
HAL Id: hal-00717778
https://hal.science/hal-00717778

Submitted on 30 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata for Branching and Layered Temporal
Structures: an Investigation into Regularities of Infinite

Transition Systems
Gabriele Puppis

To cite this version:
Gabriele Puppis. Automata for Branching and Layered Temporal Structures: an Investigation into
Regularities of Infinite Transition Systems. Springer, pp.1-206, 2010, LNAI, 978-3-642-11880-7.
�10.1007/978-3-642-11881-4�. �hal-00717778�

https://hal.science/hal-00717778
https://hal.archives-ouvertes.fr

Puppis
AutomataforBranchingandLayeredTemporalStructures

LNAI
5955

1

GabrielePuppis
LN
AI
59
55

AnInvestigationintoRegularities
of InfiniteTransitionSystems

Automata
forBranchingandLayered
TemporalStructures

123

Foreword

Since 2002, FoLLI, the Association for Logic, Language, and Information
(www.folli.org), has awarded an annual prize for an outstanding dissertation
in the fields of logic, language, and information. The prize is named after the
well-known Dutch logician Evert Willem Beth, whose interdisciplinary inter-
ests are in many ways exemplary for the aims of FoLLI. It is sponsored by
the E.W. Beth Foundation. Dissertations submitted for the prize are judged
on technical depth and strength, originality, and impact made in at least two
of the three fields of logic, language, and computation. Every year the com-
petition is strong and the interdisciplinary character of the award stimulates
lively discussions and debates.

Recipients of the award are given the opportunity to prepare a book version
of their thesis for publication in the FoLLI Publications on Logic, Language
and Information.

This volume is based on the PhD thesis of Gabriele Puppis, who was the
winner of the E.W. Beth dissertation award for 2007. Puppis’s thesis focuses
on logic and computation and, more specifically, on automata-based decidabil-
ity techniques for time granularity and on a new method for deciding monadic
second-order theories of trees. In the first part of the thesis Puppis defines and
systematically exploits various classes of sequential automata in order to solve
a number of relevant problems in time granularity (e.g., equivalence, conver-
sion, minimization, optimization, etc.). For each application, he investigates
expressiveness and complexity and provides algorithms working on automata-
based representations of time granularity. The core of the remaining part of
Puppis’s thesis is a generalization of the Elgot–Rabin automata-based deci-
sion method. He defines a powerful reduction over colored trees and obtains
the generalization by overcoming a number of technical difficulties, and thus
not only solves the original decision problems, but also gives a precise and
inspiring comparison of the newly introduced technique with more classical
ones, such as, for example, Shelah’s composition method. In both parts of the
thesis Dr. Puppis shows mastering and deep understanding of the topic, an

VI Foreword

elegant and concise presentation of the results, and an insightful overall view
on the subject.

The results presented by Puppis represent a significant step towards a bet-
ter understanding of the changes in granularity levels that humans make so
easily in cognition of time, space, and other phenomena, whereas their logi-
cal and computational structure poses difficult conceptual and computational
challenges.

Alberto Policriti (Chairman of the Beth Prize)
Michael Moortgat (President of the Association for Logic,

Language, and Information)

Preface

The aim of the thesis is to exploit different classes of (sequential and tree)
automata for modeling and reasoning on infinite complex systems.

The leitmotif underlying the results provided herein is that, given any infi-
nite complex system (e.g., a computer program) to be verified against a finite
set of properties, there often exists a simpler system that satisfies the same
properties and, in addition, presents strong regularities (e.g., periodicity) in
its structure. Those regularities can then be exploited to decide, in an effective
way, which property is satisfied by the system and which is not.

Perhaps the most natural and effective way to deal with inherent regulari-
ties of infinite systems is through the notion of finite-state automaton. Intu-
itively, a finite-state automaton is an abstract machine with only a bounded
amount of memory at its disposal, which processes an input (e.g., a sequence
of symbols) and eventually outputs true or false, depending on the way the
machine was designed and on the input itself. The present book focuses pre-
cisely on automaton-based approaches that ease the representation of and the
reasoning on properties of infinite complex systems.

The most simple notion of finite-state automaton is that of single-string
automaton. Such a device outputs true on a single (finite or infinite) sequence
of symbols and false on any other sequence. We show how single-string au-
tomata processing infinite sequences of symbols can be successfully applied in
various frameworks for temporal representation and reasoning. In particular,
we use them to model single ultimately periodic time granularities, namely,
temporal structures that are left-bounded and that, ultimately, periodically
group instants of the underlying temporal domain (a simple example of such
a structure is given by the partitioning of the temporal domain of days into
weeks). The notion of single-string automaton can be further refined by in-
troducing counters in order to compactly represent repeated occurrences of
the same subsequence in the given input. By introducing restricted policies
of counter update and by exploiting suitable abstractions of the configuration
space for the resulting class of automata, we devise efficient algorithms for

VIII Preface

reasoning on quasi-periodic time granularities (e.g., the partitioning of the
temporal domain of days into years).

Similar abstractions can be used when reasoning on infinite branching (tem-
poral) structures. In such a case, one has to consider a generalized notion of
automaton, which is able to process labeled branching structures (hereafter
called trees), rather than linear sequences of symbols. We show that sets of
trees featuring the same properties can be identified with the equivalence
classes induced by a suitable automaton. More precisely, given a property to
be verified, one can first define a corresponding automaton that accepts all and
only the trees satisfying that property, then introduce a suitable equivalence
relation that refines the standard language equivalence and groups all trees
being indistinguishable by the automaton, and, finally, exploit such an equiv-
alence to reduce several instances of the verification problem to equivalent
simpler instances, which can be eventually decided.

The level of mathematics involved in this book is rigorous, but not inher-
ently difficult. Even though the intended audience is the researcher or the
advanced student with background knowledge on algorithm complexity, au-
tomata theory, and logics, a motivated non-specialist will be able to follow
the presentation, as well as to understand the key ideas behind the various
proofs.

For background material on algorithm complexity, automata theory, and
logics we refer to [86, 50, 107]

Acknowledgements

I owe many thanks to the many people who assisted me in the process of
writing this book. I am particularly indebted to my supervisor Prof. Angelo
Montanari, for guidance, suggestions, and feedback he gave me during and
after my doctoral studies. I thank the two reviewers of my PhD thesis, Prof.
Wolfgang Thomas and Prof. Stphane Demri, as well as two anonymous re-
viewers, whose comments have greatly helped to improve this manuscript.
I thank all my friends, including my colleagues at the University of Udine,
for the stimulating discussions and for the pleasant company. Last but not
the least, I thank my parents, who gave me the best education and uncondi-
tional support over the past years, and my girlfriend, Francesca, for her love,
encouragement, and unstinted patience.

Contents

1 Introduction . 1

2 Word Automata and Time Granularities 5
2.1 Background Knowledge . 7

2.1.1 Words and Languages . 7
2.1.2 Periodicity of Words . 8
2.1.3 Word Automata . 12
2.1.4 Time Granularities . 13

2.2 The String-Based and Automaton-Based Approaches 17
2.2.1 The Granspec Formalism . 18
2.2.2 From Granspecs to Single-String Automata 19
2.2.3 Counters and Multiple Transitions 20
2.2.4 The Logical Counterpart of RCSSA. 23

2.3 Compact and Tractable Representations . 25
2.3.1 Nested Repetitions of Words . 28
2.3.2 Algorithms on NCSSA . 31
2.3.3 Optimizing Representations . 40

2.4 Reasoning on Sets of Granularities . 57
2.4.1 Languages of Ultimately Periodic Words 57
2.4.2 Ultimately Periodic Automata . 62
2.4.3 Algorithms on UPA . 73
2.4.4 Applications to Time Granularity 81

2.5 Discussion . 86

3 Tree Automata and Logics . 89
3.1 Background Knowledge . 91

3.1.1 Graphs and Trees . 91
3.1.2 Tree Automata . 92
3.1.3 Monadic Second-Order Logic . 95

X Contents

3.1.4 The Model Checking Problem . 96
3.2 The Contraction Method for Tree Automata 100

3.2.1 Features and Types . 102
3.2.2 Types and the Acceptance Problem 104
3.2.3 From Trees to Their Retractions . 105
3.2.4 An Example . 111

3.3 Tree Transformations . 113
3.3.1 Tree Recolorings . 113
3.3.2 Tree Substitutions . 116
3.3.3 Tree Transducers . 121
3.3.4 Inverse Substitutions . 125
3.3.5 A Summary . 128

3.4 The Class of Reducible Trees . 128
3.4.1 Compositional Properties of Types 131
3.4.2 Closure Properties . 136

3.5 Effectiveness of the Contraction Method . 148

3.5.1 Reducible Trees and the Caucal Hierarchy 148

3.5.2 Two-Way Alternating Tree Automata 151

3.5.3 Morphic Trees . 154

3.5.4 Layered Temporal Structures . 158

3.6 Discussion . 166

4 Summary . 169

A Technical Proofs . 171

A.1 Proofs of Theorem 5 and Theorem 6 . 171

A.2 Proof of Theorem 8 . 181

A.3 Proof of Proposition 34 . 187

References . 191

Notation . 199

Index . 201

1

Introduction

The present book aims at studying (different classes of) automata to model
and reason on infinite complex systems. It focuses on two different notions of
automata: word automata and tree automata.

The first class of automata reveals itself as a helpful tool for representing
temporal information and for dealing with periodic phenomena. These tasks
are widely recognized as relevant ones in a variety of application areas ranging
from temporal database design and inter-operability to data conversion and
data mining, to the specification and verification of reactive systems, to the
synthesis, execution, and monitoring of timed workflow systems, to temporal
constraint representation and reasoning, and to temporal abstraction [3]. One
of the most effective attempts at dealing with these problems takes advantage
of the notion of time granularity.

Different time granularities can be used to specify the occurrence times of
different classes of events. For instance, temporal characterizations of a flight
departure, a business appointment, and a birthdate are usually given in terms
of minutes, hours, and days, respectively. Moreover, when a computation in-
volves pieces of information expressed at different time granularities, the sys-
tem needs the ability of properly relating time granularities (this is usually
the case, for instance, with query processing in federated database systems).
Such an integration presupposes the formalization of the notion of granular-
ity and the analysis of the relationships between different time granularities.
According to a commonly accepted perspective, any time granularity can be
viewed as the partitioning of a temporal domain in groups of elements, where
each group is perceived as an indivisible unit (a granule). Most granularities
of practical interest are modeled as infinite sequences of time granules, which
present a repeating pattern and, possibly, temporal gaps within and between
granules. A representation formalism can then use these granules to provide
facts, actions or events with a temporal qualification, at the appropriate ab-
straction level. Even though conceptually clean, this point of view does not
address the problem of providing infinite granularities with a finite (and com-
pact) representation to make it possible to deal with them in an effective (and

2 1 Introduction

efficient) way. To be computationally acceptable, any formal system for time
granularity should indeed satisfy the following requirements:

• Suitable to algorithmic manipulation. The formalism must provide
infinite granularities with a finite representation. Furthermore, data struc-
tures, which are used to actually store information, should ease access to
and manipulation of time granularities.

• Powerful. The set of all possible time granularities is not countable.
Consequently, every representation formalism is bound to be incomplete.
The class of granularities captured by the formalism should be expressive
enough to be of practical interest.

• Compact. The formalism should exploit regularities exhibited by the
considered time granularities to make their representation as compact as
possible.

In Chapter 2, we exploit the notion of word automaton, possibly equipped
with counters, to devise suitable formalisms for the representation and the
management of time granularities. The proposed automaton-based approach
to time granularity turns out to be at least as expressive as the formalism of
Calendar Algebra and Wijsen’s string-based models. Moreover, in developing
automaton-based formalisms, we focus on some crucial problems, like, for
instance, granule conversion (that is, the problem of relating granules of a
given granularity to those of another one), equivalence (that is, the problem of
deciding whether two given representations define the same time granularity),
optimization (that is, the problem of computing compact and/or tractable
representations of time granularities), and granularity comparison (that is, the
problem of deciding whether, for two given sets G and H of time granularities,
represented by means of suitable automata, there exist granularities G ∈ G

and H ∈ H that satisfy a prescribed relation). Finally, we provide some real-
world applications of automaton-based representations of time-granularities.

The notion of tree automaton comes into play in the automatic verification
of properties of infinite transition systems. A natural approach to this prob-
lem is to model a system as a directed graph, whose vertices (resp., edges)
represent system configurations (resp., transitions). An expected property of
the system is then expressed by a logical formula, which can be satisfied or
not by the corresponding graph, thought of as a relational structure. In this
perspective, the verification problem reduces to the model checking problem,
namely, the problem of deciding the truth of a given formula interpreted over
a fixed relational structure. Monadic second-order logic has been extensively
used as a specification language, because it is powerful enough to express
relevant properties of graph structures such as reachability, planarity, vertex
k-colorability (for any fixed k), and confluency properties [22] and it sub-
sumes, besides first-order logic, many propositional (temporal) modal logics,
in particular the propositional modal μ-calculus [51]. Unfortunately, the model
checking problem for monadic second-order logic turns out to be highly un-
decidable for many structures. However, if one restricts monadic second-order

1 Introduction 3

formulas to be evaluated over tree structures, then the model checking prob-
lem can be reduced to the acceptance problem for Rabin tree automata [44],
namely, the problem of deciding whether a given tree automaton accepts a
fixed relational structure, viewed as a deterministic vertex-colored tree. Such
a problem is easily proved to be decidable in the case of regular trees.

In Chapter 3, we develop a general method, called contraction method,
for establishing the decidability of the model checking problem for monadic
second-order logic interpreted over (possibly non-regular) deterministic vertex-
colored trees. More precisely, we exploit a suitable notion of tree equivalence
in order to reduce a number of instances of the acceptance problem for tree au-
tomata to simpler (i.e., decidable) instances. The resulting framework allows
one to transfer decidability results from simple (e.g., regular) trees to more
complex (e.g., non-regular) structures. We show that such a method works
effectively for a large class of trees, called reducible trees, which naturally
extends the class of regular trees and includes all deterministic trees in the
Caucal hierarchy as well as interesting relational structures outside it. Finally,
we consider the model checking problem for the chain fragment of monadic
second-order logic interpreted over the so-called layered temporal structures,
which are tree-shaped structures well-suited for modeling and reasoning on
temporal relationships at different ‘grain levels’.

The results of Section 2.3, dealing with the class of nested counter single-
string automata, have been originally presented in [26] and later refined in
[27, 28]. The results of Section 2.4, dealing with the class of ultimately periodic
automata, have been published in [5]. A preliminary version of the results
presented in Chapter 3 has been published in [72] and later refined in [74].
Finally, the results of Section 3.5.4, dealing with the monadic-second order
theories of layered temporal structures, appeared in [73, 70].

2

Word Automata and Time Granularities

The relevance of the problem of managing periodic phenomena is widely recog-
nized in different areas of computer science. One of the most effective attempts
to manage periodic phenomena takes advantage of the notion of time granu-
larity, which can be thought of as the partitioning of a subset of a temporal
domain into groups of elements, where each group is perceived as an indi-
visible unit (a granule). This chapter provides a detailed account of various
automaton-based formalisms that cope with the notion of periodicity and that
of time granularity.

We first review the notion of single-string automaton [25], which is a very
restricted form of Büchi automaton accepting a single infinite word. Single-
string automata provide the first basic formalism for representing and rea-
soning on ultimately periodic time granularities, that is, temporal structures
that, starting from a given point, periodically group instants of the underlying
temporal domain.

We then consider the possibility of equipping automata with counters in or-
der to succinctly encode the inherent redundancies (e.g., repeated occurrences
of patterns) of time granularities. Such an investigation leads to the notion of
counter single-string automaton, which is a single-string automaton extended
with counters and multiple transitions, whose activation rules take into ac-
count both the state and the values of the counters. On the one hand, counter
single-string automata yield compact representations of time granularities of
practical interest (e.g., the granularity of years of the Gregorian Calendar).
On the other hand, counter single-string automata are not suited for algorith-
mic manipulations. As an example, the equivalence problem for such a class
of automata, which consists of deciding whether two given automata specify
the same time granularity, turns out to be PSPACE-complete.

A trade-off between the handiness of plain single-string automata and the
compactness of counter single-string automata can be obtained by introduc-
ing suitable restrictions on the structure of the automata and by adopting
a uniform policy of counter update. We exploit such an idea in the defini-
tion of nested counter single-string automaton. By taking advantage of the

6 2 Word Automata and Time Granularities

restrictions enforced on the structure of these automata, we are able to devise
improved algorithms for a number of crucial problems related to the notion of
time granularity. As an example, we show that, in many relevant cases (i.e.,
those in which there are no gaps within and between granules), the granule
conversion problem, that is the problem of relating the granules of a given
granularity to those of another one, can be solved in polynomial time with
respect to the size of the involved automaton-based representations.

Subsequently, we extend the automaton-based approach to make it possible
to deal with (possibly infinite) sets of ultimately periodic time granularities,
rather than single time granularities. To this end, we introduce a suitable
class of automata, called ultimately periodic automata, that captures rational
languages consisting of ultimately periodic words only. Ultimately periodic
automata can be used to represent single time granularities, (possibly infi-
nite) sets of time granularities that feature the same repeating pattern, but
different prefixes, sets of time granularities characterized by a finite set of
non-equivalent repeating patterns (a formal notion of equivalence for repeat-
ing patterns will be given in the sequel), as well as any possible combination
of them. Moreover, ultimately periodic automata form a proper subclass of
Büchi automata and they inherit interesting properties from non-deterministic
finite-state automata. Taking advantage of the similarities among ultimately
periodic automata, Büchi automata, and non-deterministic finite-state au-
tomara, we devise efficient solutions to a number of basic problems involving
sets of time granularities. In particular, we provide a solution to the crucial
problem of granularity comparison, that is, the problem of deciding, given
two sets of granularities G and H, whether there exist a granularity G ∈ G

and a granularity H ∈ H such that G ∼ H, where ∼ is one of the commonly-
used relations between granularities, e.g, partition, group, refinement, aligned
refinement.

The chapter is organized as follows. In Section 2.1, we briefly recall some
basic definitions and results about words, languages, periodicity, automata,
and time granularities. In Section 2.2, we introduce the string-based and
automaton-based approaches for the management of time granularity. In Sec-
tion 2.3, we fully exploit the notion of single-string automaton extended with
counters to compactly represent and efficiently reason on ultimately periodic
time granularities. In particular, we provide efficient solutions to the gran-
ule conversion problem and the equivalence problem and we describe suitable
optimization procedures for automaton-based representations of time granu-
larities. In Section 2.4, we focus on the problem of representing and reasoning
on (possibly infinite) sets of ultimately periodic time granularities, rather than
single ones. We give a precise characterization of the class of rational languages
of ultimately periodic words and we introduce the class of ultimately periodic
automata, which recognize precisely the rational languages of ultimately pe-
riodic words. Finally, we exploit well-known results from classical automata
theory to provide simple, but efficient, solutions to the emptiness, acceptance,
equivalence, inclusion, and state optimization problems for ultimately periodic

2.1 Background Knowledge 7

automata. Section 2.5 provides an assessment of the achieved results and out-
lines future research directions, with a special emphasis on possible improve-
ments of the proposed algorithms.

2.1 Background Knowledge

In this section, we recall some basic definitions and results about words, lan-
guages, periodicity, automata, and time granularities.

2.1.1 Words and Languages

Hereafter, we call alphabet any finite set A of symbols. A finite word over an
alphabet A is a finite sequence of symbols from A, that is, a mapping of the
form w : {1, ...,n} → A, where {1, ...,n} is an initial segment of the set N>0 of
all positive natural numbers. Given a finite word w : {1, ...,n} → A, we denote
by |w| its length n. We further denote by ε the special empty word, which
has length 0. An infinite (ω-) word over A is an infinite sequence of symbols
from A, that is, a mapping of the form w : N>0 → A. For convenience, we
assume that the length of an infinite word w is the ordinal ω. Given a finite
(resp., infinite) word w and an index 1 � i � |w| (resp., i � 1), we denote by
w(i) the i-th symbol of w

Concatenations of (finite or infinite) words are defined as follows. Given a
finite word u and a finite (resp., infinite) word v, we denote by uv the finite
(resp., infinite) word w of length |w| = |u| + |v| (resp., ω) such that, for every
1 � i � |w| (resp., i � 1),

w(i) =

{
u(i) if i � |u|,

v(i − |u|) if i > |u|.

Note that the concatenation operation is associative, that is, (uv) z = u (v z)

holds for every pair of finite words u, v and for every (finite or infinite) word
z. This allows us denote by u1 u2 ... un any finite sequence of concatenations
of words u1, u2, ..., un.

We generalize the notion of concatenation to infinite sequences as follows.
Given a (possibly empty) finite word ui, for every i � 1, the infinite con-
catenation u1 u2 u3 ... is defined as the (finite or infinite) word w of length∑

i�1 |ui| such that, for every 1 � i � |w| (i � 1 if |w| = ω), w(i) is the j-th
symbol of the k-th word uk, where k is the (unique) index in N>0 such that
∑

h<k |uh| < i �
∑

h�k |uh| and j is the position i −
∑

h<k |uh|.
Given a finite word u and a natural number n, we shortly denote by un the

finite word that results from the finite concatenation uu ... u︸ ︷︷ ︸
n times

(for convenience,

we assume that un = ε if n = 0). Similarly, we denote by uω word that results
from the infinite concatenation uuu ... (note that uω is empty whenever u is

8 2 Word Automata and Time Granularities

empty and uω is infinite whenever u is non-empty). As an example, we have
(ab)ω = ababab....

Given a finite (resp., infinite) word w and two indices i, j such that i �

1 and j � |w| (resp., i � 1, j < |w|), we denote by w[i, j] the substring
w(i)w(i + 1)...w(j) of w (if i > j, then w[i, j] is assumed to be the empty
word ε). A prefix of a finite (resp., infinite) word w is either the empty word
ε, the word w itself, or a non-empty finite substring of the form w[1, j], with
1 � j < |w| (resp., j � 1). A suffix of a finite word w is either the word ε, the
word w itself, or a non-empty substring of the form w[i, |w|], with 1 � i � |w|;
similarly, a suffix of an infinite word w is either the word w itself or an infinite
substring of the form w[i, ω[= w(i)w(i + 1)w(i + 2)...), with i � 1.

Finally, we recall basic definitions related to languages of words. Given
an alphabet A, we call language (resp., ω-language) over A any set of finite
(resp., infinite) words over A. A language L is prefix-closed (resp., prefix-free)
if, for every word u ∈ L and every proper prefix v of u, v ∈ L (resp., v �∈ L).

Set-theoretic operations over (ω-)languages are defined in the standard way
(e.g., U ∪ V denotes the union of two languages U and V). The operation of
concatenation of words is extended to (ω-)languages as follows. Given two
languages U and V (resp., a language U and an ω-language V), we denote
by UV the set of all finite (resp., infinite) words of the form w = uv, with
u ∈ U and v ∈ V . Given a language U, we denote by U∗ (resp., U+) the set
of all finite words of the form w = u1 u2 ... un, with n ∈ N (resp., n ∈ N>0)
and ui ∈ U for all 1 � i � n. Similarly, we denote by Uω the set of all
infinite words of the form w = u1 u2 u3 ..., with ui ∈ U for all i � 1. Note
that, by definition, U∗ = U+ ∪ {ε} and Uω contains no finite word (even if
ε ∈ U). This implies that, for any alphabet A, the sets A∗, A+, and Aω

contains, respectively, all possibly empty finite words over A, all non-empty
finite words over A, and all infinite words over A.

2.1.2 Periodicity of Words

Let u be a non-empty finite word and let w be a non-empty finite (resp.,
infinite) word. We say that u is a repeating pattern of w and |u| is a period of
w if we have w = uk for some k � 1 (resp., if we have w = uω). In addition,
we say that u is the primitive repeating pattern of w and |u| is the minimum
period of w, if u is the shortest repeating pattern of w.

An infinite word w is said to be ultimately periodic if it can be written as
uvω, where u is a finite word and v is a finite non-empty word. By a slight
abuse of terminology, we say that u and v are respectively an initial pattern
and a repeating pattern of w.

There also exist generalized notions of repeating pattern and period that
characterize partial repetitions of substrings. Precisely, given two non-empty
finite words u and w, we say that u is a partial repeating pattern of w and |u|

is a partial period of w if w is a prefix of uω. Clearly, the periods of w are
exactly those partial periods of w that divide |w|. In analogy with previous

2.1 Background Knowledge 9

u ... u u ... u

u ... u

w
︷ ︸︸ ︷

w
︷ ︸︸ ︷

︸ ︷︷ ︸
u=w[1,p]

︸ ︷︷ ︸
w

Fig. 2.1. The minimal period of a word

definitions, we say that u is the primitive partial repeating pattern of w if it is
the shortest partial repeating pattern of w. As an example, the word u = abc

is the primitive partial repeating pattern of w = abcabcab.
Note that, given a word w (e.g., w = abababab), there may exist many

different repeating patterns of w (e.g., u1 = ab, u2 = abab, u3 = abababab)
and many different partial repeating patterns of w (e.g., u′

1 = ab, u′
2 = abab,

u′
3 = ababab, u′

4 = abababab). However, the primitive repeating pattern of
w and the primitive partial repeating pattern of w are always unique.

The following lemma, which is a straightforward generalization of Fine-
Wilf’s periodicity lemma [41], shows that the minimum period (resp., the
minimum partial period) of a word w is the greatest common divisor of all
periods (resp., partial periods) of w.

Lemma 1. Given a non-empty finite word w, if p and q are partial periods
of w and p + q � |w|, then gcd(p, q) is a partial period of w as well.

Proof. We prove the claim by induction on p + q. Assume that p < q and
denote by r the value q − p. Since p and q are both partial periods of w, for
every 1 � i � |w| − q, we have w(i) = w(i + q) = w(i + q − p) = w(i + r).
Similarly, for every |w|−q+1 � i � |w|−r, w(i) = w(i−p) (since |w| � p+q)
and w(i−p) = w(i+q−p) = w(i+r) hold. This shows that r is partial period
of w. Moreover, since p+r < p+q � |w|, we can apply the inductive hypothesis
to the partial periods p, r and hence conclude that gcd(p, r) (= gcd(p, q)) is
a partial period of w. �

Below, we review some classical algorithms that allow one to compute the
primitive (partial) repeating pattern and the minimum (partial) period of a
given word w. Let us fix a non-empty finite word w.

As a first remark, note that p is the minimum period of w, and hence
u = w[1, p] is the primitive repeating pattern of w, if and only if p is the
offset of the first non-trivial occurrence of w as a substring of ww, namely, p

is the least positive natural number such that w = w[1 + p, |w|] w[1, p]. An
intuitive explanation of such a property is given in Figure 2.1.

Given the above property, one can exploit Knuth-Morris-Pratt string
matching algorithm [56] to compute, in linear time O(|w|), the primitive re-
peating pattern and the minimum period of the word w. In fact, the same

10 2 Word Automata and Time Granularities

u ... u ... u

u ... u ...

w
︷ ︸︸ ︷

v=w[1,|w|−p]
︷ ︸︸ ︷

︸ ︷︷ ︸
u=w[1,p]

︸ ︷︷ ︸
v=w[p+1,|w|]

Fig. 2.2. Relationship between partial periods and borders

algorithm can be used to compute, in linear time O(|w|), the primitive repeat-
ing pattern and the minimum period of every prefix of w.

The primitive partial repeating pattern and the minimum partial period of
(every prefix of) w can be computed using similar ideas. Let us call border of
a non-empty finite word w any (possibly empty) finite word v (�= w) which
is both a proper prefix of w and a proper suffix of w. For convenience, we
assume that the unique border of the empty word is ε. As an example, the
words v1 = ε, v2 = ab, and v3 = abcab are borders of w = abcabcab.

Given a finite word w, it is easy to see that p is a partial period (resp., the
minimum partial period) of w if and only if w[1, |w|−p] is a border (resp., the
longest border) of w. Figure 2.2 gives an intuitive account of such a property.

The following proposition provides a characterization of the borders of w

in terms of the borders of the proper prefixes of w.

Proposition 1. Let u0, ...,un be a sequence of finite words such that u0 = ε

and, for every 0 � i < n, ui is the longest border of ui+1. Then, for every
symbol a and every finite word v, we have that v is the longest border of
w = un a if and only if there exists an index 0 � i � n such that (i)
v = ui a, (ii) w(|ui| + 1) = a, and (iii) w(|uj| + 1) �= a for every j > i.

Proof. Suppose that v is the longest border of w = una. Since v is prefix of
w, we know that v[1, |v| − 1] is a prefix of un. Similarly, since v is a suffix of
w, we know that v[1, |v| − 1] is a suffix of un. This shows that v[1, |v| − 1] is a
border of un and hence v[1, |v] − 1| = ui for some index 0 � i � n. Moreover,
since v is a suffix of una, we have v(|v|) = a. This proves the first property
v = uia. Similarly, since v is a prefix of w, we have w(|v|) = w(|ui| + 1) = a,
which proves the second property. As for the last property, suppose, by way
of contradiction, that w(|uj | + 1) = a for some index j > i. It follows that
v ′ = uja is both a prefix of w and a suffix of w, which contradicts the
hypothesis that v is the longest border of w.

As for the converse implication, let i be the greatest index such that w(|ui|+

1) = a and let v = uia. Since ui is a prefix of un and w(|ui |+1) = a, we know
that v is a prefix of w. Similarly, since ui is a suffix of un, v is a suffix of w.

2.1 Background Knowledge 11

This proves that v is a border of w. We now prove that v is the longest border
of w. Suppose, by way of contradiction, that there exists another border v ′ of
w such that |v ′| > |v|. Since v ′ is a prefix of w, we know that v ′[1, |v ′| − 1] is
a prefix of un. Moreover, since v ′ is a suffix of w, we know that v ′[1, |v ′| − 1]

is suffix of un and v ′(|v ′|) = w(|w|) = a. This shows that v ′[1, |v ′| − 1] is
a border of un and hence v ′ = uja for some index j > i. It thus follows
that w(|uj| + 1) = v ′(|v ′|) = a, which contradicts the hypothesis that i is the
greatest index such that w(|ui| + 1) = a. �

We now describe a simple procedure, based on dynamic programming, that
computes the longest border of a given finite word w. For the sake of brevity,
for every 0 � n � |w| and every i > 1, we denote by r(n) the minimum
partial period of the prefix w[1, n] of w and by ri(n) the i-fold iteration of
r(n), which is defined by r1(n) = r(n) and ri+1(n) = r

(
ri(n)

)
.

Proposition 1 implies the following recursive equation for the function r:

r(n) =

{
0 if n = 0,

max
{
0, ri(n − 1) + 1 : i > 0, w

(
ri(n − 1) + 1

)
= w(n)

}
if n > 0.

It is worth pointing out that the above-defined function r coincides with the
so-called ‘prefix function’ (or ‘failure function’) of w, which is used in the
algorithm of Knuth, Morris, and Pratt to compute the partial matchings of w

in a given text. In [56] an linear time procedure that computes the function
r is provided. For the sake of clearness, we briefly describe such a procedure
(see Algorithm 2.1) and we recall its complexity analysis.

