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Abstract—The training of most of the existing recognition
systems requires availability of large datasets labeled at the
symbol level. However, producing ground-truth datasets is a
tedious work. Two repetitive tasks have to be chained. One is
to select a subset of strokes that belong to the same symbol,
a next step is to assign a label to this stroke group. In this
paper, we discuss a framework to reduce the human workload
for labeling at the symbol level a large set of documents based
on any graphical language. A hierarchical clustering is used to
produce a codebook with one or several strokes per symbol,
which is used for a mapping on the raw handwritten data.
Evaluation is proposed on two different datasets.

Keywords-On-Line Handwriting; Modified Hausdorff Dis-
tance; Symbol Annotation; Hierarchical Clustering;

I. INTRODUCTION

Many existing recognition systems [11] require the defi-

nition of the character or symbol set, and rely on a training

dataset which defines the ground-truth at the symbol level.

Such datasets are essential for the training, evaluation, and

testing stages of the recognition systems. However, collect-

ing all the ink samples and labeling them at the symbol level

is a very long and tedious task. Hence, it would be very

interesting to be able to assist this process, so that most of

the tedious work can be done automatically, and that only

a high-level supervision needs to be done to conclude the

labeling process.

We can divide such process into two steps, (a) segmenting

handwritten scripts into symbols using an unsupervised

symbol extraction method [7], [8], and (b) grouping them

into a codebook in which a user can label symbols in order

to reduce the human effort. This paper is limited to the

second step: the codebook generation, annotation and its

assessment. An offline handwriting annotation system [13]

proposes a similar idea to label a large number of well

segmented isolated characters; clustering them into several

clusters of characters, and labeling the clusters in order to

reduce human effort.

Let us show an example to introduce the problem. Fig. 1

considers an example of a graphical language. For clarity,

all the strokes are indexed “(.)”. Fig. 2a displays the correct

segmentation into symbols. Dashed rectangles represent the

proposed segments. In an ideal case, each segment contains

exactly one graphical symbol. Then, according to their

shapes, we group the segments in clusters. The correspond-

ing clusters are shown in Fig. 2b. Choosing a pattern

representative of each cluster yields a visual codebook used

by a human to be labeled as (Fig. 2c) “4”, “+”, “=”, and

“8” respectively. Strokes in the pattern representative are

marked by the index “(∗.)”. In this paper, we choose, as

the pattern representative, the segment which minimizes the

sum of distances to the other segments in the same cluster.

Hence, we can label the handwritten scripts at the codebook

level (the high level supervision) from a perfect symbol

segmentation.

However, generating the perfect segmentation (each seg-

ment being precisely composed of a symbol) is far from

being trivial [7], [8]. For instance, if we assume that seg-

mentation is based on an unsupervised learning scheme to

extract frequent patterns, then some segments that contain

a symbol plus sub-parts of another symbol, or even several

symbols (multi-symbols) will be produced.

Similarly, if the segmentation is based on the connected

strokes as displayed in the example of Fig. 3a, the same

problem of multi-symbol segment will be present. In that

case, the cluster C3 contains a digit “4” and a sub-part of

“=”, while the cluster C2 contains two symbols, “4” and

“+”. A user can separate the symbols, and then label them

in the visual codebook (Fig. 3c). The cluster C3 can be

labeled as “4-”. If we cannot recognize a sub-part of symbol

“-”, the user can leave it unlabeled. In addition, a multi-

symbol mapping problem will be studied, e.g. the cluster

C2 mapping.

After mapping the pattern representatives to the raw

handwritten scripts with the codebook, some mistakes will

be present. For example, we can find that the label “-”

(minus) is wrong and we have to correct it. Thus, we also

propose a criterion that measures how much work has been

reduced. This criterion assesses the workload at the stroke

level since in a manual labeling process, basically ink is

manipulated at the stroke level.

In this paper, we introduce the proposed strategy for re-

ducing workload on symbol labeling in Section II. The code-

book generation, its mapping and assessment are presented

in Sections III, IV, and V respectively. The experiment

results and the conclusion will be given in Section VI and

in Section VII.
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Figure 1: A raw handwritten expression
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(a) Well segmented handwritten symbols to be
labeled in the expression (Fig. 1)
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(b) Grouping the segments in clusters
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(c) Visual codebook for the user labeling

Figure 2: Reducing the human labeling workload in on-line
handwriting graphical language: the perfect case.

II. OVERVIEW

First of all, we introduce an overview of our annotation

system in Fig. 5. The system is divided into three main

steps: generating the segmentation (segments), clustering the

segments and producing the codebook (different segment

shapes), and codebook mapping from the user labeled code-

book to the raw data.

