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Abstract. In this paper, we focus our attention on the interval temporal logic of the
Allen’s relations “meets”, “begins”, and “begun by” (ABB for short), interpreted over
natural numbers. We first introduce the logic and we show that it is expressive enough to
model distinctive interval properties, such as accomplishment conditions, to capture basic
modalities of point-based temporal logic, such as the until operator, and to encode relevant
metric constraints. Then, we prove that the satisfiability problem for ABB over natural
numbers is decidable by providing a small model theorem based on an original contraction
method. Finally, we prove the EXPSPACE-completeness of the problem.

1. Introduction

Interval temporal logics are modal logics that allow one to represent and to reason about
time intervals. It is well known that, on a linear ordering, one among thirteen different bi-
nary relations may hold between any pair of intervals, namely, “ends”, “during”, “begins”,
“overlaps”, “meets”, “before”, together with their inverses, and the relation “equals” (the
so-called Allen’s relations [1])1. Allen’s relations give rise to respective unary modal opera-
tors, thus defining the modal logic of time intervals HS introduced by Halpern and Shoham
in [12]. Some of these modal operators are actually definable in terms of others; in partic-
ular, if singleton intervals are included in the structure, it suffices to choose as basic the
modalities corresponding to the relations “begins” B and “ends” E, and their transposes
B, E. HS turns out to be highly undecidable under very weak assumptions on the class of

1998 ACM Subject Classification: F.3: logics and meaning of programs; F.4: mathematical logic and
formal languages.

Key words and phrases: interval temporal logics, compass structures, decidability, complexity.
1We do not consider here the case of ternary relations. Amongst the multitude of ternary relations among

intervals there is one of particular importance, which corresponds to the binary operation of concatenation
of meeting intervals. The logic of such a ternary interval relation has been investigated by Venema in [18].
A systematic analysis of its fragments has been recently given by Hodkinson et al. [13].
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interval structures over which its formulas are interpreted [12]. In particular, undecidability
holds for any class of interval structures over linear orderings that contains at least one
linear ordering with an infinite ascending or descending chain, thus including the natural
time flows N, Z, Q, and R. In [14], Lodaya sharpens the undecidability of HS showing that
the two modalities B,E suffice for undecidability over dense linear orderings (in fact, the
result applies to the class of all linear orderings [11]). Even though HS is very natural and
the meaning of its operators is quite intuitive (unlike what happens with other temporal
logics), for a long time such sweeping undecidability results have discouraged the search
for practical applications and further investigations in the field. A renewed interest in in-
terval temporal logics has been recently stimulated by the identification of some decidable
fragments of HS, whose decidability does not depend on simplifying semantic assumptions
such as locality and homogeneity [11]. This is the case with the fragments BB, EE (logics
of the “begins/begun by” and “ends/ended by” relations) [11], A, AA (logics of temporal
neighborhood) [10], and D, DD (logics of the subinterval/superinterval relations) [3, 15].

In this paper, we focus our attention on the product logic ABB, obtained from the
join of BB and A (the case of AEE is fully symmetric), interpreted over the linear order
N of the natural numbers (or a finite prefix of it). The decidability of BB can be proved
by translating it into the point-based propositional temporal logic of linear time LTL with
temporal modalities F (sometime in the future) and P (sometime in the past), which has
the finite (pseudo-)model property and is decidable, e.g., [9]. In general, such a reduction
to point-based temporal logics does not work: formulas of interval temporal logics are
evaluated over pairs of points and translate into binary relations. For instance, this is the
case with A. Unlike the case of BB, when dealing with A one cannot abstract way from the
left endpoint of intervals, because contradictory formulas may hold over intervals with the
same right endpoint and a different left endpoint. The decidability of AA, and thus that
of its fragment A, over various classes of linear orderings has been proved by Bresolin et
al. by reducing its satisfiability problem to that of the two-variable fragment of first-order
logic over the same classes of structures [4], whose decidability has been proved by Otto in
[16]. Optimal tableau methods for A with respect to various classes of interval structures
can be found in [6, 7]. A decidable metric extension of A over the natural numbers has
been proposed in [8]. A number of undecidable extensions of A, and AA, have been given
in [2, 5].

ABB retains the simplicity of its constituents BB and A, but it improves a lot on their
expressive power (as we shall show, such an increase in expressiveness is achieved at the cost
of an increase in complexity). First, it allows one to express assertions that may be true at
certain intervals, but at no subinterval of them, such as the conditions of accomplishment.
Moreover, it makes it possible to easily encode the until operator of point-based temporal
logic (this is possible neither with BB nor with A). Finally, meaningful metric constraints
about the length of intervals can be expressed in ABB, that is, one can constrain an interval
to be at least (resp., at most, exactly) k points long. We prove the decidability of ABB
interpreted over N by providing a small model theorem based on an original contraction
method. To prove it, we take advantage of a natural (equivalent) interpretation of ABB
formulas over grid-like structures based on a bijection between the set of intervals over N
and (a suitable subset of) the set of points of the N ×N grid. In addition, we prove that
the satisfiability problem for ABB is EXPSPACE-complete (that for A is NEXPTIME-
complete). In the proof of hardness, we use a reduction from the exponential-corridor tiling
problem.
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The paper is organized as follows. In Section 2 we introduce ABB. In Section 3, we
prove the decidability of its satisfiability problem. We first describe the application of the
contraction method to finite models and then we generalize it to infinite ones. In Section
4 we deal with computational complexity issues. Conclusions provide an assessment of the
work and outline future research directions. Missing proofs are reported in the Appendix.

2. The interval temporal logic ABB

In this section, we briefly introduce syntax and semantics of the logic ABB, which fea-
tures three modal operators 〈A〉, 〈B〉, and 〈B〉 corresponding to the three Allen’s relations A
(“meets”), B (“begins”), and B (“begun by”), respectively. We show that ABB is expressive
enough to capture the notion of accomplishment, to define the standard until operator of
point-based temporal logics, and to encode metric conditions. Then, we introduce the basic
notions of atom, type, and dependency. We conclude the section by providing an alternative
interpretation of ABB over labeled grid-like structures.

2.1. Syntax and semantics

Given a set Prop of propositional variables, formulas of ABB are built up from Prop
using the boolean connectives ¬ and ∨ and the unary modal operators 〈A〉, 〈B〉, 〈B〉. As
usual, we shall take advantage of shorthands like ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), [A]ϕ =

¬〈A〉¬ϕ, [B]ϕ = ¬〈B〉¬ϕ, etc. Hereafter, we denote by |ϕ| the size of ϕ.
We interpret formulas of ABB in interval temporal structures over natural numbers

endowed with the relations “meets”, “begins”, and “begun by”. Precisely, we identify any
given ordinal N 6 ω with the prefix of length N of the linear order of the natural numbers
and we accordingly define IN as the set of all non-singleton closed intervals [x,y], with
x,y ∈ N and x < y. For any pair of intervals [x,y], [x ′,y ′] ∈ IN, the Allen’s relations
“meets” A, “begins” B, and “begun by” B are defined as follows (note that B is the inverse
relation of B):

• “meets” relation: [x,y] A [x ′,y ′] iff y = x ′;

• “begins” relation: [x,y] B [x ′,y ′] iff x = x ′ and y ′ < y;

• “begun by” relation: [x,y] B [x ′,y ′] iff x = x ′ and y < y ′.