Algorithm 2.1. ComputePrefixFunction(w)

r(0) ← 0
for n ← 1 to |w|

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r ′ ← r(n − 1)

while r ′ > 0 and w(r ′ + 1) �= w(n) (2.1a)
do r ′ ← r(r ′)

if w(r ′ + 1) = w(n)

then r(n) ← r ′ + 1
else r(n) ← 0

We use amortized analysis (see, for instance, [19]) to show that Algorithm 2.1
runs in linear time O(|w|). First of all, note that the variable r ′ decreases at
least by 1 at each iteration of the inner loop 2.1a. Moreover, before entering
such a loop, r ′ is assigned value r(n − 1) and, after exiting the loop, r ′ is
assigned value r(n) + 1. This shows that the number of iterations of the loop
2.1a, for a fixed n, is at most r(n − 1) − r(n) + 1. Therefore, the total time

12 2 Word Automata and Time Granularities

required to execute the above algorithm is O
(∑

1�n�|w|(r(n−1)− r(n)+1)
)
,

which is linear in |w|.
Finally, we remark that Algorithm 2.1 can be used to compute, in linear

time O(|w|), the minimal partial periods of all prefixes of a given finite word
w. The algorithms described in this section will be extensively used in the
sequel.

2.1.3 Word Automata

A word automaton is an abstract finite-state machine that receives a (finite
or infinite) word as input, processes it symbol by symbol, from left to right,
and eventually accepts or rejects it depending on the existence of a successful
‘computation’ (hereafter called run). We first introduce automata processing
finite words.

Definition 1. A non-deterministic finite-state automaton (NFA for short),
is a tuple A = (A, S, ∆, I, F), where

• A is a finite alphabet,

• S is a finite set of states,

• ∆ ⊆ S × A × S is a transition relation,

• I ⊆ S is a set of initial states,

• F ⊆ S is a set of final states.

A run of a non-deterministic finite-state automaton A on a finite word
w ∈ A∗ is a finite sequence ρ of states such that (i) |ρ| = |w| + 1 and (ii)(
ρ(i), w(i), ρ(i + 1)

)
∈ ∆ for every 1 � i � |w|. A run ρ is said to be success-

ful if we have ρ(1) ∈ I and ρ(|ρ|) ∈ F, namely, if the first and the last state of
ρ belong, respectively, to the set of initial states and to the set of final states
of A. Note that there may exist different successful runs of A on the same
word w.

We say that A accepts a finite word w ∈ A∗ if there is a successful run ρ

of A on w; otherwise, we say that A rejects w. The language recognized by A

is defined as the set L (A) of all finite words w ∈ A∗ that are accepted by A.
Given a language L ⊆ A∗, we say that L is rational1 if it is recognized by

an NFA, namely, if there is a non-deterministic finite-state automaton A such
that L (A) = L. It is worth pointing out that DFA are equally expressive
as NFA, namely, for every NFA A, there is an equivalent DFA A ′ such that
L (A) = L (A ′) (a very simple proof of such a result, which exploits the
so-called ‘subset construction’ of NFA, can be found in [50]).

1 In the literature, the term ‘regular’ is often used as a synonym for ‘rational’.
However, to avoid any confusion, we shall use the term ‘rational’ to refer to
languages recognized by automata and the term ‘regular’ to refer to special forms
of trees, which will be introduced in Section 3.1.1.

2.1 Background Knowledge 13

A deterministic finite-state automaton (DFA for short) is an NFA A =

(A, S, ∆, I, F), where the component ∆ is a function from S × A to S and the
component I is a singleton (therefore, differently form NFA, a DFA admits at
most one successful run on each input word w). It is easy to see that for every
NFA A, there is an equivalent DFA A ′ that recognizes the same language [50].

Automata processing infinite words are defined in a similar way, with the
only exception of the acceptance condition, which now envisages the states
that occur infinitely often along a run. In particular, we adopt Büchi accep-
tance condition, keeping in mind that alternative acceptance conditions exist,
e.g., parity acceptance condition, Muller acceptance condition, etc. (we refer
the reader to [77] for the details).

Definition 2. A Büchi automaton, is a tuple A = (A, S, ∆, I, F), where

• A is a finite alphabet,

• S is a finite set of states,

• ∆ ⊆ S × A × S is a transition relation,

• I ⊆ S is a set of initial states,

• F ⊆ S is a set of final states.

A run of a Büchi automaton A on an infinite word w ∈ Aω is an infinite
sequence ρ of states such that, for every i � 1,

(
ρ(i), w(i), ρ(i + 1)

)
∈ ∆. A

run ρ is said to be successful if we have ρ(1) ∈ I and ρ(i) ∈ F for infinitely
many indices i � 1.

In analogy with the previous definitions, we say that A accepts an infinite
word w ∈ Aω if there is a successful run ρ of A on w; otherwise, we say that
A rejects w. The ω-language recognized by A is defined as the set L ω(A) of
all infinite words w ∈ Aω that are accepted by A.

Given an ω-language L ⊆ Aω, we say that L is rational if it is recognized
by a Büchi automaton. It is well-known that deterministic Büchi automata
are less expressive than non-deterministic ones. As an example, the rational
ω-language {a, b}

∗
{a}

ω, which consists of all infinite words over the alphabet
{a, b} that contain only finitely many occurrences of b, cannot be recognized
by any deterministic Büchi automaton.

From now on, we denote by |A| the size of a word automaton A, which is
usually defined as the number of states and transitions of A (if the automaton
A is extended with counters, as it happens, for instance, with the automata
described in Section 2.2.3 and in Section 2.3, then the size |A| comprises
also the size of the constants used to update and compare the values of the
counters).

We refer the reader to [50, 107] for additional material on word automata.

2.1.4 Time Granularities

According to a commonly accepted perspective [15], any time granularity can
be viewed as the partitioning of a subset of a temporal domain into groups of

14 2 Word Automata and Time Granularities

Day ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BusinessDay ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Week ...

0 1 2 3

BusinessWeek ...

0 1 2 3

BusinessMonth ...

0

Fig. 2.3. Some examples of time granularities

elements, where each group is perceived as an indivisible unit (a granule). Such
a notion comes into play in a variety of computer science scenarios, including
time representation and management in database applications, specification
and verification of temporal properties of reactive systems, temporal represen-
tation and reasoning in artificial intelligence. In particular, time granularity is
a key concept in any representation formalism that provides facts, actions, or
events with a temporal qualification. To give a few examples, the occurrence
time of a flight departure, a business appointment, and a birthday are often
specified in terms of the granularity minutes, hours, and days, respectively.

As it happens in most application domains, we assume the underlying tem-
poral domain to be (isomorphic to) the linear order (N, <) of the natural
numbers.

Definition 3. A time granularity is a collection G ⊆ P(N) of subsets of the
temporal domain such that distinct sets in G (henceforth called granules) do
not overlap, namely, for every pair of distinct granules g, g ′ ∈ G, we have
either t < t ′ for all t ∈ g and t ′ ∈ g ′ or t ′ < t for all t ∈ g and t ′ ∈ g ′.

The above definition captures both time granularities that cover the whole
temporal domain, such as Day, Week, and Month, and time granularities with
gaps within (e.g., BusinessMonth) and between granules (e.g., BusinessDay
and BusinessWeek). Figure 2.3 depicts some of these granularities.

Note that the order on the elements of the temporal domain N induces a
similar order on the granules of a granularity G. Thus, given two granules
g, g ′ ∈ G, we can write g < g ′ whenever t < t ′ holds for every t ∈ g and
t ′ ∈ g ′. Such an order naturally yields a labeling of the granules of G: we say
that x ∈ N is the index of a granule g ∈ G, and we write G(x) = g, if g is the
x + 1-th element of G according to the induced order on the granules.

It is worth pointing out that, in the literature, one can find slightly differ-
ent notions of time granularity. As an example, in [3, 81], a time granularity
is defined as a mapping from Z to subsets of an arbitrary linearly ordered
temporal domain (e.g., (Q, <)). Compared to Definition 3, such a notion is
more general in that (i) it allows both right-unbounded granularities and left-
unbounded ones and (ii) it envisages the existence of sets of arbitrarily fine

2.1 Background Knowledge 15

granularities. However, the usual restrictions that one enforces to the calendric
systems in order to ease algorithmic manipulation make the two definitions
actually equivalent.

Relationships between Time Granularities

The ability to properly relate the information expressed at different time gran-
ularities (this is usually the case, for instance, for query processing in federated
database systems), presupposes the analysis of various relationships between
time granularities. In the following, we summarize the most relevant ones (a
comprehensive survey can be found in [3]).

• Grouping. A granularity G groups into a granularity H (equivalently, H

groups G) if every granule h of H is a union of granules of G. The following
figure represents two granularities G and H such that G groups into H.
Note that the granule G(3) and the granule G(5) are not included in any
granule of H.

H ...

0 1 2 3

G ...

0 1 2 3 4 5 6 7 8 9

• Refinement. A granularity G refines a granularity H if every granule of
G is contained in some granule of H. The following figure represents two
granularities G and H such that G refines H.

H ...

0 1 2 3

G ...

0 1 2 3 4

• Partition. A granularity G partitions a granularity H if G both groups
into H and refines H.

• Aligned refinement. A granularity G is an aligned refinement of H if
for every label x, the x + 1-th granule of G is included in the x + 1-th
granule of H. The following figure represents two granularities G and H

such that G is an aligned refinement of H.

H ...

0 1 2 3

G ...

0 1 2 3

• Periodic grouping. A granularity G groups periodically into H (equiv-
alently, H periodically groups G) if G groups into H and there are two
positive natural numbers p and q such that, for every label x and for ev-
ery sequence of labels y1, y2, ...,yn, H(x) =

⋃
1�i�n G(yi) iff H(x + q) =⋃

1�i�n G(yi + p). Roughly speaking, G groups periodically into H if the

16 2 Word Automata and Time Granularities

granules of G are grouped into granules of H with the same ‘repeating
pattern’. The following figure represents two granularities G and H such
that G groups periodically into H (with parameters p = 7 and q = 2).

H ...

0 1 2 3

G ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A Summary of Various Formalisms

It is immediate to realize that the set of all structures that satisfy Definition
3 becomes uncountable as soon as the underlying temporal domain is infinite.
As a consequence, it is not possible to deal with all these structures by means
of a finitary formalism. However, the problem of mastering time granulari-
ties can be tackled in an effective way by restricting to those structures that
group periodically, with finitely many exceptions, a fixed bottom granularity.
As a matter of fact, such a restriction is at the basis of almost any formal-
ism for representing time granularities. Below, we survey the most important
formalisms proposed in the literature.

Among algebraic approaches, the most widely known are perhaps the for-
malism of collection expressions [60], that of slice expressions [80], and the
Calendar Algebra [81]. All of them capture large sets of time granularities,
including ultimately periodic ones, by means of algebraic expressions (e.g.,
Group7(Day)). The different sets of algebraic operators provided by the three
formal systems and their expressiveness are investigated in [3], where it is
proved that Calendar Algebra actually subsumes the other two formalisms.
However, a common limitation of these formalisms is that they focus on ex-
pressiveness issues and almost completely ignore some basic problems, like
that of establishing the equivalence of two given representations, of obvious
theoretical and practical importance [42, 40].

A logical account of Calendar Algebra has been provided by Combi et al. in
[17]. The idea is to identify time granularities with models of suitable formulas
in propositional Linear Time Logic (LTL for short) [36], where the proposi-
tional variables are used to mark the starting and ending points of granules.
The expressiveness of LTL makes it possible to represent, beside single time
granularities, sets of time granularities that start at arbitrary time points
(these are called unanchored time granularities in [46]). Furthermore, prob-
lems like checking the consistency of a granularity specification and testing
the equivalence of two granularity expressions can be solved in a uniform way
by reducing them to the satisfiability problem for LTL, which is known to be
decidable in polynomial space [98, 103].

A somehow similar, but less expressive, framework has been developed in
[83, 82], where a propositional logic extended with interval-based modali-
ties (e.g., [2000, year], 〈2000, year〉) is used to specify temporal relationships

2.2 The String-Based and Automaton-Based Approaches 17

between events. The resulting logic, called Calendar Logic, can be translated
into propositional logic, thus showing that the problem of checking consis-
tency of granularity specifications is decidable. In addition, since the transla-
tion from Calendar Logic to propositional logic is exponential, an alternative
tableau-based decision procedure, which has more possibilities for guiding and
optimizing the proof search, has been also developed.

Another logical framework for dealing with integer periodicity constraints,
and, in particular, with time granularities has been described in [33]. Such
a framework is based on a fragment of Presburger Linear Temporal Logic,
denoted PLTLmod, which is obtained from LTL by replacing propositional
variables with formulas in a suitable first-order constraint language (a strict
fragment of Presburger Arithmetic). Such a combination of logical languages
makes it possible to express both qualitative and quantitative temporal as-
pects and to compactly represent periodicities of time granularities. Moreover,
like plain LTL (but differently from full Presburger LTL, which is known to be
highly undecidable), PLTLmod enjoys a PSPACE-complete satisfiability prob-
lem. As a consequence of such a result, several automaton-theoretic problems
(among all the equivalence problem for single-string automata extended with
counters [25]) are proved to be in PSPACE.

An alternative approach to the representation and manipulation of time
granularities has been proposed in [113]. Such an approach models infinite left-
bounded time granularities as sequences of symbols taken from a fixed finite
alphabet. More precisely, it shows that any ultimately periodic granularity can
be identified with an ultimately periodic word w = uvω, which can then be
represented by a pair, called granspec, consisting of the finite initial pattern
u and the finite repeating pattern v.

Finally, an automaton-based approach to time granularity has been orig-
inally proposed in [25] and later revisited in [26, 27, 28]. Such an approach
identifies time granularities with ultimately periodic words generated by a spe-
cific class of automata, called single-string automata, thus making it possible
to (re)use well-known results from automata theory.

In Section 2.2 we give a short but comprehensive account of the string-based
and automaton-based approaches.

2.2 The String-Based and Automaton-Based Approaches

In this section, we highlight the key features of the string-based and
automaton-based formalisms for representing and reasoning on time granular-
ities. In particular, we show that, on the one hand, granspecs are as expres-
sive as single-string automata, on the other hand, single-string automata can
be easily extended with counters to obtain succinct representations of time
granularities.

18 2 Word Automata and Time Granularities

2.2.1 The Granspec Formalism

In [113], Wijsen shows that time granularities over the temporal domain (N, <)

can be naturally expressed in terms of infinite words over a fixed alphabet
consisting of three symbols, namely, � (filler), � (gap), and ≀ (separator),
which are respectively used to denote time points covered by some gran-
ule, to denote time points not covered by any granule, and to delimit gran-
ules. For instance, the granularity BusinessWeek can be encoded by the infi-
nite word �������≀ �������≀... or, equivalently, by the infinite word
�����≀�� �����≀��...

In order to enforce a one-to-one correspondence between infinite words over
{�, �, ≀} and time granularities, Wijsen introduces suitable aligned forms, in
which separators are forced to occur immediately after an occurrence of �.
Moreover, as observed in [25], one can encode each occurrence of the substring
�≀ by a single symbol ◭. In the following, we shall adopt this simplified setting
to represent time granularities.

Definition 4. Given an infinite word w over the alphabet {�, �, ◭}, we say
that w represents a time granularity G if, for every pair of natural numbers
t, x, we have t ∈ G(x) iff w(t + 1) ∈ {�, ◭} and the substring w[1, t] contains
exactly x occurrences of the symbol ◭.

According to the above definition, one can identify time granularities with
infinite words over {�, �, ◭}. Moreover, as long as one confines oneself to
ultimately periodic time granularities, finite representations based on pairs
consisting of an initial pattern and a repeating pattern can be adopted.

Definition 5. A granspec is a pair of the form (u, v), where u is a (possibly
empty) finite word over the alphabet {�, �, ◭} and v is a non-empty finite
word over {�, �, ◭}.

We say that the granspec (u, v) represents time granularity G if the ultimately
periodic word w = uvω represents G.

Although it is common practice to let the repeating pattern of a granspec
coincide with granule boundaries, Wijsen’s formalism allows repeating pat-
terns starting or ending in the middle of a granule. For instance, the time
granularity BusinessWeek can be equivalently represented by the granspecs
(ε, ����◭��) and (��, ��◭����).

A simple solution to the granspec equivalence problem takes advantage
of the notion of canonical form. Formally, a granspec (u, v) is said to be in
canonical form if it has minimum size |u|+ |v| among all equivalent granspecs.
In [113], it is proved that, for every ultimately periodic granularity G, there
exists exactly one canonical granspec (u, v) that represents G. This allows
one to reduce the granspec equivalence problem to the problem of computing
canonical forms of granspecs. We conclude the section by showing how the
latter problem can be solved in linear time.

2.2 The String-Based and Automaton-Based Approaches 19

First of all, it is easy to see that a granspec (u, v) is in canonical form if
and only if it satisfies the following two conditions:

i) u and v do not end with the same symbol,

ii) v is primitive, namely, it is not a repetition of a smaller substring.

Now, given any granspec (u, v), one can compute, in linear time, the longest
(possibly empty) word z such that u = x z and v = y z, for some x, y ∈
{�, �, ◭}

∗. Note that uvω = (x z) (y z)ω = x (z y)ω and hence the pair
(x, z y) is a granspec equivalent to (u, v) which satisfies the first condition.
Moreover, using the algorithm described in Section 2.1.2, one can compute
the primitive repeating pattern v ′ of z y. Finally, one observes that (x, v ′) is
a granspec in canonical form equivalent to (u, v).

2.2.2 From Granspecs to Single-String Automata

The idea of viewing time granularities as ultimately periodic words naturally
connects the notion of time granularity to the fields of formal languages and
automata. The basic idea underlying the automaton-based approach to time
granularity is the following one: we take a Büchi automaton A recognizing
a single infinite word w over the alphabet {�, �, ◭} (hence the name single-
string automaton) and we say that A represents the granularity G whenever w

represents G. Such an idea has been systematically explored in [25, 26, 27, 28].

Definition 6. A single-string automaton (SSA for short) is a quadruple A =

(A, S, δ, s0), where

• A is a finite alphabet (usually the set {�, �, ◭}),

• S is a finite set of states,

• δ : S → A × S is a transition function,

• s0 ∈ S is an initial state.

Below, given a pair t = (s, a), with s ∈ S and a ∈ A, we shortly denote by ↓1t

(resp., ↓2t) the first element s (resp., the second element a) of t. The run of A

is defined as the (unique) infinite sequence ρ of pairs from S × A such that

• ↓1ρ(1) = s0,

• δ
(
↓1ρ(i)

)
=

(
↓2ρ(i), ↓1ρ(i + 1)

)
for every i � 1.

The (unique) infinite word recognized by A is given by the sequence ↓2 ρ

(= ↓2 ρ(1) ↓2 ρ(2) ↓2 ρ(3) ...). As an example, Figure 2.4 depicts an SSA
representing the granularity BusinessWeek over the temporal domain of days.

It is immediate to see that SSA over the alphabet {�, �, ◭} are as expressive
as granspecs, namely, they capture all and only the (encodings of) ultimately
periodic time granularities. Moreover, the equivalence problem for SSA-based
representations of time granularities can be easily reduced to the equivalence
problem for granspecs and thus it can be solved in linear time. Indeed, given

20 2 Word Automata and Time Granularities

s0 s1 s2 s3

s4s5s6

� � �

�

◭�

�

Fig. 2.4. An SSA representing BusinessWeek

two SSA A1 and A2 recognizing the ultimately periodic words w1 = u1 vω
1

and w2 = u2 vω
2 , respectively, we have w1 = w2 if and only if the two

granspects (u1, v1) and (u2, v2) are equivalent.

2.2.3 Counters and Multiple Transitions

A major limitation of the automaton-based approach, as well as of the string-
based one, is that, whenever the granularity to be represented has a long initial
pattern and/or a long repeating pattern, it produces lengthy representations.
As an example, recall that leap years recur with exactly the same pattern
every 400 years; then, it is easy to see that the size of any granspec/SSA
representing years (or months) of the Gregorian Calendar in terms of days
must have size greater than 105. In addition, computations involving these
lengthy representations of time granularities may become rather expensive.

In the following, we extend and refine the automaton-based approach by
introducing counters and multiple transitions in order to compactly encode re-
dundancies of temporal structures. Precisely, we distinguish between two kinds
of transition, respectively called primary and secondary transitions, and we
exploit the possibility of activating different transitions from the same (con-
trol) state. However, at any point of the computation, at most one (primary
or secondary) transition is taken according to an appropriate activation rule
that envisages the values of counters. Such an activation rule is, by conven-
tion, as follows: secondary transitions are taken whenever they are enabled,
otherwise, primary transitions are taken.

Definition 7. A counter single-string automaton (CSSA for short) is a tuple
A = (A, I, S, δ, γ, s0, c0), where

• A is a finite alphabet,

• I is a finite set of counters, usually denoted by i, j, k, ..., whose valuations
belong to the set CI = NI of functions from I to N,

• S is a finite set of (control) states,

• δ : S → A × S× CCI

I is a primary transition function, which maps every
state s ∈ S to a triple of the form (a, r, f), where a ∈ A, r ∈ S, and
f : CI → CI is an update operator,

• γ : S → P(CI) × A × S × CCI

I is a secondary transition function, which
maps every state s ∈ S to a quadruple of the form (C, a, r, f), where C ⊆ CI

is a guard, a ∈ A, r ∈ S, and f : CI → CI is an update operator,

2.2 The String-Based and Automaton-Based Approaches 21

s0 s1

◭

i ← 6

i = 4

�

i ← 0

i = 6

�

i
←

i
+

1

�

i
←

i
+

1

Fig. 2.5. An CSSA representing BusinessWeek

• s0 ∈ S is an initial state,

• c0 ∈ CI is an initial valuation.

As in the case of single-string automata, we assume that any CSSA has a
unique run. In order to formally define it, we need to introduce the notion of
configuration. A configuration for A is a pair state-valuation (s, c), where s ∈ S

and c ∈ CI. The transitions of A are taken according to a global transition
function [δ, γ] : S × CI → A × S × CI such that, for every configuration
(s, c) ∈ S × CI,

[δ, γ](s, c) =

⎧
⎪⎪⎨

⎪⎪⎩

(
a, r, f(c)

)
if δ(s) = (a, r, f) and γ(s) is not defined,

(
a, r, f(c)

)
if δ(s) = (a, r, f), γ(s) = (C, a ′, r ′, f ′), and c �∈ C,

(
a, r, f(c)

)
if γ(s) = (C, a, r, f) and c ∈ C.

Intuitively, a secondary transition is activated whenever its guard is satisfied
by the current valuation; otherwise, a primary transition is activated.

The (unique) run of A is then defined as the infinite sequence ρ of triples
from S × CI × A such that

• ↓1ρ(1) = s0,

• ↓2ρ(1) = c0,

•
[
δ, γ

](
↓1ρ(i), ↓2ρ(i)

)
=

(
↓3ρ(i), ↓1ρ(i + 1), ↓2ρ(i + 1)

)
for every i � 1.

The (unique) infinite word recognized by A is given by the sequence ↓3ρ =

↓3ρ(1) ↓3ρ(2) ↓3ρ(3)
As an example, Figure 2.5 depicts a CSSA representing the time granularity

BusinessWeek. Such an automaton uses one counter i, which is initialized to
0. Control states are represented by circles, while primary and secondary
transitions are represented by solid and dashed arrows, respectively, which
are annotated with recognized symbols (e.g., �) and update operators (e.g.,
i ← i + 1); the guards of the secondary transitions are specified as additional
annotations, having the form of constraints like i = 4, of the corresponding
arrows.

A more interesting example is given in Figure 2.6, which depicts a CSSA
representing the time granularity Month over the temporal domain of days.

22 2 Word Automata and Time Granularities

s0 s1 s2 s3 s4

s5 s6

s7 s8

�

i ← i + 1

�

i mod 26 = 0 � � �

◭

i ← 0; j ← j + 1

�

j
m

o
d

1
2

=
1

i
←

0;
j
←

j
+

1

◭

�

k mod 4 = 0 ∧

k mod 400 �= 100 ∧

k mod 400 �= 200 ∧

k mod 400 �= 300

◭

i ← 0; j ← j + 1

�

j
m

o
d

1
2
� =

3
∧

j
m

o
d

1
2
� =

5
∧

j
m

o
d

1
2
� =

8
∧

j
m

o
d

1
2
� =

1
0

�

◭

i ← 0; j ← j + 1

◭

j mod 12 = 0

i ← 0; j ← 0; k ← k + 1

Fig. 2.6. An CSSA representing Month

The automaton uses three counters, i, j, and k, to store the index of the
current day, current month, and current year, respectively. For the sake of
simplicity, secondary transitions with empty guards are not depicted.

The above examples make it clear how counters can be exploited to com-
pactly encode redundancies of time granularities. However, the notion of CSSA
is too general to be of practical interest: if we do not restrict the form of ad-
missible guardsa and update operators for primary and secondary transitions,
several basic problems on CSSA turn out to be undecidable. As an example, if
we allow guards of the form i = 0 and update operators of the form i ← i − 1
and i ← i+ 1, then CSSA can be viewed as special forms of Minsky machines
[64] and thus their halting problem turns out to be undecidable. In [25], the
decidability of basic problems on CSSA has been recovered by

i) restricting to guards that result from conjunctions of basic constraints
of the form t1 = t2 or t1 �= t2, where t1 and t2 are integer constants or
terms like i mod d, with i ∈ I and d ∈ N>0;

ii) restricting to update operators that result from functional compositions
of basic operators of the form i ← 0 or i ← i+1, where i is a counter and
i ← 0 (resp., i ← i + 1) denotes the function that maps any valuation
c to the valuation c[0/i] (resp., c[c(i) + 1/i]), with c[x/i] denoting the
valuation defined by c[x/i](i) = x and c[x/i](j) = c(j) for all j �= i.

The automata resulting from the above restrictions are called Reducible
Counter Single-String Automata (RCSSA for short). It turns out that many
granularities of practical interest are represented by RCSSA with a few states
and counters. As an example, the automaton depicted in Figure 2.6 can be
viewed as a RCSSA.

2.2 The String-Based and Automaton-Based Approaches 23

The class of RCSSA is well behaved with respect to the decidability of basic
problems, like, for instance, the equivalence problem. This follows from the
fact that RCSSA enjoy finite bisimilarity quotients and hence they belong to
the first class of symbolic transition systems according to the classification
introduced by Henzinger and Majumdar [49]. As a matter of fact, this also
proves that any RCSSA can be effectively translated into an equivalent SSA.
For the sake of completeness, below we explicitly describe the translation from
RCSSA to SSA. From such a result and from the fact that the equivalence
problem for SSA is solvable in linear time, we have that the equivalence prob-
lem for RCSSA is in EXPTIME.

Proposition 2. Any RCSSA A can be effectively translated into an equiva-
lent SSA A ′ having size at most exponential in the size of A (note that the
size of A comprises the size of the binary expansion of every constant that
appears inside a guard of a secondary transition of A).

Proof. Let A = (A, I, S, δ, γ, s0, c0) be a RCSSA. For each counter i ∈ I,
we denote by di the least common multiple of all constants d that appear
inside the guards of the secondary transition function γ. We define a binary
relation ≈ over the configuration space S × CI of A such that, for every pair
of configurations (s, c) and (s ′, c′), (s, c) ≈ (s ′, c′) holds if and only if s =

s ′ and c(i) mod di = c′(i) mod di for all i ∈ I. It is easy to see that ≈
is an equivalence relation of finite index and, in particular, there exist at
most |S|

∏
i∈I di different ≈-equivalence classes. Moreover, ≈ is a congruence

with respect to the global transition function [δ, γ] of A, namely, for every
pair of configurations (s, c) and (s ′, c′), (s, c) ≈ (s ′, c′) implies [δ, γ](s, c) ≈
[δ, γ](s ′, c′). This shows that the SSA A ′ = (A, S ′, δ ′, s ′

0), where

• S ′ is the set of all ≈-equivalence classes of the form [s, c]≈ =
{
(s ′, c′) :

(s, c) ≈ (s ′, c′)
}
, with (s, c) ∈ S × CI,

• δ ′
(
[s, c]≈

)
= [s ′, c′]≈ whenever [δ, γ](s, c) = (s ′, c′),

• s ′
0 is the ≈-equivalence class [s0, c0]≈ of the initial configuration (s0, c0),

is equivalent to the RCSSA A. Finally, note that the number of states of A ′

(and hence the size of A ′) is at most exponential in the size of A. �

2.2.4 The Logical Counterpart of RCSSA

In [33] Demri describes a logical framework that allows one to express, in
a concise way, integer periodicity constraints over a discrete linear temporal
domain. The formalism is based on a fragment of Presburger Linear Temporal
Logic, denoted PLTLmod, which is obtained by combining a suitable first-order
constraint language IPC++ with the standard linear temporal logic with past-
time operators.

The formulas of the first-order constraint language IPC++ are built up,
using standard boolean connectives and existential quantifications, from basic

24 2 Word Automata and Time Granularities

formulas of the form x = d, x < d, x > d, x = y, x ≡k d, and x ≡k y+[d1, d2],
where x, y, ... are variables interpreted over Z and d, k, d1, d2, ... are integer
constants. Given a valuation c : {x, y, ...} → Z for the variables x, y, ..., the
semantics of a basic formula is defined in the following natural way:

• c � (x = d) iff c(x) = d,

• c � (x < d) iff c(x) < d,

• c � (x > d) iff c(x) > d,

• c � (x = y) iff c(x) = c(y),

• c � (x ≡k d) iff c(x) mod k = d,

• c � (x ≡k y + [d1, d2]) iff c(x) mod k =
(
c(y) + d

)
mod k for some d1 �

d � d2 (as a matter of fact, the formula x ≡k y + [d1, d2] can be viewed
as a shorthand for the disjunction

∨
d1�d�d x ≡k y + d).

Given the above definition, it is clear that IPC++ turns out to be a strict
fragment of Presburger Arithmetic [45].

The Linear Temporal Logic (LTL) with past-time operators is the logic that
comprises, among standard propositional variables and boolean connectives,
the ‘next’ modal operator X, the ‘always in the future’ modal operator G, the
‘always in the past’ modal operator H, the ‘until’ modal operator U, and the
‘since’ modal operator S. We refer the reader to [36] for further details about
the semantics of LTL formulas and to [99, 110] for the decidability of the
satisfiability and model checking problems for LTL.

We now define the logical language PLTLmod as the fragment of Presburger
LTL which is obtained from the temporalization of IPC++ via LTL with past-
time operators. Formally, let ϕ(y1, ...,yk) be a formula of IPC++, let Xi xj be
the value of a variable xj at the i-th successor of the current time point,
and let ϕ

[
Xi1 xj1 , ..., Xik xjk

]
be the formula obtained from ϕ(y1, ...,yk) by

replacing every free occurrence of yl by Xil xjl
, for all 1 � l � k. Formulas of

PLTLmod are obtained from LTL formulas by replacing propositional variables
by formulas of the form ϕ

[
Xi1 xj1 , ..., Xik xjk

]
. Given an infinite sequence c̄ :

N× {x, y, ...} → Z of valuations for the variables {x, y, ...}, the semantics of a
formula of PLTLmod is the obvious one.

Example 1. As an example, we show the encoding of some granularities of
the Gregorian Calendar taken from [33]. These granularities are modeled as
infinite sequences of valuations for the corresponding integer variables as fol-
lows:

• sec = 0 ∧ G(0 � sec < 60) ∧ G
(
(X sec) ≡60 (sec + 1)

)
;

• min = 0 ∧ G(0 � min < 60) ∧ G
(
sec = 59 → (Xmin) ≡60 (min + 1)

)

∧ G
(
sec < 59 → (Xmin) = min

)
;

• hour = 0 ∧ G(0 � hour < 24) ∧ G
(
min = 59 ∧ sec = 59 →

(X hour) ≡24 (hour + 1)
)

∧ G
(
min < 59 ∨ sec < 59 → (X hour) =

hour
)
;

2.3 Compact and Tractable Representations 25

• weekday = 0 ∧ G(0 � weekday < 7) ∧ G
(
hour = 23 ∧ min =

59 ∧ sec = 59 → (Xweekday) ≡7 (weekday + 1)
)

∧ G
(
hour <

23 ∨ min < 59 ∨ sec < 59 → (Xweekday) = weekday
)
;

• as for the granularities of months and years, one can easily encode them
by fixing some end dates far ahead in the time line (such an assumption
is necessary since we cannot use constraints like (X year) = (year + 1)

without incurring in undecidability [18, 33]).

Note that the logic PLTLmod does not envisage the use of propositional vari-
ables. However, it can easily encode a propositional variable p by an integer
variable xp, whose value is constrained to range over the set {0, 1} by means
of a suitable IPC++ formula. As a consequence, PLTLmod turns out to be a
well suited logical language for expressing both qualitative and quantitative
temporal constraints.

Moreover, like plain LTL, but unlike full Presburger LTL, PLTLmod enjoys
a PSPACE-complete satisfiability problem [33]. Such a result is achieved by
first defining suitable automaton-based representations for (abstracted) mod-
els of PLTLmod formulas and then reducing the satisfiability problem to the
emptiness problem for the resulting class of automata.

In [33] an interesting connection between RCSSA and LTL with integer
periodicity constraints is established. To this end, the guards associated with
RCSSA secondary transitions are rewritten as boolean combinations of for-
mulas like x ≡k d and ∃ z. (x ≡k z ∧ y ≡h z) and thus they are shown to
belong to a (strict) fragment of IPC++, denoted IPC∗. Then, the equivalence
problem for RCSSA is reduced to the satisfiability problem for the Presburger
LTL fragment PLTL∗, which is defined as the temporalization of IPC∗. Fi-
nally, the latter problem is solved by reducing it to the emptiness problem for
a suitable class of Büchi automata, where the input symbols are atomic IPC∗

formulas.
Since the above reductions can be computed in polynomial space, the equiv-

alence problem for RCSSA is shown to be in PSPACE. Such a result improved
the previously known EXPTIME upper bound [25]. Moreover, in [33] a reduc-
tion from the satisfiability problem for quantified boolean formulas to the
equivalence problem for RCSSA has been given, thus proving that the equiv-
alence problem for RCSSA is actually PSPACE-complete.

2.3 Compact and Tractable Representations

In this section, we introduce a new class of automata, called nested counter
single-string automata, which is an attempt to find a suitable trade-off be-
tween the handiness of SSA and the compactness of (reducible) CSSA. Re-
stricted labeled single-string automata are similar to CSSA, since they exploit
counters to compactly encode redundancies of time granularities. However, the
distinctive feature of this class of automata lies in the structure of the tran-
sitions, which is now more restricted (as an example, we adopt a uniform

26 2 Word Automata and Time Granularities

◭

�

ω

6

s0

s1

s2 s3

Fig. 2.7. An NCSSA representing Monday

policy of counter update). By exploiting these restrictions, we are able to de-
vise improved algorithms for several problems on time granularities, including
granule conversion, equivalence, and optimization.

We first give an intuitive description of the structure and behavior of nested
counter single-string automata. First of all, to simplify the notation and the
formalization of properties, labels are moved from transitions to states. The
set of control states is then partitioned into two groups, respectively denoted
by SA and Sε. SA is the set of states where the labeling function is defined,
while Sε is the set of states where it is not defined. Exactly one counter is
associated with each unlabeled state. Moreover, like in the case of CSSA, we
distinguish between primary and secondary transitions. Primary transitions
can depart from any state, while secondary transitions depart from unlabeled
states only. A primary transition is activated in an unlabeled state s only once
the secondary transition associated with s has been consecutively taken c0(s)

times, where c0(s) denotes the initial valuation for the counter associated
with s.

Figure 2.7 depicts an NCSSA recognizing the word (◭ �6)ω, which repre-
sents the granularity Monday over the temporal domain of days. The labeled
states (i.e., s0 and s1) are represented by circles labeled with symbols from
A = {�, �, ◭}; the unlabeled states (i.e., s2 and s3) are represented by dia-
monds. Primary and secondary transitions are represented by continuous and
dashed arrows, respectively. The (initial values of) the counters are associated
with the corresponding states in Sε (for the sake of readability, we annotate
them along the dashed arrows exiting from unlabeled states).

Definition 8. A Nested Counter Single-String Automaton (NCSSA for short)
is a tuple A = (A, SA, Sε, Ω, δ, γ, s0, c0), where

• SA and Sε are disjoint finite sets of (control) states (we shortly denote by
S the set SA ∪ Sε),

• A is a finite alphabet,

• Ω : SA → A is a labeling function,

• δ : S ⇀ S is a partial function, called primary transition function,

• γ : Sε → S is a total function, called secondary transition function,

2.3 Compact and Tractable Representations 27

• s0 ∈ S is an initial state,

• c0 : Sε → N ∪ {ω} is an initial valuation.

Hereafter, we assume that the transition functions δ and γ of any NCSSA A

satisfy the following two conditions:

i) (s, s) �∈ δ+ for all s ∈ S, namely, the transitive closure δ+ of δ is irreflexive,

ii) (γ(s), s) ∈ δ+ for all s ∈ Sε, namely, the source state of any secondary
transition is reachable from the target state through a path that consists
of primary transitions only.

Note that the above conditions enforce a nesting of the structure of primary
and secondary transition functions. In the sequel, we will see how one can
take advantage of such a property to devise efficient algorithms that solve
basic problems involving NCSSA.

Counters of NCSSA range over the set N extended with a special value
ω. During a computation, they can be either set to their initial value or
decremented (we tacitly assume that n < ω for all n ∈ N and ω−1 = ω). Let
CS be the set of all valuations of the form c : Sε → N ∪ {ω}. A configuration
of an NCSSA A = (A, SA, Sε, Ω, δ, γ, s0, c0) is a pair of the form (s, c), with
s ∈ S and c ∈ CS. The transitions of A are taken according to the partial
global transition function [δ, γ] : S×CS ⇀ S×CS, which is defined as follows:

[δ, γ](s, c) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
δ(s), c

)
if s ∈ SA and δ(s) is defined,

(
δ(s), c[c0(s)/s]

)
if s ∈ Sε, c(s) = 0, and δ(s) is defined,

(
γ(s), c[c(s) − 1/s]

)
if s ∈ Sε and c(s) > 0,

undefined otherwise.

Intuitively, the above definition of global transition function implies that

1. if the automaton lies in a labeled state and a primary transition exits
from there, then the automaton takes the primary transition and does
not change the valuation;

2. if the automaton lies in an unlabeled state whose counter has value 0,
then the automaton takes the primary transition exiting from that state
(if such a transition is defined) and it re-initializes the counter;

3. if the automaton lies in an unlabeled state whose counter has a positive
value, then the automaton takes the secondary transition and it decre-
ments the counter by 1;

4. if none of the above conditions holds, then the automaton halts.

The run of an NCSSA A is defined on the basis of its global transition function
[δ, γ] (note that, since [δ, γ] may be not defined on some configurations, the
run of A may be finite). For the sake of brevity, given a finite set X, we denote
by X∗+ω the set X∗∪Xω, which consists of all (finite or infinite) words over X.
The (unique) run of A is defined as the maximal (possibly infinite) sequence
ρ ∈ (S ∪ CS)∗+ω such that

28 2 Word Automata and Time Granularities

• ↓1ρ(1) = s0,

• ↓2ρ(1) = c0,

•
[
δ, γ

](
↓1ρ(i), ↓2ρ(i)

)
=

(
↓1ρ(i + 1), ↓2ρ(i + 1)

)
for every 1 � i < |ρ|.

Given the run ρ of A, we can extract the maximal (finite or infinite) sub-
sequence ρA of ρ that contains configurations of the form (s, c), with s ∈ SA

and c ∈ CS. The sequence ρA is called labeled run of A. Finally, the unique
(finite or infinite) word recognized by A is defined as the sequence Ω

(
↓1ρA

)

= Ω
(
↓1ρA(1)

)
Ω
(
↓1ρA(2)

)
Ω
(
↓1ρA(3)

)
....

Note that the values of the counters in the run of an NCSSA A range over
finite domains, namely, they belong either to the singleton {ω} or to an initial
segment {0, ..., c0(s)} of the natural numbers. Thus, it is immediate to see that
NCSSA recognize either finite words or ultimately periodic words.

In the following, we show that the nested structure of the transition func-
tions of an NCSSA is closely related to the nested repetitions featured by
the recognized word. Successively, we shall take advantage of such a property
to address the fundamental problems of granule conversion, equivalence, and
optimization for NCSSA-based representations of time granularities.

2.3.1 Nested Repetitions of Words

As already pointed out, the distinctive feature of NCSSA is the way they
encode nested repetitions of words. In order to disclose the relationships be-
tween these repetitions and the structure of the transition functions, we need
to introduce some preliminary definitions.

First of all, note that Definition 8 allows situations where states and transi-
tions of an NCSSA form an unconnected directed graph. Moreover, the initial
valuation of a counter may be 0, which implies that the associated secondary
transition is never activated during the computation. We can overcome these
clumsy situations by discarding useless states and transitions and by assuming
that the initial valuation c0 is positive on every unlabeled state.

We now define the δ-degree and the γ-degree of the states of an NCSSA.
Let A = (A, SA, Sε, Ω, δ, γ, s0, c0) be an NCSSA. For each state s ∈ S, the
δ-degree of s is the (unique) natural number n such that δn(s) is defined, but
δn+1(s) is not (note that, by convention, δ0(s) = s and, since the transitive
closure δ+ of δ is irreflexive, there always exists a natural number n such that
δn+1(s) is not defined). For each unlabeled state s ∈ Sε, the γ-degree of s is
the least natural number n such that

(
γ(s), s

)
∈ δn.

The above definitions can be used to represent the nested structure of the
transition functions of A. Precisely, we define the binary relation ΓA ⊆ S× S,
called nesting relation of A, such that, for every pair of states r, s of A,

(r, s) ∈ ΓA iff

{
s ∈ Sε

r = δi
(
γ(r)

)
for some i less than the γ-degree of s.

2.3 Compact and Tractable Representations 29

Note that the transitive closure Γ+
A of the nesting relation of A is antisym-

metric, namely, it never happens that both (r, s) ∈ Γ+
A and (s, r) ∈ Γ+

A hold.
This shows that Γ+

A can be given the status of a well-founded partial order
over the set of states of A. Such a partial order immediately suggests an in-
duction principle, called γ-induction, which can be used for both definitions
and proofs.

As an example, let us consider the NCSSA A of Figure 2.7. We have that
the δ-degree of s0 (resp., s1, s2, s3) is 2 (resp., 2, 1, 0), the γ-degree of s2 (resp.,
s3) is 1 (resp., 2), the nesting relation ΓA is the set

{
(s1, s2), (s0, s3), (s2, s3)

}
,

and its transitive closure Γ+
A consists of all pairs in ΓA plus the pair (s1, s3).

Finally, by exploiting γ-induction, we define, for every state s ∈ S (resp.,
for every unlabeled state s ∈ Sε), the word uA

s (resp., the word vA
s):

uA
s =

{
Ω(s) if s ∈ SA,
(
vA

s

)c0(s)
if s ∈ Sε,

(2.1a)

vA
s = uA

γ(s) uA
δ(γ(s)) uA

δm−1(γ(s)) where m is the γ-degree of s (2.1b)

(here, for the sake of simplicity, we assume that w1 w2 = w1 and wω
1 = w1

whenever w1 is an infinite word).
The following proposition shows that the words recognized by NCSSA can

be written as expressions that feature nested repetitions (e.g., (�4◭�2)ω and
�6((�2�)2�2)ω).

Proposition 3. The word recognized by an NCSSA A = (A, SA, Sε, Ω, δ, γ,
s0, c0) is of the form uA

s0
uA

δ(s0)
... uA

δn(s0)
where n is the δ-degree of the initial

state s0.

As an example, consider the NCSSA depicted in Figure 2.7. According to
Proposition 3, such an automaton recognizes the word

w =
(

uA
s0

) (
uA

s1

) (
uA

s2

)

=
(
◭

) (
vA

s1

)6 (
vA

s2

)ω

=
(
◭

) (
uA

s2

)6 (
uA

s0
uA

s1

)ω

=
(
◭

) (
�

)6 (
◭ �6

)ω

In order to prove Proposition 3, we introduce a technical lemma. Below, for
the sake of brevity, we write (s, c)

w
−−→ (s ′, c′) to denote the existence of a

partial run of an NCSSA A that starts from the configuration (s, c), reaches
the configuration (s ′, c′), and recognizes the finite word w. Similarly, we write

(s, c)
w

−−→ whenever A recognizes the infinite word w starting from the

configuration (s, c).

Lemma 2. Let A = (A, SA, Sε, Ω, δ, γ, s0, c0) be an NCSSA, s a unlabeled

state, and c : Sε → N ∪ {ω} a valuation such that c(s) > 0 and c(r) = c0(r)

for every unlabeled state r such that (r, s) ∈ Γ+
A . We have that

30 2 Word Automata and Time Granularities

(
s, c

) vA
s−−→

(
s, c[c(s) − 1/s]

)
.

Proof. We prove the lemma by exploiting γ-induction on the state s. For the
sake of brevity, we denote by m the γ-degree of the state s, by ri the state
δi
(
γ(s)

)
, by c′ the valuation c[c(s) − 1/s], and by di,j the valuation c′[j/ri],

for every 0 � i < m and every 0 � j � c(ri). Now, let us consider a word of
the form uA

ri
, with 0 � i < m. If ri is a labeled state, then uA

i = Ω(ri) and
hence

(
ri, c

′
) uA

ri−−→
(
δ(ri), c

′
)
.

Otherwise, if ri is a unlabeled state, then (ri, s) ∈ Γ+
A . Moreover, di,j(ri) >

0 and di,j(q) = c′(q) = c(q) = c0(q) for every 1 � j � c(ri). Thus, by
exploiting the inductive hypothesis on the state ri, we obtain

(
ri, di,c(ri)

) vA
ri−−→

(
ri, di,c(ri)−1

)

(
ri, di,c(ri)−1

) vA
ri−−→

(
ri, di,c(ri)−2

)

...

(
ri, di,1

) vA
ri−−→

(
ri, di,0

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

c(ri) times.

In particular, since uA
ri

=
(
vA

ri

)c0(ri)
, c0(ri) = c(ri), and c′ = di,c(ri), we

have
(
ri, c

′
) uA

ri−−→
(
δ(ri), c

′
)
.

We just proved that
(
ri, c

′
) uA

ri−−→
(
δ(ri), c

′
)

for every 0 � i < m. To con-

clude the proof, it is sufficient to observe that vA
s = uA

r0
uA

r1
... uA

rm−1
and, by

hypothesis, c′(q) = c(q) for every unlabeled state q such that (q, s) ∈ Γ+
A .

Therefore, it follows that
(
s, c

) vA
s−−→

(
s, c′

)
. �

Proof (Proof of Proposition 3). Let us denote by n the δ-degree of the initial
state s0 and let us consider a state si of the form δi(s0), with 0 � i � n. If
si is a labeled state, then, by definition, uA

si
= Ω(si). Otherwise, if si is an

unlabeled state, then, by Lemma 2, we know that

(
si, c0

) vA
si−−→

(
si, c0[c0(si) − 1/si]

) vA
si−−→ ...

vA
si−−→

(
si, c0[0/si]

)
.

︸ ︷︷ ︸
c0(si) times

Moreover, if i < n, then
(
si, c0[0/si]

) ε
−−→

(
si+1, c0

)
.

It is now clear that A recognizes the word uA
s0

uA
δ(s0)

... uA
δn(s0)

. �

2.3 Compact and Tractable Representations 31

2.3.2 Algorithms on NCSSA

In this section, we exploit the nested structure of NCSSA transition func-
tions (precisely, Proposition 3), to devise efficient algorithms that operate on
NCCSA. In particular, we will show that, under suitable conditions, granule
conversion problems can be solved in polynomial time with respect to the size
of NCSSA-based representations of time granularities. We will also provide a
non-deterministic polynomial-time solution to the (non-)equivalence problem
for NCSSA. Later, in Section 2.3.3, we shall describe in detail some optimiza-
tion techniques of NCSSA-based representations of time granularities that
improve the efficiency of the proposed algorithms.

Searching for Symbol Occurrences

We first address a basic problem, which arises very often when dealing with
time granularities as well as with words in general, namely, the problem of
finding the n-th occurrence of a given symbol in a (finite or infinite) word.
Such a problem can be easily solved in linear time with respect to the number

of transitions needed to reach the n-th occurrence of the symbol: it suffices to
follow the transitions of the automaton until the n-th occurrence of the symbol
is recognized. Fortunately, we can improve this straightforward solution by
taking advantage of the structure of NCSSA. In the following, we first give an
intuitive account of the improved algorithm and then describe it in detail. For
the sake of brevity, hereafter we denote by |w|a the number of occurrences of
the symbol a in the word w (as usual, we assume that |w|a = ω if w contains
infinitely many occurrences of a).

Let A = (A, SA, Sε, Ω, δ, γ, s0, c0) be an NCSSA that recognizes the word
w and suppose that we have to find the position p of first occurrence of the
symbol a in w. If the initial state s0 belongs to SA, then either Ω(s0) = a,
thus implying p = 1, or Ω(s0) �= a, thus implying p > 1. Otherwise, if the
initial state s0 belongs to Sε, then we denote by m its γ-degree and we define
ri = δi(γ(s0)) for every 0 � i < m. We then distinguish between the following
two cases: either |vA

ri
|
a

> 0 for some 0 � i < m, or |vA
ri

|
a

= 0 for every 0 � i <

m. In the former case, we know that the position p of the first occurrence of
a in w is given by the expression pk +

∑
0�i<k c0(ri) |vA

ri
|, where k is the least

index such that |vA
rk

|
a

> 0 and pk is the position of the first occurrence of a

in vA
rk

. In the latter case, we know that p > c0

(
s0

)(∑
0�i<m c0(ri) |vsi

|
A
)
.

By generalizing the above idea and by exploiting the principle of γ-
induction, one can devise an efficient procedure (see Algorithm 2.2) that,
given an NCSSA A, a configuration (s, c), a set B of symbols, and a positive
natural number n, returns the configuration of A that is reached after reading
n occurrences of symbols in B, starting from the configuration (s, c). In ad-
dition, the described procedure can store, in a given array counter , the number

32 2 Word Automata and Time Granularities

of processed occurrences of each symbol of the alphabet (note that the position
of the n-occurrence of symbols in B can be retrieved by examining the content
of the array counter).

Algorithm 2.2. SeekAtOccurrence(A, s, c, B, counter)

let A = (A, SA, Sε, Ω, δ, γ, s0, c0)

for each a ∈ A

do counter(a) ← 0
i ← 0
while i < n

do

⎧
⎪⎪⎨

⎪⎪⎩

if s = ⊥
then fail

if s ∈ SA

then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if Ω(s) ∈ B

then i ← i + 1
counter(Ω(s)) ← counter(Ω(s)) + 1
s ← δ(s)

comment: s is set to ⊥ if δ(s) is undefined

else

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ←
∑

a∈B |vA
s |a

l ← |vA
s |

if i + c(s) j < n

then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

if c(s) = ω or |vA
s | = ω

then fail

else

⎧
⎨

⎩

q ← c(s)

c(s) ← c0(s)

s ← δ(s)

else

⎧
⎪⎨

⎪⎩

q ←
⌊

n−i−1
j

⌋

c(s) ← c(s) − q

s ← γ(s)

i ← i + q j

for each a ∈ A

do counter(a) ← counter(a) + q l

return (s, C)

In spite of the simplicity of the idea, the analysis of the complexity of
the above algorithm is rather involved. To make it precise, we introduce a
complexity measure ‖A‖, which takes into account the nested structure of the

2.3 Compact and Tractable Representations 33

transition functions of an NCSSA A = (A, SA, Sε, Ω, δ, γ, s0, c0). Let s be a
state of A. We first define the value ‖A‖s by exploiting γ-induction on s:

‖A‖s =

⎧
⎨

⎩

1 if s ∈ SA,

1 + max
0�i<m

(
i + ‖A‖δi(γ(s))

)
if s ∈ Sε and m is the γ-degree of s.

(2.2)
The complexity ‖A‖ of A is then defined as

‖A‖ = max
0�i�n

(
i + ‖A‖δi(s0)

)
(2.3)

where n is the δ-degree of the initial state s0.
As an example, let us consider again the NCSSA A of Figure 2.7. We have

that ‖A‖s0
= 1, ‖A‖s1

= 1, ‖A‖s2
= 1 + ‖A‖s1

= 2, ‖A‖s3
= 1 + max(‖A‖s0

,
1 + ‖A‖s2

) = 4, and, finally, ‖A‖ = max(‖A‖s0
, 1 + ‖A‖s2

, 2 + ‖A‖s3
) = 6.

A more interesting example is the following one. By exploiting the opti-
mization algorithms which are described later in Section 2.3.3, one can obtain
an NCSSA representing the granularity Month in terms of days having 87
states and complexity 14. Both these values are significantly less than the size
of any equivalent granspec/SSA (see Section 2.2.3 for an explanation). The
resulting NCSSA is succinctly described by the following expression:

((
�2(�28◭)2

(
�30

(
(◭�29)2�

)2
◭
)2

(
�3(�27◭)2

(
�30

(
(◭�29)2�

)2
◭
)2

)3)25

((
�3(�27◭)2

(
�30

(
(◭�29)2�

)2
◭
)2

)4

(
�2(�28◭)2

(
�30

(
(◭�29)2�

)2
◭
)2

(
�3(�27◭)2

(
�30

(
(◭�29)2�

)2
◭
)2

)3)24)3
)ω

Let A be an NCSSA and s a state of it. By exploiting Equation 2.2 and
the principle of γ-induction, one can prove that the value ‖A‖s is less than or
equal to the number of pairs (q, r) ∈ Γ+

A such that either r = s or (r, s) ∈ Γ+
A .

It is thus clear that the complexity ‖A‖ of A is at most quadratic in the
number of states of A and hence we can write ‖A‖ = O(|A|

2
).

Moreover, under the assumption that the values |vA
s |a, for every unlabeled

state s and every symbol a, are pre-computed and stored into appropriate data
structures for A, it is possible to show that the worst-case time complexity of
Algorithm 2.2 is Θ(‖A‖) (and hence it is at most quadratic in the size |A|).

It turns out that the running time of several algorithms operating on
NCSSA run in linear time with respect to the complexities of the involved
automata. This is the case, for instance, with simple procedures based on
Algorithm 2.2 that search for occurrences of distinguished symbols in the
word recognized by a given NCSSA A. As an example, the following procedure,

34 2 Word Automata and Time Granularities

receives as input an NCSSA A, a set B of symbols, a natural number n, and
two positions i, j ∈ N ∪ {ω} and, after O(‖A‖) time, it returns as output
the position of the n-th occurrence of a symbol in B in the substring w[i, j[,
where w is the word recognized by A (if n = 0, then the procedure returns
the position i).

Algorithm 2.3. FindOccurrence(A, B, n, i, j)

let A = (A, SA, Sε, Ω, δ, γ, s0, c0)

(s, c) ← (s0, c0)

SeekAtOccurrence(A, s, c, A, i, counter)

SeekAtOccurrence(A, s, c, B, n, counter)

if failed
then return j

k ← i +
∑

a∈A counter(a)

return min(j, k)

Other procedures likeGetSymbol (A, i) andCountOccurrences (A, B, i, j)
allow one to compute, in time O(‖A‖), the symbol w(i) and the number of oc-
currences of symbols in B in the substring w[i, j[, where w is the word recog-
nized by a given NCSSA A. The structure of these procedures is quite similar to
that of Algorithm 2.3 and thus omitted. Finally, it is worth pointing out that,
in general, the complexity of these algorithms is sub-linear with respect to the
number of transitions needed to reach the addressed symbol occurrence. This
shows that algorithms working on NCSSA outperform those running on equiv-
alent granspecs/SSA.

Granule Conversion Problems

Here, we provide efficient solutions to the granule conversion problem. The
importance of such a problem has been highlighted by several authors (see,
for instance, [3, 34, 102]). Nevertheless, in many approaches it has been only
partially worked out in a rather intricate and non-uniform way.

In its most common formulation, the granule conversion problem is viewed
as the problem of determining the set of granules of a granularity H which are
in some specific relation with a given set of granules of a coarser/finer gran-
ularity G. According to such a definition, the granule conversion problem is
actually a family of problems, whose different concrete instances are obtained
by specifying the relation that must hold between the granules of the source
granularity G and the destination granularity H.

In the following, we consider granule conversion problems for the relations
‘intersect’, ‘cover’, and ‘covered-by’ (other standard relations can be dealt

2.3 Compact and Tractable Representations 35

with in a similar way [3]). Let G and H be two time granularities and let G ′

(resp., H ′) be a set of granules of G (resp., H).

• Intersect relation. The pair (G ′, H ′) is an instance of the intersect re-
lation if

H ′ =
{
h ∈ H : ∃ g ∈ G ′. g ∩ h �= ∅

}

namely, H ′ contains all and only the granules of H that intersect at least
one granule in G ′. Note that the intersect relation can be viewed as a total

function, which maps sets of granules of G to sets of granules of H.
• Cover relation. The pair (G ′, H ′) is an instance of the cover relation if

H ′ is the smallest set such that
⋃

h∈H′

h ⊇
⋃

g∈G′

g

namely, H ′ is the smallest set of granules of H whose union contains the
union of all granules in G ′. Note that the cover relation can be viewed as
partial function, which maps sets of granules of G to sets of granules of
H. Moreover, every instance of the cover relation is also an instance of the
intersect relation.

• Covered-by relation. The pair (G ′, H ′) is an instance of the covered-by
relation if H ′ is the largest set such that

⋃

h∈H′

h ⊆
⋃

g∈G′

g

namely, H ′ is the largest set of granules of H whose union is contained
in the union of all granules in G ′. The covered-by relation can be viewed
as a total function, which maps sets of granules of G to (possibly empty)
sets of granules of H.

For any possible instance of the granule conversion problem, we distinguish
two variants of increasing complexity. In the simplest case (case 1), the time
granularities involved have no gaps within or between granules; in the sec-
ond case (case 2), gaps may occur both within and between the granules of
the time granularities involved. Efficient automaton-based solutions for most
common relations can be obtained in the first case, provided that we work
with intervals. Indeed, if we restrict to case 1, the set of granules of the des-
tination time granularity H that correspond to a given interval of granules of
G can always be represented by an interval and hence it can be dealt with
as a whole. On the contrary, if case 2 holds, we cannot guarantee that the
resulting set of granules is an interval and thus we must consider one granule
at a time.

The solutions to the granule conversion problems take advantage of some
auxiliary functions, called downward/upward conversion functions, which are
quite similar to the conversion operators introduced by Snodgrass et al. in

36 2 Word Automata and Time Granularities

[34, 102]. The downward conversion function maps a time granularity G and
a set (an interval, if we restrict to case 1) X of indices of granules of G to
the set (respectively, the interval) T =

⋃
x∈X G(x) of time points. Upward

conversion is the dual operation and it comes in three different variants:

• the upward intersect conversion function maps a time granularity G and
a non-empty set (or interval) T of time points to the possibly empty set
(or interval) X of all indices x of granules of G such that G(x) ∩ T �= ∅;

• the upward cover conversion function maps a time granularity G and a
non-empty set (or interval) T of time points to the smallest set (or interval)
X of indices of granules of G such that

⋃
x∈X G(x) ⊇ T (if the granularity

G does not cover every time point in T , then the upward cover conversion
function is undefined on G and T);

• the upward covered-by conversion function maps a time granularity G

and a non-empty set (or interval) T of time points to the largest set (or
interval) X of indices of granules of G such that

⋃
x∈X G(x) ⊆ T .

We shall implement downward and upward conversion functions separately
for case 1 (no gaps allowed) and case 2 (gaps allowed). In case 1, since the
set X is assumed to be an interval of granules, we use min(X) and max(X) to
denote the least and the greatest element of X (we assume that max(X) = ω if
X is not bounded). As previously mentioned, since intervals can be dealt with
as a whole, the procedures that computer downward and upward conversion
functions in case 1 use only a finite number of calls to Algorithm 2.2 and hence
they require time O(‖A‖), where A is the NCSSA representing the involved
timed granularity. On the contrary, the procedures that compute downward
and upward conversion functions in case 2 are necessarily less efficient.

Here are the algorithms for downward conversion in case 1 and case 2; those
for upward conversions will be given later.

Algorithm 2.4. DownwardConversion-Case1(A, X)

t1 ← FindOccurrence(A, {◭}, min(X), 1, ω)

t2 ← FindOccurrence(A, {◭}, max(X) + 1, 1, ω)

return [t1, t2[

Algorithm 2.5. DownwardConversion-Case2(A, X)

[t1, t2[← DownwardConversion-Case1(A, X) (2.5a)

T ← ∅
for each t ∈ [t1, t2[(2.5b)

do

{
if GetSymbol(A, t + 1) ∈ {�, ◭}

then T ← T ∪ {t}

return T

2.3 Compact and Tractable Representations 37

It is worth noticing that termination of Algorithm 2.5 is not guaranteed if
X represents an infinite set of indices or if the last granule G(max(X)) is
infinite. Indeed, in both cases, the instruction 2.5a assigns the value ω to
the variable t2, thus entering an infinite loop in 2.5b. In order to guarantee
termination, one can exploit the fact that A recognizes an ultimately periodic
word w. More precisely, by reasoning on the initial and repeating patterns
of w, one can detect whether a non-terminating loop has been reached and,
accordingly, return the (possibly infinite) set T of converted time points as
a linear progression of the form X ∪ {m + nq : m ∈ Y, n ∈ N}, where X, Y
are finite disjoint sets of natural numbers and q is a positive natural number.
A similar idea can be applied if X is an infinite set of granules represented
by a linear progression. For the sake of simplicity, from now on, we shall not
consider cases where infinite sets of granules or infinite sets of time points are
involved (the reader should keep in mind that it is always possible to deal
with such cases in an effective way).

Below, we implement upward conversion functions in case 1 (note that,
in case 1, the upward intersect conversion function and the upward cover

conversion function coincide).

Algorithm 2.6. UpwardIntersectConversion-Case1(A, T)

UpwardCoverConversion-Case1(A, T)

x1 ← CountOccurrences(A, {◭}, 1, min(T))

x2 ← CountOccurrences(A, {◭}, 1, max(T))

return [x1, x2]

Algorithm 2.7. UpwardCoveredByConversion-Case1(A, T)

if min(T) > 0
then x1 ← CountOccurrences(A, {◭}, 1, min(T) − 1) + 1

else x1 ← 0

if max(T) < ω

then x2 ← CountOccurrences(A, {◭}, 1, max(T) + 1) − 1

else x2 ← ω

return [x1, x2]

The algorithms for case 2 are clearly more general, but less efficient, since
they need to process one element of the input set T at a time. Note that
the upward covered-by conversion function is computed by first collecting
all indices of granules of G that intersect the time points in T (instruction
2.10a) and then discarding those granules which are not entirely covered by
T (loop 2.10b).

38 2 Word Automata and Time Granularities

Algorithm 2.8. UpwardIntersectConversion-Case2(A, T)

X ← ∅
for each t ∈ T

do

⎧
⎨

⎩

if GetSymbol(A, t + 1) ∈ {�, ◭}

then

{
x ← CountOccurrences(A, {◭}, 1, t)

X ← X ∪ {x}

return X

Algorithm 2.9. UpwardCoverConversion-Case2(A, T)

X ← ∅
for each t ∈ T

do

⎧
⎪⎪⎨

⎪⎪⎩

if GetSymbol(A, t + 1) ∈ {�, ◭}

then

{
x ← CountOccurrences(A, {◭}, 1, t)

X ← X ∪ {x}

else fail

return X

Algorithm 2.10. UpwardCoveredByConversion-Case2(A, T)

X ← UpwardIntersectionConversion-Case2(A, T) (2.10a)

for each x ∈ X (2.10b)

do

⎧
⎨

⎩

Tx ← DownwardConversion-Case2(A, {x})

if Tx �⊆ T

then X ← X \ {x}

return X

The downward and upward conversion functions are strictly related to the
intersect/cover/covered-by relations described at the beginning of this section.
Precisely, given two time granularities G and H and two sets of granules
G ′ ⊆ G and H ′ ⊆ H, we have that (G ′, H ′) is an instance of the intersect
(resp., cover, covered-by) relation if and only if the indices of the granules of
H ′ can be obtained by first applying a downward conversion of the indices of
the granules of G ′, which results in a set T of time points, and then applying
an upward intersect (resp., cover, covered-by) conversion of T .

The above arguments show that granule conversions between time granu-
larities can be performed by exploiting basic algorithms on NCSSA. Moreover,
if the involved granularities contain no gaps within or between granules, these
conversions can be efficiently computed in linear time (resp., in polynomial
time) with respect to the complexity (resp., the size) of the input NCSSA.

2.3 Compact and Tractable Representations 39

The Equivalence Problem

We now focus our attention on the equivalence problem for NCSSA, namely,
the problem of deciding whether two given NCSSA recognize the same (finite
or infinite) word. As a matter of fact, solving such a problem makes it possible
to check whether two given NCCSA represent the same time granularity and
hence to choose the most compact, or the most suitable, representation.

As a preliminary remark, recall that, in Section 2.2.4, we proved that the
equivalence problem for the class of Reducible Counter Single-string Automata
(RCSSA) is PSPACE-complete. Here, we show that the (non-)equivalence
problem for the class of NCSSA can be solved in non-deterministic polynomial

time. Intuitively, such a result follows from the fact that, given two NCSSA A1

and A2 recognizing the words w1 and w2, respectively, it is possible to guess
a (sufficiently small) position i and then check in polynomial time whether
w1(i) �= w2(i). Such a procedure suggests that the equivalence problem for
NCSSA is in co-NP. In the following, we give a more formal argument for such
a result, but we do not provide any proof for the co-NP-hardness. In fact, we
conjecture that the equivalence problem for NCSSA may be solved by a deter-
ministic algorithm which takes time polynomial in the size of the input NCSSA
(unfortunately, at the moment, we are not able to provide such an algorithm).

Hereafter, we restrict our attention to the subclass of NCSSA that recognize
infinite (ultimately periodic) words (the results provided below can be easily
generalized to the whole class of NCSSA). We start with the following basic
lemma.

Lemma 3. Given two ultimately periodic words w1 = u1 vω
1 and w2 =

u2 vω
2 , with u1, u2 ∈ A∗ and v1, v2 ∈ A+, we have that

w1 = w2 iff ∀ 1 � i � max
(
|u1|, |u2|

)
+ lcm

(
|v1|, |v2|

)
. w1(i) = w2(i).

Proof. The left to right implication is trivial. As for the converse implication,
let p = max

(
|u1|, |u2|

)
and q = lcm

(
|v1|, |v2|

)
and suppose that w1(i) = w2(i)

holds for every 1 � i � p +q. For every i > p +q, we shortly denote by [i]p,q

the value
(
(i − p − 1) mod q

)
+ p + 1. Since [i]p,q � p + q holds for every

i > p + q and since the ultimately periodic words w1 and w2 have initial
patterns of length p and repeating patterns of length q, we have that, for
every i > p + q,

w1

(
i
)

= w1

(
[i]p,q

)
= w2

(
[i]p,q

)
= w2

(
i
)
.

This proves that w1 = w2. �

Now, recall that any NCSSA A = (A, SA, Sε, Ω, δ, γ, s0, c0) that recognizes
an infinite word w can be viewed as a special form of RCSSA. Using an
argument similar to that of Proposition 2, one can prove that the infinite word
w recognized by A is ultimately periodic and it features an initial pattern u

and a repeating pattern v of length less than or equal to NA = |S|
∏

s∈Sε
ns,

40 2 Word Automata and Time Granularities

� �

2 3

A1

�

�
1

2

A2

� � �

2
3

2

A3

Fig. 2.8. State-optimal and complexity optimal NCSSA

where, for every s ∈ Sε, ns is either c0(s) or 1, depending on whether c0(s) <

ω or c0(s) = ω. Moreover, note that the value NA is at most exponential
in the size of A. Therefore, by Lemma 3, one can decide whether two given
NCCSA A1 and A2 recognize different infinite (ultimately periodic) words w1

and w2 by first guessing a position 1 � i � NA1
NA2

, with NA1
= O

(
|A1| 2

|A1|
)

and NA2
= O

(
|A2| 2

|A2|
)
, and then checking whether w1(i) �= w2(i) holds.

Note that guessing the position i can be done in non-deterministic polynomial
time O

(
|A1| log |A1|+ |A2| log |A2|

)
, while checking whether w1(i) �= w2(i) can

be can be done in deterministic polynomial time O
(
|A1|

2
+ |A2|

2
)

(e.g., by
using the procedure GetSymbol described at the beginning of this section).

The above arguments prove that the equivalence problem for NCSSA is in
co-NP. It is an open problem to establish whether there exists a deterministic
polynomial-time algorithm that solves the equivalence problem for NCSSA.

2.3.3 Optimizing Representations

In Section 2.3.2 we outlined some basic algorithms that operate on NCSSA
and that run in time linear in their complexity. In view of this operational
flavor of NCSSA, the problem of reducing as much as possible the complexity
‖A‖ of a given NCSSA A becomes crucial. Furthermore, there is a widespread
recognition of the fact that state minimization is an important problem both
in classical automata theory [50] and in software and hardware design appli-
cations [101]. Therefore, another goal of practical interest is the minimization
of the number of states of a given NCSSA A.

The former problem is called complexity optimization problem, while the
latter is called state optimization problem. Even though the complexity of an
NCSSA and the number of its states are clearly related one to the other (e.g.,
the former is at most quadratic in the latter), complexity optimal and state
optimal automata may look quite different.

As an example, the three NCSSA A1, A2, and A3 of Figure 2.8 recognize the
same finite word ���������. The NCSSA A1 and A2 are state optimal
(n(A1) = n(A2) = 4, while n(A3) = 6), and the NCSSA A1 and A3 are
complexity optimal (‖A1‖ = ‖A3‖ = 5, while ‖A2‖ = 7).

Moreover, the state optimization problem seems to be harder than the
complexity optimization problem and only a partial solution to it will be given
here. It is also worth remarking that optimal NCSSA are not guaranteed to be

2.3 Compact and Tractable Representations 41

unique (up to isomorphism) among all equivalent NCSSA, as it happens, for
instance, with the case of deterministic finite automata. Hereafter, we denote
by n(A) the number of states of an NCCSA A.

Automata optimization problems can be solved in many different ways, e.g.,
by partitioning the state space or by exploiting characterizations of recogniz-
able words in terms of suitable expressions. In the following, we tackle both
the complexity optimization problem and the state optimization problem by
using dynamic programming, namely, by computing optimal NCSSA starting
from smaller (optimal) ones in a bottom-up fashion. The key ingredient of such
an approach is the proof that the considered optimization problem exhibits an
optimal-substructure property. In the following, we describe three basic oper-
ations on NCSSA and we prove closure properties for them. We then compare
the complexity and the number of states of compound automata with that of
their components. Finally, we take advantage of these compositional properties
to prove optimal-substructure properties for the two optimization problems.

Compositional Properties

Hereafter, for the sake of simplicity, we denote by Aε the empty NCSSA,
which recognizes the empty word ε and has complexity 0. Similarly, for each
symbol a ∈ a, we denote by Aa the singleton NCSSA, which consists of a
single a-labeled state and has complexity 1.

The class of all NCSSA is easily proved to be closed under the operations
of concatenation and repetition. Precisely, given a symbol a and an NCSSA A

that recognizes a (finite or infinite) word w, we denote by AppendChar(a, A)

the concatenation of the singleton NCSSA Aa to A, which results in an NC-
SSA that recognizes the word a w. Such an automaton can be obtained from
A by (i) adding a new a-labeled state s0, (ii) linking it to the initial state of A,
and (iii) marking s0 as the new initial state (see Figure 2.9). If the argument
A of AppendChar is the empty automaton Aε, then AppendChar(a, Aε)

coincides with the singleton NCSSA Aa.
In a similar way, we define concatenations involving repetitions of NCSSA.

Precisely, given two NCSSA A and B that recognize, respectively, a finite
word u and a (finite or infinite) word v and given k ∈ N ∪ {ω}, we denote by
AppendRepetition(A, k, B) the NCSSA that recognizes the word uk v and
that is obtained from A and B by introducing (i) a new unlabeled state sloop ,
which is represented by the diamond in Figure 2.10, (ii) a secondary transition
from sloop to the initial state of A, (iii) a primary transition from the final
state of A (i.e. the state that appears in the last position of the unique run
of A) to sloop , (iv) a primary transition from sloop to the initial state of B

and by finally marking sloop as the new initial state (see Figure 2.10). If the
argument B of AppendRepetition is the empty automaton Aε, then the
resulting NCSSA AppendRepetition(A, k, Aε) recognizes the word uk.

We can actually give AppendChar and AppendRepetition the status
of linear-time algorithms that operate on NCSSA. Moreover, the complexity
(resp., the number of states) of the resulting automata can be specified in

42 2 Word Automata and Time Granularities

s1 · · · t1

A

s0 s1 · · · t1

AppendChar(a, A)

a

Fig. 2.9. The concatenation of a to A

s2 · · · t2

A

s1 · · · t1

B

s2 · · · t2

k

s1 · · · t1

AppendRepetition(A, k, B)

Fig. 2.10. The concatenation of a k-repetition of A to B

terms of the complexity (resp., the number of states) of the component au-
tomata as follows:

• AppendChar(a, A) has complexity 1 + ‖A‖ and 1 + n(A) states;

• AppendRepetition(A, k, B) has complexity 1+max
(
‖A‖, ‖B‖

)
and 1+

n(A) + n(B) states.

We say that an NCSSA A is decomposable if it can be obtained from the
empty NCSSA Aε by applying a suitable sequence of operations AppendChar

and AppendRepetition. Clearly, there exist NCSSA, including complexity
optimal and state optimal ones (e.g., the automaton A1 of Figure 2.8), which
are not decomposable. Below, we prove that for every NCSSA A, there exists a
decomposable NCSSA A ′ equivalent to A and having the same complexity.

In virtue of such a result, one can compute a complexity optimal NCSSA
that recognizes a given (finite or ultimately periodic) word w by combining
smaller (complexity optimal) NCSSA. Unfortunately, a similar property does
not hold for state optimal NCSSA.

Lemma 4. For every NCSSA A and every unlabeled state s of A, there is a
decomposable NCSSA Bs that recognizes the word vA

s and such that ‖Bs‖ �

‖A‖s − 1.

Proof. Let A = (A, SA, Sε, Ω, δ, γ, s0, c0) and s ∈ Sε. We prove the claim by
exploiting γ-induction. If s is a minimal element with respect to the partial
order induced by Γ+

A , then we have γ(s) = s. In such a case, we define Bs

as the empty NCSSA. Let us now consider the case of s being not a minimal
element. Let m be the γ-degree of s and let ri = δi(γ(s)) for all 0 � i < m. By
inductive hypothesis, we know that, for every 0 � i < m, if ri is an unlabeled
state, then there exists a decomposable (possibly empty) NCSSA Ari

that
recognizes the word vA

ri
and such that ‖Ari

‖ � ‖A‖ri
− 1. Now, we define

2.3 Compact and Tractable Representations 43

Bs,0 as the empty NCSSA and, for every 1 � i � m, we recursively define the
NCSSA Bs,i as follows:

Bs,i =

{
AppendChar

(
Ω(rm−i), Bs,i−1

)
if rm−i ∈ SA,

AppendRepetition
(
Arm−i

, c0(rm−i), Bs,i−1

)
if rm−i ∈ Sε.

It is easy to see that, for every 1 � i � m, the NCSSA Bs,i recognizes the
word uA

m−i uA
m−i+1 ... uA

m−1 and, furthermore, we have

‖Bs,i‖ � max
0�j<i

(
j + ‖A‖rj

)
.

This proves that the (decomposable) NCSSA Bs = Bs,m recognizes the word
vA

s and it has complexity ‖Bs‖ = ‖Bs,m‖ � ‖A‖s − 1. �

Proposition 4. For every NCSSA A, there is an equivalent decomposable
NCSSA B such that ‖B‖ � ‖A‖.

Proof. Let A = (A, SA, Sε, Ω, δ, γ, s0, c0), let n be the δ-degree of the initial
state s0, and let si = δi(s0) for every 1 � i � n. By Lemma 4, for every
0 � i � n, if si is an unlabeled state, then there exists a decomposable
(possibly empty) NCSSA Asi

that recognizes the word vA
si

and such that
‖Asi

‖ � ‖A‖si
− 1. We now denote by B0 the empty NCSSA and, for every

1 � i � n, we recursively define the NCSSA Bi as follows:

Bi =

{
AppendChar

(
Ω(sn−i), Bi−1

)
if sn−i ∈ SA,

AppendRepetition
(
Asn−i

, c0(sn−i), Bs,i−1

)
if sn−i ∈ Sε.

It is easy to see that, for every 1 � i � n, the NCSSA Bi recognizes the word
uA

n−i uA
n−i+1 ... uA

n−1 and, furthermore, we have

‖Bi‖ � max
0�j<i

(
j + ‖A‖sj

)
.

This proves that the (decomposable) NCSSA B = Bn is equivalent to A and
it has complexity ‖B‖ = ‖Bn‖ � ‖A‖. �

As an example of application of Proposition 4, consider the NCSSA A1 and
A3 of Figure 2.8. They have the same complexity (‖A1‖ = ‖A2‖ = 5), but A3

is decomposable, while A1 is not. It is easy to see that A3 can be obtained
from A1 by applying the construction described in the proof of Proposition 4.

For what concerns the complexity of algorithms running on NCSSA (see,
for instance, the granule conversion procedures described in Section 2.3.2),
Proposition 4 basically states that there is no disadvantage in restricting to
the subclass of decomposable NCSSA.

Computing Complexity Optimal NCSSA

Here we exploit compositional properties of NCSSA to devise a polynomial-
time solution for the complexity optimization problem. In virtue of Proposi-
tion 4, we have that for any (finite or ultimately periodic) word w ∈ A∗+ω,

44 2 Word Automata and Time Granularities

there exists a decomposable complexity optimal NCSSA A that recognizes w.
In fact, we shall prove that, for any word w, there exists one such A that is
decomposable into complexity optimal NCSSA. As a preliminary result, we
establish the following technical lemma.

Lemma 5. Given an NCSSA A recognizing a finite (resp., an infinite) word
w and given a natural number 0 � n � |w| (resp., n � 0), there is a decom-
posable NCSSA Prefix(A, n) that recognizes the prefix w[1, n] of w and such
that ‖Prefix(A, n)‖ � ‖A‖.

Proof. By Proposition 4, we know that there is a decomposable NCSSA A ′

which is equivalent to A and satisfies ‖A ′‖ � ‖A‖. We define the NCSSA
Prefix(A, n) by exploiting induction on the decomposition structure of A ′.
We only consider the non-trivial cases, namely, the cases of non-empty NCSSA.

1. Suppose that A ′ = AppendChar(a, B). We further distinguish between
the following sub-cases:

a. if n = 0, then we define Prefix(A, n) as the empty NCSSA Aε;

b. if n > 0, then we define Prefix(A, n) = AppendChar(a, B ′), where
B ′ = Prefix(B, n − 1) (note that this is well-defined by inductive
hypothesis).

2. Suppose that A ′ = AppendRepetition(B, k, C), with k ∈ N. Let u and v

be the words recognized by B and C, respectively. We distinguish between
the following sub-cases:

a. if n � |u|, then we define Prefix(A, n) = Prefix(B, n) (note that
this is well-defined by inductive hypothesis);

b. if |u| < n � k |u|, then we define p = n mod |u|, q =
⌈

n
|u|

⌉
, and

Prefix(A, n) = AppendRepetition(B, q, B ′), where B ′ = Prefix

(B, p) (note that this is well-defined by inductive hypothesis);

c. if n > k |u|, then we define p = n − k |u| and Prefix(A, n) =

AppendRepetition(B, k, C ′), where C ′ = Prefix(C, p) (note that
this is well-defined by inductive hypothesis).

It is routine to verify that Prefix(A, n) is a decomposable NCSSA that rec-
ognizes the prefix w[1, n] of w and satisfies ‖Prefix(A, n)‖ � ‖A‖. �

The following proposition is the basic ingredient of the solution to the com-
plexity optimization problem. It proves an optimal-substructure property for
(decomposable) complexity optimal NCSSA recognizing finite words.

Proposition 5. For every non-empty finite word w, at least one of the fol-
lowing conditions holds:

1. for every complexity optimal NCSSA B that recognizes the suffix w[2, |w|]

of w, AppendChar(w(1), B) is a complexity optimal NCSSA that recog-
nizes w;

2.3 Compact and Tractable Representations 45

2. there exists a position 1 � r � |w| such that, for every complexity optimal
NCSSA B that recognizes the prefix w[1, q] of w, where q is the mini-

mum period of w[1, r], and for every complexity optimal NCSSA C that
recognizes the suffix w[r + 1, |w|] of w, AppendRepetition(B, r/q, C) is
a complexity optimal NCSSA that recognizes w.

Proof. By Proposition 4, we know that there is a decomposable complexity op-
timal NCSSA A ′ that recognizes w. We prove the claim by exploiting induction
on the decomposition structure of A ′. We only consider the non-trivial cases.

1. Suppose that A ′ = AppendChar(w(1), B ′). Let B be a complexity op-
timal NCSSA that recognizes the suffix w[2, |w|] of w. Since B is a com-
plexity optimal NCSSA equivalent to B ′, we have

∥∥AppendChar(w(1), B)
∥∥ = 1 + ‖B‖

� 1 + ‖B ′‖

=
∥∥AppendChar(w(1), B ′)

∥∥
=

∥∥A ′
∥∥.

This shows that AppendChar(w(1), B) is a complexity optimal NCSSA
that recognizes w.

2. Suppose A ′ = AppendRepetition(B ′, k, C ′). Let x be the finite word
recognized by B ′, q the minimum period of x, and r = k |x|. Furthermore,
let B be a complexity optimal NCSSA that recognizes the prefix w[1, q]

of w and let C be a complexity optimal NCSSA that recognizes the suffix
w[r+1, |w|] of w. Clearly, we have q � |x|. Since w[1, q] is a prefix of x and
B is a complexity optimal NCSSA that recognizes w[1, q], by Lemma 5,
we obtain ‖B‖ � ‖B ′‖. Moreover, since C is a complexity optimal NCSSA
equivalent to C ′, we obtain ‖C‖ � ‖C ′‖. Therefore, we have
∥∥AppendRepetition(B, r/q, C)

∥∥=1 + max
(
‖B‖, ‖C‖

)

�1 + max
(
‖B ′‖, ‖C ′‖

)

=
∥∥AppendRepetition(B ′, k, C ′)

∥∥
=
∥∥A ′

∥∥.

This shows that AppendRepetition(B, r/q, C) is a complexity optimal
NCSSA that recognizes w. �

Proposition 5 above implies that, for every finite word w, there only exist
finitely many ways of combining complexity optimal NCSSA and obtaining
a complexity optimal NCSSA recognizing w. This yields a polynomial-time
procedure that, given a finite word w as input, computes a complexity optimal
NCSSA that recognizes w. Algorithm 2.11 describes such a procedure by using
the following data structures and auxiliary procedures:

• a matrix P, where each entry P(i, j), with 1 � i � j � |w|, stores the min-
imum period of the substring w[i, j] of w (these values can be computed
in time Θ(|w|

2
) by exploiting the algorithms presented in Section 2.1.2);

46 2 Word Automata and Time Granularities

• a matrix A, where each entry A(i, j), with 1 � i � j � |w|, stores the
generated complexity optimal NCSSA recognizing the substring w[i, j] of
w; (for convenience, for every 1 � i � |w|, the entry A(i + 1, i) stores the
empty NCSSA Aε);

• a procedure BestComplexity, which receives a tuple of NCSSA as input
and returns the one having the minimum complexity as output.

Note that a straightforward implementation of the inner loop 2.11a requires
time O

(
|Br|

)
to generate each intermediate NCSSA Br. Pairing such a com-

plexity with the threefold nesting of the loops yields O
(
|w|

4
)

as an upper
bound to the time required to execute the algorithm. As a matter of fact, it
is possible to compare the complexities of the intermediate NCSSA without
really building them. By using appropriate data structures and by comput-
ing in constant time only the complexities of the intermediate NCSSA, one
obtains a more efficient implementation that runs in time Θ

(
|w|

3
)
.

Algorithm 2.11. ComplexityOptimal-FiniteCase(w)

for each 1 � i � j � |w|

let P(i, j) = minimum period of w[i, j]

for each 1 � i � |w|

do A(i + 1, i) ← Aε

for n ← 1 to |w| and for each 1 � i � |w| − n + 1

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ← i + n − 1
B0 ← AppendChar(w(i), A(i + 1, j))

for each 1 � r � n (2.11a)

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q ← P(i, i + r − 1)

Br ← AppendRepetition

⎛
⎜⎝

A(i, i + q − 1),

r/q,

A(i + r, j)

⎞
⎟⎠

A(i, j) ← BestComplexity(B0, B1, ...,Bn)

return A(1, n)

Proving an optimal substructure property for NCCSA recognizing infinite
(ultimately periodic) words is more problematic, because it may happen that a
complexity optimal NCSSA encodes a non-minimal initial pattern. Consider,
for instance, the ultimately periodic word w = (abc)2 ab (ce)ω. The length
of the shortest initial pattern of w is 8 and the length of the shortest repeating
pattern is 2; however, any complexity optimal NCSSA recognizing w encodes
the initial pattern (abc)3 (of length 9) and the repeating pattern ec.

Proposition 6. For every ultimately periodic word w with shortest initial
pattern u and shortest (primitive) repeating pattern v, at least one of the
following conditions holds:

2.3 Compact and Tractable Representations 47

1. for every complexity optimalNCSSAB that recognizes the suffixw[2, ω[ofw,
AppendChar(w(1), B) is a complexity optimal NCSSA that recognizes w;

2. u is the empty word and, for every complexity optimal NCSSA B recog-
nizing the repeating pattern v, AppendRepetition(B, ω) is a complexity
optimal NCSSA that recognizes w;

3. there exists a position 1 � r < 2|u| + 2|v| such that, for every complexity
optimal NCSSA B that recognizes the prefix w[1, q] of w, where q is the
minimum period of w[1, r], and for every complexity optimal NCSSA C

that recognizes the suffix w[r+1, ω[of w, AppendRepetition(B, r/q, C)

is a complexity optimal NCSSA that recognizes w.

Proof. By Proposition 4, we know that there is a decomposable complex-
ity optimal NCSSA A ′ that recognizes w. We prove the claim by exploiting
induction on the decomposition structure of A ′. We only consider the most
complex case, that is, the case in which A ′ = AppendRepetition(B ′, k, C ′),
with k being a positive natural number. Below, we distinguish between two
sub-cases: k = 1 and k > 1.

1. Suppose that k = 1. Let x be the finite word recognized by B ′ and let r

be either |x| or ((|x| − |u|) mod |v|) + |u|, depending on whether |x| < |u|

or |x| � |u|. Note that, by definition, r � |x| and r < |u| + |v|. Now, let
B be a complexity optimal NCSSA that recognizes the prefix w[1, r] of
w and let C be a complexity optimal NCSSA that recognizes the suffix
w[r + 1, ω[of w. Since w[1, r] is a prefix of x and B is a complexity
optimal NCSSA recognizing w[1, r], by Lemma 5, we obtain ‖B‖ � ‖B ′‖.
Moreover, since w[r + 1, ω[= w[|x| + 1, ω[and C is a complexity optimal
NCSSA recognizing w[r+1, ω], we obtain ‖C‖ � ‖C ′‖. It thus follows that

∥∥AppendRepetition(B, 1, C)
∥∥=1 + max

(
‖B‖, ‖C‖

)

�1 + max
(
‖B ′‖, ‖C ′‖

)

=
∥∥AppendRepetition(B ′, 1, C ′)

∥∥
=
∥∥A ′

∥∥.

This shows that the NCSSA AppendRepetition(B, 1, C), which recog-
nizes the ultimately periodic word w, is complexity optimal.

2. Suppose that k > 1. We proceed in the usual way by letting x be the finite
word recognized by B ′, q the minimum period of x, and r = k |x|. Then,
given two complexity optimal NCSSA B and C recognizing, respectively,
the prefix w[1, q] and the suffix w[r + 1, ω[of w, we verify that
∥∥AppendRepetition(B, r/q, C)

∥∥=1 + max
(
‖B‖, ‖C‖

)

�1 + max
(
‖B ′‖, ‖C ′‖

)

=
∥∥AppendRepetition(B ′, k, C ′)

∥∥
=
∥∥A ′

∥∥.

This shows that the NCSSA AppendRepetition(B, r/q, C), which rec-
ognizes the ultimately periodic word w, is complexity optimal.

48 2 Word Automata and Time Granularities

It remains to show that r < 2|u|+2|v|. Suppose, by way of contradiction,
that r � 2|u| + 2|v|. Let us consider the substring y = w[|u| + 1, r] of w.

Since y is a suffix of the word
(
w[1, q]

)r/q
, we know that y has partial

period q (see Section 2.1.2 for a definition of partial period). Similarly,
since y is a prefix of vω, where v is the primitive repeating pattern of
w, we know that y has partial period |v|. Moreover, since k � 2, we have
r � 2|x| and, by assumption, r � 2|u| + 2|v|. This implies r � |u| + |v| + |x|,
whence |x| � |v| + |x|. Therefore, we can apply Lemma 1 and obtain that
p = gcd

(
q, |v|

)
is a partial period of y as well. Let us consider now the

substring z = w[2|u| + 1, 2|u| + 2|v|] of y. It has length equal to |v| and
partial period p. By construction, p divides |v| and hence p is an exact
period of z. However, from the fact that v is primitive, we know that
p = |v|. Similarly, p divides the minimum period q of x and hence q = p

(= |v|). We thus conclude that x has minimum period |v|. Finally, since u

is the shortest initial pattern of w and x is a prefix of w with period |v|,
we obtain |u| = 0.

We just proved that r � 2|u| + 2|v| implies that w[r + 1, r + |v|] is a
repeating pattern of x, from which we obtain

w = w[1, r] w[r + 1, ω[

= xk w[r + 1, r + |v|]ω

= w[r + 1, r + |v|]ω

= w[r + 1, ω[.

The above equality contradicts the hypothesis that A ′ is a complexity op-
timal NCSSA (the automaton C has smaller complexity and it recognizes
w[r + 1, ω] = w). Therefore, we must conclude that r < 2|u| + 2|v|. �

Proposition 6 extends the optimal sub-structure property to the case of infinite
words. However, in order to devise an effective procedure that computes a
complexity optimal NCSSA recognizing a given ultimately periodic word w,
we must provide an upper bound to the number of possible applications of
case 3 of Proposition 6.

Given a natural number n, we denote by F (n) the set of all decompos-
able NCSSA that recognize finite words of length exactly n. Moreover, for
every natural number n and every pair of positive natural numbers r, q, we
recursively define the set U (n, r, q) as follows:

U (0, r, q) =
{
AppendRepetition(A, ω, Aε) : A ∈ F (q)

}

U (n + 1, r, q) = U (n, r, q)

∪
{
AppendChar(a, B) : a ∈ A, B ∈ U (n, r, q)

}

∪

⎧
⎨

⎩
AppendRepetition(A, k, B) :

k,p ∈ N, k p � r,
A ∈ F (p),
B ∈ U (n, r, q)

⎫
⎬

⎭
.

2.3 Compact and Tractable Representations 49

Note that U (0, r, q) contains all and only the decomposable NCSSA that
recognize ultimately periodic words of the form vω, with |v| = q. For every n >

0, U (n, r, q) contains only, but not all, decomposable NCSSA that recognize
ultimately periodic words of the form uvω, with |u| � n r and |v| = q.

Proposition 7. For every ultimately periodic word w with shortest initial
pattern u and shortest repeating pattern v, there is a complexity optimal NC-
SSA that recognizes w and belongs to the set U

(
|u|+ |v|−1, 2|u|+2|v|−1, |v|

)
.

Proof. Let w be an ultimately periodic word and let u and v be, respectively,
the shortest initial pattern and the shortest repeating pattern of w. By re-
cursively applying Proposition 6, we end up with a finite sequence of symbols
a1, ...,an, two finite sequences of natural numbers k1, ...,kn and p0, p1, ...,pn,
and two finite sequences of complexity optimal NCSSA A0, A1, ...,An and B0,
B1, ...,Bn such that

• p0 = |v|,

• for every 1 � i � n, ki pi < 2|u| + 2|v|,

• for every 0 � i � n, Ai ∈ F (pi),

• B0 = AppendRepetition(A0, ω, Aε),

• for every 1 � i � n, Bi is either the NCSSA AppendChar(ai, Bi−1) or
the NCSSA AppendRepetition(Ai, ki, Bi−1),

• Bn recognizes the ultimately periodic word w.

It is easy to see that ‖Bi‖ > i+1 for all 0 � i � n. Thus, we have n < |u|+ |v|

(otherwise, Bn would not be complexity optimal). This proves that Bn belongs
to the set U

(
|u| + |v| − 1, 2|u| + 2|v| − 1, |v|

)
. �

On the basis of the above results, we can devise a polynomial-time procedure
(see Algorithm 2.12) that solves the complexity optimization problem for ul-
timately periodic words. Such a procedure receives as input an ultimately
periodic word w, which is represented by a pair (u, v), with u and v being,
respectively, the shortest initial pattern and the shortest repeating pattern
of w, and it returns as output a decomposable complexity optimal NCSSA
that recognizes w. Similarly to the case of finite words, Algorithm 2.12 runs
in time Θ

(
(|u| + |v|)3

)
and uses the following data structures and auxiliary

procedures:

• a matrix P, where each entry P(i, j), with 1 � i � j � 3|u|+3|v|−2, stores
the minimum period of the substring w[i, j] of w;

• a matrix A, where each entry A(i, j), with 1 � i � j � 3|u| + 3|v| − 2,
stores the generated complexity optimal NCSSA recognizing the substring
w[i, j] of w; (these automata can computed in time Θ

(
(|u|+ |v|)3

)
by using

Algorithm 2.11);

• an array B, where each entry B(i), with 1 � i � |u| + |v|, stores the
generated complexity optimal NCSSA recognizing the suffix w[i, ω[of w

(for convenience, each entry B(i), with 1 � i � |u|, is initialized with a
dummy NCSSA A∞ of sufficiently high complexity);

50 2 Word Automata and Time Granularities

• a procedure Normalize, which receives as input the initial pattern u,
the repeating pattern v, and a position i of the ultimately periodic word
w = uvω and it returns as output either the value i or the value

(
(i −

|u| − 1) mod |v|
)

+ |u| + 1, depending on whether i � |u| or i > |u| (note
that in both cases we have w(i) = w(Normalize(u, v, i)));

• a procedure BestComplexity, which receives a tuple of NCSSA as input
and returns the one having the minimum complexity as output.

Moreover, some heuristics can be introduced in order to significantly improve
the performance of the optimization algorithm. As an example, one can exit
the outer loop 2.12a on n if the array B has not changed within an iteration.

Algorithm 2.12. ComplexityOptimal-InfiniteCase(u, v)

w ← (uvω) [1, 3|u| + 3|v| − 2]

for each 1 � i � j � 3|u| + 3|v| − 2

let

{
P(i, j) = minimum period of w[i, j]

A(i, j) = complexity optimal NCSSA recognizing w[i, j]

for each 1 � i � |u|

do B(i) ← A∞

for each |u| + 1 � i � |u| + |v|

do B(i) ← AppendRepetition(A(i, i + |v| − 1), ω, Aε)

for each 1 � n � |u| + |v| − 1 and 1 � i � |u| + |v| (2.12a)

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ′ ← Normalize(u, v, i + 1)

C0 ← AppendChar(w(i), B(i ′))

for each 1 � r � 2|u| + 2|v| − 1

do

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q ← P(i, i + r − 1)

i ′ ← Normalize(u, v, i + r)

Cr ← AppendRepetition

⎛
⎜⎝

A(i, i + q − 1),

r/q,

B(i ′)

⎞
⎟⎠

B(i) ← BestComplexity(B(i), C0, C1, ...,C2|u|+2|v|−1)

return B(1)

Computing State Optimal NCSSA

We now adapt the results we obtained for complexity optimal NCSSA to state
optimal ones. Unfortunately, we do not have an analogous of Proposition 4
for state optimal NCSSA. This basically means that, given a (finite or ulti-
mately periodic) word w, we are able to compute an NCSSA which is state
optimal among all equivalent decomposable NCSSA, but it may not be state
optimal among all equivalent (non-decomposable) NCSSA. From now on, we

2.3 Compact and Tractable Representations 51

tacitly assume that state optimality is evaluated over the restricted subclass
of decomposable NCSSA.

In the sequel, we proceed by analogy with the case of complexity optimal
NCSSA (some complications arise since we must take into account also non-
minimal periods of substrings).

Proposition 8. For every non-empty finite word w, at least one of the fol-
lowing conditions holds:

1. for every state optimal NCSSA B that recognizes the suffix w[2, |w|] of w,
AppendChar(w(1), B) is a state optimal NCSSA that recognizes w;

2. there exists a position 1 � r � |w| such that, for every state optimal NC-
SSA B that recognizes the prefix w[1, q] of w, where q is a period of w[1, r]
(not necessarily the minimum one), and for every state optimal NCSSA C

that recognizes the suffix w[r+1, |w|] of w, AppendRepetition(B, r/q, C)

is a state optimal NCSSA that recognizes w.

Proof. Let A ′ be a (decomposable) state optimal NCSSA recognizing w. We
prove the claim by exploiting induction on the decomposition structure of A ′.
We only consider the non-trivial cases.

1. Suppose that A ′ = AppendChar(w(1), B ′). Let B be a state optimal
NCSSA that recognizes the suffix w[2, |w|] of w. Since B is a state optimal
NCSSA equivalent to B ′, we have

n
(
AppendChar(w(1), B)

)
= 1 + n

(
B
)

� 1 + n
(
B ′

)

= n
(
AppendChar(w(1), B ′)

)

= n
(
A ′

)
.

This shows that AppendChar(w(1), B) is a state optimal NCSSA that
recognizes w.

2. Suppose A ′ = AppendRepetition(B ′, k, C ′). Let B be a state optimal
NCSSA equivalent to B ′ and let C be a state optimal NCSSA equivalent
to C ′. Clearly, we have n(B) � n(B ′) and n(C) � n(C ′) and hence

n
(
AppendRepetition(B, r/q, C)

)
= 1 + n

(
B
)

+ n
(
C
)

� 1 + n
(
B ′

)
+ n

(
C ′

)

= n
(
AppendRepetition(B ′, k, C ′)

)

= n
(
A ′

)
.

This shows that AppendRepetition(B, r/q, C) is a state optimal NCSSA
that recognizes w. �

Algorithm 2.13 below describes a polynomial-time procedure that solves the
state optimization problem for (decomposable) NCSSA recognizing finite

52 2 Word Automata and Time Granularities

Algorithm 2.13. StateOptimal-FiniteCase(w)

procedure BestPeriod(P, A, i, j)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p ← P(i, j)
k ← 1

for each 2 � h �
j−i+1

p

do

{
if A(i, i + h p − 1) has fewer states than A(i, i + k p − 1)

then k ← h

return k p

for each 1 � i � j � |w|

let P(i, j) = minimum period of w[i, j]

for each 1 � i � |w|

do A(i + 1, i) ← Aε

for n ← 1 to |w| and for each 1 � i � |w| − n + 1

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ← i + n − 1
Q(i, j) ← BestPeriod(P, A, i, j)

B0 ← AppendChar(w(i), A(i + 1, j))

for each 1 � r � n

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q ← Q(i, i + r − 1)

Br ← AppendRepetition

⎛
⎜⎝

A(i, i + q − 1),

r/q,

A(i + r, j)

⎞
⎟⎠

A(i, j) ← BestStatesNum(B0, B1, ...,Bn)

return A(1, n)

words. Such a procedure receives as input a finite word w and it returns as
output a state optimal NCSSA (among all equivalent decomposable NCSSA)
that recognizes w. It uses the following data structures and auxiliary proce-
dures:

• a matrix P, where each entry P(i, j), with 1 � i � j � |w|, stores the
minimum period of the substring w[i, j] of w;

• a matrix A, where each entry A(i, j), with 1 � i � j � |w|, stores the
generated state optimal NCSSA recognizing the substring w[i, j] of w;
(for convenience, for every 1 � i � |w|, the entry A(i + 1, i) stores the
empty NCSSA Aε);

• a matrix Q, where each entry Q(i, j), with 1 � i � j � |w|, stores a
(possibly non-minimal) period q of the substring w[i, j] such that any
state optimal NCSSA recognizing w[i, i + q − 1] turns out to have the
minimum number of states among all NCSSA recognizing repeating pat-
terns of w[i, j] (each entry Q(i, j) is computed by an auxiliary procedure

2.3 Compact and Tractable Representations 53

BestPeriod which only accesses the minimum period P(i, j) and some
entries of A of the form A(i, j ′), with i � j ′ < j);

• a procedure BestStatesNum, which receives a tuple of NCSSA as input
and returns the one having the minimum number of states as output.

It is easy to see that the described optimization algorithm can be executed in
time Θ

(
|w|

3
)
.

Proposition 9. For every ultimately periodic word w with shortest initial
pattern u and shortest (primitive) repeating pattern v, at least one of the
following conditions holds:

1. for every state optimal NCSSA B that recognizes the suffix w[2, ω[of w,
AppendChar(w(1), B) is a state optimal NCSSA that recognizes w;

2. u is the empty word and there is a positive natural number k such that
for every state optimal NCSSA B that recognizes the repeating pattern vk,
AppendRepetition(B, ω) is a state optimal NCSSA that recognizes w;

3. there exists a position 1 � r < 2|u| + 2|v| such that, for every state opti-
mal NCSSA B that recognizes the prefix w[1, q] of w, where q is a period
of w[1, r], and for every state optimal NCSSA C that recognizes the suf-
fix w[r + 1, ω[of w, AppendRepetition(B, r/q, C) is a state optimal
NCSSA that recognizes w.

Proof. Let A ′ be a (decomposable) state optimal NCSSA recognizing w. We
prove the claim by exploiting induction on the decomposition structure of A ′.
We only consider the most difficult case, namely, A ′=AppendRepetition(B ′,
k, C ′), with k > 1 (it is immediate to see that k cannot be equal to 1 in a state
optimal NCSSA). First of all, we can replace B ′ and C ′ by equivalent state op-
timal NCSSA B and C, respectively. Let z be the finite word recognized by B

and let r = k |u|. We have to show that r < 2|u| + 2|v|. This can be proved
by contradiction assuming that r � 2|u| + 2|v| and considering the substring
x = w[|u|+1, r] of w, which has partial periods |v| and |z|. The rest of the proof
goes on as the proof of Proposition 6 and thus is omitted. �

Now, given a natural number n, we denote by F (n) the set of all decomposable
NCSSA that recognize finite words of length exactly n. Moreover, for every
natural number m and every positive natural number t, we recursively define
the set F ′(m, t) as follows:

F ′(0, t) =
{
Aε

}

F ′(m + 1, t) = F ′(n, r)

∪
{
AppendChar(a, B) : a ∈ A, B ∈ F (m, t)

}

∪

⎧
⎨

⎩
AppendRepetition(A, k, B) :

k,p ∈ N, k p � t,
A ∈ F (p),
B ∈ F ′(m, t)

⎫
⎬

⎭
.

54 2 Word Automata and Time Granularities

Finally, for every pair of natural numbers n, m and every pair of positive
natural numbers r, t, we recursively define the set U ′(n, r, m, t) as follows:

U ′(0, r, m, t) =
{
AppendRepetition(B, ω, Aε) : B ∈ F ′(m, t)

}

U ′(n + 1, r, m, t) = U ′(n, r, m, t)

∪
{
AppendChar(a, C) : a ∈ A, C ∈ U ′(n, r, m, t)

}

∪

⎧
⎨

⎩
AppendRepetition(A, k, C) :

k,p ∈ N, k p � r,
A ∈ F (p),
C ∈ U ′(n, r, m, t)

⎫
⎬

⎭
.

As proved by the following proposition, we can assume the parameters
m, t, n, r to be bounded by suitable functions linear in the lengths of the
initial and repeating patterns of the given ultimately periodic word.

Proposition 10. For every ultimately periodic word w with shortest initial
pattern u and shortest repeating pattern v, there is a complexity optimal NC-
SSA that recognizes w and belongs to the set U

(
|u| + |v| − 1, 2|u| + 2|v| −

1, |v|, 2|v| − 1
)
.

Proof. Let w be an ultimately periodic word and let u and v be, respectively,
the shortest initial pattern and the shortest repeating pattern of w. We first
prove the upper bounds for the first two parameters, that is, n and r. By
recursively applying Proposition 9, we end up with a finite sequence of sym-
bols a1, ...,an, some finite sequences of natural numbers m, t, k1, ...,kn, and
p1, ...,pn, and some finite sequences of state optimal NCSSA B, A1, ...,An,and
C0, C1, ...,Cn such that

• B ∈ F ′(m, t),

• for every 1 � i � n, ki pi < 2|u| + 2|v|,

• for every 1 � i � n, Ai ∈ F (pi),

• C0 = AppendRepetition(B, ω, Aε),

• for every 1 � i � n, Ci is either the NCSSA AppendChar(ai, Ci−1) or
the NCSSA AppendRepetition(Ai, ki, Ci−1),

• Cn recognizes the ultimately periodic word w.

It is easy to see that, for every 0 � i � n, the NCSSA Ci contains more than
i + 1 states. Thus, we have n < |u| + |v| (otherwise, Cn would not be state
optimal). This proves that Cn belongs to the set U ′

(
|u| + |v| − 1, 2|u| + 2|v| −

1, m, t
)
.

To prove the upper bound for the parameter m, we consider the NC-
SSA B, which belongs to the set F ′(m, t) and has the minimum number
of states among all decomposable NCSSA that recognize repeating patterns
of w the form vk, with k > 0. By Proposition 8, there exist a finite sequence

2.3 Compact and Tractable Representations 55

of symbols a ′
1, ...,a

′
m, two finite sequences of natural numbers k ′

1, ...,k
′
m and

p ′
1, ...,p

′
m, and two finite sequences of state optimal NCSSA A ′

1, ...,A
′
m and

B ′
0, B

′
1, ...,B

′
m such that

• for every 1 � i � n, A ′
i ∈ F (p ′

i),

• B ′
0 is the empty NCSSA Aε,

• for every 1 � i � n, B ′
i is either the NCSSA AppendChar(a ′

i, B
′
i−1) or

the NCSSA AppendRepetition(A ′
i, k

′
i, B

′
i−1),

• B ′
m is the NCSSA B.

Using an argument similar to the one we used to establish the bound n <

|u| + |v|, one can prove that m � |v|.
It remains to prove that t < 2|v|, namely, that for every index 1 � i � n,

B ′
i = AppendRepetition(A ′

i, k
′
i, B

′
i−1) implies k ′

i p ′
i < 2|v|. Suppose, by

way of contradiction, that there is an index 1 � i � n such that B ′
i =

AppendRepetition(A ′
i, k

′
i, B

′
i−1) and k ′

i p ′
i � 2|v|. Furthermore, let xi the

word recognized by A ′
i, let yi = x

k′
i

i , and let zi−1 be the word recognized
by B ′

i−1. First of all, one observes that k ′
i � 2 (otherwise, yi zi−1 = xi zi−1

would follow and B ′
i would not be a size-optimal NCSSA). We thus have

|yi| = k ′
i |xi| � max

(
2 |xi|, 2 |v|

)
� |xi| + |v|.

Moreover, both p ′
i and |v| are partial periods of yi. We can thus apply Lemma

1 and obtain that qi = gcd
(
p ′

i, |v|
)

is a partial period of yi as well. Let us now
consider the prefix zi = yi[1, |v|] of yi. It has length equal to |v| and partial
period qi. By construction, qi divides |v| and hence qi is an exact period of zi.
However, from the fact that v is primitive, we know that qi = |v|. Similarly,

qi divides p ′
i and hence both words xi and yi (= x

k′
i

i) are repetitions of
v. This basically shows that the NCSSA B (= B ′

m), which recognizes the
repeating pattern vk of w, can be replaced by a decomposable NCSSA B ′,
which has fewer states and recognizes the repeating pattern vk−k′

i+1 of w. This
contradicts the hypothesis that Cn is a state optimal NCSSA recognizing w.
We thus conclude that Bm belongs to the set F ′(|v|, 2|v| − 1) and hence Cn

belongs to the set U ′(|u| + |v| − 1, 2|u| + 2|v| − 1, |v|, 2|v| − 1). �

Putting all the above results together, we can devise a polynomial-time pro-
cedure (see Algorithm 2.14) that solves the state optimization problem. Such
a procedure receives as input an ultimately periodic word w, which is repre-
sented by a pair (u, v), with u and v being, respectively, the shortest initial
pattern and the shortest repeating pattern of w, and it returns as output a
decomposable NCSSA which recognizes w and which is state optimal (among
all equivalent decomposable NCSSA). It uses the same data structures and
auxiliary procedures of Algorithm 2.13, plus the following ones:

56 2 Word Automata and Time Granularities

• a matrix B, where each entry B(i, j), with |u| + 1 � i, j � |u| + |v|, stores
an NCSSA which recognizes a non-empty substring of the form w[i, j +

h |v|], with h � 0, and having the minimum number of states among all
decomposable NCSSA recognizing non-empty substrings of the same form
namely, w[i, j + h ′ |v|], with h ′ � 0;

• an array C, where each entry C(i), with 1 � i � |u| + |v|, stores the
generated complexity optimal NCSSA recognizing the suffix w[i, ω[of w;
(for convenience, each entry C(i), with 1 � i � |u|, is initialized with a
dummy NCSSA A∞ having a sufficiently large number of states);

• a procedure Normalize, which receives as input the initial pattern u,
the repeating pattern v, and a position i of the ultimately periodic word
w = uvω and it returns as output either the value i or the value

(
(i −

|u| − 1) mod |v|
)

+ |u| + 1, depending on whether i � |u| or i > |u|.

It is easy to see that the described optimization algorithm can be executed in
time Θ

(
(|u| + |v|)3

)
.

Algorithm 2.14. StateOptimal-InfiniteCase(w)

w ← (uvω) [1, 3|u| + 3|v| − 2]

for each 1 � i � j � 3|u| + 3|v| − 2

let

⎧
⎨

⎩

P(i, j) = minimum period of w[i, j]

A(i, j) = complexity optimal NCSSA recognizing w[i, j]

Q(i, j) = best period of w[i, j]

for each |u| + 1 � i � j � |u| + |v|

do B(i, j) ← A(i, j)

for each |u| + 1 � j < i � |u| + |v|

do B(i, j) ← A(i, |v| + j)

for each 1 � n|v| − 1 and |u| + 1 � i, j � |u| + |v|

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ′ ← Normalize(u, v, i + 1)

D0 ← AppendChar(w(i), B(i ′, j))

for each 1 � r � 2|v| − 1

do

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q ← Q(i, i + r − 1)

i ′ ← Normalize(u, v, i + r)

Dr ← AppendRepetition

⎛
⎜⎝

A(i, i + q − 1),

r/q,

B(i ′, j)

⎞
⎟⎠

B(i, j) ← BestStatesNum(B(i, j), D0, D1, ...,D2|v|−1)

(continues on next page)

2.4 Reasoning on Sets of Granularities 57

Algorithm 2.14 (continued)

for each 1 � i � |u|

do C(i) ← A∞

for each |u| + 1 � i � |u| + |v|

do

{
j ← Normalize(u, v, i + |v| − 1)

C(i) ← AppendRepetition(B(i, j), ω, Aε)

for each 1 � n � |u| + |v| − 1 and 1 � i � |u| + |v|

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ′ ← Normalize(u, v, i + 1)

D0 ← AppendChar(w(i), C(i ′))

for each 1 � r � 2|u| + 2|v| − 1

do

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q ← Q(i, i + r − 1)

i ′ ← Normalize(u, v, i + r)

Dr ← AppendRepetition

⎛
⎜⎝

A(i, i + q − 1),

r/q,

C(i ′)

⎞
⎟⎠

C(i) ← BestStatesNum(C(i), D0, D1, ...,D2|u|+2|v|−1)

return C(1)

2.4 Reasoning on Sets of Granularities

In the previous sections, we showed how to exploit various classes of single-
string automata, that is, SSA, RCSSA, and NCSSA, to provide compact and
tractable representations of single time granularities. Things become more in-
volved when we consider sets of time granularities instead of single time gran-
ularities. In this section, we extend the automaton-based approach to make it
possible to deal with (possibly infinite) sets of time granularities. To this end,
we identify a proper subclass of Büchi automata, called Ultimately Periodic
Automata, which captures rational ω-languages consisting of ultimately pe-
riodic words only. Ultimately Periodic Automata allow one to encode single
time granularities, (possibly infinite) sets of time granularities that feature the
same repeating pattern, but different prefixes, and sets of time granularities
characterized by a finite set of non-equivalent repeating patterns (a formal
notion of equivalence for repeating patterns will be given in the sequel), as
well as any possible combination of them.

2.4.1 Languages of Ultimately Periodic Words

In this section, we study some fundamental properties of rational ω-languages,
that is, languages of infinite words recognized by Büchi automata, consisting
of ultimately periodic words only. We first recall some fundamental results
about rational ω-languages (for basic definitions and notations about rational
ω-languages, we refer the reader to Section 2.1.3).

58 2 Word Automata and Time Granularities

Proposition 11 (Büchi [2]). The class of rational ω-languages is effec-
tively closed under union, intersection, and complementation, namely, given
two Büchi automata A and B, one can compute a Büchi automaton A ∪ B

(resp., A ∩ B, Ā) that recognizes the ω-language L ω(A) ∪ L ω(B) (resp.,
L ω(A) ∩ L ω(B), Aω \ L ω(A)).

Proposition 12 (Büchi [2]). An ω-language L is rational iff it is a finite
union of sets of the form UVω, where U and V are rational languages of finite
words.

Hereafter, we denote by UA the universal ω-language that consists of all and
only the ultimately periodic words over A. Moreover, given an ω-language
L ⊆ Aω, we denote by UP(L) the ω-language L∩UA, which consists of all and
only the ultimately periodic words that belong to L. Clearly, an ω-language
L consists only of ultimately periodic words if and only if L = UP(L).

Proposition 13 (Büchi [2], Calbrix et al. [8]). Every non-empty rational
ω-language contains at least one ultimately periodic word. Moreover, if L1 and
L2 are two rational ω-languages, then L1 = L2 iff UP(L1) = UP(L2).

Proof. As for the first claim, by Proposition 12, any rational ω-language L

can be written as
⋃

1�i�n Ui Vω
i , with ε �∈ Vi for every 1 � i � n. Since L

is not empty, there exists an index 1 � i � n such that both Ui and Vi are
not empty. Therefore, L must contain an ultimately periodic word of the form
w = uvω, with u ∈ Ui and v ∈ Vi.

As for the second claim, let L1 and L2 be two rational ω-languages contain-
ing the same ultimately periodic words. The left-to-right implication is trivial.
For the converse implication, we know, from closure properties of rational ω-
languages (see Proposition 11), that (L1\L2)∪(L2\L1) is a rational ω-language,
which contains no ultimately periodic words. Thus (L1\L2)∪(L2 \L1) is empty
and L1 = L2 follows. �

In the following, we provide a characterization of rational ω-languages of
ultimately periodic words only, in analogy with that of Proposition 12.

To start with, we point out that there exist non-rational ω-languages con-
sisting of ultimately periodic words only: for instance, since Aω is a rational
ω-language, UP(UA) = UP(Aω), and UA �= Aω, then, by Proposition 13,
UA cannot be a rational ω-language.

Proposition 14. The following closure properties hold:

i) if v is a non-empty finite word, {v}
ω is a rational ω-language consisting

of a single ultimately periodic word;

ii) if U is a rational language and V is a rational ω-language of ultimately
periodic words, then UV is a rational ω-language of ultimately periodic
words;

iii) if L1 and L2 are rational ω-languages of ultimately periodic words, then
L1 ∪L2 and L1 ∩L2 are rational ω-languages of ultimately periodic words.

2.4 Reasoning on Sets of Granularities 59

Proof. The claim immediately follows from closure properties of rational ω-
languages, since the above operations do not introduce words which are not
ultimately periodic. �

As for the complementation of an ω-language of ultimately periodic words,
it must be obviously defined with respect to the universe UA, that is, the
complement of L ∈ UA is L̄ = UA \ L. Notice that there is no guarantee that
L̄ is rational whenever L is rational.

Proposition 15. Rational ω-languages of ultimately periodic words are not
closed under complementation.

Proof. A counterexample is given by the empty set: it trivially is a ra-
tional ω-language of ultimately periodic words, but its complement is the
universal ω-language UA, which is not rational. In fact, the complement of
any rational ω-language L of ultimately periodic words is not rational, since
UA = L ∪ L̄. �

Given an ultimately periodic word w = uvω, the set of its repeating patterns
is clearly infinite and it contains, among others, the finite words v, v2, v3, ...
To group together the different repeating patterns of an ultimately periodic
word, we define a suitable equivalence relation. Such an equivalence will play
an essential role in the characterization of rational ω-languages of ultimately
periodic words we are going to provide.

Definition 9. Let ≈ ⊆ A∗ × A∗ be an equivalence relation such that u ≈ v

iff the two infinite periodic words uω and vω share a common suffix, namely,
there exist x, y ∈ A∗ and z ∈ Aω such that uω = x z and vω = y z.

Notice that in Definition 9 one can always assume either x or y to be ε.
It can be easily checked that all repeating patterns of a given ultimately

periodic word w are equivalent. Moreover, they can be obtained by choos-
ing different repetitions and/or different rotations2 of the primitive repeat-
ing pattern of w, namely, the shortest substring w[i, j] of w such that (i)
w = w[1, i − 1] (w[i, j])ω and (ii) either i = 1 or w(j) �= w(i − 1). Conversely,
if v is a repeating pattern of an ultimately periodic word w and v ′ is equivalent
to v, then v ′ is also a repeating pattern of w.

Given an ω-language L and a finite word v, we say that L features v as a
repeating pattern if L contains an ultimately periodic word w having v as a
repeating pattern; moreover, if v belongs to a language of the form V+, with
V ⊆ A∗, then we say that v is a V-aligned repeating pattern.

Below, we prove some fundamental properties of ω-languages of the form
Vω, where V ⊆ A∗, with respect to the repeating patterns they feature.

Lemma 6. Given a language V, for every repeating pattern v featured by Vω,
there exists an equivalent V-aligned repeating pattern z featured by Vω.

2 A word v ′ is said to be a rotation of a word v if there exist two possibly empty
words x, y such that v = x y and v ′ = y x.

60 2 Word Automata and Time Granularities

Proof. Let v be a repeating pattern featured by Vω. By definition, Vω con-
tains an infinite word w = u1 u2 u3 ..., with ui ∈ V for all i � 0, which is
ultimately periodic with v as a repeating pattern. Thus, w can be written as
uvω, where u is a suitable finite word. Let i0 be a sufficiently large index such
that u turns out to be a prefix of u1 u2 ... ui0 (or, equivalently, ui0+1 ui0+2 ...
turns out to be a suffix of vω). Moreover, let f be the function that maps any
natural number i � i0 to the value

f(i) =
(
|u1 u2 ... ui| − |u|

)
mod |v|.

Since the image of f is finite, by the Pigeonhole Principle there exist two
indices i, i ′, with i0 � i < i ′, such that f(i) = f(i ′). By definition of f, we
have that the length of the substring z = ui+1 ... ui′ of w is a multiple of |v|.
Since i � i0, z is also a substring of vω, which implies that (i) z is a repeating
pattern equivalent to v and (ii) z ∈ V+. �

Proposition 16. Given a language V, if Vω is non-empty and it features
only equivalent repeating patterns, then Vω = {v}

ω for a suitable non-empty
finite word v.

Proof. Suppose that Vω is a non-empty ω-language featuring only equivalent
repeating patterns. Let v1, v2, v3, ... be all and only the V-aligned repeating
patterns featured by Vω.

We first prove that, for every pair of indices i, j > 0, vω
i = vω

j . Let i, j > 0
be two generic indices and let qi and qj be two positive natural numbers such
that qi|vi| = qj|vj|. We define v ′

i = v
qi

i and v ′
j = v

qj

j . By hypothesis, we have
vi ≈ vj, from which v ′

i ≈ v ′
j follows. Below, we prove that v ′

i and v ′
j coincide.

Since v ′
i ≈ v ′

j and |v ′
i| = |v ′

j|, v ′
i must be a rotation of v ′

j, namely, there exist
two finite words x and y such that v ′

i = x y and v ′
j = yx. Since both v ′

i and
v ′

j belong to V+, we have that v ′
i,j = v ′

i v ′
j belongs to V+ and thus it is a

repeating pattern for Vω. Hence, by hypothesis, v ′
i,j ≈ v ′

i. This implies that
v ′

i,j (= x yyx) is a rotation of v ′
iv

′
i (= x y x y) and hence there is a suitable

(possibly empty) word z such that (z) (x yyx) is a prefix of (x y) (x y) (x y).
Now, let us denote by u the primitive repeating pattern of x y. Since (z) (x y)

is a prefix of (x y) (x y) (x y), we have that either z = ε or zω = (x y)ω. From
the minimality of u, it follows that z = up for some p � 0. Therefore, since
(z x y) (yx) is also a prefix of (x y) (x y) (x y), |z x y| is a multiple of |u|, and
|yx| = |x y|, we have that yx = uq (= x y) for some q > 0. This allows us to
conclude that, for every pair of indices i, j > 0, v ′

i (= x y) = v ′
j (= yx) and

hence vω
i = vω

j .
Now, let v be the shortest repeating pattern of the infinite periodic word

vω
i , where i > 0 is an arbitrary index (v does not depend on i). We have that

Vω = {v}
ω. �

Proposition 17. Given a language V, if Vω features at least two repeating
patterns which are not equivalent, then Vω contains an infinite word which is
not ultimately periodic.

2.4 Reasoning on Sets of Granularities 61

Proof. Let Vω be an ω-language featuring two non-equivalent repeating pat-
terns u and v. By Lemma 6, there exist two V-aligned repeating patterns
u′, v ′ ∈ V+ such that u′ ≈ u and v ′v. For every i > 0, we denote by zi the
finite word (u′)i (v ′)i and we define the infinite word w = z1 z2 Clearly,
zi ∈ V+ holds for all i > 0 and hence w belongs to Vω. It remains to show
that w is not an ultimately periodic word. Suppose, by way of contradiction,
that w is an ultimately periodic word having z ′ as repeating pattern. By con-
struction, there exists an index i such that (u′)|z′| is a substring of zi and
thus of w. Since z ′ is a repeating pattern of w and |(u′)|z′|| is a multiple
of |z ′|, we have that (u′)|z′| is a repetition of some rotation of z ′ and hence
u′ ≈ z ′. In a similar way, we can show that v ′ ≈ z ′. By transitivity, we have
u′ ≈ v ′ and thus u ≈ v, which is against the hypothesis of u and v being two
non-equivalent repeating patterns. �

Proposition 18. Given a language V, exactly one of the following conditions
holds:

1. Vω features only equivalent repeating patterns;

2. Vω features infinitely many non-equivalent repeating patterns.

Proof. Let us assume that Vω features at least two non-equivalent repeating
patterns u and v. By Lemma 6, Vω features two V-aligned repeating patterns
u′ and v ′, with u′ ≈ u and v ′ ≈ v. Moreover, since ≈ is an equivalence
relation and u �≈ v, we have u′ �≈ v ′. Now, let n = |u′| + |v ′| and, for every
i > 0, pi = ni−1 and zi = (u′)pi (v ′)pi . Every word zi is clearly a V-aligned
repeating pattern featured by Vω. We prove that the words zi are pairwise
non-equivalent, that is, zi �≈ zj for every pair of distinct indices i, j > 0.

Suppose, by way of contradiction, that there exist two indices 0 < i < j

such that zi ≈ zj. By definition of ≈, there exists an infinite periodic word w

that features both zi and zj (= (u′)pj (v ′)pj) as repeating patterns. Moreover,
since i < j, we have that pj (= nj−1) is a multiple of |zi| (= ni), which implies
that (u′)pj is a rotation of some repetition of zi. This shows that u′ ≈ zi. A
similar argument shows that v ′ ≈ zi. Thus, by transitivity, we obtain u′ ≈ v ′,
which contradicts the hypothesis of u′ and v ′ being non-equivalent repeating
patterns. �

The following theorem shows how the above characterization results can be
easily generalized to the whole class of rational ω-languages consisting of
ultimately periodic words only.

Theorem 1. Given a rational ω-language L, the following conditions are
equivalent:

i) L consists of ultimately periodic words only;

ii) L features only finitely many non-equivalent repeating patterns;

iii) L is a finite union of ω-languages of the form U {v}
ω, where U is a rational

language and v is a non-empty finite word.

62 2 Word Automata and Time Granularities

Proof. We first prove the implication from i) to ii) by contraposition. Let
L be a rational ω-language. We can write L as a finite union of the form⋃

1�i�n Ui Vω
i . If L features infinitely many non-equivalent repeating pat-

terns, then there exists an index 1 � i � n such that Ui Vω
i (and hence Vω

i)
features at least two non-equivalent repeating patterns. Thus, by Proposition
17, it would follow that Vω

i (and hence L) contains an infinite word which is
not ultimately periodic.

As for the implication from ii) to iii), let L be a rational ω-language featur-
ing only finitely many non-equivalent repeating patterns. By Proposition 12,
we can write L as a finite union of the form

⋃
1�i�n Ui Vω

i . Moreover, from
Proposition 18, it follows that each ω-language Vω

i features only equivalent
repeating patterns (otherwise, L would feature infinitely many non-equivalent
repeating patterns). Then, by exploiting Proposition 16, we can write each
ω-language Vω

i as {vi}
ω, where vi is a suitable non-empty finite word. As a

consequence, L can be written as a finite union of the form
⋃

1�i�n Ui {vi}
ω.

The last implication from iii) to i) is trivial. �

2.4.2 Ultimately Periodic Automata

In this section, we provide an automata counterpart to rational ω-languages
of ultimately periodic words. Theorem 1 basically states that these languages
model sets of ultimately periodic words with possibly infinitely many ini-
tial patterns, but only a finite number of non-equivalent repeating patterns.
Moreover, it yields a straightforward definition of a restricted class of Büchi
automata that captures exactly the rational ω-languages of ultimately peri-
odic words. As a matter of fact, an alternative view of such a class of automata
is also possible: they can be seen as a natural extension of non-deterministic
finite-state automata (NFA for short), where final states actually recognize
infinite words of the form vω. This alternative view will clearly show up in
the definition of prefix automaton given in Section 2.4.2.

As a preliminary step, we introduce the notion of strongly connected com-
ponent of a state of an automaton A = (A, S, ∆, I, F). Let us view A as a
finite labeled graph. The strongly connected component of a state s ∈ S is the
subgraph of A induced by the maximal set of states Ms that are reachable
from s and from which s is reachable, that is, Ms consists of all and only the
states s ′ in S such that both (s, s ′) and (s ′, s) belong to ∆∗. A state s ∈ S is
called transient if (s, s) �∈ ∆+ (notice that it immediately follows that a tran-
sient state does not belong to any loop of A). Let us consider the following
subclass of Büchi automata (for the sake of simplicity, we assume every state
of the automaton to be reachable from any initial state).

Definition 10. An ultimately periodic automaton (UPA for short) is a
Büchi automaton A = (A, S, ∆, I, F) such that, for every final state s ∈ F,

2.4 Reasoning on Sets of Granularities 63

s0 s1 s2 s3

�

� ◭

�

�

�

s0

s3 s4 s5

s1 s2

�

�

� ◭

�

◭

�

Fig. 2.11. Two examples of UPA

either s is a transient state or the strongly connected component of s is a
simple loop3.

Notice that Definition 10 does not prevent non-transient final states from
having in-degree or out-degree greater than 1 in (the finite labeled graph
corresponding to) A.

Examples of UPA are given in Figure 2.11, with reference to the alphabet for
time granularity introduced in Section 2.2.1 which consists of the three sym-
bols �, �, and ◭. The UPA to the left recognizes the ω-language {�}

∗
{�◭}

ω

∪ {�}
∗
{�◭}

∗
{�}

ω while that to the right recognizes the ω-language {��◭}
ω

∪ {�◭}
ω. The former represents the (unanchored finite or infinite) granulari-

ties that group days two by two, while the latter represents the set consisting
of two infinite granularities that group days respectively two by two and three
by three.

By exploiting standard construction methods for Büchi automata, one
can easily show that UPA-recognizable languages are effectively closed un-
der unions, intersections with rational ω-languages, left-concatenations with
rational languages, generalized products, and homomorphisms (i.e., substitu-
tions of non-empty strings for symbols):

i) if L1 and L2 are two UPA-recognizable ω-languages, then L1 ∪ L2 is an
UPA-recognizable ω-language as well;

ii) if L1 is a rational ω-language and L2 is an UPA-recognizable ω-language,
then L1 ∩ L2 is an UPA-recognizable ω-language as well;

iii) if L1 and L2 are two UPA-recognizable ω-languages, then the ω-language
L1 × L2 =

{
w : ∃ u ∈ L1. ∃ v ∈ L2. ∀ i > 0. w(i) =

(
u(i), v(i)

)}
is UPA-

recognizable as well;

iv) if L1 is a rational language and L2 is an UPA-recognizable ω-language,
then L1L2 is an UPA-recognizable ω-language as well;

v) if L is an UPA-recognizable ω-language and τ is a function from A to
A+, then the ω-language τ(L) =

{
τ(a1) τ(a2) ... : a1 a2 ... ∈ L

}
is an

UPA-recognizable ω-language as well.

3 A strongly connected component is said to be a simple loop if and only if all its
vertices have both in-degree and out-degree equal to 1.

64 2 Word Automata and Time Granularities

In addition, it is easy to see that UPA satisfy a weak form of closure un-
der ω-exponentiation, namely, for every non-empty finite word v, there ex-
ists an UPA recognizing the singleton ω-language {v}

ω. On the other hand,
UPA-recognizable languages are not closed under complementation: this is an
immediate consequence of Proposition 15 and Theorem 2 below, which char-
acterizes UPA-recognizable languages. Moreover, the deterministic versions
of UPA are strictly less expressive than the non-deterministic ones: as it is
well-known, the UPA-recognizable ω-language {a, b}

∗
{b}

ω is not recognizable
by any deterministic Büchi automaton (and thus by any deterministic UPA).

We refer the reader to Section 2.5 for further details about UPA-recognizable
languages and their complements, as well as for a short survey of related classes
of word automata.

Theorem 2. UPA recognize exactly the rational ω-languages of ultimately
periodic words.

Proof. Let A = (A, S, ∆, I, F) be an UPA, w be an infinite word accepted by
A, and ρ be a successful run of A on w. We denote by s a final state of A that
occurs infinitely often in ρ. Clearly, s is not a transient state and hence, by
definition of UPA, its strongly connected component is a simple loop. Thus,
there is a unique infinite run ρ′ of A that starts from s and visits s infinitely
often. Such a run is a suffix of ρ of the form ρ′ =

(
ρ(i) ρ(i + 1) ...ρ(j − 1)

)ω
,

where i and j are the positions of two consecutive occurrences of s in ρ. This
proves that ρ, and hence w, are ultimately periodic sequences.

As for the converse implication, we have to show that, given a rational
ω-language L of ultimately periodic words, there is an UPA recognizing L.
By exploiting Theorem 1, we know that L =

⋃
1�i�n Ui {vi}

ω for a suitable
n, suitable rational languages U1, ...,Un, and suitable non-empty finite words
v1, ..., vn. Such a characterization implicitly defines the three basic operations
on UPA: the ω-exponentiation of a non-empty finite word, the concatenation
with a rational language, and the finite union. Thus, from closure properties
of UPA, it follows that there exists an UPA recognizing L. �

In the following subsections, we will introduce three normalized forms for
UPA, which we will respectively call normal form, prefix-friendly form, and
canonical form. We will prove that these normalized forms satisfy several
desirable properties (e.g., the canonical form is proved to be unique, up to
isomorphisms, among all equivalent UPA) and ease algorithmic manipulation.
We will also prove that normal and prefix-friendly forms can be computed at
low cost (precisely, the former can be computed in linear time and the latter
can be computed in quadratic time with respect to the input UPA).

A Normal Form for UPA

Given a loop C of an UPA A = (A, S, ∆, I, F), we say that C is a final loop
if it contains at least one final state. Moreover, we say that a final loop C

2.4 Reasoning on Sets of Granularities 65

encodes the repeating pattern v �= ε if and only if there is a run ρ of A on vω

that starts with a state s ∈ C. It is easy to see that a final loop C encodes
only equivalent repeating patterns and, conversely, if v and v ′ are equivalent
repeating patterns, then C encodes v iff C encodes v ′. Thus, given two final
loops C1 and C2, either C1 and C2 encode the same repeating patterns, or C1

and C2 encode repeating patterns which are pairwise non-equivalent.
Due to the peculiar structure of UPA, every successful run of an UPA con-

sists of a finite prefix followed by an infinite repetition of a final loop. In
particular, given a final loop C, the number and the positions of the final
states of C are irrelevant (C encodes the same set of repeating patterns, inde-
pendently from which states of C are chosen to be final). Similarly, marking a
transient state as final state has no effect, since in any run of the automaton
it occurs at most once. Finally, we can assume that no transitions exit from
final loops (if this were the case, we could simply duplicate the final loop and
let one copy of it to be final with no exiting transition and the other copy to
be non-final with some exiting transitions). Putting together the above ob-
servations, we can obtain a normal form for UPA, which forces final states to
coincide with the states of the final loops and forbids transitions exiting from
final loops.

Definition 11. An UPA A = (A, S, ∆, I, F) is said to be in normal form if
the following conditions hold:

• every final state is reachable from an initial state,

• every final state belongs to a (final) loop,

• every state in a final loop is final,

• there are no transitions exiting from final loops, namely, for every triple
(r, a, s) in ∆, r ∈ F implies s ∈ F.

By restricting to UPA in normal form, one can easily distinguish between
components recognizing initial patterns and components recognizing repeat-
ing patterns of ultimately periodic words (note that the former components
behave like NFA, while the latter ones behave like single-string automata [25]).
The following proposition proves that there is no loss of expressiveness if we
restrict ourselves to UPA in normal form.

Proposition 19. Given an UPA A, one can compute in time O(|A|) an equiv-
alent UPA B in normal form. Moreover, |B| is linear in |A|.

Proof. Let A = (A, S, ∆, I, F) and C1, ...,Ck be all and only the final loops
of A. By definition of UPA, C1, ...,Ck are disjoint subgraphs of S. For every
1 � i � k, we introduce a copy C̃i of each final loop Ci and, for every
state s of Ci, we denote by s̃ the corresponding state of C̃i. We then define
B = (A, S ′, ∆ ′, I ′, F ′) as follows:

• S ′ = S ∪
⋃

1�i�k

{
s̃ : s ∈ Ci

}
;

• ∆ ′ contains all triples of the form

66 2 Word Automata and Time Granularities

1. (r, a, s), with (r, a, s) ∈ ∆,

2. (r, a, s̃), with (r, a, s) ∈ ∆, r �∈ Ci, s ∈ Ci, and 1 � i � k,

3. (̃r, a, s̃), with (r, a, s) ∈ ∆, r, s ∈ Ci, and 1 � i � k;

• I ′ = I ∪
⋃

1�i�k

{
s̃ : s ∈ I, s ∈ Ci

}
;

• F ′ =
⋃

1�i�k

{
s̃ : s ∈ Ci

}
.

It can be easily checked that B is an UPA in normal form equivalent to A. �

On the grounds of Proposition 19, one can devise a simple linear-time algo-
rithm that receives a generic UPA as input and returns an equivalent UPA in
normal form as its output.

A Prefix-Friendly Form for UPA

In the following, we introduce an alternative way of representing rational ω-
languages of ultimately periodic words as NFA over an extended alphabet. By
definition, any UPA A = (A, S, ∆, I, F) in normal form contains only finitely
many (pairwise disjoint) final loops, say C1, ...,Ck. Hereafter, we denote by
AA an extended alphabet, which consists of symbols from A plus symbols of
the form (s, Ci), with 1 � i � k and s being a state of Ci. Intuitively, an
NFA representing A can be obtained by (i) adding a new global final state
f, (ii) removing every transition departing from a final state, and (iii) adding
a (s, Ci)-labeled transition from s to f for each state s belonging to the final
loop Ci.

Definition 12. Given an UPA A = (A, S, ∆, I, F) in normal form, we define
the prefix automaton of A as the NFA Apre = (AA, S ′, ∆ ′, I ′, F ′), where

• S ′ = S ∪ {f}, with f being a fresh state not belonging to S;

• ∆ ′ contains all triples of the form

1. (q, a, s), with (q, a, s) ∈ ∆, q ∈ S \ F, and s ∈ S,

2. (s, b, f), with b = (s, Ci), s ∈ Ci, and 1 � i � k;

• I ′ = I;

• F ′ = {f}.

As an example, Figure 2.12 depicts an UPA A in normal form, which recog-
nizes the language

{
�(◭◭)n◭��ω : n ∈ N

}
∪

{
�◭ω

}
, together with its pre-

fix automaton Apre , which recognizes the language
{
�(◭◭)n� b3 : n ∈ N

}
∪{

� b4

}
, where b3 = (s3, C3), b4 = (s4, C4), C3 is the final loop of s3, and C4

is the final loop of s4.
Notice that the prefix automaton Apre uniquely identifies the UPA A, that

is, one can obtain A from Apre by (i) marking as final all states in C1, ...,Ck,
(ii) adding the transitions of C1, ...,Ck, which can be recovered from the sym-
bols belonging to extended alphabet AA, and (ii) removing the global final

2.4 Reasoning on Sets of Granularities 67

s0

s4

s1 s2 s3

�

◭

�

◭

◭

�

�

s0

s4

s1 s2 s3

f

�

�

◭

◭

�
(s3,C3)

(s4,C4)

Fig. 2.12. An UPA in normal form and its prefix automaton

s0

s4

s1 s2

s3

�

◭

� ◭

◭

◭

�

s0

s4

s1 s2

s3

f
�

� ◭

◭

◭

(s3,C3)

(s4,C4)

Fig. 2.13. Equivalence of UPA does not transfer to their prefix automata

state f together with its entering transitions. This basically means that the
NFA Apre is nothing but an alternative representation of A.

For the sake of brevity, given two states r, s of A and a finite word u, we
write r

u
−−→ s whenever there exists a run of A on u that starts with r and

ends with s. Similarly, we write r
u

−⊚→ s (resp., r
u

−⊗→ s) whenever there

exists a run of A on u that starts with r, ends with s, and traverses at least
one final state of A (resp., no final states of A). It is easy to see that the prefix
automaton Apre recognizes the language

{
ub : ∃ 1 � i � k. ∃ s0 ∈ I. ∃ s ∈ Ci. b = (s, Ci), s0

u
−⊗→ s

}
,

which is called the prefix language of A.
The correspondence between UPA (in normal form) and prefix automata

does not lift directly to the language level: the prefix languages of two UPA
A and A ′ may be different even in the case in which L ω(A) = L ω(A ′). As
an example, Figure 2.13 depicts an UPA A ′, which is equivalent to the UPA
of Figure 2.12, and its prefix automaton A ′

pre , which is not equivalent to the
prefix automaton Apre of Figure 2.12. To get rid of such an asymmetry, that
is, to guarantee that L (Apre) = L (A ′

pre) if and only if L ω(A) = L ω(A ′),
we must impose suitable conditions on the structure of the transition relations
of A and A ′.

68 2 Word Automata and Time Granularities

Definition 13. An UPA A = (A, S, ∆, I, F) is said to be prefix-friendly if it
satisfies the following conditions:

(C1) A is in normal form,

(C2) every final loop C of A has the minimum number of states (among all
loops that encode the same set of repeating patterns),

(C3) A has the minimum number of final loops (among all equivalent UPA),

(C4) there are no pairs of transitions of the form (q, a, s) and (r, a, s), with
q ∈ S \ F and r, s ∈ F.

Figure 2.12 and Figure 2.13 respectively show an prefix-friendly UPA and a
prefix-friendly (equivalent) one.

Lemma 7. Final loops of a prefix-friendly UPA are pairwise non-isomorphic.

Proof. This trivially follows from the minimality of the number of final
loops. �

Lemma 8. If A and A ′ are equivalent prefix-friendly UPA, then A and A ′

have isomorphic final loops.

Proof. Let C be a final loop of A. Since all states of A are reachable from
initial states and since A has the minimum number of final loops, there exists
a word w ∈ L ω(A) that features all and only the repeating patterns encoded
by C. Moreover, since A ′ is equivalent to A, we have w ∈ L ω(A ′) and
hence there is a final loop C′ in A ′ that encodes all and only the repeating
patterns featured by w. From this, it easily follows that C and C′ are bisimilar
loops. Finally, since both C and C′ have the minimum number of states, it
immediately follows that C and C′ are isomorphic. �

In virtue of Lemma 7 and Lemma 8, given two equivalent prefix-friendly UPA
A and A ′, we can identify the symbols of the alphabet AA and those of the
alphabet AA′ . Formally, we say that two symbols b ∈ AA and b ′ ∈ AA′

coincide iff

1. either they both belong to A and b = b ′,

2. or b = (s, C) and b ′ = (s ′, C′), where C and C′ are isomorphic final loops
of A and A ′, respectively, and s is the state of C that corresponds to s ′

in C′ under the unique4 isomorphism between C and C′.

The above correspondence can be naturally lifted to languages over AA and
AA′ : we say that the two prefix automata Apre and A ′

pre are equivalent iff
L (Apre) = L (A ′

pre), that is, for every finite word u ∈ L (Apre) (resp., u′ ∈
L (A ′

pre)), there is a finite word u′ ∈ L (A ′
pre) (resp., u ∈ L (Apre)) such that

|u| = |u′| and, for all 1 � i � |u|, the symbols u(i) and u′(i) coincide.

4 Given two loops C and C ′ with the minimum number of states, there exists at
most one isomorphism between C and C ′, since otherwise, by transitivity, there
would exist a non-trivial endomorphism in C, thus contradicting the minimality
of C.

2.4 Reasoning on Sets of Granularities 69

Lemma 9. Given a prefix-friendly UPA A over the alphabet A, its prefix
automaton Apre recognizes all and only the finite words of the form ub, with
b ∈ AA \A and u being the shortest initial pattern of some word w ∈ L ω(A).

Proof. Let A = (A, S, ∆, I, F). Suppose that the prefix automaton Apre ac-
cepts a finite word of the form ub, with u ∈ A∗ and b = (s, C). From the
definition of prefix automaton, we know that there is a run ρ of A on u that
starts from an initial state, traverses only non-final states, and finally enters
the final loop C at state s. Let v be a repeating pattern encoded by C starting
from s. Note that A accepts the ultimately periodic word w = uvω. We
have to show that u is the shortest initial pattern of w, namely, that the
last symbol u(|u|) of u differs from the last symbol v(|v|) of v. Let q be the
(non-final) state that immediately precedes s inside the run ρ and let r be
the (final) state that immediately precedes s inside the loop C. Clearly, we
have that

(
q, u(|u|), s

)
∈ ∆. Moreover, since v is encoded by C starting from

s, we have that t s
v

−⊚→ s. This shows that
(
r, v(|v|), s

)
∈ ∆. Finally, since A

satisfies Condition C4 of Definition 13, we obtain u(|u|) �= v(|v|).
As for the converse direction, let w be an ultimately periodic word accepted

by A and let ρ be a successful run of A on w. We denote by i the position
of the first final state s that occurs in ρ and by j the position of the second
occurrence of s in ρ. We then denote by u and v, respectively, the substrings
w[1, i−1] and w[i, j−1] of w. By definition of prefix automaton, the sequence
ρ(1)...ρ(i)f, where f is the global final state of Apre , is a successful run of Apre

on the finite word ub, where b = (s, C) and C is the (unique) final loop of A

that contains s. This shows that ub is accepted by Apre . It remains to prove
that u is the shortest initial pattern of w. Let q = ρ(i − 1) and r = ρ(j − 1).
Since, A satisfies Condition C4 of Definition 13 and, by construction, q ∈ S\F,
r, s ∈ F, and (q, u(|u|), s), (r, v(|v|), s) ∈ ∆, we have that u(|u|) �= v(|v|). This
shows that u is the shortest initial pattern of w. �

The following theorem shows that equivalent prefix-friendly UPA have equiv-
alent corresponding prefix automata.

Theorem 3. Let A and A ′ be two prefix-friendly UPA. We have that

L
ω(A) = L

ω(A ′) iff L (Apre) = L (A ′
pre).

Proof. Every ultimately periodic word has a unique shortest initial pat-
tern. Therefore, by Lemma 9, the ω-language recognized by A (resp., A ′)
is uniquely determined by the language recognized by Apre (resp., A ′

pre) and,
vice versa, the language recognized by Apre (resp., A ′

pre) is uniquely deter-
mined by the ω-language recognized by A (resp., A ′). �

Given an UPA A in normal form, one can efficiently build an equivalent prefix-
friendly UPA B by applying the following sequence of normalization steps:

70 2 Word Automata and Time Granularities

i) Minimize the size of each final loop. Such an operation collapses all
equivalent states in each final loop, thus producing an UPA that satisfies
Conditions C1, C2 of Definition 13.

ii) Minimize the number of final loops. Such an operation collapses all
isomorphic (minimal) final loops, thus producing an UPA that satisfies
Conditions C1–C3 of Definition 13.

iii) Add shortcuts towards final loops. Such an operation produces an
UPA that satisfies all conditions of Definition 13.

The above normalizations steps can be implemented as follows. As a prelim-
inary remark, we note that the minimization procedures for the size and the
number of final loops can be viewed as particular cases of the solution to the
single function coarsest partition problem. We thus refer the reader to [85] for
further details and proofs.

Let A = (A, S, ∆, I, F) be an UPA in normal form and let us consider a
final loop C of A. Two states s, s ′ of C are said to be equivalent if we have
s

v
−−→ s and s ′ v

−−→ s ′, for some finite word v. Minimizing the size of the final

loop C amounts to collapse all equivalent states of C. Thus, suppose that C

is a final loop of the form

s1
a1−−→ s2

a2−−→ ...
an−1
−−→ sn

an−−→ s1

and let v be the repeating pattern a1a2...an. One can easily verify that two
states si and sj, with 1 � i � j � n, are equivalent iff the value j − i mod n

is the offset of an occurrence of v as a substring of vv. Thus, the equivalence
class [si] of a state si of C is given by the set

{
sj : 1 � j � n, j ≡ i (mod p)

}
,

where p denotes the offset of the first non-trivial occurrence of v as a substring
of vv (note that the value p can be efficiently computed in linear time using
Knuth-Morris-Pratt string matching algorithm [56]).

Finally, the operation of collapsing equivalence classes of C into single states
can be implemented by first replacing the final loop C with a new final loop
[C] of the form

[s1]
a1−−→ [s2]

a2−−→ ...
ap−1

−−→ [sp]
ap

−−→ [s1]

and then replacing every transition of A of the form (q, a, si), where q �∈ F,
by the triple

(
q, a, [si]

)
. On the ground of the above arguments, it is easy to

devise a linear time procedure that minimizes the size of each final loop of a
given UPA A in normal form.

As for the minimization of the number of final loops, this amounts to col-
lapse all isomorphic final loops of A, under the assumption that A is an UPA
that satisfies Conditions C1, C2 of Definition 13. Indeed, two final final loops
C and C′ of an UPA encode the same set of repeating patters iff they are
bisimilar. Moreover, if C and C′ have the minimum number of states, then
they are bisimilar iff they are isomorphic.

2.4 Reasoning on Sets of Granularities 71

Isomorphic final loops of A can be efficiently found by (i) defining a total
ordering on the alphabet A, (ii) representing each final loop C of A with the
lexicographically least primitive repeating pattern vC encoded by C, and (iii)
sorting the loops according to the lexicographic order of their representatives
(in this way, isomorphic final loops have the same representatives and hence
they appear contiguous in the ordered list).

We recall that, given a final loop C, the lexicographically least primitive
repeating pattern vC of C can be computed in linear time by using the al-
gorithms described in [4, 96]. Moreover, sorting the loops according to the
lexicographic order of their representatives can be done in linear time using
the well-known radix-sort algorithm. This shows that the minimization of the
number of final loops of a given UPA can be done in linear time.

The last normalization step consists of the removal of redundant transitions
of A and in the addition of shortcuts towards their target states. Let A =

(A, S, ∆, I, F) be an UPA that satisfies Conditions C1–C3 of Definition 13.
We say that a transition (q, a, s) of A is redundant with respect to another
transition (r, a ′, s ′), if q ∈ S \ F, r ∈ F, s = s ′ ∈ F, and a = a ′ (notice that
the UPA that satisfy Condition C4 of Definition 13 are exactly those UPA
which contain no redundant transitions). The addition of shortcuts and the
removal of redundant transitions are implemented in two phases as follows.

The first phase iteratively performs the following steps: (i) select two tran-
sition of A of the form (q, a, s) and (r, a, s), with (q, a, s) being redundant
with respect to (r, a, s), (ii) mark the transition (q, a, s) so that it cannot be
selected again, (iii) add a new transition (t, b, r) (if it does not exist already)
for each existing transition (t, b, q), with t ∈ S \ F, and (iv) mark r as a new
initial state whenever q is an initial state.

The second phase starts when there are no more redundant (unmarked)
transitions and it consists of the removal of previously-marked redundant
transitions. Notice that it is necessary to postpone the removal of the redun-
dant transitions to this second phase, since, otherwise, the algorithm may
enter an infinite loop where a single transition is alternatively added to and
removed from the automaton.

One can easily verify that the resulting automaton is a prefix-friendly UPA
equivalent to the input automaton A. In particular, the following invariant
holds during the first phase: for every successful run on an infinite word w,
there is a successful run on w that uses only unmarked transitions. Moreover,
the whole process can be implemented by a procedure which takes quadratic
time in the size of the input automaton A.

Proposition 20. Given an UPA A in normal form, one can compute in
time O(|A|

2
) an equivalent prefix-friendly UPA B. Moreover, |B| is at most

quadratic in |A| and the number of states of B is less than or equal to the
number of states of A.

Proof. By applying the proposed sequence of normalization steps to a given
UPA A in normal form, one obtains an equivalent prefix-friendly UPA B. All

72 2 Word Automata and Time Granularities

normalization steps, but the last one, can be computed by suitable linear-time
algorithms and the intermediate results are UPA with size (resp., number of
states) less than or equal to the size (resp., number of states) of the original
UPA A. As for the last normalization step, the resulting prefix-friendly UPA
B is obtained from an intermediate UPA A ′ by simply adding new transi-
tions and removing redundant ones. This shows that the size of B is at most
quadratic in the size of the original UPA A and, similarly, that the number
of states of B is less than or equal to the number of states of A. �

The Canonical Form for UPA

We conclude the section by introducing a canonical form for UPA, , that is,
a representation of rational ω-language of ultimately periodic words which
turns out to be unique up to isomorphisms.

Definition 14. An UPA A = (A, S, ∆, I, F) is said to be in canonical form
if A is prefix-friendly and, in addition, the prefix automaton Apre of A is
a deterministic finite-state automaton (DFA for short) having the minimum
number of states (among all equivalent DFA).

As a matter of fact, an UPA in canonical form may be exponentially larger
than an equivalent UPA in prefix-friendly form (this basically follows from
the fact that DFA may be exponentially larger than equivalent NFA [50]).

The following theorem shows that the canonical form of an UPA is unique,
up to isomorphisms, among all equivalent UPA.

Theorem 4. Let A and A ′ be two UPA in canonical form. We have that A

and A ′ are equivalent iff they are isomorphic.

Proof. By Theorem 3, the prefix-friendly UPA A and A ′ are equivalent iff the
corresponding prefix automata Apre and A ′

pre are equivalent. Moroever, since
A and A ′ are in canonical form, Apre and A ′

pre are DFA having the minimum
number of states. Hence they are equivalent iff they are isomorphic. Finally,
since the UPA A (resp., A ′) is uniquely determined by its prefix automaton
Apre (resp., A ′

pre), we can conclude that A and A ′ are equivalent iff they are
isomorphic. �

Let us show now how to compute the canonical form of a given prefix-friendly
UPA A. As a preliminary remark, observe that any transformation of an UPA
A that preserves the corresponding prefix language L (Apre) results in an UPA
A ′ which has the same structure of A with respect to the transitions towards
final states (intuitively, such a property follows from the fact that the final
loops of A are “hidden” inside the alphabet of the prefix automaton). In par-
ticular, it follows that A ′ is prefix-friendly whenever A is prefix-friendly. Given
such a property, it becomes clear that the canonical form of a prefix-friendly
UPA A can be obtained by applying the following sequence of transformations:

2.4 Reasoning on Sets of Granularities 73

i) Compute the prefix automaton. Such an operation produces an NFA
that implicitly represents the original prefix-friendly UPA.

ii) Compute the minimal equivalent DFA. Such an operation produces
a DFA that has the minimum number of states and that recognizes the
prefix language of the original UPA.

iii) Convert the minimal DFA back to an UPA. Such an operation
eventually produces an UPA in canonical form.

Note that all transformations, but the second one, can be computed at low
cost. On the other hand, the second transformation is the most demanding
one from the computational point of view, since, in the general case, deter-
ministic prefix automata may be exponentially larger than equivalent non-
deterministic prefix ones. From experimental comparisons [9], it turns out
that Brzozowski’s algorithm [6] is the most efficient solution to the problem
of determinizing and minimizing prefix automata.

For the sake of completeness, we provide a short description of Brzozowski’s
algorithm. Given a generic NFA A ′, the algorithm first reverses the transi-
tions of A ′ (we denote such an operation by Rev), then it performs a subset
construction to build a DFA equivalent to the reversed copy of A ′ (we denote
such an operation by Det), and finally it iterates such two operations once
more. It can be proved that Det(Rev(Det(Rev(A ′)))) is a DFA equivalent
to the NFA A ′ having the minimum number of states among all equivalent
DFA. Moreover, such a construction requires, in the worst case, O(2n) time
and space, where n is the number of states of the input automaton A ′.

Proposition 21. Given an UPA A in normal form, one can compute in time
O(2|A|) an equivalent UPA B in canonical form. Moreover, the size of B is,
in the worst case, a simple exponential in the size of A.

Proof. Let A be an UPA in normal form. By exploiting Proposition 20, one
can compute an equivalent prefix-friendly UPA A ′ whose number of states is
less than or equal to the number of states of A. Then, by applying the above
described sequence of normalization steps, one can transform A ′ into an equiv-
alent UPA B in canonical form. As for the complexity of the whole procedure,
recall that A ′ can be computed from A in quadratic time. Moreover, comput-
ing the prefix automaton of A ′ (and, vice-versa, computing the UPA which
corresponds to any given prefix automaton), can be done in linear time. Fi-
nally, since Brzozowski’s algorithm takes simple exponential time with respect
to the number of states of the input automaton, computing the minimal DFA
equivalent to the prefix automaton of A ′ requires time O(2|A′|) = O(2|A|). �

2.4.3 Algorithms on UPA

UPA can be successfully exploited to solve a number of classical problems
about sets of ultimately periodic words. We will focus our attention on the
following basic problems:

74 2 Word Automata and Time Granularities

• Emptiness problem. It consists of deciding whether a given UPA A

recognizes the empty language.

• Acceptance problem. It consists of deciding whether a given UPA A

recognizes a given ultimately periodic word w, represented as a pair (u, v)
consisting of a finite prefix and a finite non-empty repeating pattern.

• Equivalence problem. Given two UPA A and B, it consists of deciding
whether L ω(A) = L ω(B).

• Inclusion problem. Given two UPA A and B, it consists of deciding
whether L ω(A) ⊆ L ω(B).

• State optimization problem. Given an UPA A in a specific normalized
form, it consists of building an equivalent UPA B having the smallest
number of states among all equivalent UPA in that normalized form.

As UPA can be viewed both as a restricted class of Büchi automata and as
an extension of NFA, we will compare the structure and the complexity of the
proposed algorithms with those of both of them.

The Emptiness and Acceptance Problems

In the case of a Büchi automaton, the emptiness problem is solved by (i)
searching for a path departing from an initial state and reaching a final state
and (ii) searching for a loop that contains such a final state. Since every final
state of an UPA in normal form belongs to a final loop, the emptiness problem
for UPA in normal form reduces to the problem of searching for a path from
an initial state to a final state, as it happens with NFA. Thus, the emptiness
problem can be solved in linear time O(|A|).

As for the acceptance problem, there is a straightforward algorithm, which
exploits basic closure properties, that decides whether a given UPA A accepts
a given ultimately periodic word w = uvω in time O(|A|(|u| + |v|)). The
problem of checking whether w = uvω belongs to the ω-language recognized
by a given UPA A is indeed equivalent to the problem of testing the (non-
)emptiness for the ω-language L ω(A) ∩ L ω(B), where B is an UPA that
recognizes the singleton {uvω}. A (slightly) more efficient solution, which
takes time O(|A||u| + |v|), takes advantage of prefix automata. Given an UPA
A and an ultimately periodic word w = uvω, one can decide whether w ∈
L ω(A) by performing the following steps:

1. compute the prefix automaton Apre of A;

2. replace in Apre every transition of the form (s, b, f), with b = (s, C) ∈
AA \ A, by a transition of the form (s, x, f), where x is either the symbol
⊤ or the symbol ⊥, depending on whether C encodes the repeating pattern
v starting from s or not;

3. decide whether the resulting NFA accepts the word u⊤.

2.4 Reasoning on Sets of Granularities 75

Note that the above steps, but the last one, can be performed in linear time
with respect to the size of A, u, and v, while the last step can be performed
in time linear in |A||u|.

The Equivalence and Inclusion Problems

It is well known that the equivalence and inclusion problems, for any class
of automata which is closed under intersection, are inter-reducible. As an
example, given two Büchi automata A and B, we have L ω(A) = L ω(B) iff
L ω(A) ⊆ L ω(B) ∧ L ω(B) ⊆ L ω(A) and, similarly, L ω(A) ⊆ L ω(B)

iff L ω(A) = L ω(A) ∩ L ω(B). Moreover, if the class of automata is also
closed under complementation, then both problems can be reduced to the
emptiness problem. As an example, given two Büchi automata A and B, we
have L ω(A) ⊆ L ω(B) iff L ω(A) ∩ L ω(C) = ∅, where C is the Büchi
automaton recognizing the complement language of L ω(B).

In [100] an implicit construction of a complement Büchi automaton has
been given, which allows one to solve the equivalence problem for Büchi au-
tomata in polynomial space. Such a construction is based on the ability to
encode each state and checking each transition of the complement automaton
by using only a polynomial amount of space. Since, in the worst case, the
number of states of the complement automaton is Ω(2n log n), where n is the
number of states of the input automaton (see [58, 63] for lower-bound results
and [78, 92, 93] for constructions that match these bounds), it turns out that
that any deterministic or non-deterministic algorithm based on an explicit or
implicit construction of a complement automaton must use Ω(n log n) space.

As for NFA, both the equivalence and inclusion problems are proved to
be PSPACE-complete [50]. Standard algorithms solving these problems are
based on either explicit or implicit constructions of equivalent deterministic
finite-state automata and they use either simple exponential time Θ(2n) or
linear space Θ(n), where n is the number of states of the input NFA. As
an example, the inclusion problem for two NFA A and B can be solved by
guessing a finite word u which is a witness for the non-inclusion of L (A) in
L (B), namely, such that u ∈ L (A) and u ∈ L (C), where C is the DFA
recognizing the complement of L (B). Verifying that u ∈ L (C) can be done
directly on the NFA B by first computing the set of states of B that are
reachable from an initial state by reading u and then verifying that such a set
does not contain any final state. The described algorithm thus requires linear
space with respect to the size of the input NFA A and B.

Since UPA-recognizable languages have equivalent representations in terms
of prefix automata, by exploiting existing algorithms for NFA we can devise
suitable algorithms for the equivalence and inclusion problems of UPA of
the same complexity. As a preliminary result, we provide a polynomial lower
bound to the space complexity of the equivalence and inclusion problems for
UPA.

76 2 Word Automata and Time Granularities

Proposition 22. The equivalence problem and inclusion problem for UPA
are PSPACE-hard.

Proof. We provide a reduction from the equivalence problem for NFA, which
is known to be PSPACE-hard [50], to the equivalence problem for UPA. Let A

and B be two NFA recognizing the languages L (A) and L (B), respectively.
We extend the input alphabet with a new symbol # and we transform the
NFA A (resp., B) into an UPA A ′ (resp., B ′) that recognizes the ω-language
L (A){#}

ω (resp., L (A){#}
ω) as follows:

i) we add a new state f that becomes the unique final state of A ′ (resp.,
B ′),

ii) we add a new transition of the form (f, #, f),

iii) for each final state s in A (resp., B), we add a new transition (s, #, f).

Clearly, we have L ω(A ′) = L ω(B ′) iff L (A) = L (B). This allows us to
conclude that the equivalence problem and the inclusion problem for UPA are
PSPACE-hard. �

Let us now provide optimal algorithms that solve the equivalence and inclusion
problems for UPA.

The first solution to the equivalence and inclusion problems for UPA stems
from the fact that the canonical form of an UPA is unique, up to isomorphisms,
among all equivalent UPA. Thus, the problem of deciding whether two given
UPA A and B recognize the same ω-language can be reduced to the problem
of testing whether the canonical forms A ′ and B ′ of A and B, respectively,
are isomorphic. By Theorem 4, we know that the canonical form of an UPA
is computable in exponential time. Moreover, since canonical forms of UPA
are, basically, deterministic labeled graphs (with the only exception of the
transitions entering the final loops), one can easily decide by a linear time
procedure whether the canonical UPA A ′ and B ′ are isomorphic. This allows
us to conclude that the equivalence problem for two generic UPA A and B

can be decided by a deterministic procedure that requires exponential time in
the size of the input UPA A and B.

As for the inclusion problem, one can exploit the fact that, given two UPA
A ′ and B ′ in canonical form, O(|A ′| + |B ′|) time suffices to compute an UPA
C ′ in canonical form that recognizes the intersection language L ω(A ′) ∩
L ω(B ′). This yields a straightforward procedure that, given two UPA A and
B, decides in exponential time whether L ω(A) ⊆ L ω(B): such a procedure
first computes the canonical forms A ′ and B ′ of A and B, respectively, then
it computes the UPA C ′ in canonical form recognizing L ω(A ′) ∩ L ω(B ′),
and finally it decides whether L ω(A ′) = L ω(C ′).

It is worth pointing out that the proposed deterministic solutions to the
equivalence and inclusion problems for UPA outperform classical solutions
for Büchi automata, which are based on the construction of complement lan-
guages, and their time complexity is comparable to the time complexity of
analogous algorithms working on NFA.

2.4 Reasoning on Sets of Granularities 77

We now describe alternative non-deterministic algorithms that solve the
equivalence problem and the inclusion problem for UPA using at most a linear
amount of space. These are modified versions of standard algorithms working
on NFA, which, basically, exploit an implicit subset construction to decide
the (non-)inclusion problem for two given rational languages. Similar con-
structions have been also proposed in [65, 59].

Let A = (A, S, ∆, I, F) and B = (A, S ′, ∆ ′, I ′, F ′) be two generic UPA.
By Theorem 3, one can apply the standard non-inclusion algorithm for NFA
directly to the prefix automata corresponding to prefix-friendly UPA A ′ and
B ′ obtained from A and B, respectively. However, in such a case, the worst-
case space complexity of the resulting algorithm is quadratic with respect to
the size of the input UPA A and B (recall that prefix-friendly UPA A ′ and B ′

may have quadratic size with respect to the original UPA A and B). Here, we
describe a modified version of the non-inclusion algorithm that directly works
on UPA and that requires linear space with respect to their size.

Without loss of generality, we can assume that the two input UPA A and
B are in normal form (by Proposition 19, this does not imply any blowup
of the size). The proposed algorithm exploits non-determinism to guess an
ultimately periodic word w that belongs to L ω(A) and then verifies that w

does not belong to L ω(B), thus certifying that L ω(A) �⊆ L ω(B). Since any
run of A that accepts an ultimately periodic word w is eventually trapped
inside a simple final loop, we can distinguish two phases of the algorithm, the
first one dealing with a prefix of the run of A that reaches the final loop, the
second one dealing with the (unique) suffix encoded by the final loop5.

During the first phase, a finite prefix s0s1...sn of a run of A and a word
a1...an recognized by it are guessed. At the same time, the sets S ′

0, S
′
1, ...,S

′
n

of states of B which are visited while reading the word a1...an are computed.
Configurations are thus described by pairs of the form (si, S

′
i), with si ∈ S and

S ′
i ⊆ S ′. The algorithm starts with an initial configuration of the form (s0, S

′
0),

where s0 is an initial state of A and S ′
0 is the set of initial states of B. At each

step, the algorithm chooses a transition of A of the form (si, ai+1, si+1), with
ai+1 being a symbol from A and si+1 being a state of A, and it then computes
the next configuration (si+1, S

′
i+1), where S ′

i+1 is defined as the set of all states
r ′ of B such that there exists s ′ ∈ S ′

i, with (s ′, ai+1, r
′) being a valid transition

of B. If, at some step n, sn turns out to be a final state, then we know that A

recognizes an ultimately periodic word with prefix a1...an. At this point, the
algorithm switches to the second phase. Note that, even though the first phase
can be carried on for arbitrarily many steps (this is the case, for instance, when
a non-final loop of A is reached), we can limit the number of iterations during
this phase to |S|2|S′|: indeed, if n � |S|2|S′| steps were performed during the
first phase, then, by the Pigeonhole Principle, there would exist two indices
n ′, n ′′, with n ′ < n ′′ � |S|2|S′|, such that (sn′ , S ′

n′) = (sn′′ , S ′
n′′) and hence

5 It is worth remarking that such a technique cannot be extended to generic Büchi
automata, since their runs may visit distinct final loops infinitely often.

78 2 Word Automata and Time Granularities

the word a1...an′an′′+1...an would be the prefix of an alternative witness for
the non-inclusion.

During the second phase, the computation proceeds in a deterministic way
on the basis of the (unique) infinite periodic word b1b2... which is recognized
by A starting from the last visited (final) state sn. Configurations are again
described by pairs of the form (qi, Q

′
i), with qi ∈ S and Q ′

i ⊆ S ′, and they
obey to the following constraints:

• (q0, Q
′
0) coincides with the last configuration (sn, S ′

n) computed during
the first phase;

• (bi+1, qi+1) is the unique pair such that (qi, bi+1, qi+1) is a valid transi-
tion of A;

• Q ′
i+1 is the set of all states r ′ of B for which there exists q′ ∈ Q ′

i such
that (q′, bi+1, r

′) is a valid transition of B.

By a simple application of the Pigeonhole Principle, we have that there exist
two indices m, m ′, with m < m ′ � |S|2|S′|, such that (qm, Q ′

m) = (qm′ , Q ′
m′).

Hence, if Q ′
m contains no final state, then we know that the ultimately periodic

word
(a1...an)(b1...bm)(bm+1...bm′)ω

is recognized by A, but not by B, thus certifying that L ω(A) �⊆ L ω(B).
Otherwise, if Q ′

m contains at least one final state, then the computation is
discarded. It is worth pointing out that we do not need to exhibit the candi-
date ultimately periodic word (a1...an)(b1...bm)(bm+1...bm′)ω in L ω(A) \

L ω(B), and thus we do not need to keep track of its symbols during the
computation.

The described non-deterministic algorithm solves the non-inclusion (and
hence the non-equivalence) problem by using linear space in the size of the
input UPA (precisely, it requires O(log |S|+ |S ′|) space to store a configuration
of the form (si, S

′
i), with si ∈ S and S ′

i ⊆ S ′, and the value of a counter i

ranging over {0, ..., |S|2|S′|}). The space complexity of the proposed algorithm
is comparable with that of classical non-deterministic algorithms working on
NFA and it is strictly lower than that of classical non-deterministic algorithms
working on Büchi automata.

Finally, we recall that, by exploiting Savitch’s Theorem [86], the above non-
deterministic procedure can be turned into a deterministic one that solves the
inclusion (and hence the equivalence) problem for UPA by using at most
quadratic space.

The State Optimization Problem

Let us consider now the minimization problem for UPA. We first prove that,
similarly to the case of NFA (see [52, 53, 62]), the state optimization problem
for UPA is PSPACE-complete and it may yield different (non-isomorphic)
solutions. Then, we show that standard minimization algorithms for NFA can

2.4 Reasoning on Sets of Granularities 79

be directly exploited to minimize the number of states of any UPA in normal
form. These algorithms can be applied to generic UPA as well; however, in
such a case the resulting UPA are, in general, approximations of state optimal
ones.

To start with, we provide a sufficient condition for UPA to be state optimal
among all equivalent UPA in normal form.

Proposition 23. Let A be an UPA in prefix-friendly form and let Apre be its
prefix automaton. If Apre has the minimum number of states among all equiv-
alent NFA, then A has the minimum number of states among all equivalent
UPA in normal form.

Proof. For any given automaton (UPA or NFA) A, let us denote by n(A)

the number of its states. Assume A to be a prefix-friendly UPA, whose prefix
automaton Apre has the minimum number of states among all equivalent NFA.
By definition of prefix automaton, we have that n(Apre) = n(A) + 1. Let us
now consider a generic UPA B in normal form equivalent to A. By Proposition
20, there is a prefix-friendly UPA B ′ equivalent to B such that n(B ′) � n(B).
Moreover, since B ′ is prefix-friendly, by Theorem 3 we have that the prefix
automaton B ′

pre is equivalent to Apre . From the minimality of Apre , we obtain
n(Apre) � n(B ′

pre). Moreover, by construction, n(B ′
pre) = n(B ′)+1. Summing

up, we have

n(A) = n(Apre) − 1 � n(B ′
pre) − 1 = n(B ′) � n(B)

which proves that A has the minimum number of states among all equivalent
UPA in normal form. �

By exploiting Proposition 23, we can devise a PSPACE solution to the state
optimization problem for UPA in normal form. Such a solution exploits an
auxiliary procedure that minimizes the number of states of prefix automata
(see [53, 62] for implementation details). Since the state optimization problem
for NFA is known to be PSPACE-complete [52, 53, 62] and since (by an
argument similar to that of Proposition 22) it is inter-reducible with the state
optimization problem for UPA in normal form, we can conclude that the latter
problem is PSPACE-complete as well.

If we do not restrict to the class of UPA in normal form, then the number
of states of UPA can be further reduced. Below, we show that some final loops
of UPA may be safely removed, under the proviso that another ‘subsuming’
non-final loop takes their role.

Definition 15. Let A = (A, S, ∆, I, F) be an UPA, C a final loop, and C′ a
simple non-final loop. We say that C is subsumed by C′ if C has no exiting
transitions and there is a surjective function f : C′ → C that satisfies the
following two conditions:

• for every pair of states r, s in C′, (r, a, s) ∈ ∆ iff (f(r), a, f(s)) ∈ ∆ (intu-
itively, C and C′ are bisimilar),

80 2 Word Automata and Time Granularities

s0

s4

s1 s2 s3

�

◭

�

◭

◭

�

�

s0

s1 s2 s3
�

◭

◭

�

�

Fig. 2.14. An example of subsumed final loop

• for every state r neither in C nor in C′ and every state s in C, (r, a, s) ∈ ∆

iff there is a state s ′ in C′ such that s = f(s ′) and (r, a, s ′) ∈ ∆ (intuitively,
the loop C′ augmented with its entering transitions simulates the loop C

augmented with its entering transitions).

If C is a final loop of A which is subsumed by a simple non-final loop C′, then
we can obtain an equivalent UPA B with fewer states by (i) removing the loop
C and (ii) letting C′ be a final loop in B. As an example, the right-hand side
UPA in Figure 2.14 is obtained from the left-hand side one by removing the
final loop on state s4 and by letting the subsuming loop on states s1 and s2

be final.

Proposition 24. Given an UPA A = (A, S, ∆, I, F), a final loop C, and
a simple non-final loop C′ that subsumes C, the automaton B = (A, S \

C, ∆, I, (F ∪ C′) \ C) is an UPA equivalent to A.

Proof. Since every final state s of B is contained either in C′ (and thus the
strongly connected component of s in B is a simple loop) or in F \ C (and
thus the strongly connected component of s in B is a single transient state or
a simple final loop), it immediately follows that B is an UPA. To complete
the proof, it suffices to show that B is equivalent to A. Let f be the surjective
function from C′ to C of Definition 15. We first prove that L ω(A) ⊆ L ω(B).
Let w an ultimately periodic word in L ω(A) and let ρ be a successful run of
A on w. By Definition 15 the subsumed loop C has no exiting transition and
thus either ρ does not contain any state in C or, all, but finitely many, states
in ρ belong to C. In the former case, it immediately follows that ρ is also a
successful run of L ω(B) on w. In the latter case, we can obtain a successful
run ρ′ of B on w by simply replacing each state s of C with a suitable state
s ′ such that f(s ′) = s (given the properties of the function f, ρ′ respects
the transitions of B on w). This shows that w is accepted by B. As for the
converse inclusion, let w be an ultimately periodic word accepted by B and
let ρ′ be a successful run of B on w. By definition of UPA, the set of all states
that occur infinitely often in ρ′ is either disjoint from C′ or it coincides with
the set of states of C′. In the former case, ρ′ is a successful run of A on w as
well and thus w is accepted by A; in the latter case, we can obtain a successful

2.4 Reasoning on Sets of Granularities 81

s0

s5

s1 s2 s3 s4

�

◭

�

◭

◭

�

◭

�

s0

s5

s1 s2 s3 s4

◭

�

◭

◭

◭

�

◭

�

Fig. 2.15. Two equivalent UPA in normal form

run ρ of A on w by simply replacing each state s that occur infinitely often
in ρ′ with the state f(s). �

On the basis of Proposition 24, we can devise an algorithm that uses polyno-
mial space to remove all subsumed final loops from a given UPA A in normal
form. Clearly, the removal of all subsumed final loops of A (if any) results in
an equivalent UPA B with fewer states. Moreover, since all final loops of A

are disjoint, the number of states of the resulting UPA B does not depend on
the removal order of the subsumed final loops.

It is worth pointing out that, in general, the UPA B resulting from the
removal of all subsumed final loops of A is not guaranteed to be state optimal
among all equivalent UPA, even in the case in which A is a state optimal UPA
in normal form. As an example, consider the two equivalent UPA in normal
form depicted in Figure 2.15. The left-hand side automaton has no subsumed
final loops, while the right-hand side automaton has a final loop (the one on
state s5) which is subsumed by a non-final loop (the one on state s2). The
optimization algorithm has no effect on the left-hand side UPA, while it re-
duces the number of states of the equivalent right-end side UPA. In general,
to compute an UPA with the minimum number of states among all equiv-
alent UPA one must resort to costly algorithms based on trace equivalence.
These algorithms can be obtained as generalizations of standard minimization
algorithms for NFA [53, 62].

2.4.4 Applications to Time Granularity

The algorithms for solving the emptiness, acceptance, equivalence, inclusion,
and state optimization problems, which have been described in the previous
section, can be directly exploited to reason on possibly infinite sets of time
granularities, e.g., the algorithm that solves the equivalence problem for UPA
can be used to check whether or not two given automaton-based representa-
tions define the same set of granularities. In the following, we show that UPA
turn out to be useful also in solving another basic problem for time granular-
ity, namely, the comparison of pairs of sets of time granularities with respect
to various standard relations, e.g., partition, group, sub-granularity, aligned
refinement.

82 2 Word Automata and Time Granularities

In its most common formulation, the granularity comparison problem is
viewed as the problem of deciding whether a designated relation ∼ holds be-
tween two granularities G ∈ G and H ∈ H, where G and H are two given sets
of granularities. According to such a definition, the granularity comparison
problem is actually a family of problems, whose different concrete instances
are obtained by specifying the relation that must hold between the pairs of
granularities that belong to the two sets G and H.

Within the framework of automaton-based representations, a granularity
comparison problem is reducible to the problem of deciding, given two UPA
A and B representing two sets of ultimately periodic granularities, whether
there exist some words wG ∈ L ω(A) and wH ∈ L ω(B) that satisfy a cer-
tain relation ∼, which basically capture the designated relation between time
granularities.

To start with, we provide string-based characterizations of standard rela-
tions between time granularities, that is, group into, refine, partition, and
aligned refinement (note that, under the restriction to ultimately periodic
granularities, the grouping relation and the periodic grouping relation actu-
ally coincides). We recall that, given an infinite word w over the alphabet
A = {�, �, ◭} and given a symbol a ∈ A, |w|a denotes the number of oc-
currences (possibly ω) of a in w. According to Definition 4, given an infinite
word w that represents a time granularity G and given two natural num-
bers t, x ∈ N, x is the index of the (unique) granule of G that contains t iff
w[t + 1] ∈ {�, ◭} and |w[1, t]|◭ = x.

Proposition 25. Let u and v be two infinite words over the alphabet {�, �, ◭}

that represent, respectively, two granularities G and H. We have that

• G groups into H iff for every t ∈ N,

i) v(t + 1) = � implies u(t + 1) ∈ {�, ◭},

ii) v(t + 1) = ◭ implies u(t + 1) = ◭,

iii) v(t + 1) = � implies either u(t + 1) = � or v(t ′ + 1) = � for all
t ′ ∈ N such that |u[1, t]|◭ = |u[1, t ′]|◭;

• G refines H iff for every t ∈ N,

i) u(t + 1) = � implies v(t + 1) = �,

ii) u(t + 1) = ◭ implies v(t + 1) ∈ {�, ◭};

• G partitions H iff for every t ∈ N,

i) u(t + 1) = � if and only if v(t + 1) = �,

ii) u(t + 1) = � implies v(t + 1) = �;

• G is an aligned refinement of H iff for every t ∈ N,

i) u(t + 1) = � implies v(t + 1) = �,

ii) u(t + 1) = ◭ implies v(t + 1) ∈ {�, ◭};

iii) u(t + 1) = ◭ implies |u[1, t]|◭ = |v[1, t]|◭.

2.4 Reasoning on Sets of Granularities 83

s0 s1

s2

(
�
�

)
,
(

�
�

)
,
(

�
�

)
,
(◭
◭

)

(
◭
�

)

(
�
◭

)
(
◭
�

)
,
(◭
◭

)

(
�
�

)
,
(

�
�

)
,
(

�
◭

)

(
�
�

)
,
(

�
�

)

Fig. 2.16. The automaton for the aligned refinement relation

Proof. We only prove the characterization for the alignment refinement rela-
tion. Suppose that G is an aligned refinement of H. By definition, every time
point t ∈ N which is covered by G is covered by H as well. Thus, for every
t ∈ N, u(t+ 1) ∈ {�, ◭} implies v(t+ 1) ∈ {�, ◭}. Moreover, it cannot happen
that u(t + 1) = � and v(t + 1) = ◭ because, otherwise, the granule of G that
contains the time point t would not be included in a granule of H. Finally,
for every t ∈ N, if u(t + 1) = ◭, then t is the last time point of the granule
G(x), where x = |u[1, t]|◭. Since G(x) ⊆ H(x), we have that |v[1, t]|◭ = x.
The converse implication follows by a symmetric argument. �

Let ∼ be one of the standard relations between time granularities. By exploit-
ing Proposition 25, it is immediate to see that the ω-language L∼ of all pairs
of infinite words (including non-periodic ones) that represent pairs of time
granularities G, H such that G ∼ H is Büchi-recognizable. In particular, one
can build a Büchi automaton C∼ over the alphabet {�, �, ◭} × {�, �, ◭} that
recognizes the language L∼. As an example, Figure 2.16 depicts the Büchi
automaton C∼, where ∼ is the aligned refinement relation.

Moreover, given two UPA A and B representing some sets G and H of time
granularities, one can build a suitable product automaton (an UPA) that
recognizes the ω-language L = L ω(A) × L ω(B), which basically represents
all pairs (G, H) of time granularities, with G ∈ G and H ∈ H. Thus, one
can solve the comparison problem for the designated relation ∼ by simply
testing the emptiness of the intersection language L ∩ L∼, which is known
to be UPA-recognizable. Note that, since the Büchi automaton C∼ is fixed
with the designated relation ∼, the complexity of the resulting algorithm is
O(|A||B|).

We conclude this section by showing how a concrete problem, taken from
the medical domain of heart transplant patients, can be addressed and effi-
ciently solved by exploiting the notion of time granularity and the properties
of UPA-recognizable ω-languages.

84 2 Word Automata and Time Granularities

Table 2.1. A hypothetical schedule for therapies/check-ups

patientId date (MM/DD/YYYY) treatment

1001 02/10/2003 transplant
1001 04/26/2003 GFR
1002 06/07/2003 GFR
1001 06/08/2003 biopsy
1001 02/10/2004 GFR
1001 01/11/2005 GFR
1001 01/29/2006 GFR

Posttransplantation guidelines require outpatients to take drugs and to
submit to periodical visits for life. These requirements are usually collected
in formal protocols with schedules specifying the therapies and the frequency
of the check-ups. We report an excerpt of the guidelines for a heart trans-
plant patient in [61]. Depending on the physical conditions of the patient, the
guidelines can require, together with other treatments, an estimation of the
glomerular filtration rate (GFR) with one of the following schedules:

• 3 months and 12 months posttransplantation and every year thereafter;

• 3 months and 12 months posttransplantation and every 2 years thereafter.

These protocols involve the so-called unanchored granularities, to manage the
various admissible starting points for the scheduled therapies (and/or check-
ups), as well as sets of granularities with different repeating patterns, to cap-
ture the set of distinct periodicities of the scheduled therapies. In particular,
since different protocols can be specified for the same class of patients by
different people/institutions, it is a crucial problem to decide whether two
protocols define the same set of therapies/granularities (equivalence prob-
lem). Solving this problem makes it possible to choose the most compact, or
the most suitable, representation for a given protocol.

Another meaningful reasoning task is the so-called consistency-checking
problem, namely, the problem of checking whether a given therapy assigned
to a patient satisfies the prescribed protocol. As an example, consider the
(sub)set of therapies/check-ups of the above protocol for heart transplant
patients and the instance of the temporal relation Visits(patientId, date,
treatment), represented in Table 2.1. Given a representation of the single
granularity G for the specific therapy (up to a certain date) of a certain
patient and given a representation of the set of (periodic) time granularities for
the prescribed therapies/check-ups, the consistency-checking problem can be
decided by testing whether granularity G properly relates to some granularity
in H. The consistency-checking problem can thus be viewed as a particular
case of granularity comparison problem. Below, we show how such a problem
can be effectively solved by means of UPA.

2.4 Reasoning on Sets of Granularities 85

�115 ◭ �288 ◭ �335 ◭ �382 ◭

�

Fig. 2.17. An UPA representing GFR measurements for a patient

�

�60 �29 ◭ �245 �29

◭

◭

�335 �29

◭

�700 �29

◭

Fig. 2.18. An UPA-based specification of the protocol

For the sake of simplicity, we consider months of 30 days and years of 365
days (relaxing such a simplification is tedious, but trivial). By properly select-
ing records in Table 2.1, we can build the granularity G of GFR measurements
for the patient identified by patientId 1001. We represent such a granularity
as a single ultimately periodic word w (starting from 01/01/2003), in which
the occurrences of ◭ denote the days of the visits. The UPA A that accepts

w is depicted in Figure 2.17, where we use the shorthand ◦
an

−→◦ to denote a
sequence of n + 1 states and n a-labeled transitions.

The set H of periodic time granularities that encode the set of valid ther-
apies of the protocol is represented by the UPA B depicted in Figure 2.18.

Checking the consistency of GFR measurements for patient 1001 with re-
spect to the prescribed protocol amounts to check whether granularity G is
an aligned refinement of some granularity in H. We can solve the latter prob-
lem by first building the UPA D = (A × B) ∩ C∼, where C∼ is the Büchi
automaton depicted in Figure 2.16, and then checking whether the recognized
ω-language L ω(D) is non-empty. In our case, we easily see that D recognizes
the (singleton) ω-language

{
(

�
�

)100(�
�

)15(◭
�

)(
�
�

)13(�
◭

)(
�
�

)245(�
�

)29(◭
◭

)(
�
�

)335(◭
�

)(
�
�

)28(�
◭

)
·

·
(

�
�

)335(�
�

)18(◭
�

)(
�
�

)10(�
◭

)((
�
�

)335(�
�

)29(�
◭

))ω
}

.

Since the resulting language is non-empty, we can conclude that G is an aligned
refinement of some granularity in H and thus the considered therapy satisfies
the prescribed protocol.

86 2 Word Automata and Time Granularities

2.5 Discussion

In this chapter, we considered the problem of representing and reasoning on
time granularities by means of automaton-based formalisms.

In Section 2.2, we introduced the string-based and the automaton-based
approaches to time granularity. These two approaches are closely related one
to each other and subsume previous formalisms proposed in the literature
(e.g., collection expressions, slice expressions, Calendar Algebra). Moreover,
both approaches ease access to and manipulation of data associated with
different time granularities, allowing one to solve some basic problems, such
as the equivalence and the granule conversion ones, which have been neglected
by many existing formalisms.

The algorithmic nature of string-based and automaton-based representa-
tions of time granularities suggests an alternative point of view on their role:
strings and automata can be used not only as a formalism for the direct spec-
ification of time granularities, but also (and mainly) as a low-level formalism
into which high-level time granularity specifications (e.g., Calendar Algebra
expressions) can be mapped. However, algorithms may potentially process ev-
ery element (symbol) of string-based and automaton-based representations,
independently from their redundancy, thus requiring a large amount of compu-
tational time. In the automaton-based framework, this efficiency problem can
be dealt with by equipping automata with counters. Such an extension makes
the structure of the automata more compact, and it allows one to efficiently
deal with those granularities which have a quasi-periodic structure.

In Section 2.3, we explored in full detail the possibility of improving auto-
maton-based representations of time granularities by means of counters. We
showed that regularities of common temporal structures can be succinctly
modeled within the class of Nested Counter Single-String Automata (NC-
SSA). Besides making the structure of the automata more compact, the use of
counters, paired with suitable restrictions on the activation rules for the tran-
sition functions, yields efficient algorithms for manipulating time granularity
specifications. As an example, we described some polynomial-time procedures
that compute granule conversions between different time granularities and
we showed that the equivalence problem for NCSSA is in co-NP (it is cur-
rently unknown whether such a problem can be solved by a deterministic
polynomial-time algorithm).

We also dealt with optimization problems for NCSSA-based representations
of time granularities in a systematic way. These problems, which are extremely
relevant from a computational point of view, have often been overlooked in the
literature. We started by showing that the algorithmic complexity of crucial
algorithms working on NCSSA is closely related to a suitable measure of
automaton complexity, which takes into account the nesting structure of the
transition functions. Then, we focused on the problem of minimizing NCSSA
with respect to either such a complexity measure or the traditional measure
that only considers the number of states of the automaton. By exploiting

2.5 Discussion 87

dynamic programming, we gave polynomial-time algorithms that respectively
compute complexity optimal and state optimal NCSSA from a given string-
based specification of a time granularity. While the former computes automata
which are complexity optimal with respect to the whole class of NCSSA,
the latter confines itself to the restricted class of decomposable NCSSA. We
believe it possible to further improve these algorithms by exploiting subtle
relationships between repeating patterns of strings and secondary transition
functions of optimal NCSSA. As a matter of fact, we conjecture that the
loops determined by the transition functions of a complexity optimal NCSSA
can be related to the maximal repetitions in the recognized word (a maximal
repetition of w is a periodic substring w[i, j] whose minimum period increases
as soon as w[i, j] is prolonged to the right, e.g., w[i, j + 1], or to the left,
e.g., w[i − 1, j]). Moreover, we are exploring the possibility of generalizing
the state optimization algorithm in order to produce optimal automata with
respect to the whole class of NCSSA. We believe that such a task could be
accomplished by introducing a suitable operator, in addition to AppendChar

and AppendRepeat, which collapses indistinguishable states of NCSSA.
In Section 2.4, we developed a theory of rational ω-languages that consist

of ultimately periodic words only and we provided it with an automaton-
based characterization. Furthermore, we showed how well-known results com-
ing from automata theory can be exploited to solve a number of basic problems
about rational ω-languages of ultimately periodic words. In particular, we
provided effective solutions to the problems of emptiness, membership, equiv-
alence, inclusion, and size-optimization. We also showed that the proposed
framework allows one to represent and reason about sets of time granularities
that feature a possibly infinite number of different initial patterns, but only a
finite number of non-equivalent repeating patterns.

As it has been shown in Section 2.4.2, UPA-recognizable languages, which
are a proper subclass of Büchi-recognizable ones, are not closed under comple-
mentation. In fact, for every UPA-recognizable language L, the complement
L̄ of L is not UPA-recognizable. The relationships among UPA-recognizable
languages, their complements, and Büchi-recognizable languages can be sum-
marized as follows. Let us call co-UPA-recognizable language the comple-
ment L̄, with respect to the set UΣ of all ultimately periodic words, of any
UPA-recognizable language L. Any co-UPA-recognizable language features all,
but finitely many, non-equivalent repeating patterns and, as pointed out in
the proof of Proposition 15, it is not Büchi-recognizable. Moreover, for ev-
ery pair of UPA-recognizable languages L1 and L2, the language L1 ∩ L̄2

(= L1 ∩ (UΣ \ L2) = L1 ∩ (Σω \ L2)) is UPA-recognizable as well. Analogously,
the union of an UPA-recognizable language with a co-UPA-recognizable lan-
guage is a co-UPA-recognizable language. This basically means that the class
of languages that contains all UPA-recognizable languages and all their com-
plements is the smallest class that includes all regular ω-languages of ulti-
mately periodic words and is closed under finite unions, finite intersections,
and complementation with respect to UΣ. Moreover, it is straightforward to

88 2 Word Automata and Time Granularities

generalize the solutions to the emptiness, membership, equivalence, and in-
clusion problems for UPA to solutions of analogous problems for co-UPA.

It is worth pointing out that there exist interesting connections between
UPA-recognizable languages and other subclasses of regular ω-languages. In
particular, UPA can be viewed as a special forms of non-deterministic co-
Büchi (or safety) automata. Moreover, non-deterministic co-Büchi automata
are known to be equivalent to their deterministic versions [65]. It thus follows
that the languages recognized by UPA can be also recognized by a proper
subclass of deterministic co-Büchi automata.

A natural development of the above results is the definition of a high-level
logical language, e.g., a variant of propositional Linear Temporal Logic [36],
which allows one to represent all (co-)UPA-recognizable languages by means
of suitable formulas. Besides its theoretical relevance, pairing such a logical
framework with the proposed automaton-based one would allow one to use
the former as a high-level interface for the specification of granularities and
the latter as an internal formalism for efficiently reasoning about them.

As a concluding remark, we would like to emphasize that most constructs
for time granularity are typically one-dimensional. A possible extension may
concern moving from linear structures to branching ones, which are more
suited to deal with (infinite) hierarchies of differently grained time granular-
ities. As an example, the problem of representing and reasoning on such a
kind of layered temporal structures is systematically dealt with in [66, 67, 71]
by means of the notions of n-layered structure, downward-unbounded layered
structure, and upward-unbounded layered structure. At the end of Chapter 3
(Section 3.5.4), we shall come back to this subject by briefly reviewing some
definitions, expressiveness results, and decidability results for layered temporal
structures. Then, we shall introduce a more general notion of layered tempo-
ral structure, which subsumes the previous definitions, and we shall apply
the decidability results outlined in previous sections to this kind of temporal
structures.

3

Tree Automata and Logics

The nature of this chapter is more theoretical in that we deal with deci-
sion procedures for a very expressive logic, called monadic second-order logic.
More precisely, we focus our attention on the model checking problem for
monadic second-order formulas interpreted over deterministic vertex-colored
trees. Basically, such a problem consists of establishing, by an effective proce-
dure, whether a fixed tree-shaped structure (e.g., the infinite complete binary
tree) satisfies a given property, expressed via suitable a monadic second-order
formula.

In the area of verification of infinite-state systems, monadic second-order
logic has been extensively used as a specification language, because it is
powerful enough to express relevant properties of graph structures such as reach-
ability, planarity, vertex k-colorability (for any fixed k), and confluency proper-
ties [22] and it subsumes, besides first-order logic, many propositional
(temporal) modal logics, in particular the propositional modal μ-calculus [51].
Unfortunately, its model checking problem turns out to be highly undecidable
for many relational structures. In this respect, two important exceptions are the
theorems of Büchi [2] and Rabin [88], which prove the decidability of the model
checking problem for monadic second-order formulas interpreted over the linear
order (N, <) and over the infinite complete binary tree ({0, 1}

∗, succ0, succ1), re-
spectively. Both decidability results have been obtained by reducing the model
checking problem to the problem of testing the emptiness of the language recog-
nized by a suitable automaton, precisely, a Büchi (word) automaton in the case
of Büchi’s theorem and a Rabin tree automaton in the case of Rabin’s theorem
[107].

Büchi’s and Rabin’s results have been also exploited to decide the model
checking problem for monadic second-order formulas interpreted over linear
and branching structures expanded with unary predicates. As an example, the
problem of establishing whether a given monadic second-order formula ϕ holds
over an expanded linear structure of the form (N, <, P), with P ⊆ N, is reduced
to the acceptance problem of (N, <, P), namely, the problem of establishing
whether a Büchi automaton Aϕ accepts (the infinite word that characterizes)

90 3 Tree Automata and Logics

(N, <, P). Elgot and Rabin [35] gave a positive answer to the decidability of
the acceptance problem for various meaningful predicates P ⊆ N. Intuitively,
their technique consists of defining a transformation, called contraction, of a
given infinite word w into another infinite word −�w and a transformation of

a Büchi automaton A into another Büchi automaton
−�
A in such a way that

A accepts w iff
−�
A accepts −�w. If −�w happens to be ultimately periodic, then

the latter condition can be easily checked, thus providing an effective solution
to the original problem. In [97, 12] Elgot-Rabin contraction method has been
generalized in several respects to cover, for instance, all morphic predicates
and the so-called profinitely ultimately periodic words. As a matter of fact,
in [90], the class of profinitely ultimately periodic words has been proved to
capture exactly all the expanded linear structres that enjoy a decidabile the
model checking problem.

In this chapter, we show that the contraction method can be generalized to
deal with expanded tree structures. Here the role of ultimately periodic words
is taken by regular colored trees and the notion of factorization of infinite
words is accordingly generalized to branching structures.

We first show that the model checking problem for monadic second-order
formulas interpreted over deterministic vertex-colored tree structures can be
reduced to the acceptance problem for (alternating Muller) tree automata,
that is, to the problem of establishing whether a given tree automaton accepts
a designated relational structure, viewed as a deterministic vertex-colored
tree. Such a problem is trivially decidable in the case of regular trees. Then,
by exploiting a suitable notion of tree equivalence with respect to alternating
Muller tree automata, we reduce a number of instances of the acceptance
problem for deterministic vertex-colored trees to the easy case of regular trees.

We show that the proposed technique works effectively for a large class of
trees (most of them non-regular), which we call reducible trees. Moreover, we
prove that the class of reducible trees is closed with respect to several natural
tree transformations (e.g., transductions with rational lookahead and unfold-
ings with backward edges and loops) and it contains all deterministic trees in
the Caucal hierarchy as well as meaningful relational structures outside it (a
short review of Caucal hierarchy and its properties is given in Section 3.1.4).
These results, besides showing the robustness of the notion of reducible tree,
provide a natural framework to reason on tree transformations and to easily
transfer decidability results.

It is also worth mentioning that the proposed contraction method for tree
automata presents some similarities with Shelah’s composition method [95],
which directly exploits a notion of indistiguishability of relational structures
with respect to monadic second-order formulas. However, unlike the contrac-
tion method for tree automata, Shelah’s composition method finds it difficult to
manage the different possible valuations of a given variable over distinct copies
of the same factor (a formal notion of factor will be given in Section 3.2.3). This

3.1 Background Knowledge 91

is a problem whenever one needs to reduce a branching structure to a linear one
(some examples of this situation are given in Section 3.2.4).

In the last part of this chapter, we consider the model checking problem
for monadic second-order logic (and its chain fragment) over the so-called
layered temporal structures, which are tree-shaped structures well-suited for
modeling and reasoning on temporal relationships at different ‘grain levels’.
We introduce a new notion of layered temporal structure, which subsumes
previous definitions found in the literature, and we apply our technique to
solve the model checking problem over such a kind of structure.

The chapter is organized as follows. In Section 3.1, we introduce basic nota-
tion and terminology about graphs, trees, alternating Muller tree automata,
monadic second-order logic, and its model checking problem. In Section 3.2
we present the contraction method for tree automata in full detail. In Section
3.3, we introduce a set of natural tree transformations and we systemati-
cally explore their relationships. In Section 3.4, we show that the contraction
method works effectively for a large class of complex tree structures, which
we call reducible trees. Furthermore, we prove that the class of reducible trees
is closed under several tree transformations. In Section 3.5, we discuss mean-
ingful applications of the contraction method. In particular, we show that the
class of reducible trees contains all deterministic trees in the Caucal hierar-
chy, we provide a characterization of the languages recognized by the so-called
two-way alternating Muller tree automata, we prove the decidability of the
acceptance problem for morphic trees, and, finally, we study the decidability
of the model checking problem for monadic second-order logic (and its chain
fragment) interpreted over layered temporal structures. Section 3.6 provides
an assessment of the achieved results. Some lengthy proofs have been included
for the readers convenience in the appendix, but they can be safely skipped.

3.1 Background Knowledge

In this section, we recall some basic definitions and results about graphs, trees,
alternating Muller tree automata, monadic second-order logic, and its model
checking problem.

3.1.1 Graphs and Trees

We use the term label (resp., color) to identify a symbol associated with an
edge (resp., a vertex) of a graph. The set of labels (resp., colors) is usually
denoted by A (resp., C). An A-labeled (directed simple) graph is a tuple G =

(V , (Ea)a∈A), where V (also denoted Dom(G)) is a countable set of vertices
and (Ea)a∈A are binary relations defining graph edges and their labels. An
expanded graph is a graph equipped with some unary predicates, namely, a
structure (G, P̄), where G is a graph and P̄ = (P1, ...,Pm), with Pi ⊆ Dom(G)

for all 1 � i � m. Any expanded graph (G, P̄) is canonically represented by a

92 3 Tree Automata and Logics

C-colored graph GP̄ = (G, Ω), where C = P({1, ...,m}) and Ω : Dom(G) →
C is a coloring function mapping a vertex v ∈ Dom(G) to the set of all indices
1 � i � m such that v ∈ Pi (such a set is called the color of v).

We focus our attention on (unranked) rooted trees, namely, graphs such
that for every vertex v, there exists a unique path, called access path, from a
designated source vertex, called root, to v. In order to simplify the description
of some compositional properties of trees, we shall distinguish between the set
C of colors for the internal vertices of a tree and the set D of colors for its
leaves. Precisely, we say that T is a C-colored D-augmented tree if the colors
of internal vertices range over C and the colors of leaves range over D (D may
be different, but not necessarily disjoint, from C).

We identify each vertex of a tree (resp., a deterministic tree) with its access
path (resp., with the sequence of labels in its access path). In particular, we
view a deterministic A-labeled C-colored D-augmented tree T as a partial
function from a prefix-closed language L over the alphabet A to the set C∪D.
Accordingly, we denote by va the a-successor of v in T and by T(v) the color
of the vertex v of T . Sometimes, if there is a well-understood ordering on the
set A of edge labels, we can use (unranked) terms to denote trees; for instance,
if A = {a1 < a2 < a3}, then ∅ denotes the empty tree and c〈d, d, ∅〉 denotes
the ternary tree consisting of a c-colored root and two d-colored leaves, which
are target nodes of two edges labeled respectively by a1 and a2.

A tree T is said to be regular if it contains only finitely many non-isomorphic
subtrees. It is easy to see that any regular (colored) tree is bisimilar to a finite
(colored) graph (this basically implies that any regular tree can be viewed as
the ‘unraveling’ of a finite graph from a designated source vertex). A deter-
ministic tree T is said to be full if all its vertices have 0 or k children, with
k = |A|, namely, if for every v ∈ Dom(T) and every a, a ′ ∈ A, we have that
va ∈ Dom(T) if and only if va ′ ∈ Dom(T). A deterministic A-labeled (infi-
nite) tree T is said to be complete if (it has ω levels and) each level n contains
exactly |A|

n nodes.
Hereafter, we fix a set A of labels, a set C of colors for the internal vertices,

and a set D of colors for the leaves. Unless otherwise stated, from now on, we
assume that trees are deterministic, A-labeled, C-colored, and D-augmented.

3.1.2 Tree Automata

The proposed contraction method works for various classes of automata. The
easiest way to describe it is by means of alternating tree automata [78]. Such
a class of automata generalizes the class of non-deterministic tree automata
by allowing the association of more than one state with each successor of a
node of the input tree. As an effect, the input tree and the computation tree
may look quite different from each other.

Given a finite set A of labels and a finite set S of states, we denote
by B+(A × S) the set of positive boolean formulas over the set of proposi-
tional variables A× S. For instance, both the formula false and the formula

3.1 Background Knowledge 93

(〈a1, s1〉 ∧ 〈a2, s2〉) ∨ (〈a1, s2〉 ∧ 〈a2, s2〉 ∧ 〈a2, s3〉) belong to B+({a1, a2}×
{s1, s2, s3}). Below, we define alternating Muller tree automata, which run on
infinite complete trees.

Definition 16. An alternating Muller tree automaton is a tuple A=(A, C, S,
∆, I, F), where

• S is a finite set of states,

• ∆ : S × C → B+(A × S) is a transition function,

• I ⊆ S is a set of initial states,

• F ⊆ P(S) is a family of accepting sets.

Given an A-labeled C-colored infinite complete tree T , a run of A on T is an
unlabeled (Dom(T) × S)-colored1 tree R such that

a) the root of R is colored with a pair (ε, s), where ε is the root of T and s

is a state from S;

b) for every (v, s)-colored vertex u of R with k (� 0) successors u1, ...,uk,
there exists a set M = {(a1, s1), ..., (ak, sk)}, with R(ui) = (v ai, si) for
all 1 � i � k, that satisfies the formula ∆(s, T(v)).

According to Muller acceptance condition, a run R is successful if it satisfies
the following two conditions:

i) the state associated with the root of R is an initial state from I,

ii) for every infinite path π in R, the set of states that occur infinitely often
along π, denoted Inf (R|π), is an accepting set from F.

We say that A accepts T if and only if there exists a successful run of A

on T . The language recognized by A is defined as the set L (A) of all trees
T that are accepted by A. It is worth remarking that alternating (Muller)
tree automata are as expressive as non-deterministic (Muller) tree automata.
Given an alternating tree automaton A, one can indeed compute an equivalent
non-deterministic tree automaton A ′ that recognizes the same language [78].

Without loss of generality, we impose some restrictions on the runs of al-
ternating tree automata that allow us to simplify definitions and proofs. First
of all, we forbid the use of the tautology true in the transition function of an
alternating tree automaton A. As a consequence, any run R of A on an infinite
complete tree T contains no leaves. In addition, notice that if M ⊆ A× S is a
model of a positive boolean formula ϕ ∈ B+(A×S), then every set M ′ ⊇ M is
a model of ϕ as well. This basically means that a run R of an alternating tree
automaton A can be extended by adding arbitrary successors to any vertex

1 The colors of the vertices of a run are pairs of the form (v, s), meaning that the
automaton A reads the vertex v of T while being in the control state s. In a run of
an alternating tree automaton, any vertex v of T may be associated with different
states, while in a run of a non-deterministic tree automaton it is associated with
a unique state.

94 3 Tree Automata and Logics

of it, possibly generating a new run R ′ which includes some redundant paths.
We get rid of the redundant paths of a run (if any) by restricting to minimal

models of positive boolean formulas. Formally, given a run R of an alternating
tree automaton A, we rewrite condition b) as follows:

b’) for every (v, s)-colored vertex u of R with k (> 0) successors u1, ...,uk,
there exists a minimal set M = {(a1, s1), ..., (ak, sk)}, where R(ui) =

(v ai, si) for all 1 � i � k, that satisfies the formula ∆(s, T(v)).

As already pointed out, such a restriction is safe with respect to the existence
of successful runs.

Below, we generalize the notion of alternating Muller tree automaton to
allow computations over incomplete trees.

Definition 17. A D-augmented alternating Muller tree automaton is a tuple
A = (A, C, D, S, ∆, I, F, G), where

• A, C, S, ∆, I, F are defined as in Definition 16,

• D is the set of leaf colors,

• G ⊆ D × S specifies the acceptance condition for the leaves of the input
tree.

Given an A-labeled C-colored D-augmented non-empty full tree T , a run of
A on T is defined in the standard way, except for the fact that the transitions
are now restricted to occur at the internal vertices of T only2. More precisely,
a run of A on T is an unlabeled (Dom(T) × S)-colored tree R such that

a) the root of R is colored with a pair (ε, s), where ε is the root of T and s

is a state from S;

b”) for every internal (v, s)-colored vertex u of R with k (> 0) successors
u1, ...,uk, there exists a minimal set M = {(a1, s1), ..., (ak, sk)}, with
R(ui) = (v ai, si) and v ai ∈ Dom(T) for all 1 � i � k, that satisfies the
formula ∆(s, T(v)).

The run R is successful if it satisfies the following conditions:

i) the state associated with the root of R is an initial state from I;

ii) for every infinite path π in R, Inf (R|π) ∈ F;

iii) for every leaf v of R,
(
T(↓1R(v)), ↓2R(v)

)
∈ G, where ↓1R(v) and ↓2R(v)

denote, respectively, the first and the second component of the pair R(v).

Notice that every leaf v of R has a unique corresponding leaf u (=↓1R(v)) in
T , while a leaf u of T may have many corresponding leaves in R.

2 In finite tree automata, transitions are also defined at the leaves of the tree and
the acceptance condition refers to the states of the outer frontier. Here, we exclude
transitions exiting from leaves to maintain a correspondence between the vertices
of the input tree and the vertices of the run of the tree automaton.

3.1 Background Knowledge 95

3.1.3 Monadic Second-Order Logic

Monadic Second-Order (MSO) logic is the extension of first-order logic with
set variables, namely, variables that are going to be interpreted by unary
predicates. Let us fix a signature (Σ, k), namely, a finite set Σ of relational
symbols equipped with a ranking function k : Σ → N>0, where N>0 denotes
the set of positive natural numbers.

MSO formulas over the signature (Σ, k) are build up starting from atoms
of the form x = y, x ∈ Y, X ⊆ Y, and r(x1, ..., xk(r)), where r is a relational
symbol in Σ. Atomic formulas can be combined by means of the boolean con-
nectives ∨ and ¬ and the existential quantifiers ∃ x. and ∃ X. over individual
variables (denoted by lowercase letters) and set variables (denoted by upper-
case letters). We say that a variable occurring in a formula ϕ is free if it is not
bounded by any existential quantifier. We then write ϕ(x1, ..., xn, X1, ...,Xm)

to mean that the free variables of ϕ are only x1, ..., xn, X1, ...,Xm. An MSO
sentence is simply an MSO formula without free variables.

In order to define the semantics of an MSO formula, we briefly review
the notion of relational structure over the signature (Σ, k): this is any tuple
S =

(
V , (Er)r∈Σ

)
, where V is a (possibly infinite) set of elements and, for

every relational symbol r ∈ Σ, Er is a k(r)-ary relation over V . Note that any
expanded graph (and hence any colored tree) can be viewed as a relational
structure over a signature whose symbols have arity at most 2. As a matter
of fact, we shall evaluate MSO formulas mainly over expanded graphs and
colored trees (in such a case, the signature is uniquely determined by the set
A of edge labels and the set C of vertex colors).

An assignment for a tuple (x1, ..., xn, X1, ...,Xm) of free variables is a tu-
ple (v1, ..., vn, P1, ...,Pm), where vi ∈ V for all 1 � i � n and Pj ⊆ V

for all 1 � j � m. We say that an MSO formula ϕ(x1, ..., xn, X1, ...,Xm)

holds in the relational structure S =
(
V , (Er)r∈Σ

)
under the assignment

(v1, ..., vn, P1, ...,Pm), and we shortly write S � ϕ[v1, ..., vn, P1, ...,Pm], if and
only if one of the following conditions holds:

• ϕ is of the form xi = xj and vi = vj;

• ϕ is of the form xi ∈ Xj and vi ∈ Pj;

• ϕ is of the form Xi ⊆ Xj and Pi ⊆ Pj;

• ϕ is of the form r(xi1 , ..., xik(r)
) and (vi1 , ..., vik(r)

) ∈ Er;

• ϕ is of the form ϕ1(x1, ..., xn, X1, ...,Xm) ∨ ϕ2(x1, ..., xn, X1, ...,Xm) and
S � ϕ1[v1, ..., vn, P1, ...,Pm] or S � ϕ2[v1, ..., vn, P1, ...,Pm];

• ϕ is of the form ¬ϕ′(x1, ..., xn, X1, ...,Xm) and S �� ϕ′[v1, ..., vn, P1, ...,Pm];

• ϕ is of the form ∃ xn+1. ϕ′(x1, ..., xn+1, X1, ...,Xm) and there exists vn+1 ∈
V such that S � ϕ′[v1, ..., vn+1, P1, ...,Pm]

• ϕ is of the form ∃ Xm+1. ϕ′(x1, ..., xn, X1, ...,Xm+1) and there exists
Pm+1 ⊆ V such that S � ϕ′[v1, ..., vn, P1, ...,Pm+1].

96 3 Tree Automata and Logics

The MSO theory of a relational structure S = (V , (Er)r∈Σ) is defined as the
set of all MSO sentences ϕ that hold in S.

When writing MSO formulas, we shall often use natural shorthands like
X = Y for X ⊆ Y ∧ Y ⊆ X, X = ∅ for ∀ Y. X ⊆ Y, etc. Moreover, by a slight
abuse of notation, we shall not distinguish anymore between the relational
symbols of a signature (Σ, k) and the corresponding relations of a structure S

over (Σ, k).
It is worth mentioning some fragments of MSO logic that have been in-

tensively studied in the literature. For instance, when considering expanded
graphs structures, it is possible to use the path fragment of MSO logic, which
is obtained from standard MSO logic by allowing quantifications over paths
only. Another interesting fragment of MSO logic is the chain fragment, which
is obtained by restricting to quantifications over chains (i.e., subsets of paths)
only.

Finally, in several definitions and proofs, it is common practice to restrict to
an equivalent fragment of MSO logic, which only uses set variables. According
to such a simplified fragment, each individual variable x is replaced by a set
variable X, which is then restricted, by means of a suitable formula (e.g.
ϕsing (X) = ∀ Y. (Y = ∅ ∨ X = Y ∨ X ⊆ Y)), to be instantiated by singletons
only.

Below, we recall the notion of MSO-definability. Given a relational structure
S =

(
V , (Er)r∈Σ

)
and an n-ary relation E over V , we say that E is MSO-

definable in S if there is an MSO formula ϕ(x1, ..., xn) such that, for every
v1, ..., vn ∈ V ,

(v1, ..., vn) ∈ E iff S � ϕ[v1, ..., vn].

As an example, given a relational structure S containing a binary relation E,
the reflexive and transitive closure of E, denoted E∗, is MSO-definable in S,
precisely by the formula

ϕ∗
E(x, y) = ∀ Z.

(
Z(x) ∧ ∀ z1, z2. (Z(z1) ∧ E(z1, z2)) → Z(z2)

)
→ Z(y).

Note that, in such a case, the addition of a new symbol E∗ to the signature
(Σ, k) and the expansion of S with the corresponding relation E∗ does not
increase the expressive power of the logic (this is because every occurrence
of the atomic formula E∗(x, y) can be replaced by the equivalent formula
ϕE∗(x, y)).

In the following section, we show how one can exploit the notion of MSO-
definability to build new relational structures starting from simple ones.

3.1.4 The Model Checking Problem

The model checking problem for a relational structure S is the problem of
deciding whether a given MSO sentence ϕ holds in S. We thus say that the
MSO theory of a structure S is recursive (or decidable) if the model checking

3.1 Background Knowledge 97

problem for S is decidable. Below, we give an overview of some powerful
techniques that were proposed in the literature to deal with the model checking
problem in an effective way.

The celebrated Rabin’s theorem [88] states that the MSO theory of the
infinite complete binary tree is decidable. Such a result has been obtained
by reducing the model checking problem for MSO formulas interpreted over
expanded tree structures to the acceptance problem for a suitable class of tree
automata (originally, Rabin tree automata).

The correspondence between MSO formulas and Rabin tree automata (or,
equivalently, alternating Muller tree automata) can be formalized as follows:
given an MSO formula ϕ(X1, ...,Xm), one can compute a tree automaton A

(and, conversely, given a tree automaton A, one can compute an MSO formula
ϕ(X1, ...,Xm)) such that, for every infinite complete binary tree T and every
tuple of predicates P1, ...,Pm ⊆ Dom(T),

T � ϕ[P1, ...,Pm] iff TP1,...,Pm
∈ L (A)

where TP1,...,Pm
denotes the {1, ...,m}-colored tree obtained from T by associ-

ating with each vertex v ∈ Dom(T) the (unique) color i ∈ {1, ...,m} such that
v ∈ Pi.

In virtue of the above correspondence, the model checking problem of an ex-
panded tree structure (T , P1, ...,Pm) is decidable if and only if the acceptance
problem for the corresponding colored tree TP1,...,Pm

is decidable. Moreover,
if m = 0, namely, if the formula ϕ has no free variables, then the problem
of establishing whether or not ϕ holds in the infinite complete binary tree
is reducible to the emptiness problem for tree automata, which is known to
be decidable [107]. It is also worth pointing out that Rabin’s theorem can be
easily generalized to incomplete non-empty full trees (for instance, by intro-
ducing a fresh symbol ⊥ and assuming that the tree automata read ⊥ on the
missing vertices).

In [76], Muller and Schupp brought the interest to logical theories of graphs
by identifying a large class of relational structures that enjoy decidable MSO
theories. These structures can be viewed as the configuration graphs of push-
down automata and hence they are called context-free (or end-regular) graphs.
A simplified proof of the decidability of the MSO theories of context-free
graphs can be found in [108]. Basically, it stems from the fact that every
context-free graph can be obtained from the infinite binary complete tree by
applying an MSO-compatible transformation, namely, a transformation that
preserves the decidability of the MSO theories (for a more formal definition
of MSO-compatible transformation, we refer the reader to [21]).

In the following, we describe two notable examples of MSO-compatible
transformations, namely, MSO-definable interpretations and unfoldings. Sub-
sequently, we introduce a well-known hierarchy of graphs and trees, which is
obtained by repeatedly applying MSO-definable interpretations and unfold-
ings, starting from finite graphs.

98 3 Tree Automata and Logics

MSO-Definable Interpretations and Unfoldings

Let us fix two signatures (Σ, k) and (Σ ′, k ′). An MSO-definable interpretation
from (Σ, k) to (Σ ′, k ′) is a tuple of the form I =

(
ψ(x), (ϕr(x1, ..., xk′(r))r∈Σ′

)
,

where ψ(x) and ϕr(x1, ..., xk′(r), for every r ