ε
qgεn,q) + vεq∂x(mεqgεn,q)]. (b)

(136)

Since the matrix Aε is not invertible, we have to study carrefuly linear system (135). By applying the

Fredholm alternative, we obtain the following result:

Lemma A.1. Let Gε−1
= 0 and

Gε0 =
(

1

1

)
ρε0. (137)

Then, Equation (135) has an unique solution under the constraints

∀n ≥ 0 : ∂tρ
ε
n + ∂x(uρεn) = F ε(Gεn−1) (138)

where

∀n ≥ 0 : F ε(Gεn−1) := ∂x


∑

q∈{1,2}
(vεq − u)mεqbεq(Gεn−1)

 . (139)

Moreover, {Gεn}n≥1 is given by the recurrence relation

∀n ≥ 1 : Gεn = −Bε(Gεn−1) + ρεn

(
1

1

)
. (140)
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Thus, the construction process to obtain {Gεn}n≥0 is the following:



Firstly, we note that F ε(Gε−1
) = 0 since Gε−1

= 0;

secondly, we compute ρε
0

with (138);

thirdly, we compute Gε
0

with (137).

→



Firstly, we compute F ε(Gε
0
) with (139);

secondly, we compute ρε
1

with (138);

thirdly, we compute Gε
1

with (140).

→ . . .

. . .→



Firstly, we compute F ε(Gε
n−1

) with (139);

secondly, we compute ρεn with (138);

thirdly, we compute Gεn with (140).

→ . . . (141)

By using (138), we obtain that



∂tρ
ε
0
+ ∂x(uρε

0
) = 0 (constraint (138) with n = 0), (a)

∂tρ
ε
1
+ ∂x(uρε

1
) = F ε(Gε

0
) (constraint (138) with n = 1) (b)

∂tρ
ε
2
+ ∂x(uρε

2
) = F ε(Gε

1
) (constraint (138) with n = 2) (c)

(142)

that is to say

∂tρ
ε + ∂x(uρε) =

√
εF ε(Gε0) + εF ε(Gε1) + O(ε) (143)

since ρε = ρ0 +
√
ερ1 + ερ2 +O(ε3/2). Let us note that the term of order ε in (143) is obtained by supposing

that F ε(Gεn) = O(1/
√
ε) (∀n ≥ 0) because of the velocity vεq in (139). Thus, we obtain (113) by using the

following lemma:

Lemma A.2. We have 

F ε(Gε0) =
ν
√
ε
∂2

xxρ
ε
0 + O(

√
ε), (a)

F ε(Gε1) =
ν
√
ε
∂2

xxρ
ε
1 + O(1). (b)

(144)

Moreover, we have the following result which will allow us to obtain (115):

Lemma A.3. We have


gε1,q =
√
ε∂x(uρε0) − (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
+ ρε1, (a)

gε2,q = −ν
∂

2
xxρ
ε
0 −
∂2

xx

(
mεqρ

ε
0

)

mεq

 − (−1)q
√
ν
∂x

(
mεqρ

ε
1

)

mεq
+ ρε2 + O(

√
ε). (b)

(145)

Thus, by using (145), we obtain

mεq(gε
0,q
+
√
εgε

1,q
+ εgε

2,q
) =

1

2

(
1 + (−1)q

√
ε

ν
u

)
×

×
{
ρε0 +

√
ερε1 + ερ

ε
2 − (−1)q

√
εν

mεq
∂x

[
mεq

(
ρε0 +

√
ερε1

)]

+ε∂x(uρε0) − εν
∂

2
xxρ0 −

∂2
xx

(
mεqρ

ε
0

)

mεq




+ O(ε3/2).
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By noting that ∂xmεq = (−1)q
√
ε
ν
· u′(x)

2
, we deduce from the previous equality that

mεq(gε
0,q
+
√
εgε

1,q
+ εgε

2,q
) =

1

2

(
1 + (−1)q

√
ε

ν
u

)
×

×
[
ρε0 +

√
ερε1 + ερ

ε
2 − (−1)q

√
εν∂x(ρε0 +

√
ερε1) − ερε0

u′(x)

2mεq
+ ε∂x(uρε0)

]
+ O(ε3/2)

=
1

2

(
ρε0 +

√
ερε1 + ερ

ε
2

) (
1 + (−1)q

√
ε

ν
u

)

−(−1)q

√
εν

2
∂x(ρε0 +

√
ερε1) − ε

2

[
ρε0

u′(x)

2mεq
+ u∂xρ

ε
0 + ∂x(uρε0)

]
+ O(ε3/2)

that is to say

f εq =
ρε

2

(
1 + (−1)q

√
ε

ν
u

)
− (−1)q

√
εν

2
∂xρ
ε − ε

2

[
ρε0

u′(x)

2mεq
+ u∂xρ

ε
0 − ∂x(uρε0)

]
+ O(ε3/2).

Since ρε
0

u′(x)
2mεq
+ u∂xρ

ε
0
= ∂x(uρε

0
) + O(

√
ε), we obtain

f εq (t, x) =
ρε

2

[
1 + (−1)q

√
ε

(
u(x)
√
ν
−
√
ν
∂xρ
ε

ρε

)]
+ O(ε3/2) (146)

which is exactly the expansion (115).

It remains to prove Lemmae A.1, A.2 and A.3:

Proof of lemma A.1: The matrix Aε is not invertible and its kernel is given by

KerAε =
{
X ∈ R

2 such that X = µ(1, 1)T , µ ∈ R

}
.

Moreover, Aε admits the eigenvalue λ = −1 whose eigenspace is given by

Eε,λ=−1 =
{
X ∈ R

2 such that X = µ(mε
2
,−mε

1
)T , µ ∈ R

}
(a)

=

X ∈ R
2 such that

∑
q∈{1,2}

Xqmεq = 0

 . (b)

(147)

Let us note that Eε,λ=−1 depends on ε – which is not the case of KerAε –, that KerAε ⊕ Eε,λ=−1 = R
2 and

that Eε,λ=−1 ⊥ (mε
1
,mε

2
)T . The linear application Aε : X 7→ Aε · X defines a bijection from Eε,λ=−1 into

Eε,λ=−1. Thus, we can solve linear system (135) if and only if

∀n ≥ 0 : Bε(Gεn) ∈ Eε,λ=−1. (148)

This corresponds to the Fredholm alternative in finite dimension. Thus, by using (147)(b), the vectorBε(Gεn)

has to verify the constraint

∀n ≥ 0 :
∑

q∈{1,2}
mεqbεq(Gεn) = 0 (149)
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that is to say

