Stein's method for Brownian approximations - Archive ouverte HAL
Article Dans Une Revue Communications on Stochastic Analysis Année : 2013

Stein's method for Brownian approximations

Résumé

Motivated by a theorem of Barbour, we revisit some of the classical limit theorems in probability from the viewpoint of the Stein method. We setup the framework to bound Wasserstein distances between some distributions on infinite dimensional spaces. We show that the convergence rate for the Poisson approximation of the Brownian motion is as expected proportional to $\lambda^{-1/2}$ where $\lambda$ is the intensity of the Poisson process. We also exhibit the speed of convergence for the Donsker Theorem and for the linear interpolation of the Brownian motion. By iterating the procedure, we give Edgeworth expansions with precise error bounds.
Fichier principal
Vignette du fichier
gaussapp_first.pdf (270.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00717812 , version 1 (13-07-2012)
hal-00717812 , version 2 (20-09-2013)

Identifiants

Citer

Laure Coutin, Laurent Decreusefond. Stein's method for Brownian approximations. Communications on Stochastic Analysis, 2013, 7 (3), pp.349-372. ⟨hal-00717812v2⟩
651 Consultations
796 Téléchargements

Altmetric

Partager

More