In the first step, we need to generate a segmentation

in order to apply our mapping procedure. Three different

segmentations are used in this paper. The first segmentation

is user defined and corresponds to the ground-truth, i.e. the

perfect segmentation. To study the ability of our algorithm

to deal with multi-symbol segments, we produced an under-

segmentation by merging the top-n frequent bigrams at the

symbol level. This can be done easily with the “Calculate”

dataset (presented in Section VI-A) where symbols can

be ordered from left to right. For instance, top-1 frequent

bigram in Fig. 1 is “44”, and Fig. 4 shows a segmentation

by merging “44” at the symbol level.

A third segmentation is considered, it relies on the con-

nected strokes to define a segment (like in Fig. 3a). Using

these three segmentations, we will generate three different

codebooks in the next section and then use them for the

labeling stage.

III. CODEBOOK GENERATION USING HIERARCHICAL

CLUSTERING

In this section, we generate a codebook from the ready-

made segmentation using a hierarchical clustering. Each
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(a) A connected-stroke segmentation in the ex-
pression (Fig. 1)
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(b) Grouping the segments in clusters
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(c) Visual codebook for the user labeling

Figure 3: A connected-stroke segmentation and its labeling
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Figure 4: Merging the top-1 frequent bigram in Fig. 1

segment may contain several strokes. In addition, because of

the nature of on-line handwriting, two instances of the same

symbol can be drawn with a different number of strokes,

a different stroke order and different stroke orientations.

To overcome this problem, we propose to use a modified

Hausdorff distance [3], [4] as initially introduced in image

processing. Thus we consider each segment as a set of

points, seg = {pt}. For being size independent, all the

segments should be normalized into a reference bounding

box {x ∈ [−1, 1], y ∈ [−1, 1]} by keeping the ratio, and re-

sampled into a fixed number of npt = 100 points. In addition

to the raw data (x, y) , we used the local direction (sine,

cosine) and the local curvature (cosine) to have a 5-feature

local description of a point. The modified Hausdorff distance

[4] between two segments (sega and segb) is defined by:

MHDseg(sega, segb) = 1

2npt
(subhauf(sega, segb)

+subhauf(segb, sega))
(1)

where

subhauf(sega, segb) =
∑

pti∈sega

min
ptj∈segb

(dist(pti, ptj))

(2)

and dist(pti, ptj) is the Euclidean distance between two

points, computed in the 5-dimension feature space intro-

duced previously.

A clustering technique is used for producing the code-

book, which is then brought into play for computing the
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Figure 5: Three main steps on the annotation system

membership of each segment. It exists many clustering

methods, hierarchical clustering [6], k-means [12], self-

organizing map [5], neural gas [9], etc. We have chosen

an agglomerative hierarchical clustering [6] since it only

needs a distance matrix between all the segments; the other

methods require to embed a segment in a feature space of

fixed-number dimensions beforehand. We use the Lance-

Williams formula [6] which provides an efficient computa-

tional algorithm for hierarchical clustering. The membership

of each segment is then generated: all the segments are

grouped into np clusters.

We select, as the pattern representative, the sample segc
which minimizes the sum of modified Hausdorff distances

to the other samples of the same cluster C:

segc = argmin
segp∈C

(
∑

segq∈C

MHDseg(segp, segq)). (3)

The pattern representatives will be organized as a visual

codebook, an example is displayed in Fig. 2c. In the next

section, the codebook mapping problem will be discussed.

IV. CODEBOOK MAPPING FROM A VISUAL CODEBOOK

TO RAW SCRIPTS

In the previous section, a codebook composed of multi-

stroke segments has been obtained. A representative sample

has been selected from each cluster to generate a visual

codebook. A user labels therefore these chosen segments

stroke by stroke in the visual codebook. In this section,

we discuss how to label raw scripts with the labeled visual

codebook.

In the visual codebook, segments in a cluster are not

always from the same single symbol, e.g. “4+” in Fig. 3c

represent more than one symbol. If we meet unknown

symbols (sub-parts of symbol), we can leave them unlabeled.

This task of segmentation and partial labeling of the repre-

sentatives is quite simple. A mapping algorithm has been

developed to complete the labeling of all unlabeled strokes

in the original cluster. The mapping procedure involves the

normalization of a segment into a bounding box, and then

searching for all unlabeled strokes with the closest labeled

stroke using modified Hausdorff distance. After this mapping

process, the symbols are segmented and labeled.

With the example of the cluster C2 and the visual code-

book given in Fig. 3c, we assume a new instance of two

symbols “4+” in Fig. 6b for better explanation. This instance

contains one more stroke (5 instead of 4), and belongs to

the cluster C2. A user has first to manually label the two

symbols contained in the representative of the C2 cluster, i.e.