Given an interval structure S = (IN,A,B,B,σ), where σ : IN → P(Prop) is a labeling
function that maps intervals in IN to sets of propositional variables, and an initial interval
I, we define the semantics of an ABB formula as follows:

• S, I � a iff a ∈ σ(I), for any a ∈ Prop;

• S, I � ¬ϕ iff S, I 6� ϕ;

• S, I � ϕ1 ∨ ϕ2 iff S, I � ϕ1 or S, I � ϕ2;

• for every relation R ∈ {A,B,B}, S, I � 〈R〉ϕ iff there is an interval J ∈ IN such that
I R J and S, J � ϕ.

Given an interval structure S and a formula ϕ, we say that S satisfies ϕ (and hence ϕ
is satisfiable) if there is an interval I in S such that S, I � ϕ. Accordingly, we define the
satisfiability problem for ABB as the problem of establishing whether a given ABB-formula
ϕ is satisfiable.
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We conclude the section with some examples that account for ABB expressive power.
The first one shows how to encode in ABB conditions of accomplishment (think of formula
ϕ as the assertion: “Mr. Jones flew from Venice to Nancy”): 〈A〉

(
ϕ ∧ [B](¬ϕ ∧ [A]¬ϕ)

)
.

Formulas of point-based temporal logics of the form ψ U ϕ, using the standard until
operator, can be encoded in ABB (where atomic intervals are two-point intervals) as follows:
〈A〉

(
[B]⊥ ∧ ϕ

)
∨ 〈A〉

(
〈A〉([B]⊥ ∧ ϕ) ∧ [B](〈A〉([B]⊥ ∧ ψ))

)
. Finally, metric conditions

like: “ϕ holds over a right neighbor interval of length greater than k (resp., less than k,

equal to k)” can be captured by the following ABB formula: 〈A〉
(
ϕ ∧ 〈B〉k⊤

)
(resp.,

〈A〉
(
ϕ ∧ [B]k⊥

)
, 〈A〉

(
ϕ ∧ [B]k⊥ ∧ 〈B〉k−1⊤

)
)2.

2.2. Atoms, types, and dependencies

Let S = (IN,A,B,B,σ) be an interval structure and ϕ be a formula of ABB. In the
sequel, we shall compare intervals in S with respect to the set of subformulas of ϕ they
satisfy. To do that, we introduce the key notions of ϕ-atom, ϕ-type, ϕ-cluster, and ϕ-
shading.

First of all, we define the closure Cl(ϕ) of ϕ as the set of all subformulas of ϕ and of
their negations (we identify ¬¬α with α, ¬〈A〉α with [A]¬α, etc.). For technical reasons,
we also introduce the extended closure Cl+(ϕ), which is defined as the set of all formulas
in Cl(ϕ) plus all formulas of the forms 〈R〉α and ¬〈R〉α, with R ∈ {A,B,B} and α ∈ Cl(ϕ).

A ϕ-atom is any non-empty set F ⊆ Cl+(ϕ) such that (i) for every α ∈ Cl+(ϕ), we have
α ∈ F iff ¬α 6∈ F and (ii) for every γ = α ∨ β ∈ Cl+(ϕ), we have γ ∈ F iff α ∈ F or β ∈ F
(intuitively, a ϕ-atom is a maximal locally consistent set of formulas chosen from Cl+(ϕ)).
Note that the cardinalities of both sets Cl(ϕ) and Cl+(ϕ) are linear in the number |ϕ| of
subformulas of ϕ, while the number of ϕ-atoms is at most exponential in |ϕ| (precisely, we

have |Cl(ϕ)| = 2|ϕ|, |Cl+(ϕ)| = 14|ϕ|, and there are at most 27|ϕ| distinct atoms).
We also associate with each interval I ∈ S the set of all formulas α ∈ Cl+(ϕ) such that

S, I � α. Such a set is called ϕ-type of I and it is denoted by TypeS(I). We have that every
ϕ-type is a ϕ-atom, but not vice versa. Hereafter, we shall omit the argument ϕ, thus
calling a ϕ-atom (resp., a ϕ-type) simply an atom (resp., a type).

Given an atom F, we denote by Obs(F) the set of all observables of F, namely, the
formulas α ∈ Cl(ϕ) such that α ∈ F. Similarly, given an atom F and a relation R ∈ {A,B,B},
we denote by ReqR(F) the set of all R-requests of F, namely, the formulas α ∈ Cl(ϕ) such
that 〈R〉α ∈ F. Taking advantage of the above sets, we can define the following two relations
between atoms F and G:

F A−→G iff ReqA(F) = Obs(G) ∪ ReqB(G) ∪ ReqB(G)

F B−→G iff

{

Obs(F) ∪ ReqB(F) ⊆ ReqB(G) ⊆ Obs(F) ∪ ReqB(F) ∪ ReqB(F)

Obs(G) ∪ ReqB(G) ⊆ ReqB(F) ⊆ Obs(G) ∪ ReqB(G) ∪ ReqB(G).

Note that the relation B−→ is transitive, while A−→ is not. Moreover, both A−→ and B−→
satisfy a view-to-type dependency, namely, for every pair of intervals I, J in S, we have that

I A J implies TypeS(I) A−→ TypeS(J)

I B J implies TypeS(I) B−→ TypeS(J).

2It is not difficult to show that ABB subsumes the metric extension of A given in [8]. A simple game-
theoretic argument shows that the former is in fact strictly more expressive than the latter.
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Figure 1: Correspondence between intervals and points of a discrete grid.

Relations A−→ and B−→ will come into play in the definition of consistency conditions (see
Definition 2.1).

2.3. Compass structures

The logic ABB can be equivalently interpreted over grid-like structures (the so-called
compass structures [18]) by exploiting the existence of a natural bijection between the
intervals I = [x,y] and the points p = (x,y) of an N × N grid such that x < y. As an
example, Figure 1 depicts four intervals I0, ..., I3 such that I0 A I1, I0 B I2, and I0 B I3,
together with the corresponding points p0, ...,p3 of a discrete grid (note that the three
Allen’s relations A,B,B between intervals are mapped to corresponding spatial relations
between points; for the sake of readability, we name the latter ones as the former ones).

Definition 2.1. Given anABB formulaϕ, a (consistent and fulfilling) compass (ϕ-)structure
of length N 6 ω is a pair G = (PN,L), where PN is the set of points p = (x,y), with
0 6 x < y < N, and L is function that maps any point p ∈ PN to a (ϕ-)atom L(p) in such
a way that

• for every pair of points p,q ∈ PN and every relation R ∈ {A,B}, if p R q holds, then
L(p) R−→L(q) follows (consistency);

• for every point p ∈ PN, every relation R ∈ {A,B,B}, and every formula α ∈
ReqR

(
L(p)

)
, there is a point q ∈ PN such that p R q and α ∈ Obs

(
L(q)

)
(ful-

fillment).

