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ERRATUM: “THE PROBLEM OF DEFICIENCY INDICES FOR DISCRETE

SCHRÖDINGER OPERATORS ON LOCALLY FINITE GRAPHS” [J. MATH. PHYS.

(52), 063512 (2011)]

SYLVAIN GOLÉNIA AND CHRISTOPH SCHUMACHER

Abstract. In this note we answer negatively to our conjecture concerning the deficiency indices. More
precisely, given any non-negative integer n, there is locally finite graph on which the adjency matrix has
deficiency indices (n, n).

Given a closable and densely defined symmetric operator T acting on a complex Hilbert space, the
deficiency indices of T are defined by η±(T ) := dimker(T ∗ ∓ i) ∈ N ∪ {+∞}. The operator T possesses
a self-adjoint extension if and only if η+(T ) = η−(T ). If this is the case, we denote the common value
by η(T ) and the self-adjoint extensions of T are parametrized by the unitary group U(η(T )), e.g., [RS,
Section X.1]. The operator T is essentially self-adjoint, i.e., its closure is self-adjoint, if and only if
η(T ) = 0. In this note we discuss the possible values of η(T ), when T is the adjacency matrix acting on
a locally finite and simple graph.

We recall some standard definitions of graph theory to fix notation. A (simple, undirected) graph
is a pair G = (E, V ), where V is a countable set and E : V × V → {0, 1} is a symmetric function
with E(v, v) = 0 for all v ∈ V . The elements of V are called vertices. Two vertices v, w ∈ V with
E(v, w) = 1 form an edge (v, w), are neighbours, and we write v ∼ w. The set of neighbours of v ∈ V

is NG(v) := {w ∈ V | v ∼ w}. The number of neighbours of v is the degree dG(v) := |NG(v)| of v.
The graph G = (V,E) is locally finite, if dG(v) < ∞ for all v ∈ V . In this note, all graphs are simple,
undirected and locally finite.

A path of length n ∈ N in G is a tuple (v0, v1, . . . , vn) ∈ V n+1 such that vj−1 ∼ vj for all j ∈
{1, . . . , n}. Such a path connects v0 and vn and is called v0-vn-path. Being connected by a path is an
equivalence relation on V , and the equivalence classes are called connected components of the graph.
A graph is connected, if all its vertices belong to the same connected component. The vertex set V

of a connected graph is equipped with the graph metric ρG : V × V → R, ρG(v, w) := inf{n ∈ N |
there exists a v-w-path of length n}. Note that we use the convention 0 ∈ N, so that each vertex is
connected to itself with a path of length 0.

We now define trees. An edge e ∈ V × V , E(e) = 1, in a connected graph G = (E, V ) is pivotal, if the

graph G with the edge e removed, i.e. (Ẽ, V ) with Ẽ(e) = 0 and Ẽ(e′) = E(e′) for all e′ ∈ V \ {e}, is
disconnected. A tree is a connected graph, which has only pivotal edges.

We associate to a graph G the complex Hilbert space ℓ2(V ). We denote by 〈 · , · 〉 and by ‖ · ‖ the
scalar product and the associated norm, respectively. The set of complex functions with compact support
in V is denoted by Cc(G). One may define different discret operators acting on ℓ2(V ). For instance, the
(physical) Laplacian is defined by

(∆G,◦f)(x) :=
∑

y∈NG(x)

(
f(x)− f(y)

)
, with f ∈ Cc(G)(1)

It is well known that it is symmetric and essentially self-adjoint on Cc(G), see [Woj].
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In this note we focus on the study of the adjacency matrix of G, which is defined by:

(AG,◦f)(x) :=
∑

y∈NG(x)

f(y), with f ∈ Cc(G).(2)

This operator is symmetric and thus closable. We denote the closure by AG. We denote the domain
by D(AG), and its adjoint by (AG)

∗. Unlike the Laplacian, A may have several self-adjoint extensions.
We investigate its deficiency indices. Since the operator AG commutes with complex conjugation, its
deficiency indices are equal, see [RS, Theorem X.3]. This means thatAG possesses a self-adjoint extension.
Note that η(AG) = 0 if and only if AG is essentially self-adjoint on Cc(G).

