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STEIN’S METHOD FOR BROWNIAN APPROXIMATIONS

L. COUTIN AND L. DECREUSEFOND

Abstract. Motivated by a theorem of Barbour, we revisit some of the classi-
cal limit theorems in probability from the viewpoint of the Stein method. We
setup the framework to bound Wasserstein distances between some distribu-
tions on infinite dimensional spaces. We show that the convergence rate for
the Poisson approximation of the Brownian motion is as expected proportional
to λ−1/2 where λ is the intensity of the Poisson process. We also exhibit the
speed of convergence for the Donsker Theorem and for the linear interpola-
tion of the Brownian motion. By iterating the procedure, we give Edgeworth
expansions with precise error bounds.

1. Introduction

Among the classics in probability theory, one can cite the approximation in dis-
tribution of a Brownian motion by a normalized compensated Poisson process of
intensity going to infinity or the celebrated Donsker theorem which says that a sym-
metric random walk conveniently normalized also approaches a Brownian motion
in distribution. Though the topology of the convergence in distribution is known
to derive from a distance on the space of probability measures, to the best of our
knowledge, we are aware of only one result precising the speed of convergence in
one of these two theorems. In [2], Barbour estimated the distance between the
distribution of a normalized compensated Poisson process of intensity λ and the
distribution of a Brownian motion. The common space on which these two pro-
cesses are compared is taken as the space of rcll functions, denoted by D([0, 1], R)
equipped with the distance:

d0(ω, η) = inf
Φ∈Hom([0,1])

(‖ω ◦ Φ− η‖∞ + ‖Φ− Id ‖∞),

where Hom([0, 1]) is the set of increasing homeomorphisms of [0, 1]. It is proved in
[2] that the speed of convergence is not λ−1/2 as expected but that there exists a non
negligible corrective term. This additional term exists because the sample-paths
of the two processes do not really belong to the same space: Continuous functions
are a rather special class of rcll functions and sample-paths of Poisson process
even normalized are never continuous whatever the value of the intensity. Thus
there is an unavoidable gap between the two kind of trajectories in the considered
approximation. Actually, the additional term is related to the modulus of continuity
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2 L. COUTIN AND L. DECREUSEFOND

of the Brownian motion, i.e. in some sense, it measures the cost to approximate a
continuous function by a purely discontinuous one.

We circumvent this problem by considering Poisson and Brownian sample-paths
as elements of the same space. In fact, the Poisson sample-paths, like the trajec-
tories of the other processes we are considering in this paper, belong to a much
smaller space than D([0, 1], R). They all are piecewise differentiable, i.e. of the
form

∑

n∈N
rn(t− tn)1[tn, tn+1) where (tn, n ≥ 1) is an increasing sequence of real

and rn are differentiable functions. An indicator function is not continuous but it
has more property than being rcll. In particular, it belongs to Iβ, p for any p ≥ 1
and any β < 1/p (see Appendix A for definition). On the other hand, Brownian tra-
jectories are (1/2− ǫ)-Hölder continuous so that they belong to Iβ, p any p ≥ 1 and
any β < 1/2. Therefore, the natural candidates to support both the distribution of
piecewise differentiable processes and that of the Brownian motion are the spaces
Iβ, 2 for any β < 1/2. The original problem is then reduced to the computation
of the distance between between a given distribution and a Gaussian law on some
Hilbert space.

The Stein method is known for a long time to give the speed of convergence of
many Gaussian approximations (see for instance [5] and references therein). The
usual approach requires some sort of coupling to derive the pertinent estimates. It
is only recently that the mixing of Stein approach and Malliavin calculus proved
its efficiency (see [18] for a thorough analysis of this line of thought): The search
of ad-hoc couplings in the Stein method is there bypassed by using integration by
parts formula in the sense of Malliavin calculus. In particular, it has been used
for approximations of point processes functionals [7, 8, 20]. But to the best of
our knowledge, up to the notable exception of [2], all these investigations consider
finite dimensional Gaussian random variables. We here develop the framework for
a Stein theory on Hilbert spaces. It requires two types of Malliavin gradients : One
used to characterized the target (Gaussian) measure, one built on the probability
space of the measure to be compared to the Gaussian measure, used to perform
the necessary integration by parts. We show that our method is applicable in three
different settings: Whenever the alea on which the approximate process is built
upon is either the Poisson space, the Rademacher space or the Wiener space.

Since [1, 13], it is well known that Stein method can also lead to expansions
of higher order by pursuing the development. We here generalize this method to
infinite dimension and give the exact values of the bound coefficients.

This paper is organized as follows. We first construct the Wiener measure on
the Besov-Liouville spaces. In Section 3, we transfer this structure to l2(N) for
the ease of computations. Section 4 is devoted to the development of the abstract
version of the Stein method for Hilbert valued random variables. In Section 5
to Section 7, we examplify this general scheme of reasoning successively for the
Poisson approximation of the Brownian motion, for the linear interpolation of the
Brownian motion and for the Donsker theorem. For the former two examples, we
iterate the procedure and derive an Edgeworth expansion with explicit error bounds.
In Section 8, we show that by a transfer principle, similar results can be obtained
for other Gaussian processes like the fractional Brownian motion, extending some
earlier result [9]. Technical proofs are deported to Section 9.
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2. Gaussian structure on Besov-Liouville spaces

In order to compare quantitatively the distribution of a piecewise differentiable
process with that of a Brownian motion, we need to consider a functional space to
which the sample-paths of both processes belong to. Ordinary Brownian motion
is known to have sample-paths Hölder continuous of any order smaller than 1/2.
Thus, Theorem [A.1] ensures that its sample-paths belongs to Iβ,∞ ⊂ Iβ,2 for any
β < 1/2.

Moreover, a simple calculation shows that 1[a,+∞) = I10+(ǫa). Since for any ǫ > 0,

I+1/2+ǫ,2 is embedded into Hol(ǫ) and since ǫa belongs to the dual of Hol(ǫ), it follows

that ǫa belongs to I∗1/2+ǫ,2 = I−1/2−ǫ, 2. Hence 1[a,+∞) belongs to I1/2−ǫ, 2 for any

ǫ > 0. This implies that random step functions belong to Iβ,2 for any β < 1/2.
The space of choice may thus be any space Iβ, 2 for any β < 1/2. The closer to 1/2
β is, the most significant the distance is but the the greater the error bound is.

To construct the Wiener measure on Iβ, 2, we start from the Itô-Nisio theorem.
Let (Xn, n ≥ 1) be a sequence of independant centered Gaussian random variables
of variance 1 defined on a common probability space (Ω, A, P). Let (en, n ≥ 1) be
a complete orthonormal basis of L2([0, 1]). Then,

B(t) :=
∑

n≥1

XnI
1
0+(en)(t)

converges almost-surely for any t ∈ [0, 1]. From [14], we already know that the
convergence holds uniformly with respect to t and thus that B is continuous. To
prove that the convergence holds in L2(Ω; Iβ, 2), it suffices to show that

(1)
∑

n≥1

‖I10+en‖2Iβ, 2
=
∑

n≥1

‖I1−β
0+ en‖2L2 = ‖I1−β

0+ ‖HS <∞.