We say that a compass (ϕ-)structure G = (PN, L) features a formula α if there is a point
p ∈ PN such that α ∈ L(p). The following proposition implies that the satisfiability problem
for ABB is reducible to the problem of deciding, for any given formula ϕ, whether there
exists a ϕ-compass structure that features ϕ.

Proposition 2.2. An ABB-formula ϕ is satisfied by some interval structure if and only if
it is featured by some (ϕ-)compass structure.
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3. Deciding the satisfiability problem for ABB

In this section, we prove that the satisfiability problem for ABB is decidable by pro-
viding a “small-model theorem” for the satisfiable formulas of the logic. For the sake of
simplicity, we first show that the satisfiability problem for ABB interpreted over finite in-
terval structures is decidable and then we generalize such a result to all (finite or infinite)
interval structures.

As a preliminary step, we introduce the key notion of shading. Let G = (PN,L) be a
compass structure of length N 6 ω and let 0 6 y < N. The shading of the row y of G is
the set ShadingG(y) =

{

L(x,y) : 0 6 x < y
}

, namely, the set of the atoms of all points in
the row y of G (basically, we interpret different atoms as different colors). Clearly, for every
pair of atoms F and F ′ in ShadingG(y), we have ReqA(F) = ReqA(F ′).

3.1. A small-model theorem for finite structures

Let ϕ be a generic ABB formula. Let us assume that ϕ is featured by a finite compass
structure G = (PN,L), with N < ω. In fact, without loss of generality, we can assume that
ϕ belongs to the atom associated with a point p = (0,y) of G, with 0 < y < N. We prove
that we can restrict our attention to compass structures G = (PN,L), where N is bounded
by a double exponential in |ϕ|. We start with the following lemma that proves a simple,
but crucial, property of the relations A−→ and B−→ (a short proof is given in Section A.1
of the appendix).

Lemma 3.1. If F A−→H and G B−→H hold for some atoms F,G,H, then F A−→G holds as
well.

The next lemma shows that, under suitable conditions, a given compass structure G

may be reduced in length, preserving the existence of atoms featuring ϕ.

Lemma 3.2. Let G be a compass structure featuring ϕ. If there exist two rows 0 < y0 <

y1 < N in G such that ShadingG(y0) ⊆ ShadingG(y1), then there exists a compass structure
G ′ of length N ′ < N that features ϕ.

Proof. Suppose that 0 < y0 < y1 < N are two rows of G such that ShadingG(y0) ⊆
ShadingG(y1). Then, there is a function f : {0, ...,y0 − 1} → {0, ...,y1 − 1} such that, for
every 0 6 x < y0, L(x,y0) = L(f(x),y1). Let k = y1 − y0, N

′ = N − k (< N), and PN ′

be the portion of the grid that consists of all points p = (x,y), with 0 6 x < y < N ′. We
extend f to a function that maps points in PN ′ to points in PN as follows:

• if p = (x,y), with 0 6 x < y < y0, then we simply let f(p) = p;

• if p = (x,y), with 0 6 x < y0 6 y, then we let f(p) = (f(x),y+ k);

• if p = (x,y), with y0 6 x < y, then we let f(p) = (x+ k,y+ k).

We denote by L ′ the labeling of PN ′ such that, for every point p ∈ PN ′ , L ′(p) = L(f(p))

and we denote by G ′ the resulting structure (PN ′ , L ′) (see Figure 2). We have to prove
that G ′ is a consistent and fulfilling compass structure that features ϕ (see Definition 2.1).
First, we show that G ′ satisfies the consistency conditions for the relations B and A; then
we show that G ′ satisfies the fulfillment conditions for the B-, B-, and A-requests; finally,
we show that G ′ features ϕ.
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Figure 2: Contraction G ′ of a compass structure G.

Consistency with relation B. Consider two points p = (x,y) and p ′ = (x ′,y ′) in
G ′ such that p B p ′, i.e., 0 6 x = x ′ < y ′ < y < N ′. We prove that L ′(p) B−→L ′(p ′) by
distinguishing among the following three cases (note that exactly one of such cases holds):

(1) y < y0 and y ′ < y0,

(2) y > y0 and y ′ > y0,

(3) y > y0 and y ′ < y0.

If y < y0 and y ′ < y0, then, by construction, we have f(p) = p and f(p ′) = p ′. Since G is
a (consistent) compass structure, we immediately obtain L ′(p) = L(p) B−→L(p ′) = L ′(p ′).
If y > y0 and y > y0, then, by construction, we have either f(p) = (f(x),y + k) or
f(p) = (x + k,y + k), depending on whether x < y0 or x > y0. Similarly, we have either
f(p ′) = (f(x ′),y ′+k) = (f(x),y ′+k) or f(p ′) = (x ′+k,y ′+k) = (x+k,y ′+k). This implies
f(p) B f(p ′) and thus, since G is a (consistent) compass structure, we have L ′(p) = L(f(p))

B−→ L(f(p ′)) = L ′(p ′).
If y > y0 and y ′ < y0, then, since x < y ′ < y0, we have by construction f(p) =

(f(x),y + k) and f(p ′) = p ′. Moreover, if we consider the point p ′′ = (x,y0) in G ′, we
easily see that (i) f(p ′′) = (f(x),y1), (ii) f(p) B f(p ′′) (whence L(f(p)) B−→L(f(p ′′))),
(iii) L(f(p ′′)) = L(p ′′), and (iv) p ′′ B p ′ (whence L(p ′′) B−→L(p ′)). It thus follows that
L ′(p) = L(f(p)) B−→L(f(p ′′)) = L(p ′′) B−→ L(p ′) = L(f(p ′)) = L ′(p ′). Finally, by ex-
ploiting the transitivity of the relation B−→ , we obtain L ′(p) B−→L ′(p ′).

Consistency with relation A. Consider two points p = (x,y) and p ′ = (x ′,y ′) such
that p A p ′, i.e., 0 6 x < y = x ′ < y ′ < N ′. We define p ′′ = (y,y + 1) in such a way that
p A p ′′ and p ′ B p ′′ and we distinguish between the following two cases:

(1) y > y0,

(2) y < y0.
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If y > y0, then, by construction, we have f(p) A f(p ′′). Since G is a (consistent) compass
structure, it follows that L ′(p) = L(f(p)) A−→ L(f(p ′′)) = L ′(p ′′).
If y < y0, then, by construction, we have L(p ′′) = L(f(p ′′)). Again, since G is a (consistent)
compass structure, it follows that L ′(p) = L(f(p)) = L(p) A−→ L(p ′′) = L(f(p ′′)) =

L ′(p ′′).
In both cases we have L ′(p) A−→L ′(p ′′). Now, we recall that p ′ B p ′′ and that, by previous
arguments, G ′ is consistent with the relation B. We thus have L ′(p ′) B−→L ′(p ′′). Finally,
by applying Lemma 3.1, we obtain L ′(p) A−→L ′(p ′).