∀n ≥ 0 :
∑

q∈{1,2}

[
∂t(m

ε
qgεn,q) + vεq∂x(mεqgεn,q)

]
= 0

which is equivalent to

∀n ≥ 0 : ∂tρ
ε
n + ∂x(uρεn) = −∂x


∑

q∈{1,2}
(vεq − u)mεqgεn,q

 (150)

by using (132). Moreover, we have

∀n ≥ 0 : Aε · Gεn+1 = B
ε(Gεn) and Bε(Gεn) ∈ Eε,λ=−1 =⇒ Gεn+1 = −B

ε(Gεn) + µn+1

(
1

1

)

where µn+1 ∈ R. Thus, by using (132) and (149), we obtain ρε
n+1
=

∑
q∈{1,2}

mεqgε
n+1,q

= 0+µn+1 which implies

that Gε
n+1

is given by (140). As a consequence, we have

−∂x


∑

q∈{1,2}
(vεq − u)mεqgεn,q

 = −∂x



∑

q∈{1,2}
(vεq − u)mεq

[
−bεq(Gεn−1) + ρεn

]


= F ε(Gε
n−1

) + 0

by using the fact that
∑

q∈{1,2}

(
1

vεq

)
mεq =

(
1

u

)

and Definition (139), which allows to obtain (138) by taking into account (150). Finally, we have proven

that (135) admits a solution {Gεn}n≥0 under the constraints (138). Moreover, this solution is unique since

(138) are linear PDEs which admit an unique solution.�

Proof of Lemmae A.2 and A.3: We firstly prove (144)(a) and (145)(a); then, we prove (144)(b) and

(145)(b). We have

F ε(G0) = ∂x


∑

q∈{1,2}
(vεq − u)mεqbεq(Gε0)

 =
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tρ

ε
0

 +
√
ε∂x


∑

q∈{1,2}
(vεq − u)vεq∂x(mεqρ

ε
0)



= 0 +
√
ε∂x


∑

q∈{1,2}
vεq

2
∂x(mεqρ

ε
0)

 −
√
ε∂x

u∂x


∑

q∈{1,2}
vεqmεqρ

ε
0





=
ν
√
ε
∂x


∑

q∈{1,2}
∂x(mεqρ

ε
0)

 −
√
ε∂x

[
u∂x(uρε0)

]
=
ν
√
ε
∂2

xxρ
ε
0 + O(

√
ε)

which gives (144)(a). Moreover, we have

bεq(Gε
0
) =

√
ε
∂t

(
mεqρ

ε
0

)

mεq
+
√
εvεq

∂x

(
mεqρ

ε
0

)

mεq
=
√
ε∂tρ

ε
0 + (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq

= −
√
ε∂x(uρε0) + (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
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by using (142)(a). We obtain (145)(a) by using (140). In the same way, we have

F ε(Gε
1
) = ∂x


∑

q∈{1,2}
(vεq − u)mεqbεq(G1)

 =
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
√
ε∂x


∑

q∈{1,2}
(vεq − u)vεq∂x(mεqgε1,q)



=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
√
ε∂x


∑

q∈{1,2}
vεq

2
∂x(mεqgε1,q)

 −
√
ε∂x

u∂x


∑

q∈{1,2}
vεqmεqgε1,q





=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
ν
√
ε
∂x


∑

q∈{1,2}
∂x(mεqgε1,q)

 + O(1)

=
√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 +
ν
√
ε
∂2

xxρ
ε
1 + O(1).

But, by using (145)(a), we have also

√
ε∂x


∑

q∈{1,2}
(vεq − u)mεq∂tg

ε
1,q

 =
√
ε∂2

tx

∑

q∈{1,2}
(vεq − u)mεq


√
ε∂x(uρε0) − (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
+ ρε1



= 0 −
√
εν∂2

tx

∑

q∈{1,2}
(−1)q(vεq − u)∂x

(
mεqρ

ε
0

)
= O(1).

Thus, we can write that

F ε(Gε1) =
ν
√
ε
∂2

xxρ
ε
1 + O(1)

which gives (144)(b). Moreover, by taking into account (145)(a), we obtain

bεq(Gε
1
) =

√
ε
∂t

(
mεqgε

1,q

)

mεq
+
√
εvεq

∂x

(
mεqgε

1,q

)

mεq

=
√
ε∂t


√
ε∂x(uρε0) − (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
+ ρε1



+(−1)q
√
ν

∂x

m
ε
q


√
ε∂x(uρε

0
) − (−1)q

√
ν
∂x

(
mεqρ

ε
0

)

mεq
+ ρε1





mεq

=
√
ε∂tρ

ε
1 − ν

∂2
xx

(
mεqρ

ε
0

)

mεq
+ (−1)q

√
ν
∂x

(
mεqρ

ε
1

)

mεq
+ O(

√
ε)

= ν∂2
xxρ
ε
0 − ν

∂2
xx

(
mεqρ

ε
0

)

mεq
+ (−1)q

√
ν
∂x

(
mεqρ

ε
1

)

mεq
+ O(

√
ε)

by also using (142)(b) and (144)(a). Then, we obtain (145)(b) by using (140). �
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B. The LBM scheme written in function of fq when u(x) = 0

When u(x) = 0, the LBM scheme (35) is given by


gn+1
1,i = gn

1,i+1

(
1 − η

2

)
+ gn

2,i+1

η

2
,

gn+1
2,i = gn

2,i−1

(
1 − η

2

)
+ gn

1,i−1

η

2
,

ρn+1
i
= gn+1

1,i
+ gn+1

2,i
.

(151)

On the other side, by using (20), we have gq = fq −
∆t

2ε
(Mq − fq) that is to say



g1 = f1

(
1 +

1

4Cd

)
− f2

4Cd

,

g2 = f2

(
1 +

1

4Cd

)
− f1

4Cd

(152)

since ε = Cd∆t and M1 =
f1 + f2

2
. By injecting (152) in (151), we obtain

A

(
f1
f2

)n+1

i

= b

with

A =



1 +
1

4Cd

− 1

4Cd

− 1

4Cd

1 +
1

4Cd



and

b =



[
f n
1,i+1

(
1 +

1

4Cd

)
−

f n
2,i+1

4Cd

]
·
(
1 − η

2

)
+

[
f n
2,i+1

(
1 +

1

4Cd

)
−

f n
1,i+1

4Cd

]
· η

2

[
f n
2,i−1

(
1 +

1

4Cd

)
−

f n
1,i−1

4Cd

]
·
(
1 − η

2

)
+

[
f n
1,i−1

(
1 +

1

4Cd

)
−

f n
2,i−1

4Cd

]
· η

2



.