In [MO, Mü], one constructs adjacency matrices for simple trees with positive deficiency indices. In
fact, it follows from their proofs that the deficiency indices are infinite in both references. As a general
result, a special case of [GS, Theorem 1.1] gives that, given a locally finite simple tree G, one has the
following alternative:

η(AG) ∈ {0,+∞}.(3)

The value of η(AG) is discussed in [GS] and linked with the growth of the tree.
In [MW, Section 3], one finds:

Theorem 1. For all n ∈ N ∪ {∞}, there is a simple graph G, such that η(AG) = n.

Their proof is unfortunately incomplete. However, the statement is correct, this is aim of this note.
In [MW], instead of providing simple graphs such that Theorem 1 holds, they proved η(AG) 6= 0 for a
specific tree. More precisely, they refer to the works of [MO, Mü]. But given (3), this does not prove
Theorem 1. Keeping that in mind and strongly motivated by some other examples, we had proposed a
drastically different senario and had conjectured in [GS] that that for any simple graph, one has (3).

We now turn to the proof of Theorem 1 and therefore disprove our conjecture. First, we show that
the validity of Theorem 1 is equivalent to the existence of a simple graph G with

η(AG) = 1.(4)

Of course, Theorem 1 in particular states the existence of G. We focus on the other implication.

Lemma 2. Let n ∈ N∗ and G be a locally finite and connected graph. Then there exists a locally finite
and connected graph G̃ such that

η(AG̃) = n× η(AG).

Proof. Let Ĝ := (Ê, V̂ ) be the disjoint union of n copies. We have: Ĝ := (Ê, V̂ ) with V̂ := {1, . . . , n}×V

and Ê
(
(i, v), (j, w)

)
:= δi,jE(v, w). Note that η(A

Ĝ
) = n × η(AG) since we have a direct sum. Take

now v0 ∈ V and connect the copies of G by adding an edge between (i, v0) and (i + 1, v0), for all

i = 1, . . . , n − 1, and denote the resulting graph by G̃. Note that A
Ĝ

is bounded perturbation of AG̃.
Therefore, by Proposition 5, we have η(A

Ĝ
) = n× η(AG). �

Our example of a graph G with (4) is an antitree, a class of graphs which we define next. See also [BK].
The sphere of radius n ∈ N around a vertex v ∈ V is the set Sn(v) := {w ∈ V | dG(v, w) = n}. A graph
is an antitree, if there exists a vertex v ∈ V such that for all other vertices w ∈ V \ {v}

NG(w) = Sn−1(v) ∪ Sn+1(v),

where n = dG(v, w) ≥ 1. See Fig. 1 for an example. The distinguished vertex v is the root of the antitree.
Antitrees are bipartite and enjoy radial symmetry, which means that each permutation of V , which fixes
the spheres around the root, induces a graph isomorphism on G.
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Figure 1. An antitree with spheres S0, . . . , S6 of sizes 1, 7, 3, 5, 9, 14, 20.

We denote the root by v, the spheres by Sn := Sn(v), and their sizes by sn := |Sn|. Further,
|x| := ρG(v, x) is the distance of x ∈ V from the root. The operator P : ℓ2(V ) → ℓ2(V ), given by

Pf(x) :=
1

s|x|

∑

y∈S|x|

f(y), for all f ∈ ℓ2(V ) and x ∈ V ,

averages a function over the spheres. Thereby, P = P 2 = P ∗ is the orthogonal projection onto the space
of radially symmetric functions in ℓ2(V ). A function f : V → C is radially symmetric, if it is constant on
spheres, i.e., for all nodes x, y ∈ V with |x| = |y|, we have f(x) = f(y). For all radially symmetric f , we

define f̃ : N → C, f̃(|x|) := f(x), for all x ∈ V . Note that

Pℓ2(V ) = {f : V → C, f radially symmetric,
∑

n∈N

sn|f̃(n)|2 < ∞} ≃ ℓ2(N, (sn)n∈N),

where (sn)n∈N is now a sequence of weights. The key observation of [BK, Theorem 4.1] is that

AG = PAGP and ÃGPf(|x|) = s|x|−1P̃ f(|x| − 1) + s|x|+1P̃ f(|x|+ 1),

for all f ∈ Cc(V ), with the convention s−1 = 0. Using the unitary transformation U : ℓ2(N, (sn)n∈N) →
ℓ2(N), Uf̃(n) =

√
snf̃(n), we see that AG is unitarily equivalent to the direct sum of 0 on (Pℓ2(V ))⊥

and a Jacobi matrix acting on ℓ2(N) with 0 on the diagonal and the sequence (
√
sn

√
sn+1)n∈N on the

off-diagonal.

Proposition 3. Set α > 0. Let G be the antitree with sphere sizes sn, where s0 := 1, sn := ⌊nα⌋, n ≥ 1.
Then,

η(AG) =

{
0, if α ∈ (0, 1],

1, if α > 1.

Proof. Using Proposition 5, we have η(AG) = η(J), where J is the Jacobi matrix given by an =
√
snsn+1

on the off-diagonal and bn = 0 on the diagonal. Let J̃ be the Jacobi matrix given by ãn =
√
nα(n+ 1)α

and b̃n = 0. Now note that

0 ≤ ãn − an ≤
√
nα(n+ 1)α −

√
(nα − 1)((n+ 1)α − 1)

=
(n+ 1)α + nα − 1√

nα(n+ 1)α +
√
(nα − 1)((n+ 1)α − 1)

n→∞−−−−→ 1,
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therefore ãn − an is bounded. Hence, J̃ − J is a bounded operator, and by Proposition 5, we have
η(J) = η(J̃).

Now note
∑

n∈N
ã−1
n = ∞, iff α ≤ 1, and

ãn−1ãn+1 =
√
(n− 1)αnα

√
(n+ 1)α(n+ 2)α =

√
(n2 − 1)α

√
((n+ 1)2 − 1)α ≤ nα(n+ 1)α = ã2n.

By Theorem 4 applied to J̃ we get the result. �

Appendix A.

The theory of Jacobi matrices, as developed in [Ber, Chapter VII], provides the following general
theorem.

Theorem 4. Let J be the Jacobi matrix with off-diagonal entries an > 0 and diagonal entries bn ∈ R,
n ∈ N, acting on ℓ2(N).

(i) If
∑

n∈N
a−1
n = ∞, then J is essentially self-adjoint on Cc(N).

(ii) If
∑

n∈N
a−1
n < ∞, an−1an+1 ≤ a2n for all n ≥ n0 and |bn| ≤ C for some constants n0, C > 0,

then J is not essentially self-adjoint on Cc(N) and has deficiency index 1.

We also recall that the deficiency indices are stable under the Kato-Rellich class of perturbation and
refer to [GS, Proposition A.1] for a proof.

Proposition 5. Given two closed and densely defined symmetric operators S, T acting on a complex
Hilbert space and such that D(S) ⊂ D(T ). Suppose there are a ∈ [0, 1) and b ≥ 0 such that

‖Tf‖ ≤ a‖Sf‖+ b‖f‖, for all f ∈ D(S).(A.5)

Then, the closure of (S+T )|D(S) is a symmetric operator that we denote by S+T . Moreover, one obtains
that D(S) = D(S + T ) and that η±(S) = η±(S + T ). In particular, S + T is self-adjoint if and only if S
is.
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