Fulfillment of B-requests. Consider a point p = (x,y) in G ′ and some B-request
α ∈ ReqB

(
L ′(p)

)
associated with it. Since, by construction, α ∈ ReqB

(
L(f(p))

)
and G is

a (fulfilling) compass structure, we know that G contains a point q ′ = (x ′,y ′) such that
f(p) B q ′ and α ∈ Obs

(
L(q ′)

)
. We prove that G ′ contains a point p ′ such that p B p ′ and

α ∈ Obs
(
L ′(p ′)

)
by distinguishing among the following three cases (note that exactly one

of such cases holds):

(1) y < y0

(2) y ′ > y1,

(3) y > y0 and y ′ < y1.

If y < y0, then, by construction, we have p = f(p) and q ′ = f(q ′). Therefore, we
simply define p ′ = q ′ in such a way that p = f(p) B q ′ = p ′ and α ∈ Obs

(
L ′(p ′)

)

(= Obs
(
L(f(p ′))

)
= Obs

(
L(q ′)

)
).

If y ′ > y1, then, by construction, we have either f(p) = (f(x),y+k) or f(p) = (x+k,y+k),
depending on whether x < y0 or x > y0. We define p ′ = (x,y ′ − k) in such a way that
p B p ′. Moreover, we observe that either f(p ′) = (f(x),y ′) or f(p ′) = (x+k,y ′), depending
on whether x < y0 or x > y0, and in both cases f(p ′) = q ′ follows. This shows that
α ∈ Obs

(
L ′(p ′)

)
(= Obs

(
L(f(p ′)

)
= Obs

(
L(q ′)

)
).

If y > y0 and y ′ < y1, then we define p = (x,y0) and q = (x ′,y1) and we observe that
f(p) B q B q ′ and f(p) = q. Since f(p) B q), we have that α ∈ ReqB

(
L(q))

)
and hence

α ∈ ReqB

(
L(p)

)
. Since G is a (fulfilling) compass structure, we know that there is a point

p ′ such that p B p ′ and α ∈ Obs
(
L(p ′)

)
. Moreover, since p B p ′, we have f(p ′) = p ′, from

which we obtain p B p ′ and α ∈ Obs
(
L(p ′)

)
.

Fulfillment of B-requests. The proof that G ′ fulfills all B-requests of its atoms is
symmetric with respect to the previous one.

Fulfillment of A-requests. Consider a point p = (x,y) in G ′ and some A-request α ∈
ReqA

(
L ′(p)

)
associated with p in G ′. Since, by previous arguments, G ′ fulfills all B-requests

of its atoms, it is sufficient to prove that either α ∈ Obs
(
L ′(p ′)

)
or α ∈ ReqB

(
L ′(p ′)

)
, where

p ′ = (y,y+1). This can be easily proved by distinguishing among the three cases y < y0−1,
y = y0 − 1, and y > y0.

Featured formulas. Recall that, by previous assumptions, G contains a point p =

(0,y), with 0 < y < N, such that ϕ ∈ L(p). If y 6 y0, then, by construction, we have
ϕ ∈ L ′(p) (= L(f(p)) = L(p)). Otherwise, if y > y0, we define q = (0,y0) and we observe
that q B p. Since G is a (consistent) compass structure and 〈B〉ϕ ∈ Cl+(ϕ), we have
that ϕ ∈ ReqB

(
L(q)

)
. Moreover, by construction, we have L ′(q) = L(f(q)) and hence

ϕ ∈ ReqB

(
L ′(q)

)
. Finally, since G ′ is a (fulfilling) compass structure, we know that there

is a point p ′ in G ′ such that f(q) B p ′ and ϕ ∈ Obs
(
L ′(p ′)

)
. 2
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On the grounds of the above result, we can provide a suitable upper bound for the
length of a minimal finite interval structure that satisfies ϕ, if there exists any. This yields
a straightforward, but inefficient, 2EXPSPACE algorithm that decides whether a given
ABB-formula ϕ is satisfiable over finite interval structures.

Theorem 3.3. An ABB-formula ϕ is a satisfied by some finite interval structure iff it is

featured by some compass structure of length N 6 227|ϕ|

(i.e., double exponential in |ϕ|).

Proof. One direction is trivial. We prove the other one (“only if” part). Suppose that ϕ is
satisfied by a finite interval structure S. By Proposition 2.2, there is a compass structure G

that features ϕ and has finite length N < ω. Without loss of generality, we can assume that
N is minimal among all finite compass structures that feature ϕ. We recall from Section

2.2 that G contains at most 27|ϕ| distinct atoms. This implies that there exist at most 227|ϕ|

different shadings of the form ShadingG(y), with 0 6 y < N. Finally, by applying Lemma

3.2, we obtain N 6 227|ϕ|

(otherwise, there would exist two rows 0 < y0 < y1 < N such that
ShadingG(y0) = ShadingG(y1), which is against the hypothesis of minimality of N). 2

3.2. A small-model theorem for infinite structures

In general, compass structures that feature ϕ may be infinite. Here, we prove that,
without loss of generality, we can restrict our attention to sufficiently “regular” infinite
compass structures, which can be represented in double exponential space with respect to
|ϕ|. To do that, we introduce the notion of periodic compass structure.

Definition 3.4. An infinite compass structure G = (Pω,L) is periodic, with threshold ỹ0,
period ỹ, and binding g̃ : {0, ..., ỹ0 + ỹ− 1} → {0, ..., ỹ0 − 1}, if the following conditions are
satisfied:

• for every ỹ0 + ỹ 6 x < y, we have L(x,y) = L(x− ỹ,y− ỹ),

• for every 0 6 x < ỹ0 + ỹ 6 y, we have L(x,y) = L(g̃(x),y− ỹ).

Figure 3 gives an example of a periodic compass structure (the arrows represent some
relationships between points induced by the binding function g̃). Note that any periodic
compass structure G = (Pω,L) can be finitely represented by specifying (i) its threshold
ỹ0, (ii) its period ỹ, (iii) its binding g̃, and (iv) the labeling L restricted to the portion
Pỹ0+ỹ−1 of the domain.

The following theorem leads immediately to a 2EXPSPACE algorithm that decides
whether a given ABB-formula ϕ is satisfiable over infinite interval structures (its proof is
given in Section A.2 of the appendix).

Theorem 3.5. An ABB-formula ϕ is satisfied by an infinite interval structure iff it is

featured by a periodic compass structure with threshold ỹ0 < 227|ϕ|

and period ỹ < 2|ϕ| ·

227|ϕ|

· 227|ϕ|

.
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...

ỹ0

ỹ0 + ỹ

ỹ0 + 2ỹ

g̃ g̃ g̃ g̃ g̃ g̃

Figure 3: A periodic compass structure with threshold ỹ0, period ỹ, and binding g̃.

4. Tight complexity bounds to the satisfiability problem for ABB

In this section, we show that the satisfiability problem for ABB interpreted over (either
finite or infinite) interval temporal structures is EXPSPACE-complete.

