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ADDENDUM: “THE PROBLEM OF DEFICIENCY INDICES FOR DISCRETE

SCHRÖDINGER OPERATORS ON LOCALLY FINITE GRAPHS” [J. MATH.

PHYS. (52), 063512 (2011)]

SYLVAIN GOLÉNIA AND CHRISTOPH SCHUMACHER

Abstract. In this note we answer negatively to our conjecture concerning the deficiency indices.
More precisely, given any non-negative integer n, there is locally finite graph on which the

adjency matrix has deficiency indices (n, n).

Given a closable and densely defined symmetric operator T acting on a complex Hilbert space,
the deficiency indices of T are defined by η±(T ) := dim ker(T ∗ ∓ i) ∈ N ∪ {+∞}. The operator T
possesses a self-adjoint extension if and only if η+(T ) = η−(T ). If this is the case, we denote the
common value by η(T ) and the self-adjoint extensions of T are parametrized by the unitary group
U(η(T )), e.g., [RS78, Section X.1]. The operator T is essentially self-adjoint, i.e., its closure is
self-adjoint, if and only if η(T ) = 0. In this note we discuss the possible values of η(T ), when T
is the adjacency matrix acting on a locally finite and simple graph.

We recall some standard definitions of graph theory to fix notation. A (simple, undirected)
graph is a pair G = (E, V ), where V is a countable set and E : V × V → {0, 1} is a symmetric
function with E(v, v) = 0 for all v ∈ V . The elements of V are called vertices. Two vertices
v, w ∈ V with E(v, w) = 1 form an edge (v, w), are neighbours, and we write v ∼ w. The set of
neighbours of v ∈ V is NG(v) := {w ∈ V | v ∼ w}. The number of neighbours of v is the degree
dG(v) := |NG(v)| of v. The graph G = (V,E) is locally finite, if dG(v) <∞ for all v ∈ V . In this
note, all graphs are simple, undirected and locally finite.

A path of length n ∈ N in G is a tuple (v0, v1, . . . , vn) ∈ V n+1 such that vj−1 ∼ vj for all
j ∈ {1, . . . , n}. Such a path connects v0 and vn and is called v0-vn-path. Being connected by a
path is an equivalence relation on V , and the equivalence classes are called connected components
of the graph. A graph is connected, if all its vertices belong to the same connected component.
The vertex set V of a connected graph is equipped with the graph metric ρG : V × V → R,
ρG(v, w) := inf{n ∈ N | there exists a v-w-path of length n}. Note that we use the convention
0 ∈ N, so that each vertex is connected to itself with a path of length 0.

We now define trees. An edge e ∈ V × V , E(e) = 1, in a connected graph G = (E, V ) is

pivotal, if the graph G with the edge e removed, i.e. (Ẽ, V ) with Ẽ(e) = 0 and Ẽ(e′) = E(e′) for
all e′ ∈ V \ {e}, is disconnected. A tree is a connected graph, which has only pivotal edges.

We associate to a graph G the complex Hilbert space `2(V ). We denote by 〈 · , · 〉 and by ‖ · ‖
the scalar product and the associated norm, respectively. The set of complex functions with finite
support in V is denoted by Cc(G). One may define different discret operators acting on `2(V ).
For instance, the (physical) Laplacian is defined by

(∆G,◦f)(x) :=
∑

y∈NG(x)

(
f(x)− f(y)

)
, with f ∈ Cc(G)(1)

It is well known that it is symmetric and essentially self-adjoint on Cc(G), see [Woj07].
In this note we focus on the study of the adjacency matrix of G, which is defined by:

(AG,◦f)(x) :=
∑

y∈NG(x)

f(y), with f ∈ Cc(G).(2)
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This operator is symmetric and thus closable. We denote the closure by AG. We denote the
domain by D(AG), and its adjoint by (AG)∗. Unlike the Laplacian, A may have several self-
adjoint extensions. We investigate its deficiency indices. Since the operator AG commutes with
complex conjugation, its deficiency indices are equal, see [RS78, Theorem X.3]. This means that
AG possesses a self-adjoint extension. Note that η(AG) = 0 if and only if AG is essentially
self-adjoint on Cc(G).