From [24], we know that I1−β is an Hilbert-Schmidt operator from L2 into itself if
and only if 1 − β > 1/2, i.e. β < 1/2. Thus, for β < 1/2, the distribution of B
defines the Wiener measure on Iβ, 2. We denote this measure by µβ . Note that (1)
implies that the embedding from I1−β, 2 into L2 is also Hilbert-Schmidt and that

its Hilbert-Schmidt norm is ‖I1−β
0+ ‖HS. For latter purposes, we set

cβ = ‖I1−β
0+ ‖HS =

1

2Γ(1− β)

(

1

(1− β)(1/2− β)

)2

,

according to Theorem A.3. By the very definition of the scalar product on Iβ, 2,
for η ∈ Iβ, 2, we have

Eµβ

[

exp(i〈η, ω〉Iβ, 2
)
]

= EP



exp(i
∑

n≥1

∫ 1

0

(I1−β
1− ◦ I−β

0+ )η(s) en(s)ds Xn)





= exp(−1

2

∑

n≥1

(
∫ 1

0

(I1−β
1− ◦ I−β

0+ )η(s) en(s)ds

)2

)

= exp(−1

2
‖(I1−β

1− ◦ I−β
0+ )η‖2L2([0, 1]))

= exp(−1

2

∫ 1

0

(I1−β
0+ ◦ I1−β

1− )η̇(s) η̇(s)ds),
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where η̇ is the unique element of L2 such that η = Iβ0+ η̇. Thus, µβ is a Gaussian
measure on Iβ, 2 of covariance operator given by

Vβ = Iβ0+ ◦ I
1−β
0+ ◦ I1−β

1− ◦ I−β
0+ .

This means that

Eµβ

[

exp(i〈η, ω〉Iβ, 2
)
]

= exp(−1

2
〈Vβη, η〉Iβ, 2

).

We could thus in principle make all the computations in Iβ, 2. It turns out
that we were not able to be explicit in the computations of some traces of some
involved operators the expressions of which turned to be rather straightforward in
l2(N). This is why we transfer all the structure to l2(N). This is done at no loss
of generality nor precision since there exists a bijective isometry between Iβ, 2 and
l2(N).

3. Gaussian structure on l2(N)

Actually, the canonical isometry is given by the Fourier expansion of the β-th
derivative of an element of Iβ, 2. As is, that would not be explicit enough for the
computations to come to be tractable. We take benefit from the dual aspect of a
time indexed point process. On the one hand, as mentioned above, the sample-path
of a point process is of the form

t 7→
∑

n≥1

1[tn, 1](t)

where (tn, n ≥ 1) is a strictly increasing sequence of reals, all but a finite number
greater than 1, and thus belongs to Iβ, 2 for any β < 1/2 as shown above. On the
other hand, it can be seen as a locally finite point measure defined by

f ∈ L2([0, 1]) 7→
∑

n≥1

f(tn).

Said otherwise, we have the following definition.

Definition 1. For (h, ω) ∈ I−1−β,2 × I+β,2
∫ 1

0

h(s)dωs :=< h, I−1
0+ (ω) >I−

1−β,2, I+
β−1,2

=< Iβ−1
1− (h), I−β

0+ (ω) >L2 .

Recall that (en, n ∈ N) is a complete orthonormal basis of L2([0, 1]) and set

hn = I1−β
1− (en). Then (hn, n ∈ N) is a complete orthonormal basis of I−1−β,2.

Consider the map Jβ defined by:

Jβ : I+β,2 −→ l2(N)

ω 7−→
(∫ 1

0

hn(s)dω(s) = 〈en, ω̇〉L2([0, 1]), n ≥ 1

)

.

Theorem 3.1. The map Jβ is a bijective isometry from Iβ,2 into l2(N). Its inverse
is given by:

J
−1
β : l2(N) −→ Iβ, 2

(αn, n ∈ N) 7−→
∑

n≥0

αnI
β
0+(en).
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We thus have the commutative diagram.

Iβ, 2
Jβ−−−−→ l2(N)

Vβ





y





y

Sβ :=J
−1
β

◦Vβ◦Jβ

Iβ, 2
Jβ−−−−→ l2(N)

According to the properties of Gaussian measure (see [15]), we have the following
result.

Theorem 3.2. Let µβ denote the Wiener measure on Iβ, 2. Then J∗βµβ = mβ,

where mβ is the Gaussian measure on l2(N) such that for any v ∈ l2(N),
∫

l2(N)

exp(i v.u) dmβ(u) = exp(−1

2
Sβv.v)

with the following notations.

‖x‖2l2(N) =
∞
∑

n=1

|xn|2 and x.y =
∞
∑

n=1

xnyn, for all x, y ∈ l2(N).

In view of Theorem [3.1], it is straightforward that the map Sβ admits the
representation:

Sβ : l2(N) −→ l2(N)

u = (un, n ∈ N) 7−→ (
∑

j≥1

〈hn, hj〉L2 uj, n ∈ N).

By Ckb (l2(N); X), we denote the space of k-times Fréchet differentiable functions
from l2(N) into an Hilbert space X with bounded derivatives: A function F belongs
to Ckb (l2(N); X) whenever

‖F‖Ck
b
(l2(N);X) := sup

j=1, ··· , k
ess-supx∈l2(N) ‖∇(j)F (x)‖X⊗l2(N)⊗j <∞.

A simple calculation with characteristic functions shows that a probability measure
m on l2(N) is equal to mβ if and only if for any F ∈ C2(l2(N); X),
∫

l2(N)

AβF (x)dm(x) = 0 where AβF (x) = x.∇F (x) − trace(Sβ ◦ ∇(2)F (u)).

We are thus led to introduce the Markov process the infinitesimal generator of
which is Aβ . More precisely, we consider its semi-group, usually called Ornstein-
Ulhenbeck semi-group as its stationary measure is that of the Brownian motion (in
fact the image of this measure on l2(N)).

Definition 2. The Ornstein-Uhlenbeck semi-group on (l2(N), mβ) is defined for
any F ∈ L2(l2(N),F ,mβ; X) by

P β
t F (u) =

∫

l2(N)

F (e−tu+
√

1− e−2t v) dmβ(v),

where the integral is a Bochner integral. It is well known that this semi-group is
ergodic in the sense that

PtF (u)
t→∞−−−→

∫

f dmβ , mβ − a.s.
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Moreover, if F ∈ Ckb (l2(N); X), the function (u 7→ PtF (u)) is (k + 1)-times differ-
entiable and we have (see [15]):

(2) ∇(k+1)(PtF )(u) =
e−(k+1)t

√
1− e−2t

∫

l2(N)

(∇(k)F )(e−tu+
√

1− e−2t v)⊗ v dmβ(v).

Lemma 3.1. If F belongs to Ckb (l2(N); X), then, for any integer k,
∫ ∞

0

ess-supx∈l2(N) ‖∇(k+1)(PtF )(u)‖l2(N)⊗(k+1)⊗X dt ≤ βk+1‖F‖Ck
b
(l2(N);X),

where

βk :=
(1− 2β)−1/2(2− 2β)−1/2

2Γ(1− β)
B(

k

2
,
1

2
)·

and B is the Beta function.

In the sequel, we need to apply Aβ to Hilbert valued functions. We thus introduce
the notion of partial trace. For any vector space X , Lin(X) is the set of linear
operator from into itself. For X and Y two Hilbert spaces, the partial trace operator
along X can be defined as follows: it is the unique linear operator

traceX : Lin(X ⊗ Y ) −→ Lin(Y )

such that for any R ∈ Lin(Y ), for any trace class operator S on X ,

traceX(S ⊗R) = traceX(S)R.

For Hilbert valued functions, we define Aβ as follows.

Lemma 3.2. The domain of Aβ contains C2b (l2(N); X) and for F in this space,
we have:

(AβF )(u) = u.(∇F )(u)− tracel2(N)(Sβ∇2F (u)), for all x ∈ l2(N).

4. Stein method

For µ∗ and ν∗ two probability measures on R
N, we define a distance by

ρT(ν
∗, µ∗) = sup

‖F‖T≤1

∫

F dν∗ −
∫

F dµ∗.

where T is a normed space of test functions (the norm of which is denoted by ‖.‖T).
If T is the set 1-Lipschitz functions on l2(N), then ρT corresponds to the optimal
transportation problem for the cost function c(x, y) = ‖x−y‖l2(N), x, y ∈ R

N (see
[25]). For technical reasons (as in [21]) mainly due to the infinite dimension, we
must restrict the space T to smaller subsets. We thus introduce the distances ρj
for j ≥ 1 as

ρj(ν
∗, µ∗) = sup

‖F‖
C
j
b
(l2(N); R)

≤1

∫

F dν∗ −
∫

F dµ∗.

However, these weaker distances still metrize the space of weak convergence of
probability measures on l2(N).

Theorem 4.1. Let (ν∗n, n ≥ 1) be a sequence of probability measures on l2(N) such
that some j ≥ 1,

ρj(ν
∗
n, µ

∗)
n→∞−−−−→ 0.
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Then, (ν∗n, n ≥ 1) converges weakly to µ∗ in l2(N):
∫

F dν∗n
n→∞−−−−→

∫

F dµ∗,

for any F ∈ C0b (l2(N), R).

Proof. As Hilbert spaces admit arbitrarily smooth partition of unity [16], for j ≥ 2,
one can mimick the proof of [10, page 396] (see also [4]) which corresponds to ρ1. �

Say that µ∗ = mβ is our reference measure, that is the measure we want the
other measures to be compared to. Stein method relies on the characterization of
mβ as the unique measure on l2(N) such that any F sufficiently regular,

∫

l2(N)

AβF (x)dm(x) = 0.

It follows that the Markov process of infinitesimal generator Aβ has mβ as sta-

tionary measure. Since its semi-group (P β
t , t ≥ 0) is ergodic, by the well known

propoperties of Markov processes [11], one can write, for F sufficiently regular,
∫

l2(N)

F (x)dmβ(x)− F (x) =

∫ ∞

0

AβP β
t F (x)dt, ν∗-a.s.

Thus,

ρ2(ν
∗, mβ) = sup

‖F‖
C3
b
(l2(N); R)

≤1

∫

l2(N)

∫ ∞

0

AβPtF (x)dt dν∗(x).

Thanks to the integration by parts induced by Malliavin calculus, we can control the
right-hand-side integrand and obtain bounds on ρ2(ν

∗, mβ). To be more illustra-
tive, the Stein method works as follows: construct a process (t 7→ X(x, t)) constant
in distribution if its initial condition x is distributed according to mβ. Moreover,
for any initial distribution, the law of X(x, t) tends to mβ as t goes to infinity. Stein
method then consists in going back in time, from infinity to 0, controlling along the
way the derivative of the changes, yielding a bound on the distance between the
two initial measures. Other versions (coupling, size-bias, etc) are just other ways to
construct another process X. In these approaches, for every ν∗, the couplings are
ad-hoc whereas Malliavin calculus gives a certain kind of universality as it depends
only on the underlying alea. Malliavin structures are well established for sequences
of Bernoulli random variables, Poisson processes, Gaussian processes and several
other spaces (see [22]). In what follows, we show an example of the machinery for
each of these three examples.

The core of the method can be summarized in the following theorem.

Hypothesis I. For X a Hilbert space, H ∈ l2(N)⊗X and α a non-negative real,
we say that Hyp(X, H, α) holds whenever for any G ∈ C2b (l2(N); l2(N))

(3)
∣

∣

∣Eν∗ [Id .G]− Eν∗ [trace(traceX(H ⊗H) ◦ ∇G)]
∣

∣

∣

≤ α ‖G‖C2
b
(l2(N); l2(N)⊗3) ‖H‖3l2(N)⊗X .

Theorem 4.2 (Stein method). Assume that Hyp(X, H, α) holds, then,

(4) ρ2(ν
∗, mβ) ≤ β2

∣

∣

∣trace(traceX(H ⊗H)− Sβ)
∣

∣

∣ + αβ3 ‖H‖3l2(N)⊗X .
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Remark 4.1. The two terms in the right-hand-side of (4) are of totally different
nature. The trace term really measures the effect of the approximation scheme
whereas the second term comes from a sort of curvature of the space on which is
built the approximate process. As will become evident in the examples below, this
term is zero when the Malliavin gradient satisfies the chain rule formula and non-
zero otherwise.

5. Normal approximation of Poisson processes

It is well known that for a Poisson process Nλ of intensity λ, the process

Nλ(t) =
1√
λ
(Nλ(t)− λt)

converges in distribution on D to a Brownian motion as λ goes to infinity. For any
β < 1/2, we want to precise the rate of convergence for the distance dβ , where for
two measures µ and ν supported on Iβ, 2,

dβ(µ, ν) = sup
‖F‖

C2
b
(Iβ, 2;R)

≤1

∫

F dν −
∫

F dµ.

By isometry, this turns out to be equivalent to estimate ρ2(Jβνλ, mβ) where νλ is
the distribution of Nλ on Iβ, 2.

Let χ[0, 1] the space of locally finite measures on [0, 1] equipped with the vague
topology. We identify a point measure ω =

∑

n∈N
δtn with the one dimensional

process

N : t ∈ [0, 1] 7−→
∫ t

0

dω(s) =
∑

n∈N

1[0, t](tn).

The measure νλ is the only measure on (χ[0, 1], B(χ[0, 1])) such that the canonical
process N is a Poisson process of intensity λdτ . It is customary to define the
discrete gradient as

DτF (N) = F (N + ǫτ )− F (N), for any τ ∈ [0, 1],

where N + ǫτ is the point process N with an extra atom at time τ . We denote by

D2,1 the set of square integrable functionals F such that E

[

∫ 1

0
|DτF (N)|2 dτ

]

is

finite. We then have the following relationship:

(5) Eνλ

[

F

∫ 1

0

g(τ)(dN(τ)− λdτ)

]

= λ Eνλ

[∫ 1

0

DτF g(τ)dτ

]

,

for any g ∈ L2([0, 1]) and any F ∈ D2,1. Moreover,

Dτ

(∫ 1

0

g(s)(dN(s)− λds)

)

= g(τ).

It is clear that

JβNλ =

(

1√
λ

∫ 1

0

hn(s)(dN(s)− λds), n ∈ N

)

.

For the sake of notations, we introduce

Rλ = JβNλ and Hλ =

(

1√
λ

hj , j ∈ N

)

,

so that Jβ(Nλ + ǫτ ) = JβNλ +Hλ(τ) = Rλ +Hλ(τ).
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Theorem 5.1. We denote by ν∗λ the distribution of JβNλ in l2(N). The measure

ν∗λ satisfies Hyp(L2([0, 1]), H1, 1/2
√
λ). Hence,

(6) ρ2(ν
∗
λ, mβ) ≤

β3

2
√
λ

c3β.

Remark 5.1. It is remarkable that by homogeneity, the partial trace of H1 ⊗H1

is equal to Sβ. The only remaining term in Theorem [4.2] comes from the fact that
the discrete gradient does not satisfy the chain rule.

One could also remark that the choice of the space in which we embed the Poisson
and Brownian sample-paths (i.e. the choice of the value of β) modifies only the
constant but not the order of convergence, which remains proportional to λ−1/2.

As is clear from the proof, we may expect to obtain a refined approximation if
we go further in the Taylor expansion of the discrete gradient. By doing this, we
obtain the so-called Edgeworth expansion.

In what follows, we make the convention that a sum like
∑0

r=1 . . . is zero. Let
(α(r, k), r ≥ 0, k ≥ 0) be a family of real numbers such that

α(0, 0) = 1, α(r, k) = 0 if k − r 6∈ 2{1, · · · , r}
and for any r ∈ N, any m ∈ {1, · · · , r}

(7) α(r, r + 2m) =
1

r + 2m

r
∑

j=1

1

(j + 1)!
α(r − j, r − j + 2(m− 1)).

Consider also the sequence (γs, s ≥ 0) given by the recursion formula:

(8) γs =

s+1
∑

j=2

1

j!
γs+1−j β2s+5−j +

cs+3
β

(s+ 2)!
βs+3.

Theorem 5.2. Let s be an integer. For F ∈ C2(s+1)+1
b (l2(N); R), we have

(9)

∫

l2(N)

F (u) dν∗λ(u) =

∫

l2(N)

F (u) dmβ(u)

+

s
∑

r=1

(

1√
λ

)r r
∑

k=1

α(r, r + 2k)

∫

l2(N)

∇(r+2k)F (u).

∫ 1

0

H1(τ)
⊗(r+2m) dτ dmβ(u)

+ Rem(s, F, λ)

where the remainder term can be bounded as

|Rem(s, F, λ)| ≤ γs λ−(s+1)/2‖F‖
C
2(s+1)
b

(l2(N);R)
.

Corollary 5.1. Let s be an integer. For F ∈ C2s+1
b (l2(N); R), we have

∫

l2(N)

F (u) dν∗λ(u) =

∫

l2(N)

F (u) dmβ(u)

+

s
∑

r=1

(

1√
λ

)r r
∑

k=1

α(r, r + 2k)

∫

l2(N)

F (u)Hr+2m(

∫ 1

0

H1(τ)dτ.u) dmβ(u)

+ Rem(s, F, λ),
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where (Hk, k ≥ 0) is the family of Hermite polynomials defined by

Hk(x)Φ(x) = (−1)k−1 d
kΦ

dxk
(x),

with Φ(x) = exp(−x2/2)/
√
2π.

Remark 5.2. In [3, 13], the following polynomials are introduced. For any u ∈ R,
there exists a family of real polynomials (Qr(.), r ≥ 1) such that

(10) exp

(

∞
∑

r=1

tr+2

(r + 2)!
ur

)

=

∞
∑

r=0

urQr(t).

In particular, Q0 ≡ 1. For r > 0, it is well known (see [3]) that Qr has degree 3r,
we denote (qr(k), k = 0, · · · , 3r) its coefficients. For a function F , we introduce
the formal polynomial Qr(F ) defined by substituting tk by

∫

F (u)Hk(u) dmβ(u) in
the expansion of Qr(t). According to [3, 13], if we choose as functional F (Nλ) =
∫ 1

0
φ(s) dNλ(s) where φ ∈ C∞([0, 1]; R) and

∫ 1

0
φ(s)2 ds = 1, their asymptotic Edge-

worth expansion coincides with (9) for any order. By identification, it follows that
α(r, k) = qr(k) for any r and k. Thus, Equation (7) gives a recursive but simple
method to compute the Edgeworth coefficients up to any order.

6. Linear interpolation of the Brownian motion

For m ≥ 1, the linear interpolation B†
m of a Brownian motion B† is defined by

B†
m(0) = 0 and dB†

m(t) = m
m−1
∑

j=0

(B†(i+ 1/m)−B†(i/m))1[i/m, (i+1)/m)(t)dt.

Thus, JβB
†
m is given by

JβB
†
m =



m

m−1
∑

j=0

(B†(i+ 1/m)−B†(i/m))

∫ (i+1)/m

i/m

hn(t)dt, n ≥ 1



 .

Consider the L2([0, 1])-orthonormal functions

emj (s) =
√
m1[i/m, (i+1)/m)(s), j = 0, · · · , m− 1, s ∈ [0, 1]

and F †
m = span(emj , j = 0, · · · , m−1). We denote by pF †

m
the orthogonal projection

over F †
m. Since B†

m is constructed as a function of a standard Brownian motion,
we work on the canonical Wiener space (C0([0, 1]; R), I1, 2, m†). The gradient we
consider, D†, is the derivative of the usual gradient on the Wiener space and the
integration by parts formula reads as:

(11) Em†

[

F

∫ 1

0

u(s)dB†(s)

]

= Em†

[∫ 1

0

D†
sF u(s)ds

]

for any u ∈ L2([0, 1]).
Theorem 6.1. Let ν†m be the law of JβB

†
m on l2(N). The measure ν†m satisfies

Hyp(L2, H†
m, 0) where

H†
m = (pF †

m
hn, n ≥ 1).

Moreover,

ρ2(ν
†
m, mβ) ≤

ζβ
3/2− β

β3 c2β
m1/2−β

,
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where

ζβ = sup
‖f‖I1−β, 2

=1

‖f‖Hol0(1/2−β).

Remark 6.1. For this example, the constant α of Hyp(X, H, α) is zero because
D† satisfies the chain rule for derivation. It follows that the Edgeworth expansion
has a completly different flavor from that established for Poisson approximation.

Let

γ†
0 =

ζβ β3 c2β
3/2− β

and γ†
s =

(γ†
0)

s

2s (s+ 1)!
·

Theorem 6.2. For any integer s, for any F ∈ C2s+2
b (l2(N); R), we have the

following expansion:

Eν†
m
[F ] =

s
∑

j=0

1

2j j!

∫

l2(N)

〈∇(2j)F (u), (S†
m − Sβ)

⊗j〉l2(N)⊗2j dmβ(u)

+ Rem†(F, s, m),

where S†
m = traceL2(H†

m ⊗H†
m) and Rem†(F, s, m) can be bounded by

∣

∣

∣Rem†(F, s,m)
∣

∣

∣ ≤
γ†
s ‖F‖C2s+2

b
(l2(N);R)

m(s+1)(1/2−β)
·

7. Donsker theorem

The same approach can be applied to have precise asymptotics for the Donsker
theorem. Let X = (Xn, n ∈ N) be a sequence of independent and identically
distributed Rademacher random variables, i.e. P(Xn = ±1) = 1/2 for any n. For
any k in N, we set

X+
k = (X1, · · · , Xk−1, 1, Xk+1 · · · )

and X−
k = (X1, · · · , Xk−1, −1, Xk+1 · · · ).

The discrete gradient on this probability space is given by

D♯
kF (X) =

1

2
(F (X+

k )− F (X−
k )).

Then, the integration by parts formula reads as

E

[

∑

k∈N

ukD
♯
kF (X)

]

= E

[

F (X)
∑

k∈N

ukXk

]

for any u = (uk, k ∈ N) which belongs to l2(N).
Consider

B♯
m(t) =

1√
m

[mt]
∑

k=1

Xk =

m
∑

k=1

1√
m

Xk 1[k/m,1](t).

Since the derivative of B♯
m with respect to t is a sum of weighted Dirac measures,

we have

JβB
♯
m = (

m
∑

k=1

1√
m

Xk hn(k/m), n ≥ 1).
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Theorem 7.1. We denote by ν♯m the distribution of JβB
♯
m on l2(N). The measure

ν♯m satisfies Hyp(l2(N), H♯
m, 1) where

H♯
m = (

1√
m

hn(k/m)1[1, n](k), n ∈ N, k ∈ N).

Furthermore, for any ǫ > 0, there exists m0 such that for m ≥ m0,

ρ2(ν
♯
m, mβ) ≤ (1 + ǫ)

2ζ2β
3/2− β

mβ−1/2·

Remark 7.1. For this example, the Edgeworth expansion would be the sum of the
previous Edgeworth expansion as neither the trace term nor the constant α are null.

8. Transfer principle

For X and Y two Hilbert spaces and Θ a continuous linear map from X to Y .
Let µ and ν two probability measures on X and µY (respectively νY ) their image
measure with respect to Θ. Since Θ is linear and continuous, for F ∈ F ∈ Ckb (Y, R),
F ◦Θ belongs to Ckb (X, R), hence, we have

sup
F∈Ck

b
(Y,R)

∫

F dµY −
∫

F dνY = sup
F∈Ck

b
(Y,R)

∫

F ◦Θ dµ−
∫

F ◦Θ dν

≤ sup
F∈Ck

b
(X,R)

∫

F dµ−
∫

F dν.

As an application, we can precise the convergence established in [9]. Note that
in this paper, the key tool was also a matter of Hilbert-Schmidt property of some
operator.

The fractional Brownian motion of Hurst index H ∈ [0, 1] may be defined (see
[6]) by

BH(t) =

∫ t

0

KH(t, s)dB(s),

where

KH(t, r) :=
(t− r)H− 1

2

Γ(H + 1
2 )

F (
1

2
−H,H − 1

2
, H +

1

2
, 1− t

r
)1[0,t)(r).

The Gauss hyper-geometric function F (α, β, γ, z) (see [17]) is the analytic continu-
ation on C× C× C\{−1,−2, . . .} × {z ∈ C, Arg|1− z| < π} of the power series

+∞
∑

k=0

(α)k(β)k
(γ)kk!

zk,

and

(a)0 = 1 and (a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) . . . (a+ k − 1).

Furthermore, according to [23], KH is a continuous map from L2 in to IH+1/2, 2

hence the map ΘH = KH◦I−1
0+ can be defined continuously from Iβ, 2 to IH−(1/2−β), 2.

Since ΘHB = BH , we have the following result.

Theorem 8.1. For any H ∈ [0, 1], for any 1/2 > ǫ > 0,

ρ2

(

JH−ǫ(

∫ .

0

KH(t, s) dNλ(s)), JH−ǫ(B
H)

)

≤ β3

2
√
λ
c31/2−ǫ.
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9. Proofs

Proof of Theorem [3.1]. The norms on I+β,2 and I+β−1,2 are defined such that

‖ω‖I+
β,2

= ‖ω̇‖I+
β−1,2

.

It follows that I+β,2 and I+β−1,2 are isometrically isomorphic. Since I+β−1,2 is an
Hilbert space, Parseval equality implies that

‖ω̇‖2
I+
β−1,2

=
∑

n≥1

〈hn, ω̇〉2I−
1−β,2, I

+
β−1,2

,

for any CONB (hn, n ≥ 1) of I−1−β,2 and Θβ is an isometry. The inverse of Jβ is
clearly given by

Θ−1
β : l2(N) −→ I+β,2

(αn, n ∈ N) 7−→
∑

n≥0

αnI
β
0+(hn).

The proof is thus complete.

Proof of Corollary [3.1]. By a change of variables, it is straightforward that
∫ ∞

0

e−kt

√
1− e−2t

dt =
1

2
B(

k

2
,
1

2
),

where B is the Beta function. Furthermore, since Jβ is an isometry, according to
Theorem [3.2], we have

∫

l2(N)

‖y‖ dmβ(y) =

∫

I+
β,2

‖I−βω‖L2([0, 1]) dµβ(ω)

=
1

Γ(1− β)
E

[

(∫ 1

0

(

∫ t

0

(t− s)−β dB(s))2 dt

)1/2
]

≤ 1

Γ(1− β)

(∫ 1

0

∫ t

0

(t− s)−2β ds dt

)1/2

=
1

Γ(1− β)
(1 − 2β)−1/2(2− 2β)−1/2.

The result then follows from (2).

Proof of Theorem [4.2]. For F ∈ C3b , we have

(12) Eν∗ [F ]− Emβ
[F ]

= −
∫

l2(N)

∫ ∞

0

x.∇P β
t F (x)− trace

(

Sβ∇(2)P β
t F (x)

)

dt dν∗(x).

Applying Hyp(X, H, α) to G = ∇P β
t F , we have

∣

∣Eν∗ [F ]− Emβ
[F ]
∣

∣ ≤
∣

∣

∣

∣

Eν∗

[∫ ∞

0

trace(traceX(H ⊗H)− Sβ) ◦ ∇(2)P β
t F )dt

]∣

∣

∣

∣

+ α ‖H‖3l2(N)⊗XEν∗

[∫ ∞

0

‖∇(3)P β
t F‖∞ dt

]

≤ β2‖∇F‖∞| trace(traceX(H ⊗H)− Sβ)|+ αβ3‖H‖3l2(N)⊗X‖∇(2)F‖∞,
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according to Lemma [3.1] and to the relation (see [15]) | trace(A◦C)| ≤ | trace(A)| ‖C‖.

Proof of Theorem [5.1]. For G ∈ C2b (l2(N)), we have

Eν∗
λ
[Rλ.G] = Eν∗

λ

[∫ 1

0

〈Hλ(τ), DτG(Rλ)〉l2(N) λdτ

]

.

According to the Taylor formula,

DτG(Rλ) = G(Rλ +Hλ(τ)) −G(Rλ)

= (∇G)(Rλ).Hλ(τ) +

∫ 1

0

(1 − r)
〈

∇2G(Rλ + rHλ), Hλ(τ)⊗Hλ(τ)
〉

l2(N)⊗2 dr

Hence,

Eν∗
λ
[Rλ.G] = λEν∗

λ

[∫ 1

0

〈(∇G)(Rλ), Hλ(τ)⊗Hλ(τ)〉l2(N)⊗2 dτ

]

+ λEν∗
λ

[∫ 1

0

∫ 1

0

(1− r)
〈

∇2G(Rλ + rHλ), Hλ(τ)
⊗3
〉

l2(N)⊗3 dr dτ

]

On the one hand, we have

∫ 1

0

Hλ(τ)⊗Hλ(τ)dτ =

(

1

λ

∫ 1

0

hi(s)hj(s)ds, i, j ∈ N

)

.

On the other hand, since ∇2G is bounded, we have

∣

∣

∣

∣

Eν∗
λ

[∫ 1

0

∫ 1

0

(1− r)
〈

∇2G(Rλ + rHλ), Hλ(τ)
⊗3
〉

l2(N)⊗3 dr dτ

]∣

∣

∣

∣

≤ 1

2λ3
‖∇2G‖∞‖H1‖3l2(N)⊗X .

Hence,

∣

∣Eν∗
λ
[Rλ.G]− Eν∗

λ
[trace(V∇G)]

∣

∣ ≤ 1

2
√
λ
‖∇2G‖∞‖H1‖3l2(N)⊗X ,

which is Equation (3) with α = 1/2
√
λ. The formula (6) then follows from the

remarks that traceL2(H1 ⊗H1) = Sβ and that ‖H1‖l2(N) = cβ.

Proof of Theorem [5.2]. We proceed by induction on s. Theorem [5.1] boils
down to (9) for s = 0. Assume that the results holds for s. According to the Taylor
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formula, we have

Eν∗
λ
[F (Nλ)] =

∫

l2(N)

F (u)dmβ(u)

+

s+2
∑

j=2

1

j!

(

1√
λ

)j−1 ∫

l2(N)

∫ ∞

0

∫ 1

0

∇(j+1)PtF (u).(H1(τ))
⊗(j+1) dτ dt dν∗λ(u)

+
λ−(s+2)/2

(s+ 2)!
×

∫

l2(N)

∫ ∞

0

∫ 1

0

∫ 1

0

(1 − θ)s+2∇(s+4)PtF (u+ θH1(τ)).(H1(τ))
⊗(s+4) dθ dτ dt dν∗λ(u)

=

∫

l2(N)

F (u)dmβ(u) +A1 +A2.

In view of the recursion hypothesis, we have

(13) A1 =

s+2
∑

j=2

λ−(j−1)/2

j!

s−j+2
∑

r=0

(

1√
λ

)r r
∑

k=0

α(r, r + 2k)×

∫

l2(N)

∫ ∞

0

∫ 1

0

∇(j+1+r+2k)PtF (u).(H1(τ))
⊗(j+1+r+2k) dτ dt dmβ(u)

+
s+2
∑

j=2

λ−(j−1)/2

j!

∫ ∞

0

Rem(s+ 2− j, ∇(j+1)PtF, λ)dt = B1 +B2

Now then, according to the very definition of the Ornstein-Uhlenbeck semi-group,
for any integer l, ∇(l)PtF = e−ltPt∇(l)F . Moreover, since mβ is Pt invariant, for
any integer l,

∫

l2(N)

∫ ∞

0

∫ 1

0

∇(l)PtF (u).(H1(τ))
⊗(l) dτ dt dmβ(u)

=
1

l

∫

l2(N)

∫ 1

0

∇(l)F (u).(H1(τ))
⊗(l) dτ dmβ(u).

We proceed to the change of variables r ← r+ j − 1, j ← j − 1, m← k+ (j + 1)/2
in (13) to obtain

B1 =

s+1
∑

r=1

(

1√
λ

)r r
∑

m=1

1

r + 2m





r
∑

j=1

1

(j + 1)!
α(r − j, r − j + 2(m− 1))



×

∫

l2(N)

∫ 1

0

∇(r+2m)F (u).(H1(τ))
⊗(r+2m) dτ dmβ(u).
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Moreover, we have

Rem(s+ 1, F, λ) =

s+2
∑

j=2

1

j!
λ−(j−1)/2

∫ ∞

0

Rem(s+ 2− j, ∇(j+1)PtF, λ)dt+A2

≤
s+2
∑

j=2

λ−(s+2)/2

j!
γs+2−j ess-supu∈l2(N)

∫ ∞

0

‖∇(2s+7−j)PtF (u)‖ dt

+
λ−(s+2)/2

(s+ 3)!
‖
∫ 1

0

H1(τ)dτ‖s+4
l2(N) ess-supu∈l2(N)

∫ ∞

0

‖∇(s+4)PtF (u)‖ dt

≤
s+2
∑

j=2

λ−(s+2)/2

j!
γs+2−jβ2s+7−j‖F‖C2s−j+6

b

+
λ−(s+2)/2

(s+ 3)!
‖
∫ 1

0

H1(τ)dτ‖s+4
l2(N)βs+4‖F‖Cs+3

b
.

We remark that for s ≥ 0,

s+ 3 ≤ max
j=2, ··· , s+2

(2s− j + 6) = 2s+ 4 = 2((s+ 1) + 1).

Furthermore,

‖
∫ 1

0

H1(τ)dτ‖2l2(N) =
∑

n∈N

(
∫ 1

0

hn(τ)dτ

)2

≤
∑

n∈N

∫ 1

0

h2
n(τ)dτ = ‖c2β.

According to Lemma [3.1], it follows that

Rem(s+ 1, F, λ)

≤ λ−(s+2)/2





s+2
∑

j=2

1

j!
γs+2−jβ2s+7−j +

cs+4
β

(s+ 3)!
βs+4



 ‖F‖C2s+4
b

.

In view of (8), the proof is complete.

Proof of Corollary [5.1]. We need to introduce an auxiliary space, namely

l2β(N) := V
1/2
β l2(N) equipped with the scalar product

〈u, v〉l2
β
(N) = V

−1/2
β u.V

−1/2
β v.

Following [15], the couple (l2(N), lβ(N)) can be viewed as an abstract Wiener space
where l2β(N) plays the role of the Cameron-Martin space.

Let Dβ denote the gradient on this space: For any Hilbert space X , for any
v ∈ l2β(N), any x in X , any w1, · · · , wn in l2β(N), any u ∈ l2(N),

Dβf(〈w1, u〉l2
β
, · · · , 〈w1, u〉l2

β
)⊗ x

=
n
∑

j=1

∂jf(〈w1, u〉l2
β
, · · · , 〈w1, u〉l2

β
)w1 ⊗ x ∈ l2β(N)⊗X.

We denote by D
β
2,1(X), the completion of the set of such cylindric functions with

respect to the norm

‖F‖22,1 =
∫

l2(N)

F 2(u)dmβ(u) +

∫

l2(N)

‖DβF (u)‖2l2(N)⊗X dmβ(u).
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The n-th power of Dβ and D2, k(X) are defined inductively. Note that if F belongs
to Ckb (l2(N), R), it belongs to the domain of D2, k(R). Moreover, it is well known
(see [19, 22]) that

Emβ

[

〈(Dβ)(k)F, v⊗k〉(l2
β
)⊗k

]

=

∫

l2(N)

F (u)Hk(u.v)dmβ(u)

for any v ∈ l2β(N). By a density argument, if v ∈ l2(N) and F ∈ D2, k(R), then we
have

Emβ

[

〈(Dβ)(k)F, v⊗k〉l2(N)⊗k

]

=

∫

l2(N)

F (u)Hk(u.v)dmβ(u),

hence the result.

Proof of Theorem [6.1]. For G sufficently regular, according to the definition of
Bm and to (11), we have

Eν†
m
[Id .G] = Em†

[

∑

n∈N

m

m−1
∑

i=0

(B(i + 1/m)−B(i/m))

∫ (i+1)/m

i/m

hn(t)dt Gn(W
m)

]

= m
∑

n∈N

m−1
∑

i=0

∫ (i+1)/m

i/m

hn(t)dt Em†

[

∫ (i+1)/m

i/m

D†
sGn(W

m)ds

]

=

∫ 1

0

H†
m(t)dt.Em†

[

∫ (i+1)/m

i/m

D†
sGn(W

m)ds

]

.

(14)

Since D† obeys the chain rule formula,

D†
sGn =

∑

k∈N

∇kGn(W
m)D†

sW
m
k

=
∑

k∈N

∇kGn(W
m)(m

m−1
∑

l=0

1[l/m, (l+1)/m)(s)

∫ (l+1)/m

l/m

hk(s)ds)

= ∇Gn(W
m).H†

m(s).

(15)

Combining (14) and (15), we get

Eν†
m
[Id .G] = mEν†

m

[

∑

k∈N

∑

n∈N

m−1
∑

i=0

∇kGn

∫ (i+1)/m

i/m

hn(t)dt

∫ (i+1)/m

i/m

hk(s)ds

]

= Eν†
m

[

trace(traceL2(H†
m ⊗H†

m) ◦ ∇G)
]

.

It follows that ν†m satisfies Hyp(L2, H†
m, 0). To conclude, it remains to estimate

trace(traceL2(H†
m ⊗H†

m)− Sβ).

In view of the definition ζβ , for any integer n, hn is of norm 1 in I1−β, 2, we thus
have

|hn(t)− hs(s)| ≤ ζβ |t− s|1/2−β , for any t, s ∈ [0, 1].
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Thus,

∣

∣trace(traceL2(H†
m ⊗H†

m)− Sβ)
∣

∣

≤
∑

n∈N

∣

∣

∣

∣

∣

∫ 1

0

hn(s)
2 ds−m

m−1
∑

i=0

(

∫ (i+1)/m

i/m

hn(s)ds)2

∣

∣

∣

∣

∣

=
∑

n∈N

m−1
∑

i=0

∫ (i+1)/m

i/m

∣

∣

∣

∣

∣

hn(s)(hn(s)−m

∫ (i+1)/m

i/m

hn(r)dr)

∣

∣

∣

∣

∣

ds

≤ ζβ
(3/2− β)m1/2−β

∑

n∈N

‖hn‖2L2 .

The result follows from the definition of cβ.

Proof of Theorem [6.2]. For s = 0, the result boils down to Theorem [6.1]. We
proceed by induction on s. According to the induction hypothesis, for F sufficiently
regular,

∫

l2(N)

F (u)dν†m(u)−
∫

l2(N)

F (u)dmβ(u)

=

∫

l2(N)

∫ ∞

0

〈∇(2)PtF (u), (S†
m − Sβ)〉l2(N)⊗2 dt dν†m(u)

=
s
∑

j=0

1

2j j!

∫

l2(N)

〈∇(2j+2)PtF (u), (S†
m − Sβ)

⊗j+2〉l2(N)⊗2j+2 dmβ(u)

+

∫

l2(N)

∫ ∞

0

Rem†(∇(2)PtF, s, m)dt dν†m(u).

Since ∇(j)PtF (u) = e−jtPt∇(j)F (u) and since mβ is invariant under the action of
Pt, we obtain

∫

l2(N)

F (u)dν†m(u) =

∫

l2(N)

F (u)dmβ(u)

+

s
∑

j=0

1

2j+1 (j + 1)!

∫

l2(N)

〈∇(2j+2)F (u), (S†
m − Sβ)

⊗j+2〉l2(N)⊗2j+2 dmβ(u)

+

∫ ∫ ∞

0

〈Rem†(∇(2)PtF, s, m), (S†
m − Sβ)

⊗2〉l2(N)⊗2 dt dν†m(u).

By a change of index in the sum, we obtain the main part of the expansion for the
rank s+ 1. Moreover,

|Rem†(F, s+ 1, m)| ≤ γ†
s

∫ ∞

0

‖∇(2s+4)PtF‖∞‖S†
m − Sβ‖l2(N)⊗2 dt

≤ γ†
sγ

†
0

2((s+ 1) + 1)

‖F‖
C
2((s+1)+1)
b

(l2(N);R)

m1/2−β
,

hence the result.
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Proof of Theorem [7.1].

E
[

JβB
♯
m.G

]

=
1√
m
E

[

m
∑

k=1

hn(k/m)D♯
kG(JβB

♯
m)

]

.

Let

H♯
m(k) = (

1√
m

hn(k/m), n ∈ N).

According to the Taylor formula,

D♯
kG(JβB

♯
m) =

1

2

(

G(JβB
♯
m +H♯

m(k))−G(JβB
♯
m −H♯

m(k))
)

= 〈(∇G)(JβB
♯
m), H♯

m(k)〉l2(N)

+

∫ 1

0

(1− r)
〈

∇2G(JβB
♯
m + rH♯

m(k)), H♯
m(k)⊗H♯

m(k)
〉

l2(N)⊗2 dr

+

∫ 1

0

(1− r)
〈

∇2G(JβB
♯
m − rH♯

m(k)), H♯
m(k)⊗H♯

m(k)
〉

l2(N)⊗2 dr.

Hence,

E
[

JβB
♯
m.G

]

= E

[

∑

k∈N

〈(∇G)(JβB
♯
m), H♯

m(k)⊗H♯
m(k)〉l2(N)⊗2

]

+
∑

z=±1

E

[

∑

k∈N

∫ 1

0

(1− r)
〈

∇2G(JβB
♯
m + zrH♯

m(k)), H♯
m(k)⊗3

〉

l2(N)⊗3 dr

]

According to the definition of Vν♯
m

, we get
∣

∣

∣E
[

JβB
♯
m.G

]

− E

[

trace(Vν♯
m
∇2G)

]∣

∣

∣ ≤ ‖∇2G‖∞‖u‖3l2(N)⊗l2(N),

which is (3) with α = 1. Furthermore, we have

∣

∣trace(tracel2(N)(H
♯
m ⊗H♯

m)− Sβ)
∣

∣ ≤
m
∑

i=1

(

∫ 1

0

hi(s)
2 ds− 1

m

m
∑

k=1

hi(k/m)2)

+
∑

i>m

‖hi‖2L2 .

By the very definition of ζβ , we have ‖hn‖∞ ≤ ζβ for any n ∈ N. Thus,
∣

∣

∣

∣

∣

∫ 1

0

hi(s)
2 ds− 1

m

m
∑

k=1

hi(k/m)2

∣

∣

∣

∣

∣

≤
m−1
∑

k=0

∫ (k+1)/m

k/m

|hi(s)
2 − hi(k/m)2| ds

≤ 2ζβ

m−1
∑

k=0

∫ (k+1)/m

k/m

|hi(s)− hi(k/m)| ds

≤ 2ζ2β

m−1
∑

k=0

∫ (k+1)/m

k/m

|s− k/m|1/2−β ds

≤
2ζ2β

3/2− β
mβ−1/2.
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We can choose hn =
√
2I1−β

0+ (cos(2πn.)) as a CONB of I1−β,2. According to Par-
seval formula,

‖hn‖2L2 = 2

∞
∑

l=0

(∫ 1

0

hn(s) cos(2πls)ds

)2

.

Recall that for any β > 0,

sup
x∈R+

∫ x

0

s−β cos(2πs)ds <∞.

Since, I1−βf can be expressed as a convolution product, there exists c > 0 such
that

|
∫ 1

0

hn(s) cos(2πls)ds| ≤ c |
∫ 1

0

s−β cos(2πls)ds.

∫ 1

0

cos(2πns) cos(2πls)ds|

= c lβ−1|
∫ l

0

s−β cos(2πs)ds| 1n=l ≤ c lβ−1
1n=l.

Hence,
∑

n>m

‖hn‖2L2 ≤ c
∑

n>m

n2β−2 ≤ c m2β−1.

On the other hand,

‖H†
m‖l2(N)⊗l2(N) =

1√
m

(

∑

i∈N

1√
m

1

m

m
∑

k=1

h2
i (k/m)

)3/2

≤
ζ2β√
m

(

1

m

m−1
∑

k=0

(k/m)1−β

)3
∑

i∈N

‖hi‖2L2

≤
ζ2βc

2
β

(2 − 2β)3
1√
m
·

Thus, as m goes to infinity, the dominating term is that corresponding to the power
mβ−1/2, hence the result.

Appendix A. Besov-Liouville spaces

This part is devoted to the presentation of the so-called Besov-Liouville spaces.
A complete exposition can be found in [23].
For f ∈ L1([0, 1]; dt), (denoted by L1 for short) the left and right fractional integrals
of f are defined by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt , x ≥ 0,

(Iα1−f)(x) =
1

Γ(α)

∫ 1

x

f(t)(t− x)α−1dt , x ≤ 1,

where α > 0 and I00+ = I01− = Id . For any α ≥ 0, p, q ≥ 1, any f ∈ Lp and g ∈ Lq
where p−1 + q−1 ≤ α+ 1, we have :

(16)

∫ 1

0

f(s)(Iα0+g)(s) ds =

∫ 1

0

(Iα1−f)(s)g(s) ds.
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For p ∈ [1,+∞], the Besov-Liouville space Iα0+(Lp) := I+α,p is usually equipped with
the norm :

(17) ‖Iα0+f‖I+
α,p

= ‖f‖Lp .

Analogously, the Besov-Liouville space Iα1−(Lp) := I−α,p is usually equipped with
the norm :

‖I−α
1− f‖I−

α,p
= ‖f‖Lp .

We then have the following continuity results (see [12, 23]) :

Theorem A.1. i. If 0 < α < 1, 1 < p < 1/α, then Iα0+ is a bounded operator
from Lp into Lq with q = p(1− αp)−1.

ii. For any 0 < α < 1 and any p ≥ 1, I+α,p is continuously embedded in Hol0(α −
1/p) provided that α−1/p > 0. Hol0(ν) denotes the space of α Hölder-continuous
functions, null at time 0, equipped with the usual norm.

iii. For any 0 < α < β < 1, Hol0(β) is compactly embedded in Iα,∞.
iv. By I−α

0+ , respectively I−α
1− , we mean the inverse map of Iα0+ , respectively Iα1− .

The relation Iα0+I
β
0+f = Iα+β

0+ f, respectively Iα1−I
β
1−f = Iα+β

1− f, holds whenever

β > 0, α+ β > 0 and f ∈ L1.
v. For αp < 1, the spaces I+α,p and I−α,p are canonically isomorphic. We will thus

use the notation Iα,p to denote any of this spaces.

We now recall the definition and properties of Besov-Liouville spaces of negative
orders. The proofs can be found in [6].

Denote by D+ the space of C∞ functions defined on [0, 1] and such that φ(k)(0) =
0, ∀k ∈ N. Analogously, set D− the space of C∞ functions defined on [0, 1] and such
that φ(k)(1) = 0, ∀k ∈ N. They are both equipped with the projective topology
induced by the semi-norms pk(φ) =

∑

j≤k‖φ(j)‖∞, ∀k ∈ N. Let D′
+, resp. D′

−, be

their strong topological dual. It is straightforward that D+ is stable by Iβ0+ and D−

is stable Iβ1− , for any β ∈ R
+. Hence, guided by (16), we can define the fractional

integral of any distribution (i.e., an element of D′
− or D′

+):

For T ∈ D′
−; Iβ0+T : φ ∈ D− 7→< T, Iβ1−φ >D′

−
,D−

,

For T ∈ D′
+; Iβ1−T : φ ∈ D+ 7→< T, Iβ0+φ >D′

+,D+
.

We introduce now our Besov-Liouville spaces of negative order as follows.

Definition 3. For β > 0 and r > 1, I+−β,r (resp. I−−β,r) is the space of distributions

T ∈ D− (resp. T ∈ D+) such that Iβ0+T (resp. Iβ1−T ) belongs to Lr. The norm of

an element T in this space is the norm of Iβ0+T in Lr (resp. of Iβ1−T ).

Theorem A.2. For β > 0 and r > 1, the dual space of I+β,r (resp. I−β,r) is

canonically isometrically isomorphic to I−β
1− (Lr∗) (resp. I−β

0+ (Lr∗),) where r∗ =

r(r − 1)−1.

Moreover, for β ≥ α ≥ 0 and r > 1, Iβ1− is continuous from I−−α,r into I−β−α,r.

The first part of the next theorem is a deep result which can be found in [24]. We
complement it by the computation of the Hilbert-Schmidt norm of the canonical
embedding κγ from I+γ,2 into L2.
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Theorem A.3. The canonical embedding κγ from I+γ,2 into L2 is Hilbert-Schmidt

if and only if γ > 1/2. Moreover,

‖κγ‖HS =
1

2Γ(γ)

(

1

γ(γ − 1/2)

)1/2

.

Proof. Let (en, n ≥ 1) be a CONB of L2 then (hn = Iγ0+(en), n ∈ N) is a CONB

of I+γ,2 and

‖κγ‖2HS
=
∑

n

‖hn‖2L2 =
∑

n

‖Iγ0+(en)‖
2
L2 = ‖Iγ0+‖

2
HS

=
1

Γ(γ)2

∫∫

[0, 1]2
(t− s)2γ−2 ds dt,

and the result follows by straightforward quadratures. �
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