The EXPSPACE-hardness of the satisfiability problem for ABB follows from a re-
duction from the exponential-corridor tiling problem, which is known to be EXPSPACE-
complete [17]. Formally, an instance of the exponential-corridor tiling problem is a tuple
T = (T , t⊥, t⊤,H, V,n) consisting of a finite set T of tiles, a bottom tile t⊥ ∈ T , a top tile
t⊤ ∈ T , two binary relations H,V over T (specifying the horizontal and vertical constraints),
and a positive natural number n (represented in unary notation). The problem consists in
deciding whether there exists a tiling f : N × {0, ..., 2n − 1} → T of the infinite discrete
corridor of height 2n, that associates the tile t⊥ (resp., t⊤) with the bottom (resp., top) row
of the corridor and that respects the horizontal and vertical constraints H and V, namely,

i) for every x ∈ N, we have f(x, 0) = t⊥,

ii) for every x ∈ N, we have f(x, 2n − 1) = t⊤,

iii) for every x ∈ N and every 0 6 y < 2n, we have f(x,y) H f(x+ 1,y),

iv) for every x ∈ N and every 0 6 y < 2n − 1, we have f(x,y) V f(x,y+ 1).

The proof of the following lemma, which reduces the exponential-corridor tiling problem to
the satisfiability problem for ABB, is given in Section A.3 of the appendix. Intuitively, such
a reduction exploits (i) the correspondence between the points p = (x,y) inside the infinite
corridor N× {0, ..., 2n − 1} and the intervals of the form Ip = [y+ 2nx,y+ 2nx+ 1], (ii) |T |

propositional variables which represent the tiling function f, (iii) n additional propositional
variables which represent (the binary expansion of) the y-coordinate of each row of the
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corridor, and (iv) the modal operators 〈A〉 and 〈B〉 by means of which one can enforce
the local constrains over the tiling function f (as a matter of fact, this shows that the
satisfiability problem for the AB fragment is already hard for EXPSPACE).

Lemma 4.1. There is a polynomial-time reduction from the exponential-corridor tiling
problem to the satisfiability problem for ABB.

As for the EXPSPACE-completeness, we claim that the existence of a compass structure
G that features a given formula ϕ can be decided by verifying suitable local (and stronger)
consistency conditions over all pairs of contiguous rows. In fact, in order to check that
these local conditions hold between two contiguous rows y and y+1, it is sufficient to store
into memory a bounded amount of information, namely, (i) a counter y that ranges over
{

1, ..., 227|ϕ|

+ |ϕ| · 227|ϕ|}

, (ii) the two guessed shadings S and S ′ associated with the rows y
and y + 1, and (iii) a function g : S → S ′ that captures the horizontal alignment relation
between points with an associated atom from S and points with an associated atom from
S ′. This shows that the satisfiability problem for ABB can be decided in exponential space,
as claimed by the following lemma. Further details about the decision procedure, including
soundness and completeness proofs, can be found in Section A.4 of the appendix.

Lemma 4.2. There is an EXPSPACE non-deterministic procedure that decides whether a
given formula of ABB is satisfiable or not.

Summing up, we obtain the following tight complexity result.

Theorem 4.3. The satisfiability problem for ABB interpreted over (prefixes of) natural
numbers is EXPSPACE-complete.

5. Conclusions

In this paper, we proved that the satisfiability problem for ABB interpreted over pre-
fixes of the natural numbers is EXPSPACE-complete. We restricted our attention to these
domains because it is a common commitment in computer science. Moreover, this gave us
the possibility of expressing meaningful metric constraints in a fairly natural way. Never-
theless, we believe it possible to extend our results to the class of all linear orderings as
well as to relevant subclasses of it. Another restriction that can be relaxed is the one about
singleton intervals: all results in the paper can be easily generalized to include singleton
intervals in the underlying structure IN. The most exciting challenge is to establish whether
the modality A can be added to ABB preserving decidability (note that 〈A〉, 〈B〉, and 〈B〉
are all future modalities, while 〈A〉 is a past one). Preliminary results seem to suggest that
the addition 〈A〉 involves a non-elementary blow-up in computational complexity, but it
does not destroy decidability.
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Appendix A. Appendix

In this appendix, we report some complete proofs that have been omitted in the pre-
vious sections. Moreover, we describe an EXPSPACE (optimal) procedure that decides
satisfiability of ABB.

A.1. Proof of Lemma 3.1

Lemma 3.1. If F A−→H and G B−→H hold for some atoms F,G,H, then F A−→G holds as
well.

Proof. Suppose that F A−→H and G B−→H hold for some atoms F,G,H. By applying the
definitions of the relations A−→ and B−→ , we immediately obtain:

ReqA(F) = Obs(H) ∪ ReqB(H) ∪ ReqB(H) (since F A−→H)

= Obs(G) ∪ ReqB(G) ∪ ReqB(G) (since G B−→H).

This shows that F A−→G. 2

A.2. Proof of Theorem 3.5

Theorem 3.5. An ABB-formula ϕ is a satisfied by an infinite interval structure iff

it is featured by a periodic compass structure with threshold ỹ0 < 227|ϕ|

and period ỹ <

2|ϕ| · 227|ϕ|

· 227|ϕ|

.

Proof. One direction is trivial. We prove the other one (“only if” part). Suppose that
ϕ is satisfied by an infinite interval structure S. By Proposition 2.2, there is an infinite
compass structure G that features ϕ. Below, we show how to turn G into a periodic compass
structure G ′ that still features ϕ and whose threshold and period satisfy the bounds given
by the theorem.

Threshold ỹ0. Since G is infinite, we know that there exist infinitely many rows
y0,y1,y2, ... such that ShadingG(yi) = ShadingG(yj) for every pair of indices i, j ∈ N.
We define ỹ0 as the least of all such rows. By simple counting arguments, we have that

ỹ0 < 227|ϕ|

.

Period ỹ. Since G is a (fulfilling) compass structure, there is a function f that maps
any point p = (x, ỹ0), any relation R ∈ {A,B}, and any request α ∈ ReqR

(
L(p)

)
to a point

p ′ = f(p,R,α) such that p R p ′ and α ∈ Obs
(
L(p ′)

)
. Let f be one such function. We

denote by Img(f) the image set of f, namely, the set of all points of the form p ′ = f(p,R,α),
with p = (x, ỹ0), R ∈ {A,B}, and α ∈ ReqR

(
L(p)

)
. Moreover, we denote by Imgy(f) the

projection of Img(f) on the y-component. Intuitively, Imgy(f) is a minimal set of rows that

fulfill all A-requests and all B-requests of atoms along the row ỹ0 in G (see, for instance,
Figure 4). Clearly, min

(
Imgy(f)

)
> ỹ0 and Imgy(f) contains at most 2|ϕ| · ỹ0 (possibly

non-contiguous) rows (namely, at most one row for each choice of 0 6 x < ỹ0, R ∈ {A,B},
and α ∈ ReqR

(
L(x, ỹ0)

)
). We call gap of Imgy(f) any set Y = {y,y+1, ...,y ′} of contiguous

rows of G such that ỹ0 < y 6 y ′ < max
(
Imgy(f)