“4” for strokes (3, 4) and “+” for strokes (5, 6), as displayed

in Tab. Ia. In our system, each stroke is associated with a

symbol index and its label. The symbol index denotes the

symbol the stroke belongs to.
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Figure 6: The user manually labels the cluster C2 (a), and then
the system finds a mapping for raw scripts (b).

Then we have to automatically label the remaining strokes

(20 to 24) belonging to C2. This is done by a mapping

procedure to find the best match between the unlabeled

strokes and the labeled ones. Considering two segments

{(∗3), (∗4), (∗5), (∗6)} and {(20), (21), (22), (23), (24)},
Tab. I shows the mapping procedure which normalizes

the segments and looks for the corresponding labeled

stroke. The numbers of strokes between two mapping

segments are not necessarily equal. The mapping pairs

{{(20) → (∗3)}, {(21) → (∗3)}, {(22) → (∗4)}, {(23) →
(∗5)}, {(24) → (∗6)}} are achieved. The symbol “4”

{{(20) → (∗3)}, {(21) → (∗3)}, {(22) → (∗4)}} and

the symbol “+” {{(23) → (∗5)}, {(24) → (∗6)}} are

segmented and labeled.

Table I: Each stroke in raw segment (b) is given the label contained
in its closest stroke of labeled representative (a).
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In the next section, we introduce the labeling cost to

evaluate how much annotation work has been reduced.

V. LABELING COST

In the previous section, the visual codebook was manually

labeled. We then execute the mapping procedure described

in the previous section to label all the other segments. Since

the user labels the segments and raw handwritten scripts in

a dataset stroke by stroke, we define the labeling cost Clabel

at the stroke level by:
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Clabel =
Nc +Ndb −Ncorrect

Ndb

, (4)

whereNc is the number of strokes in the proposed codebook,

Ndb is the number of strokes in the dataset, and Ncorrect is

the number of strokes which are correctly labeled in the

original dataset. Ndb−Ncorrect is the number of strokes for

which the label has to be corrected or filled in the original

dataset. Nc and Ndb can be easily obtained by counting how

many strokes are in the codebook and dataset respectively.

We compute Ncorrect according to the number of strokes

which correspond to well segmented and well labeled sym-

bols. If Clabel < 1, the system reduces the human effort for

labeling. The lower labeling cost is preferable. In fact, we

can consider Clabel as the percentage of strokes in dataset

which still need a manual operation. For instance, after

labeling the visual codebook and mapping in Fig. 3, the

labeling cost is Clabel =
15+12−13

15
= 0.933.

In the next section, our proposed method will be tested on

two different datasets, single-line mathematical expressions

and a flowchart dataset.

VI. EXPERIMENT

In this section, two handwritten datasets will be first

presented, and then we evaluate the proposed method on

such two datasets.

A. Handwritten Corpus

The first simple database is a synthetic handwriting

database named “Calculate” [1] of realistic handwritten

expressions synthesized from isolated symbols. The expres-

sions in “Calculate” are produced according to the grammar

N1 op N2 = N3 where N1, N2 and N3 are numbers

composed of 1, 2 or 3 real isolated handwritten digits. The

distribution of the number of digits for Ni={1,2,3} is 70% of

1 digit, 20% of 2 digits and 10% of 3 digits randomly. Fur-

thermore, op represents one of the operators {+,−,×,÷}.
Fig. 7a shows an example picked from “Calculate” with N1,

N2, N3 and op containing 3 digits, 1 digit, 2 digits and “×”

respectively. Fifteen classes exist in total.

The second handwriting database is a realistic handwritten

flowchart database named “FC” database [2]. We use only

the six different graphical symbols that represent the basic

operations (data, terminator, process, decision, connection,

arrows) without any handwritten text, as displayed in Figure

7b. It contains six classes.

Tab. II shows statistical information on the two databases.

Each of them is composed of a training part (first line) and

a test part (second line).

In the next section, the values of the labeling cost will

be studied with respect to the number of prototypes of the

clustering stage.
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Figure 7: Two different handwritten graphical languages: (a) a
synthetic expression from “Calculate” composed of real isolated
symbols , (b) an example of flowchart in FC database.

Table II: Symbol number and class number on two databases
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B. Evaluation

In this section, we evaluate the different codebook size

(prototype number) during the hierarchical clustering on

the two datasets, and with different segmentation methods.

As an illustration, we also display a subset of the visual

codebook.