By using the fact that

A−1 =
1

Cd + 1/2



Cd + 1/4 1/4

1/4 Cd + 1/4



and that η =
1

Cd + 1/2
, we obtain

f n+1
1,i =

Cd + 1/4

(Cd + 1/2)2

{
Cd

[
f n
1,i+1

(
1 +

1

4Cd

)
−

f n
2,i+1

4Cd

]
+

1

2

[
f n
2,i+1

(
1 +

1

4Cd

)
−

f n
1,i+1

4Cd

]}

+
1

4(Cd + 1/2)2

{
Cd

[
f n
2,i−1

(
1 +

1

4Cd

)
−

f n
1,i−1

4Cd

]
+

1

2

[
f n
1,i−1

(
1 +

1

4Cd

)
−

f n
2,i−1

4Cd

]}
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that is to say

f n+1
1,i =

4Cd + 1

4(Cd + 1/2)2

 f n
1,i+1 ·

8C2
d
+ 2Cd − 1

8Cd

+ f n
2,i+1 ·

Cd + 1/2

4Cd



+
1

4(Cd + 1/2)2

 f n
2,i−1 ·

8C2
d
+ 2Cd − 1

8Cd

+ f n
1,i−1 ·

Cd + 1/2

4Cd

 .

By noting that 8C2
d
+ 2Cd − 1 = 2(4Cd − 1) · (Cd + 1/2), we finally obtain

f n+1
1,i =

f n
1,i+1

(16C2
d
− 1) + f n

2,i+1
(4Cd + 1) + f n

2,i−1
(4Cd − 1) + f n

1,i−1

16Cd(Cd +
1
2
)

which gives (36)(a). We obtain (36)(b) by symmetry.

C. Proof of Property 3.1

The scheme (37) is equivalent to the scheme



gn
1,i+1
= gn+1

1,i
(1 − η̂) + Mn+1

1,i
η̂,

gn
2,i−1
= gn+1

2,i
(1 − η̂) + Mn+1

2,i
η̂

that is to say to the scheme



gn
1,i+1 = gn+1

1,i

[
1 − η̂

2

(
1 +
∆t

∆x
u(xi)

)]
+ gn+1

2,i

η̂

2

(
1 − ∆t

∆x
u(xi)

)
,

gn
2,i−1 = gn+1

2,i

[
1 − η̂

2

(
1 − ∆t

∆x
u(xi)

)]
+ gn+1

1,i

η̂

2

(
1 +
∆t

∆x
u(xi)

)

since Mq,i =
g1,i + g2,i

2

(
1 + (−1)q ∆t

∆x
u(xi)

)
. We end the proof by noting that



1 − η̂
2

(
1 +
∆t

∆x
u(xi)

)
η̂

2

(
1 − ∆t

∆x
u(xi)

)

η̂

2

(
1 +
∆t

∆x
u(xi)

)
1 − η̂

2

(
1 − ∆t

∆x
u(xi)

)



−1

=



1 − η
2

(
1 +
∆t

∆x
u(xi)

)
η

2

(
1 − ∆t

∆x
u(xi)

)

η

2

(
1 +
∆t

∆x
u(xi)

)
1 − η

2

(
1 − ∆t

∆x
u(xi)

)



which comes from the fact that η̂ + η = η̂η.

D. Proof of Lemmae 4.1, 4.2 and 4.3

In the following proof, we firstly focus on the LBM∗ scheme. Then, we focus on the LBM scheme

which is less easy to study.
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Proof of Lemma 4.1:

• Study of the LBM∗ scheme:

We deduce from the LBM∗ scheme (38) that ρn+1
i
= gn

1,i+1
+ gn

2,i−1
(n ≥ 0). Thus, by applying again (38),

we find

ρn+1
i

= gn−1
1,i+2

[
1 − η

2

(
1 +
∆t

∆x
u(xi+1)

)]
+ gn−1

2,i

η

2

(
1 − ∆t

∆x
u(xi+1)

)

+gn−1
2,i−2

[
1 − η

2

(
1 − ∆t

∆x
u(xi−1)

)]
+ gn−1

1,i

η

2

(
1 +
∆t

∆x
u(xi−1)

)
with n ≥ 1.

(153)

By noting that 

ρn
i+1
= gn−1

1,i+2
+ gn−1

2,i
,

ρn
i−1
= gn−1

1,i
+ gn−1

2,i−2

with n ≥ 1, (154)

we deduce from (153) that

ρn+1
i

= (ρn
i+1 − gn−1

2,i )

(
1 − η

2

)
+ gn−1

2,i

η

2
+ (ρn

i−1 − gn−1
1,i )

(
1 − η

2

)
+ gn−1

1,i

η

2

−η
2
· ∆t

∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
with n ≥ 1

that is to say

ρn+1
i = ρn

i+1

(
1 − η

2

)
+ ρn

i−1

(
1 − η

2

)
+ ρn−1

i (η − 1) − η
2
· ∆t

∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
with n ≥ 1.

(155)

By using the fact that η =
1

Cd +
1
2

, we obtain

(2Cd + 1)ρn+1
i = 2Cd(ρn

i+1 + ρ
n
i−1) + (1 − 2Cd)ρn−1

i − ∆t

∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
with n ≥ 1

that is to say

ρn+1
i − ρn−1

i = 2Cd(ρn
i+1 − ρ

n+1
i − ρn−1

i + ρn
i−1) − ∆t

∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
with n ≥ 1

which is equivalent to

ρn+1
i
− ρn−1

i

2∆t
=
ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1) − 1

2∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
with n ≥ 1.

We conclude the proof by noting that



g0
1,i = ρ

0
i ·

[
(1 − α) − β ∆t

∆x
u(xi)

]
,

g0
2,i = ρ

0
i ·

[
α + β

∆t

∆x
u(xi)

]
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coupled to the LBM∗ scheme (38) implies that

ρn=1
i := αρ0

i−1 + (1 − α)ρ0
i+1 − β

∆t

∆x

[
ρ0

i+1u(xi+1) − ρ0
i−1u(xi−1)

]
.

• Study of the LBM scheme:

We deduce from the LBM scheme (35) that

ρn+1
i = (gn

1,i+1 + gn
2,i−1)

(
1 − η

2

)
+ (gn

1,i−1 + gn
2,i+1)

η

2
− η

2
· ∆t

∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
.