)
and Imgy(f) ∩ Y = ∅. From previous

results (in particular, from the proofs of Lemma 3.2 and Theorem 3.3), we can assume,

without loss of generality, that every gap Y of Imgy(f) has size at most 227|ϕ|

−1 (otherwise,
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ỹ0

Imgy(f)















































p p ′

f(p, B̄,β)

f(p ′, B̄,β ′)

f(p,A,α)

f(p ′,A,α ′)

Figure 4: A set Imgy(f) of rows that fulfill all requests at row ỹ0.

we can find two rows y ′
0 and y ′

1 in Y that satisfy the hypothesis of Lemma 3.2 and hence
we can “remove” the rows from y ′

0 to y ′
1 − 1 from G, without affecting consistency and

fulfillment). This shows that max
(
Imgy(f)

)
6 ỹ0 + 2|ϕ| · ỹ0 · 2

27|ϕ|

. We then define ỹ as the

least value such that ỹ0ỹ > max
(
Imgy(f)

)
and ShadingG(ỹ0) = ShadingG(ỹ0 + ỹ). Again,

by exploiting simple counting arguments, one can prove that ỹ < max
(
Imgy(f)

)
− ỹ0+227|ϕ|

6 2|ϕ| · ỹ0 · 2
27|ϕ|

+ 227|ϕ|

6
(
2|ϕ| · ỹ0 + 1

)
· 227|ϕ|

6 2|ϕ| ·
(
ỹ0 + 1

)
· 227|ϕ|

6 2|ϕ| · 227|ϕ|

· 227|ϕ|

.

Binding g̃. Since ShadingG(ỹ0) = ShadingG(ỹ0 + ỹ), we know that there is a (surjective)
function g that maps any value x ∈ {0, ..., ỹ0 + ỹ− 1} to a value g(x) ∈ {0, ..., ỹ0 − 1} in such
a way that L(x, ỹ0 + ỹ) = L(g(x), ỹ0). We choose one such function as g̃.

Periodic compass structure G ′. According to Definition 3.4, the threshold ỹ0, the
period ỹ, the binding g̃, and the labeling L of G restricted to the finite domain Pỹ0+ỹ−1

uniquely determine a periodic structure G ′ = (Pω, L ′). It thus remains to show that G ′ is a
(consistent and fulfilling) compass structure that features ϕ. The proof that the labeling L ′

is consistent with the relations A, B, and B is straightforward, given the above construction.
As for the fulfillment of the various requests, one can prove, by induction on n, that, for
every n ∈ N, every point p = (x,y) with y = ỹ0 + nỹ, every relation R ∈ {A,B} (resp.,
R = B), and every R-request α ∈ ReqR

(
L ′(p)

)
, there is a point p ′ = (x ′,y ′) such that

y ′ 6 ỹ0 + (n + 1)ỹ (resp., y ′ < ỹ0 + nỹ), p R p ′, and α ∈ Obs
(
L ′(p ′)

)
. This suffices

to claim that G ′ is a consistent and fulfilling compass structure. Consider the case of
relation B (the case of relation B is fully symmetric and the case of relation A can be easily
reduced to that of B). By contradiction, let us suppose that there is a point p = (x,y),
with ỹ0 + nỹ < y < ỹ0 + (n + 1)ỹ, such that α ∈ ReqB

(
L(p)

)
and α 6∈ Obs

(
L(p ′)

)
for

all points p ′ such that p B p ′. Since G ′ is consistent, we have α ∈ ReqB

(
L(q)

)
, where

q =
(
x, ỹ0 + (n + 1)ỹ

)
(note that p B q holds) and thus, by construction, there is a point

q ′ = (x,y ′), with ỹ0 + (n + 1)ỹ < y ′ 6 ỹ0 + (n + 2)ỹ, such that α ∈ Obs
(
L(q ′)

)
(a

contradiction). Finally, one can show that G ′ features the formula ϕ by exploiting the same
argument that was given in the proof of Lemma 3.2. 2
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Figure 5: Encoding of a tiling function.

A.3. Proof of Lemma 4.1

Lemma 4.1. There is a polynomial-time reduction from the exponential-corridor tiling
problem to the satisfiability problem for ABB.

Proof. Consider a generic instance T = (T , t⊥, t⊤,H,V,n) of the exponential-corridor tiling
problem, where T = {t1, . . . , tk}. We guarantee the existence of a tiling function f : N ×
{0, ..., 2n − 1} → T that satisfies the instance T through the existence of a labeled (infinite)
interval structure S = (Iω,A,B,σ) that satisfies a suitable AB formula with size polynomial
in T. We use k propositional variables t1, ..., tk to represent the tiles from T , n propositional
variables y0, ...,yn−1 to represent the binary expansion of the y-coordinate of a row, and
one propositional variable c to identify those intervals in Iω that correspond to points of
the infinite corridor of height 2n. The correspondence between the points p = (x,y), with
x ∈ N and 0 6 y < 2n, of the infinite corridor and the intervals Ip ∈ Iω is obtained by
letting Ip = [y + 2nx,y + 2nx + 1] (Figure 5 can be used as a reference example through
the rest of the proof). According to such an encoding, the labeling function σ is related to
the tiling function f as follows:
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for every point p = [x,y] ∈ N × {0, ..., 2n − 1} and every index 1 6 i 6 k, if
f(p) = ti, then σ(Ip) = {c, ti,yj1 , ...,yjh

}, where {j1, ..., jj} ⊆ {0, ...,n − 1} and

y =
∑

j∈{j1,...,jh} 2j.

For the sake of brevity, we introduce a universal modal operator [U], which is defined as
follows:

[U]α = α ∧ [A]α ∧ [A][A]α.

We now show how to express the existence of a tiling function f that satisfies T. First of
all, we associate the propositional variable c with all and only the intervals of the form
Ip = [y+ 2nx,y+ 2nx+ 1], with x ∈ N and 0 6 y < 2n (atomic intervals), as follows:

ϕc = [U](c ↔ [B]⊥).

The tiling function f : N × {0, ..., 2n − 1} → T is represented by associating with each
c-labeled interval Ip = [y + 2nx,y + 2nx + 1] a unique propositional variable f(p) in T as
follows:

ϕf = [U]
(
c →

∨
16i6k

ti

)
∧ [U]

(
c →

∧
16i<j6k

¬(ti ∧ tj)
)

.

Next, we associate with each (possibly non-minimal) interval of the form I = [y+ 2nx,y+

2nx+l] a subset of the propositional variables y0, ...,yn−1 that encodes the binary expansion
of y. Such a labeling can be enforced by the formula:

ϕy =
(∧

06i<n
¬yi

)
∧ [U]

(∧
06i<n

(
yi↔ [B]yi

)
∧

(
¬yi↔ [B]¬yi

))
∧ [U]

(
c→ϕ0

inc

)

where the formula ϕi
inc is defined (by induction on i ∈ {n, ..., 0}) as follows:

ϕi
inc =







⊤ if i = n,
(
yi ∧ 〈A〉(c∧ ¬yi) ∧ ϕi+1

inc

)
∨

(
¬yi ∧ 〈A〉(c∧yi) ∧ ϕi+1

eq

)
if i < n,

The formula ϕi
inc involves the formula ϕi

eq , which is defined (by induction on i ∈ {n, ..., 0})
as follows:

ϕi
eq =







⊤ if i = n,
((
yi ∧ 〈A〉(c∧yi)

)
∨

(
¬yi ∧ 〈A〉(c∧ ¬yi)

)
∧ ϕi+1

eq if i < n.