In [MO85, Mül87], one constructs adjacency matrices for simple trees with positive deficiency
indices. In fact, it follows from their proofs that the deficiency indices are infinite in both references.
As a general result, a special case of [GS11, Theorem 1.1] gives that, given a locally finite simple
tree G, one has the following alternative:

η(AG) ∈ {0,+∞}.(3)

The value of η(AG) is discussed in [GS11] and linked with the growth of the tree.
In [MW89, Section 3], one finds:

Theorem 1. For all n ∈ N ∪ {∞}, there is a simple graph G, such that η(AG) = n.

Their proof is unfortunately incomplete. However, the statement is correct, this is aim of this
note. In [MW89], they provided simple and locally finite graph G such that η(AG) ≥ 1 but did
not check that η(AG) = 1. The problem comes from the fact that they considered a tree. More
precisely, they refered to the works of [MO85, Mül87]. Therefore, (3) gives η(AG) = ∞ in their
case. Keeping that in mind and strongly motivated by some other examples, we had proposed a
drastically different scenario and had conjectured in [GS11] that that for any simple graph G, one
has (3).

We now turn to the proof of Theorem 1 and therefore disprove our conjecture. First, we show
that the validity of Theorem t:main is equivalent to the existence of a simple graph G with

η(AG) = 1.(4)

Of course, Theorem t:main in particular states the existence of G. We focus on the other impli-
cation. We denote the positive integers with N∗.

Lemma 2. Let n ∈ N∗ and G be a locally finite and connected graph. Then there exists a locally
finite and connected graph G̃ such that

η(AG̃) = n× η(AG).

Proof. Let Ĝ := (Ê, V̂ ) be the disjoint union of n copies. We have: Ĝ := (Ê, V̂ ) with V̂ :=

{1, . . . , n} × V and Ê
(
(i, v), (j, w)

)
:= δi,jE(v, w). Note that η(AĜ) = n × η(AG) since we

have a direct sum. Take now v0 ∈ V and connect the copies of G by adding an edge between
(i, v0) and (i + 1, v0), for all i = 1, . . . , n − 1, and denote the resulting graph by G̃. Note that
AĜ is bounded perturbation of AG̃. Therefore, by Proposition p:stab in Appendix A, we have
η(AĜ) = n× η(AG). �

Our example of a graph G with (4) is an antitree, a class of graphs which we define next. See
also [BK]. The sphere of radius n ∈ N around a vertex v ∈ V is the set Sn(v) := {w ∈ V |
dG(v, w) = n}. A graph is an antitree, if there exists a vertex v ∈ V such that for all other vertices
w ∈ V \ {v}

NG(w) = Sn−1(v) ∪ Sn+1(v),

where n = dG(v, w) ≥ 1. See Figure 1 for an example. The distinguished vertex v is the root of the
antitree. Antitrees are bipartite and enjoy radial symmetry, which means that each permutation
of V , which fixes the spheres around the root, induces a graph isomorphism on G.

We denote the root by v, the spheres by Sn := Sn(v), and their sizes by sn := |Sn|. Further,
|x| := ρG(v, x) is the distance of x ∈ V from the root. The operator P : `2(V )→ `2(V ), given by

Pf(x) :=
1

s|x|

∑
y∈S|x|

f(y), for all f ∈ `2(V ) and x ∈ V ,

averages a function over the spheres. Thereby, P = P 2 = P ∗ is the orthogonal projection onto
the space of radially symmetric functions in `2(V ). A function f : V → C is radially symmetric, if
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Figure 1. An antitree with spheres S0, . . . , S6.

it is constant on spheres, i.e., for all nodes x, y ∈ V with |x| = |y|, we have f(x) = f(y). For all

radially symmetric f , we define f̃ : N→ C, f̃(|x|) := f(x), for all x ∈ V . Note that

P`2(V ) = {f : V → C, f radially symmetric,
∑
n∈N

sn|f̃(n)|2 <∞} ' `2(N, (sn)n∈N),

where (sn)n∈N is now a sequence of weights. The key observation of [BK, Theorem 4.1] is that

AG = PAGP and ÃGPf(|x|) = s|x|−1P̃ f(|x| − 1) + s|x|+1P̃ f(|x|+ 1),

for all f ∈ Cc(V ), with the convention s−1 = 0. Using the unitary transformation U : `2(N, (sn)n∈N)→
`2(N), Uf̃(n) =

√
snf̃(n), we see that AG is unitarily equivalent to the direct sum of 0 on

(P`2(V ))⊥ and a Jacobi matrix acting on `2(N) with 0 on the diagonal and the sequence (
√
sn
√
sn+1)n∈N

on the off-diagonal.

Proposition 3. Set α > 0. Let G be the antitree with sphere sizes sn, where s0 := 1, sn := bnαc,
n ≥ 1. Then,

η(AG) =

{
0, if α ∈ (0, 1],

1, if α > 1.

Proof. Using Proposition 5 from Appendix A, we have η(AG) = η(J), where J is the Jacobi

matrix given by an =
√
snsn+1 on the off-diagonal and bn = 0 on the diagonal. Let J̃ be the

Jacobi matrix given by ãn =
√
nα(n+ 1)α and b̃n = 0. Now note that

0 ≤ ãn − an ≤
√
nα(n+ 1)α −

√
(nα − 1)((n+ 1)α − 1)

=
(n+ 1)α + nα − 1√

nα(n+ 1)α +
√

(nα − 1)((n+ 1)α − 1)

n→∞−−−−→ 1,

therefore ãn − an is bounded. Hence, J̃ − J is a bounded operator, and by Proposition 5, cf. Ap-
pendix A, we have η(J) = η(J̃).

Now note
∑
n∈N ã

−1
n =∞, iff α ≤ 1, and

ãn−1ãn+1 =
√

(n− 1)αnα
√

(n+ 1)α(n+ 2)α =
√

(n2 − 1)α
√

((n+ 1)2 − 1)α ≤ nα(n+ 1)α = ã2
n.

By Theorem 4, see Appendix A, applied to J̃ we get the result. �

Appendix A. Useful facts

The theory of Jacobi matrices, as developed in [Ber68, Chapter VII], provides the following
general theorem.

Theorem 4. Let J be the Jacobi matrix with off-diagonal entries an > 0 and diagonal entries
bn ∈ R, n ∈ N, acting on `2(N).
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(1) If
∑
n∈N a

−1
n =∞, then J is essentially self-adjoint on Cc(N).

(2) If
∑
n∈N a

−1
n <∞, an−1an+1 ≤ a2

n for all n ≥ n0 and |bn| ≤ C for some constants n0, C >
0, then J is not essentially self-adjoint on Cc(N) and has deficiency index 1.

We also recall that the deficiency indices are stable under the Kato-Rellich class of perturbation
and refer to [GS11, Proposition A.1] for a proof.

Proposition 5. Given two closed and densely defined symmetric operators S, T acting on a
complex Hilbert space and such that D(S) ⊂ D(T ). Suppose there are a ∈ [0, 1) and b ≥ 0 such
that

‖Tf‖ ≤ a‖Sf‖+ b‖f‖, for all f ∈ D(S).(5)

Then, the closure of (S+T )|D(S) is a symmetric operator that we denote by S+T . Moreover, one
obtains that D(S) = D(S + T ) and that η±(S) = η±(S + T ). In particular, S + T is self-adjoint
if and only if S is self-adjoint.

Acknowledgments: We would like to thank Matthias Keller for helpful discussions and Thierry
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