Evaluation of Codebook Size:

Several different metrics can be used to control the hierar-

chical clustering. Six metrics are proposed in [10]. First, we

use the Average metric to calculate the codebook. The com-

parison between the metrics will be discussed later. Fig. 8

shows the labeling costs on two datasets with two segmen-

tations: the ground-truth segmentation and the connected-

stroke segmentation. Using the ground-truth segmentation,

the labeling cost is very low on both datasets respectively:

8.8% with 250 prototypes on “Calculate” dataset training

part and 4.3% with 100 prototypes on “FC” dataset training

part. It shows that in the ideal case we can reduce most of

the human workload.

Using the connected-stroke segmentation, the labeling

cost on the training part of “FC” dataset reports a high

value, 94% with 250 prototypes. It means that most of

graphical symbols on “FC” dataset are not connected-stroke

component. On the training part of “Calculate” dataset, the

labeling cost is much lower, 47.4% with 250 prototypes,

since the most of graphical symbols, digits, are connected-

stroke component. As a conclusion, the segmentation quality
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is vital for the labeling cost.
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Figure 8: Labeling cost with different codebook sizes on the
training parts of two datasets with the ground-truth segmentation
and the connected-stroke segmentation

Evaluation on Hierarchical Clustering Metrics:

Six hierarchical clustering metrics are evaluated on two

datasets respectively using their best codebook size: (1)

Single, (2) Average, (3) Complete, (4) Centroid, (5) Median,

and (6) Ward (minimum variance) [10]. Fig. 9 shows the

labeling cost for the six metrics using the ground-truth

segmentation. Clearly, the Average metric reports the lowest

labeling cost on the training parts of both datasets.
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Figure 9: Evaluating the hierarchical clustering metrics on the
training parts

Evaluation on Merging Top-N Frequent Bigrams:

On the “Calculate” dataset, the mathematical expressions

are arranged from left to right. Using the ground-truth

segmentation, we can calculate the bigram distribution. The

top-n (tn) frequent bigrams are merged as new multi-symbol

segments to test multi-symbol mapping in the codebook.

Fig. 10 shows the labeling cost on the training part of

“Calculate” dataset during the merging of the top-n (tn)

frequent bigrams from 0 to 50 with a step of 10. In

Fig. 10, two mapping methods are used. The first is the

proposed multi-symbol mapping of this paper. The second

is a single-symbol mapping; each cluster can be associated

with only one label. The zero in x-axis means that the

ground-truth segmentation is used. It shows that the multi-

symbol mapping obviously works better.
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Figure 10: Labeling cost on merging the top-n (tn) frequent
bigrams on the training part of “Calculate” dataset

Evaluation on Test Parts:

In the previous experiments, we use the training parts,

actually used as validation sets, the two datasets to choose

the best parameter setting: 250 prototypes on “Calculate”

dataset and 100 prototypes on “FC” dataset with the Average

metric hierarchical clustering. Using these parameters and

the connected-stroke segmentation, we obtain fair labeling

costs of 50.4% and 97.2% on the test parts of the two

datasets respectively. But using the ground-truth segmen-

tation, labeling costs of 13.1% and 13.5% are achieved

respectively. These values show that the method is quite

effective and that a lot of the annotation task can be saved.

Visual Codebook:

An illustration of the results of the clustering based on

the ground-truth segmentation is displayed in Fig. 11. In

these selected examples, we can see that the segment shapes

are well grouped in the clusters. In each segment, the red

point represents the starting point of a stroke. We can see

that several digits “8” with different writing orientations and

different pen-down position are actually grouped in the same

cluster as displayed in Fig. 11a.

VII. CONCLUSION

In this paper, we proposed a framework for reducing

the annotation workload using a codebook mapping for

online graphical languages. Starting with the ready-made

segmentation, the segments are grouped into a codebook

using hierarchical clustering. The visualized codebook is

generated for the user labeling. To evaluate the system

performance, we define the labeling cost as how much

labeling work has to be done by the user. On the test part of
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Figure 11: Clusters and pattern representatives

two datasets, “Calculate” dataset and “FC” dataset, the low

labeling costs of 13.1% and 13.5% are reported respectively

using the ground-truth segmentation. Much of work has been

reduced thanks to a good segmentation.

However, generating a good quality of segmentation is

difficult by an unsupervised method. We cannot use any

supervised classifiers to recognize and segment the symbols

since our objective consists in labeling the symbols in an

unknown language. Our previous work [7], [8] of symbol

knowledge extraction based on the minimum description

length principle is a possible option for generating the unsu-

pervised segmentation. In future work, we will combine this

unsupervised segmentation method to reduce furthermore

the symbol labeling cost in this case.
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