It remains to express the constraints on the tiling function f. This can be done by using
the following formulas (for the sake of simplicity, we assume, without loss of generality, that
(t⊤, t⊥) ∈ V):

ϕ⊥ = [U]
(
c ∧

∧
06i<n ¬yi → t⊥

)

ϕ⊤ = [U]
(
c ∧

∧
06i<n yi → t⊤

)

ϕH = [U]
∧

16i6k

((
ϕcorr ∧ 〈B〉(c ∧ ti)

)
→

∨
(ti,tj)∈H 〈A〉(c ∧ tj)

)

ϕV = [U]
∧

16i6k

(
(c ∧ ti) →

∨
(ti,tj)∈V 〈A〉(c ∧ tj)

)
,
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where ϕcorr = ϕ0
eq ∧ [B]¬ϕ0

eq (intuitively, the formula ϕcorr holds over all and only the

intervals of the form I =
[
y + 2nx,y + 2n(x + 1)

]
, in such a way that, if J and K are the

shortest intervals such that I B J and I A K, then J corresponds to the point p = (x,y) and
K corresponds to the point q = (x+ 1,y)).

Summing up, we have that the formula ϕ = ϕc ∧ ϕf ∧ ϕy ∧ ϕ⊥ ∧ ϕ⊤ ∧ ϕH ∧ ϕV ,
which has polynomial size in |T| and uses only the modal operators 〈A〉 and 〈B〉, is satisfiable
if and only if T is a positive instance of the exponential-corridor tiling problem. 2

A.4. Proof of Lemma 4.2

Lemma 4.2. There is an EXPSPACE non-deterministic procedure that decides whether
a given formula of ABB is satisfiable or not.

In order to prove this lemma, we need to introduce two variants of the dependency
relations B−→ and A−→ , which are more restrictive than the previous ones and which are
evaluated (locally) over pairs of atoms that lie along two contiguous rows. Precisely, we
define the following relations between atoms F and G:

F A7−→G iff

{

ReqA(F) = Obs(G) ∪ ReqB(G)

ReqB(G) = ∅

F B7−→G iff

{

ReqB(F) = Obs(G) ∪ ReqB(G)

ReqB(G) = Obs(F) ∪ ReqB(F).

Note that F A7−→G (resp., F B7−→G) implies F A−→G (resp., F B−→G), but the converse impli-
cations are not true in general. Moreover, it is easy to see that any consistent and fulfilling
finite compass structure G = (IN, L), with N ∈ N, satisfies the following properties, and,
conversely, any finite structure G = (IN,L), with N ∈ N, that satisfies the following prop-
erties is a consistent and fulfilling compass structure:

i) for every pair of points p = (x,y) and q = (y,y+ 1) in G, we have L(p) A7−→L(q),

ii) for every pair of points p = (x,y) and q = (x,y+ 1) in G, we have L(q) B7−→L(p),

iii) for the lower-left point p = (0, 1) in G, we have ReqB

(
L(p)

)
= ∅,

iv) for every upper point p = (x,N) in G, we have ReqB

(
L(p)

)
= ∅ and ReqA

(
L(p)

)
=

∅.

Now, we can prove Lemma 4.2.

Proof. We first consider the (easier) case of satisfiability with interpretation over finite
interval structures; then, we shall deal with the more general case of satisfiability with
interpretation over infinite interval structures.

Finite case. In Figure 6, we describe an EXPSPACE non-deterministic procedure that
decides whether a given ABB formula is satisfiable over finite labeled interval structures.
Below, we prove that such a procedure is sound and complete.

(Soundness) As for the soundness, we consider a successful computation of the procedure
and we show that there is a finite compass structure G = (PN,L) that features ϕ, where
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let ϕ be an input formula

procedure CheckConsistency(S, f,
−�
G)















for each ϕ-atom F ∈ S

do

{

if F
A

67−→
−�
G or f(F)

B

67−→ F
then return false

return true

procedure CheckFulfillment(S)














for each ϕ-atom F ∈ S

do

{

if ReqA(F) 6= ∅ or ReqB(F) 6= ∅
then return false

return true

main






































































N← any value in
{

1, ..., 22
7|ϕ|}

F← any ϕ-atom such that ReqB(F) = ∅ and ϕ ∈ Obs(F) ∪ ReqB(F)

S← {F}

for y← 1 to N

do



























f← any mapping from S to the set of all ϕ-atoms
−�
G← any ϕ-atom

if not CheckConsistency(S,g,
−�
G)

then return false

S←
{

f(F) : F ∈ S
}

∪
{−�
G

}

return CheckFulfillment(S)

Figure 6: Algorithm for the satisfiability problem over finite structures.

N ∈ N is exactly the value that was guesses at the beginning of the computation. We build
such a structure G inductively on the value of the variable y ∈ {1, ...,N} as follows.

• If y = 1, then we let G1 = (I1,L1), where L1 maps the unique point of I1 to the
atom F that was guessed at the beginning of the computation. Note that G1 satisfies
the consistency condition of Definition 2.1, but it may not satisfy the fulfillment
condition for the relations A and B.

• If y > 1, then assuming that Gy−1 = (Iy−1,Ly−1) is the consistent (possibly non-
fulfilling) compass structure obtained during the y− 1-th iteration, we define Gy =

(Iy,Ly), where:

i) Ly(p) = Ly−1(p) for every point p = (x ′,y ′) that belongs to Iy−1, namely,
such that 0 6 x ′ < y ′ < y;

ii) Ly(p) = f
(
Ly−1(q)

)
for every pair of points of the form p = (x,y) and q =

(x,y− 1), with 0 6 x < y− 1, where f is the function guessed during the y-th
iteration;

iii) Ly(−�p) =
−�
G, where −�p = (y − 1,y) and

−�
G is the atom guessed during the y-th

iteration.
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We then define G to be the structure GN. Now, knowing that every call to the function
CheckConsistency was successful, we can conclude that the structure G satisfies the
following two properties:

i) for every pair of points p = (x,y) and q = (y,y+ 1) in G, we have L(p) A7−→L(q),

ii) for every pair of points p = (x,y) and q = (x,y+ 1) in G, we have L(q) B7−→L(p).

Moreover, since the first guessed atom F was such that ReqB(F) = ∅ and since the call to the
function CheckFulfillment at the end of the computation was successful, we know that G

satisfies also the following two properties:

iii) for the lower-left point p = (0, 1), we have ReqB

(
L(p)

)
= ∅,

iv) for every upper point p = (x,N), we have ReqB

(
L(p)

)
= ∅ and ReqA

(
L(p)

)
= ∅.

By previous arguments, this shows that G is a consistent and fulfilling compass structure.
Finally, since the first guessed atom F was such that ϕ ∈ Obs(F) ∪ ReqB(F), we have that
G features the input formula ϕ. Proposition 2.2 finally implies that there is a labeled finite
interval structure that satisfies ϕ.

(Completeness) As for completeness, we consider a finite labeled interval structure
S = (IN ′ ,A,B,B,σ) that satisfies ϕ. By Theorem 3.3, we know that there is a (consistent

and fulfilling) compass structure G = (IN,L) of length N 6 227|ϕ|

that features ϕ. We
exploit such a structure G to show that there is a successful computation of the algorithm
of Figure 6. To do that, it is sufficient to describe, at each step of the computation where
the value of a variable needs to be guessed, which is the right choice for that value. Clearly,
at the beginning of the computation, the variable N will take as value exactly the length
of the compass structure G. Similarly, the initial value for the variable F is chosen to be
the atom

{

L(p)
}

associated with the lower-left point p = (0, 1). Then, at each iteration

of the main loop, we choose the values for f and for
−�
G as follows. We assume that, at the

y-th iteration, S is exactly the shading associated with the row y in G (it can be easily
proved that this is an invariant of the computation) and, for every atom F in S, we denote
by pF = (xF,y) a generic point along the row y such that L(pF) = F (such a point exists
by assumption). We then choose f to be the function that maps every atom F ∈ S to the
atom f(F) = L(xF,y+ 1). It is routine to prove that the computation that results from the
above-defined sequence of guesses is successful.

Infinite case. Figure 7 reports an EXPSPACE non-deterministic procedure that decides
whether a given ABB formula is satisfiable over infinite labeled interval structures.

(Soundness) In order to prove that the described procedure is sound, we consider a
successful computation of the procedure and we show that there is an infinite periodic
compass structure G = (Pω,L) that features ϕ. The threshold ỹ0 and the period ỹ of G are
defined to be the values of the corresponding variables that were guessed at the beginning
of the computation. As for the binding function g̃, we choose any arbitrary mapping g̃

from S to S̃ such that g̃ ◦ f̃ is the identity on S, where S, S̃, and f̃ are the values of the
corresponding variables at the end of the computation. It now remains to describe the
labeling of the finite portion Pỹ0+ỹ−1 of G (note that this labeling uniquely determines the
infinite periodic compass structure G). This can be done by following the same construction
given in the finite case. Similarly, the fact that G satisfies the consitency conditions of
Definition 2.1 can be proved by exploiting arguments analogous to the finite case. The
proof that G satisfies also the fulfillment condition requires more details. In particular, one
can prove, again by exploiting induction on y, that for every row y, with ỹ0 6 y < ỹ0 + ỹ,
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every point p = (x, ỹ0), every relation R ∈ {A,B}, and every R-request α ∈ ReqR

(
L(p)

)
,

if L(p) = F (∈ S̃) and fulfilled [F,R,α] is true during the y-th iteration of the main loop,
then there exists a point q = (x ′,y) such that p R q and α ∈ Obs

(
L(q)

)
. Thus, at the end

of the computation, since all entries of the variable fulfilled are set to true, we know that
all A-requests and all B-requests of atoms associated with row ỹ0 are fulfilled below row
ỹ0 + ỹ. This shows that G is a consistent and fulfilling compass structure. As before, one
can conclude that G features the input formula ϕ and hence there exists an infinite labeled
interval structure that satisfies ϕ.

(Completeness) As for completeness, we consider an infinite labeled interval structure
S = (Iω,A,B,B,σ) that satisfies ϕ. By Theorem 3.5, we know that there is a periodic

(consistent and fulfilling) compass structure G = (Iω,L), with threshold ỹ0 < 227|ϕ|

, period

ỹ < 2|ϕ| · 227|ϕ|

· 227|ϕ|

, and binding g̃ : {0, ..., ỹ0 + ỹ− 1} → {0, ..., ỹ0 − 1}. We exploit such
a periodic structure G to show that there is a successful computation of the algorithm of
Figure 7. In particular, at each step of the computation where the value of a variable needs
to be guessed, we describe which is the right choice for that value. Clearly, at the beginning
of the computation, the variables ỹ0 and ỹ will take as values exactly the threshold and the
period of the compass structure G. Similarly, the initial value for the variable F is chosen to
be the atom

{

L(p)
}

associated with the lower-left point p = (0, 1). Then, at each iteration

of one of the two main loops, we choose the values for f and for
−�
G as follows. We assume

that, at each iteration of one of the two loops, S is the shading associated with the row y

in G, where y is the value of the corresponding variable (it can be easily proved that this is
an invariant of the computation) and, for every atom F in S, we denote by pF = (xF,y) a
generic point along the row y such that L(pF) = F (such a point exists by assumption). We
then choose f to be the function that maps every atom F ∈ S to the atom f(F) = L(xF,y+1).
It is routine to prove that the computation that results from the above-defined sequence of
guesses is successful. 2
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let ϕ be an input formula

procedure CheckConsistency(S, f,
−�
G)

(as before)

procedure UpdateFulfillment(fulfilled , S̃, f̃,S,
−�
G)



































for each ϕ-atom F ∈ S̃ and A-request α ∈ ReqA(F)

do

{

if α ∈ Obs(
−�
G)

then fulfilled [F,A,α]← true

for each ϕ-atom F ∈ S̃ and B-request α ∈ ReqB(F)

do

{

if α ∈ Obs(f̃(F))

then fulfilled [F,B,α]← true

procedure CheckFulfillment(fulfilled , S̃, f̃,S)






























if S 6= S̃

then return false

for each ϕ-atom F ∈ S̃, relation R ∈ {A,B}, and R-request α ∈ ReqR(F)

do

{

if not fulfilled [F,R,α]

then return false

return true

main






























































































































































































ỹ0 ← any value in
{

1, ..., 22
7|ϕ|−1

}

ỹ← any value in
{

1, ..., 2|ϕ| · 22
7|ϕ|

· 22
7|ϕ|

− 1
}

F← any ϕ-atom such that ReqB(F) = ∅ and ϕ ∈ Obs(F) ∪ ReqB(F)

S← {F}

for y← 1 to ỹ0

do



























f← any mapping from S to the set of all ϕ-atoms
−�
G← any ϕ-atom

if not CheckConsistency(S,g,
−�
G)

then return false

S←
{

f(F) : F ∈ S
}

∪
{−�
G

}

S̃← S

f̃← the identity function on S̃

for each ϕ-atom F ∈ S̃, relation R ∈ {A,B}, and R-request α ∈ ReqR(F)

do fulfilled [F,R,α]← false

for y← ỹ0 + 1 to ỹ0 + ỹ

do











































f← any mapping from S to the set of all ϕ-atoms
−�
G← any ϕ-atom

if not CheckConsistency(S,g,
−�
G)

then return false

f̃← f ◦ f̃

S←
{

f(F) : F ∈ S
}

∪
{−�
G

}

UpdateFulfillment(fulfilled , S̃, f̃,S,
−�
G)

return CheckFulfillment(fulfilled , S̃, f̃,S)

Figure 7: Algorithm for the satisfiability problem over infinite structures.
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