Thus, by applying again (35), we find

ρn+1
i

=

gn−1
1,i+2

(
1 − η

2

)
+ gn−1

2,i+2

η

2
−
ρn−1

i+2

2
· η ∆t

∆x
u(xi+2) + gn−1

2,i−2

(
1 − η

2

)
+ gn−1

1,i−2

η

2
+
ρn−1

i−2

2
· η ∆t

∆x
u(xi−2)


(
1 − η

2

)

gn−1
1,i

(
1 − η

2

)
+ gn−1

2,i

η

2
−
ρn−1

i

2
· η ∆t

∆x
u(xi) + gn−1

2,i

(
1 − η

2

)
+ gn−1

1,i

η

2
+
ρn−1

i

2
· η ∆t

∆x
u(xi)


η

2

−η
2
· ∆t

∆x

[
u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1

]
with n ≥ 1

which is equivalent to

ρn+1
i

=

[
(gn−1

1,i+2 + gn−1
2,i )

(
1 − η

2

)
+ (gn−1

1,i + gn−1
2,i+2)

η

2
− η

2
· ∆t

∆x
(u(xi+2)ρn−1

i+2 − u(xi)ρ
n−1
i )

] (
1 − η

2

)

+

[
(gn−1

1,i + gn−1
2,i−2)

(
1 − η

2

)
+ (gn−1

1,i−2 + gn−1
2,i )
η

2
− η

2
· ∆t

∆x
(u(xi)ρ

n−1
i − u(xi−2)ρn−1

i−2 )

] (
1 − η

2

)

+(gn−1
1,i + gn−1

2,i )(η − 1) − η
2
· ∆t

∆x
(u(xi+1)ρn

i+1 − u(xi−1)ρn
i−1) with n ≥ 1.

(156)

Moreover, we have



ρn
i+1 = (gn−1

1,i+2 + gn−1
2,i )

(
1 − η

2

)
+ (gn−1

1,i + gn−1
2,i+2)

η

2
− η

2
· ∆t

∆x

[
u(xi+2)ρn−1

i+2 − u(xi)ρ
n−1
i

]
,

ρn
i−1 = (gn−1

1,i + gn−1
2,i−2)

(
1 − η

2

)
+ (gn−1

1,i−2 + gn−1
2,i )
η

2
− η

2
· ∆t

∆x

[
u(xi)ρ

n−1
i − u(xi−2)ρn−1

i−2

]
with n ≥ 1

which allows to obtain (155) by using (156). We conclude the proof as for the LBM∗ scheme by noting that



g0
1,i = ρ

0
i ·

[
(1 − α) − β ∆t

∆x
u(xi)

]
,

g0
2,i = ρ

0
i ·

[
α + β

∆t

∆x
u(xi)

]
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coupled to the LBM scheme (35) implies that

ρ1
i
=

{
ρ0

i+1 ·
[
(1 − α) − β ∆t

∆x
u(xi+1)

]
+ ρ0

i−1 ·
[
α + β

∆t

∆x
u(xi−1)

]} (
1 − η

2

)

+

{
ρ0

i−1 ·
[
(1 − α) − β ∆t

∆x
u(xi−1)

]
+ ρ0

i+1 ·
[
α + β

∆t

∆x
u(xi+1)

]}
η

2

−η
2
· ∆t

∆x

[
u(xi+1)ρ0

i+1 − u(xi−1)ρ0
i−1

]

=

[
α

(
1 − η

2

)
+ (1 − α)

η

2

]
ρ0

i−1 +

[
(1 − α)

(
1 − η

2

)
+ α
η

2

]
ρ0

i+1

− ∆t

∆x
ρ0

i+1u(xi+1)

[
β

(
1 − η

2

)
− βη

2
+
η

2

]
+
∆t

∆x
ρ0

i−1u(xi−1)

[
β

(
1 − η

2

)
− βη

2
+
η

2

]

that is to say

ρ1
i = ξρ

0
i−1 + (1 − ξ)ρ0

i+1 − γ
∆t

∆x

[
ρ0

i+1u(xi+1) − ρ0
i−1u(xi−1)

]

where ξ =
η

2
+ α(1 − η) and γ =

η

2
+ β(1 − η).�

Proof of Lemma 4.2:

• Study of the LBM∗ scheme:

To prove Lemma 4.1 in the case of the LBM∗ scheme (38), we used (153) and (154) which come from an

application of the LBM∗ scheme in the cells i and i ± 1. Thus, to obtain the equivalence between the LBM∗

scheme (51) (obtained when u(x) = 0) and the Du Fort-Frankel scheme (54) in the cell i = 1, the LBM∗

scheme has to be applied when i = 0, i = 1 and i = 2. When i = 2, we do not have any difficulty to apply

the LBM∗ scheme (51). Nevertheless, when i = 0 and i = 1, gn
2,−1

and gn
2,0

have to be defined. When the

boundary conditions are periodic, gn
2,−1

and gn
2,0

are defined. But, when the boundary conditions are not

periodic, gn
2,−1

and gn
2,0

are not defined a priori. We will define these quantities in such a way the discrete

Neumann boundary condition

ρn
i=0 = ρ

n
i=1 (157)

is satified. Let us apply the LBM∗ scheme (51) when i = 0. We have

ρn+1
0 = gn

1,1 + gn
2,−1

which implies by using (157) at the time tn+1 that

gn
2,−1 = ρ

n+1
1 − gn

1,1.

But, we have also

gn+1
2,0 = gn

2,−1

(
1 − η

2

)
+ gn

1,1

η

2
.

Thus, we have

gn+1
2,0 = (ρn+1

1 − gn
1,1)

(
1 − η

2

)
+ gn

1,1

η

2
.
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Let us now apply the LBM∗ scheme (51) when i = 1. We have

ρn+1
1 = gn

1,2 + gn
2,0.

This means that

gn+1
2,0

= (gn
1,2 + gn

2,0 − gn
1,1)

(
1 − η

2

)
+ gn

1,1

η

2

= gn
1,2

(
1 − η

2

)
+ gn

2,0

η

2
+ (gn

2,0 − gn
1,1)(1 − η).

But, we have also

gn+1
1,1 = gn

1,2

(
1 − η

2

)
+ gn

2,0

η

2
.

Thus

gn+1
2,0 = gn+1

1,1 + (gn
2,0 − gn

1,1)(1 − η)

which gives (53)(a). We conclude by noting that (53)(b) is a consequence of (52)(b) and (55).

• Study of the LBM scheme: Let us apply the LBM scheme (50) when i = 0 and i = 1. We have

ρn+1
0 = (gn

1,1 + gn
2,−1)

(
1 − η

2

)
+ (gn

1,−1 + gn
2,1)
η

2

and

ρn+1
1 = (gn

1,2 + gn
2,0)

(
1 − η

2

)
+ (gn

1,0 + gn
2,2)
η

2
.

Thus, by taking into account (157) at the time tn+1, we obtain

(gn
1,1 + gn

2,−1)

(
1 − η

2

)
+ (gn

1,−1 + gn
2,1)
η

2
= (gn

1,2 + gn
2,0)

(
1 − η

2

)
+ (gn

1,0 + gn
2,2)
η

2
. (158)

We have also

gn+1
1,1 = gn

1,2

(
1 − η

2

)
+ gn

2,2

η

2

and

gn+1
2,0 = gn

2,−1

(
1 − η

2

)
+ gn

1,−1

η

2
.

Thus, we deduce from (158) that

gn+1
2,0 = gn+1

1,1 + (gn
2,0 − gn

1,1)

(
1 − η

2

)
+ (gn

1,0 − gn
2,1)
η

2

that is to say

gn+1
2,0

= gn+1
1,1 + (gn

2,0 − gn
1,1)(1 − η) + [(gn

2,0 − gn
1,1) + (gn

1,0 − gn
2,1)]
η

2

= gn+1
1,1 + (gn

2,0 − gn
1,1)(1 − η) + (ρn

0 − ρ
n
1)
η

2

which gives (57)(b) by taking into account (157). By using (57)(b), we obtain

gn+1
1,0 + gn+1

2,0 = gn+1
1,0 + gn+1

1,1 + (gn
2,0 − gn

1,1)(1 − η).
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Thus, by using (157) at the time tn+1, we obtain

gn+1
1,1 + gn+1

2,1 = gn+1
1,0 + gn+1

1,1 + (gn
2,0 − gn

1,1)(1 − η)

which gives (57)(a). Moreover, (57)(c,d) is a consequence of (52) and (55). At last, we obtain that

ρ1
i = ξρ

0
i−1 + (1 − ξ)ρ0

i+1

as in the periodic case.�

Proof of Lemma 4.3: The proof is similar to the one of Lemma 4.2.

• Study of the LBM∗ scheme:

Let us apply the LBM∗ scheme (51) when i = 0. We have

ρn+1
0 = gn

1,1 + gn
2,−1.

Thus, by applying the boundary condition

ρn
i=0 = ρxmin

(159)

at the time tn+1, we obtain that

gn
2,−1 = ρxmin

− gn
1,1.

But, we have also

gn+1
2,0 = gn

2,−1

(
1 − η

2

)
+ gn

1,1

η

2
.

Thus, we have

gn+1
2,0 = (ρxmin

− gn
1,1)

(
1 − η

2

)
+ gn

1,1

η

2

that is to say

gn+1
2,0 =

ρxmin

2
+

(
ρxmin

2
− gn

1,1

)
(1 − η)

which gives (63)(a). We conclude the proof as in the periodic case.

• Study of the LBM scheme:

Let us apply the LBM scheme (50) when i = 0. We have

gn+1
1,0 = gn

1,1

(
1 − η

2

)
+ gn

2,1

η

2

which gives (65)(a). We obtain (65)(b) by appling (159) at the time tn+1. We conclude the proof as in the

periodic case.�
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E. Proof of Propositions 5.1 and 5.2

E.1. Proof of Proposition 5.1

To prove Proposition 5.1, we use the following lemma:

Lemma E.1. Let us define

∀i :



g̃0
1,i

:= g0
1,i
− K1,

g̃0
2,i

:= g0
2,i
− K2

and let us apply the LBM∗ scheme (38)(44) with the initial conditions (g̃0
1,i
, g̃0

2,i
). Then, we have

∀i, ∀n ≥ 0 : ρ̃n
i = ρ

n
i − K

with ρ̃n
i

:= g̃n
1,i
+ g̃n

2,i
and K := K1 + K2.

Proof of Lemma E.1: We have by construction

ρ̃0
i = ρ

0
i − K.

Moreover, we have also 

g̃1
1,i
= ag̃0

1,i+1
+ bg̃0

2,i−1
,

g̃1
2,i
= (1 − a)g̃0

1,i+1
+ (1 − b)g̃0

2,i−1

with 

a = 1 − η
2

(
1 +
∆t

∆x
u0

)
,

b =
η

2

(
1 − ∆t

∆x
u0

)
.

(160)

Thus, we can write



g̃1
1,i
= ag0

1,i+1
+ bg0

2,i−1
− (aK1 + bK2),

g̃1
2,i
= (1 − a)g0

1,i+1
+ (1 − b)g0

2,i−1
− [(1 − a)K1 + (1 − b)K2].

that is to say 

g̃1
1,i
= g1

1,i
− (aK1 + bK2),

g̃1
2,i
= g1

2,i
− K + (aK1 + bK2).

This allows to obtain

ρ̃1
i = ρ

1
i − K.

We now prove that

∀i :



ρ̃n−1
i
= ρn−1

i
− K,

ρ̃n
i
= ρn

i
− K

(161)
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implies that

∀i : ρ̃n+1
i = ρn+1

i − K. (162)

We know that ρ̃n−1
i

, ρ̃n
i

and ρ̃n+1
i

are linked through the relation (45) applied to ρ̃, that is to say

ρ̃n+1
i
− ρ̃n−1

i

2∆t
+

u0

2∆x
(ρ̃n

i+1 − ρ̃
n
i−1) =

ν

∆x2
(ρ̃n

i+1 − ρ̃
n+1
i − ρ̃n−1

i + ρ̃n
i−1).

Thus, by using (161), we can write that

ρ̃n+1
i
− ρn−1

i
+ K

2∆t
+

u0

2∆x
(ρn

i+1 − ρ
n
i−1) =

ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1) +

ν

∆x2
(ρn+1

i − ρ̃n+1
i − K).

On the other side, we have also

ρn+1
i
− ρn−1

i

2∆t
+

u0

2∆x
(ρn

i+1 − ρ
n
i−1) =

ν

∆x2
(ρn

i+1 − ρ
n+1
i − ρn−1

i + ρn
i−1)

by using again (45). This allows to write that

(ρ̃n+1
i − ρn+1

i + K)

(
1

2∆t
+
ν

∆x2

)
= 0

which proves (162). We conclude by noting that (161) is verified when n = 1.�

Proof of Proposition 5.1:

• Stability in L∞ of the LBM∗ scheme with periodic boundary conditions:

Let us define C :=
Cd∆x
ν
|u0| ≥ 0. We have by construction ∆t = C ∆x

|u0 | . Thus, we have

η

2
(1 −C) ≤ η

2

(
1 +
∆t

∆x
u0

)
≤ η

2
(1 +C) (163)

since ∆t
∆x

u0 = ±C and η > 0. Moreover, Condition (70)(a) is equivalent to

C ∈ [0,min(1, 2Cd)]. (164)

Since
η

2
(1 ±C) =

1 ±C

1 + 2Cd

, by using (163) and (164), we obtain

0 ≤ η
2

(
1 +
∆t

∆x
u0

)
≤ 1.

In the same way, we obtain

0 ≤ η
2

(
1 − ∆t

∆x
u0

)
≤ 1.

As a consequence, we can write that a and b defined with (160) verifies



0 ≤ a ≤ 1,

0 ≤ b ≤ 1.

(165)
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Let us now define 

g̃0
1,i

:= g0
1,i
− K1,

g̃0
2,i

:= g0
2,i
− K2

with 

K1 =

[
(1 − α) − β ∆t

∆x
u0

]
max

j
ρ0

j ,

K2 =

[
α + β

∆t

∆x
u0

]
max

j
ρ0

j .

(166)

We now suppose that α ∈ [0, 1] and β = 0 or β = min(1 − α, α). In these two cases, we have



(1 − α) − β ∆t

∆x
u0 ≥ 0,

α + β
∆t

∆x
u0 ≥ 0.

Thus, since (g0
1,i
, g0

2,i
) is defined with (44), we obtain

∀i :



g̃0
1,i
≤ 0,

g̃0
2,i
≤ 0.

And, by using the fact that 

g̃n+1
1,i
= ag̃n

1,i+1
+ bg̃n

2,i−1
,

g̃n+1
2,i
= (1 − a)g̃n

1,i+1
+ (1 − b)g̃n

2,i−1

and (165), we can write that

∀i, ∀n ≥ 0 :



g̃n
1,i
≤ 0,

g̃n
2,i
≤ 0

which implies that

∀i, ∀n ≥ 0 : ρ̃n
i ≤ 0. (167)

On the other side, by using Lemma E.1, we obtain that

∀i, ∀n ≥ 0 : ρ̃n
i = ρ

n
i − K

with K := K1 + K2 = max
j
ρ0

j . By using (167), we obtain

∀i, ∀n ≥ 0 : ρn
i ≤ max

j
ρ0

j .

We obtain

∀i, ∀n ≥ 0 : : ρn
i ≥ min

j
ρ0

j

with the same approach.
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• Stability in L∞ of the LFCCDF scheme with periodic boundary conditions:

By using the stability result in L∞ of the LBM∗ scheme (38)(44) and by using Lemma 4.1, we obtain the

stability in L∞ of the LFCCDF scheme (45)(47) under the condition (70).

• Stability in L∞ of the LBM scheme with periodic boundary conditions:

By using the stability result in L∞ of the LFCCDF scheme (45)(46) and by using again Lemma 4.1, we

obtain the stability in L∞ of the LBM scheme (35)(44) under the condition (70).

• Consistency and order of the error with periodic boundary conditions:

When n ≥ 2 and when ∆t = Cd

∆x2

ν
(Cd ≥ 0), the LFCCDF scheme (45) is consistent and its consistency

error is of order ∆x2 [33]. Let us study the first iterate (47). We have

ρ1
i
= αρ0

i−1 + (1 − α)ρ0
i+1 − β

∆t

∆x

[
ρ0

i+1u(xi+1) − ρ0
i−1u(xi−1)

]

= ρexact(0, xi) + O(∆xθ)

= ρexact(∆t, xi) + O(∆t,∆xθ)

with 

(α, β) , (1/2, 1/2) =⇒ θ = 1,

(α, β) = (1/2, 1/2) =⇒ θ = 2

where ρexact is the exact solution of the convection-diffusion equation. Thus, the consistency error is of

order ∆x when (α, β) , (1/2, 1/2) and is of order ∆x2 when (α, β) = (1/2, 1/2).

• Convergence in L∞ with periodic boundary conditions:

We obtain the convergence in L∞ of the LFCCDF scheme by applying the Lax Theorem. Thus, by using

again Lemmae 4.1, we also obtain the convergence in L∞ of the LBM and LBM∗ schemes.�

E.2. Proof of Proposition 5.2

Firstly, we prove the stability in L∞ for any Cd ≥ 0 of the LBM∗ scheme (51). Indeed, it is more simple

to analyze this scheme than the LBM scheme (50). Then, by applying Lemmae 4.1, 4.2 and 4.3 (and the

Lax Theorem), we easily obtain the other results.

• Stability in L∞ of the LBM∗ scheme with periodic boundary conditions:

Since η ∈]0, 2], we deduce from (51) that

max
i

(|gn+1
1,i |, |g

n+1
2,i |) ≤ max

i
(|gn

1,i|, |g
n
2,i|) (168)
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which proves the unconditionnal stability in L∞ as soon as the initial condition is bounded. Moreover, since

ρn
i
= gn

1,i
+ gn

2,i
, we have

max
i
|ρn

i | ≤ 2 max
i

(|gn
1,i|, |g

n
2,i|).

Thus, we deduce from (168) that

max
i
|ρn

i | ≤ 2 max
i

(|g0
1,i|, |g

0
2,i|)

that is to say

max
i
|ρn

i | ≤ 2 max(|1 − α|, |α|) ·max
i
|ρ0

i | (169)

by using the initial condition (52).

• Stability in L∞ of the LBM∗ scheme with Neumann boundary conditions:

Since η ∈]0, 2], we deduce from (51) that

max
i≥1

(|gn+1
1,i |, |g

n+1
2,i |) ≤ max[|gn

2,0|,max
i≥1

(|gn
1,i|, |g

n
2,i|)]. (170)

Inequalities (168) and (170) are different because of the boundary term |gn
2,0
| in (170) which does not exist

when the boundary conditions are periodic. The difficulty to obtain the stability in L∞ comes from this term.

We deduce from the boundary condition (53)(a) that

gn+1
2,0

= gn+1
1,1
+ (1 − η)gn

2,0
− (1 − η)gn

1,1

= gn+1
1,1
+ (1 − η)[gn

1,1
+ (1 − η)gn−1

2,0
− (1 − η)gn−1

1,1
] − (1 − η)gn

1,1

= gn+1
1,1
+ (1 − η)2gn−1

2,0
− (1 − η)2gn−1

1,1

= . . .

= gn+1
1,1
+ (1 − η)n+1g0

2,0
− (1 − η)n+1g0

1,1

that is to say

gn+1
2,0 = gn+1

1,1 + (1 − η)n+1(g0
2,0 − g0

1,1). (171)

On the other side, we have

gn+1
1,1 = gn

1,2

(
1 − η

2

)
+ gn

2,0

η

2
.

Thus, by using (171), we obtain

gn+1
2,0 ≤ max(|gn

1,2|, |g
n
2,0|) + |1 − η|

n+1 · |g0
2,0 − g0

1,1|.

By injecting this inequality in (170), we find

max[|gn+1
2,0 |,max

i≥1
(|gn+1

1,i |, |g
n+1
2,i |)] ≤ max

[
max(|gn

1,2|, |g
n
2,0|) + |1 − η|

n+1 · |g0
2,0 − g0

1,1|, |g
n
2,0|,max

i≥1
(|gn

1,i|, |g
n
2,i|)

]
.

(172)

Let us now define

Gn := max[|gn
2,0|,max

i≥1
(|gn

1,i|, |g
n
2,i|)]. (173)
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We deduce from (172) that

Gn+1 ≤ Gn + |1 − η|n+1 · |g0
2,0 − g0

1,1|

that is to say

Gn+1 ≤ G0 + |1 − η|S n · |g0
2,0 − g0

1,1| (174)

where

S n :=

n∑

k=0

|1 − η|k. (175)

Let us now suppose that η ∈ ]0, 2[ that is to say Cd > 0. By noting that S n ≤ 1
1−|η−1| when η ∈ ]0, 2[, we

obtain

Gn+1 ≤ G0 +
|1 − η|

1 − |1 − η| |g
0
2,0 − g0

1,1| (176)

which proves the unconditionnal stability in L∞ as soon as the initial condition is bounded. Moreover, by

applying the arguments used to obtain (169) in the periodic case, we deduce from (176) that

max
i≥0
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥0
|ρ0

i | + 2|2α − 1| |1 − η|
1 − |1 − η| |ρ

0
1|

that is to say

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | + 2|2α − 1| |1 − η|
1 − |1 − η| |ρ

0
1|

when η ∈]0, 2[ since ρn
0
= ρn

1
. When η = 2 that is to say Cd = 0, we obtain

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max
i≥1
|ρ0

i | (177)

by using Lemma 7.2. At last, when α = 1
2

and for any η ∈]0, 2], we have g0
2,0
= g0

1,1
which implies that

Gn+1 ≤ G0 by using (174). Thus, (177) is also astisfied.

• Stability in L∞ of the LBM∗ scheme with Dirichlet boundary conditions:

Inequality (170) is still satisfied. Moreover, we deduce from the boundary condition (63)(a) that

|gn+1
2,0 | ≤

(
1 − η

2

)
|ρxmin

| + |η − 1| · |gn
1,1|.

Thus, by using (170), we obtain

max[|gn+1
2,0 |,max

i≥1
(|gn+1

1,i |, |g
n+1
2,i |)] ≤ max

[(
1 − η

2

)
|ρxmin

| + |η − 1| · |gn
1,1|, |g

n
2,0|,max

i≥1
(|gn

1,i|, |g
n
2,i|)

]
. (178)

We deduce from (178) that

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn,Gn
]
. (179)

where Gn is defined with (173). Thus, we have also

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

| + |η − 1|max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−1,Gn−1
]
,

(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−1,Gn−1
]
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that is to say

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

| · (1 + |η − 1|) + |η − 1|2Gn−1,

(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−1,Gn−1
]
.

The previous inequalities incite us to prove that

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1Gn−m,

(
1 − η

2

)
|ρxmin

|S m−1 + |η − 1|mGn−m, . . . ,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|Gn−m,Gn−m
]

(180)

where S m is defined with (175). We know that (180) is verified when m = 0 and m = 1. Let us now suppose

that (180) is verified at the rank m. By injecting (179) in (180), we obtain

Gn+1 ≤ max

{(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1 max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]
,

(
1 − η

2

)
|ρxmin

|S m−1 + |η − 1|m max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]
, . . . ,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]
,

max

[(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]}

which gives

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

|(S m + |η − 1|m+1) + |η − 1|m+2Gn−m−1,

(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1Gn−m−1

(
1 − η

2

)
|ρxmin

|(S m−1 + |η − 1|m) + |η − 1|m+1Gn−m−1,

(
1 − η

2

)
|ρxmin

|S m−1 + |η − 1|mGn−m−1, . . . ,

(
1 − η

2

)
|ρxmin

|(S 0 + |η − 1|) + |η − 1|2Gn−m−1,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|Gn−m−1

(
1 − η

2

)
|ρxmin

| + |η − 1|Gn−m−1,Gn−m−1
]

that is to say

Gn+1 ≤ max

[(
1 − η

2

)
|ρxmin

|S m+1 + |η − 1|m+2Gn−m−1,

(
1 − η

2

)
|ρxmin

|S m + |η − 1|m+1Gn−m−1, . . . ,

(
1 − η

2

)
|ρxmin

|S 0 + |η − 1|Gn−m−1,Gn−m−1
]
.
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Thus, (180) is also verified at the rank m + 1, which proves (180) for any m ∈ {0, . . . , n − 1}. Let us now

suppose that η ∈ ]0, 2[ that is to say Cd > 0. By applying (180) at the rank n− 1, by noting that S m ≤ 1
1−|η−1|

and that |η − 1|m ≤ 1 for any m ∈ N, we obtain that

Gn+1 ≤
1 − η

2

1 − |η − 1| |ρxmin
| +G0 (181)

which proves the unconditionnal stability in L∞ as soon as the initial condition is bounded. Moreover, by

applying the arguments used to obtain (169) in the periodic case, we deduce from (181) that

max
i≥0
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) max
i≥0
|ρ0

i | +
2

(
1 − η

2

)

1 − |η − 1| |ρxmin
|

that is to say

max
i≥1
|ρn+1

i | ≤ 2 max(|1 − α|, |α|) ·max

(
max
i≥1
|ρ0

i |, |ρxmin
|
)
+

2

(
1 − η

2

)

1 − |η − 1| |ρxmin
|

since ρn
i
= ρxmin

. When η = 2 that is to say Cd = 0, we obtain (177) by using Lemma 7.2.

•We prove the other statements as in the proof of Proposition 5.1 (that is to say by using Lemmae 4.1, 4.2

and 4.3, and the Lax Theorem).

F. Proof of Propositions 6.1 and 6.2, and of Lemma 6.1

Proof of Proposition 6.1:

We focus on the LBM∗ scheme (51) since this scheme is more simple than the LBM scheme (50). Then, by

applying Lemmae 4.1 and 4.2, we obtain the results for the Du Fort-Frankel scheme and, then, for the LBM

scheme (50) (this approach was also used for the proof of Proposition 5.2).

• Discrete Maximum principle with periodic boundary conditions for the LBM∗ scheme when α = 1
2
:

The LBM∗ scheme (51) implies that

min
j

(gn
1, j, g

n
2, j) ≤ gn+1

q,i ≤ max
j

(gn
1, j, g

n
2, j) (q ∈ {1, 2})

since η ∈]0, 2].Thus, we have

min
j

(g0
1, j, g

0
2, j) ≤ gn+1

q,i ≤ max
j

(g0
1, j, g

0
2, j) (q ∈ {1, 2}). (182)

Thus, by using (52),we obtain

min[(1 − α), α] ·min
j
ρ0

j ≤ gn
q,i ≤ max[(1 − α), α] ·max

j
ρ0

j (q ∈ {1, 2}) (183)
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when α ∈ [0, 1]. Since ρn
i
= gn

1,i
+ gn

2,i
, we deduce from (183) that

2 min[(1 − α), α] ·min
j
ρ0

j ≤ ρn
i ≤ 2 max[(1 − α), α] ·max

j
ρ0

j . (184)

Thus, we deduce from (184) that the discrete maximum principle (74) is verified when α = 1
2
.

• Discrete Maximum principle with periodic boundary conditions for the LBM∗ scheme when α ∈ [0, 1]:

The discrete maximum principle (74) cannnot be deduced from (184) when α , 1
2
. Nevertheless, we now

prove that (74) is still satisfied when α ∈ [0, 1]. To obtain this result, we prove that



gn
1,i =

∑

k

Γn
kg0

1,i1
k

+
∑

k

Γ̃n
kg0

2,i2
k

, (a)

gn
2,i =

∑

k

Γ̃n
kg0

1,i1
k

+
∑

k

Γn
kg0

2,i2
k

, (b)

∑

k

(Γn
k + Γ̃

n
k) = 1, (c)

Γn
k
≥ 0, (d)

Γ̃k ≥ 0 (e)

(185)

where {i1
k
}k et {i2

k
}k are two sequences which depend on i, and where {Γn

k
}k and {̃Γn

k
}k are two positive real

sequences. It is obvious that (185) is verified when n = 1 since



g1
1,i = g0

1,i+1

(
1 − η

2

)
+ g0

2,i−1

η

2
,

g1
2,i = g0

2,i−1

(
1 − η

2

)
+ g0

1,i+1

η

2
.

Let us suppose that (185) is satisfied at the rank n. Then, the LBM∗ scheme (51) can be written with



gn+1
1,i =

(
1 − η

2

) 
∑

k

Γn
kg0

1,i1
k
+1
+

∑

k

Γ̃n
kg0

2,i2
k
+1

 +
η

2


∑

k

Γ̃n
kg0

1,i1
k
−1
+

∑

k

Γn
kg0

2,i2
k
−1

 ,

gn+1
2,i =

η

2


∑

k

Γn
kg0

1,i1
k
+1
+

∑

k

Γ̃n
kg0

2,i2
k
+1

 +
(
1 − η

2

) 
∑

k

Γ̃n
kg0

1,i1
k
−1
+

∑

k

Γn
kg0

2,i2
k
−1



that is to say with



gn+1
1,i =

∑

k

[(
1 − η

2

)
Γn

kg0

1,i1
k
+1
+
η

2
Γ̃n

kg0

1,i1
k
−1

]
+

∑

k

[(
1 − η

2

)
Γ̃n

kg0

2,i2
k
+1
+
η

2
Γn

kg0

2,i2
k
−1

]
,

gn+1
2,i =

∑

k

[
η

2
Γn

kg0

1,i1
k
+1
+

(
1 − η

2

)
Γ̃n

kg0

1,i1
k
−1

]
+

∑

k

[
η

2
Γ̃n

kg0

2,i2
k
+1
+

(
1 − η

2

)
Γn

kg0

2,i2
k
−1

]
.

(186)
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But, (186) can be written with (185)(a,b) at the rank n+1 after a reorganization of the sequences. Moreover,

we have ∑

k

[(
1 − η

2

)
Γn

k +
η

2
Γ̃n

k

]
+

∑

k

[
η

2
Γn

k +

(
1 − η

2

)
Γ̃n

k

]
=

∑

k

(Γn
k + Γ̃

n
k) = 1

and 

(
1 − η

2

)
Γn

k ≥ 0,

η

2
Γ̃n

k ≥ 0,

η

2
Γn

k ≥ 0,

(
1 − η

2

)
Γ̃n

k ≥ 0

since η ∈]0, 2]. Thus, (185) is satisfied for any n ≥ 1. By using the fact that ρn
i
= gn

1,i
+ gn

2,i
and by using

(52), (185)(a,b) implies that

ρn
i =

∑

k

(Γn
k + Γ̃

n
k)(g0

1,i1
k

+ g0

2,i2
k

) =
∑

k

(Γn
k + Γ̃

n
k)[(1 − α)ρ0

i1
k

+ αρ0

i2
k

]

since ρn
i
= gn

1,i
+gn

2,i
. Thus, because of (185)(c,d,e), we obtain that ρn

i
is a convex combination of {ρ0

j
} j when

α ∈ [0, 1] which allows to obtain (74).

• Discrete Maximum principle with Neumann boundary conditions for the LBM∗ scheme when α = 1
2
:

A priori, the proof in the periodic case when α ∈ [0, 1] is not valid in the Neumann case because of the

boundary conditions (53) in x = xmin. Nevertheless, when α = 1
2
, the boundary conditions (53) are given by

∀n ≥ 0 : gn
2,0 = gn

1,1 (187)

since α = 1
2
=⇒ g0

1,1
= g0

2,1
=
ρ0

1

2
and g0

2,0
=
ρ0

1

2
that is to say g0

2,0
= g0

1,1
. As a consequence, the proof in the

periodic case with α = 1
2

becomes valid in the Neumann case.�

Proof of Lemma 6.1: In the Dirichlet case, the bounday conditions (63) in x = xmin can be rewritten with



gn+1
2,i=0 =

ρxmin

2
(2 − η) + gn

1,i=1(η − 1), (a)

gn=0
2,i=0
= αρxmin

. (b)

(188)

We deduce from (188) that when η ∈ [1, 2] that is to say when Cd ∈ [0, 1
2
], we have

min

[
ρxmin

2
, gn

1,i=1

]
≤ gn+1

2,i=0 ≤ max

[
ρxmin

2
, gn

1,i=1

]
.

Thus, the proof in the periodic case with α = 1
2

can be applied.�
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Proof of Proposition 6.2: The proof is identical to the periodic case with α = 1
2

by replacing (182) with

min

[
ρxmin

2
,min

j≥1
(gn

1, j, g
n
2, j)

]
≤ gn+1

1,i ≤ max

[
ρxmin

2
,max

j≥1
(gn

1, j, g
n
2, j)

]
.

�
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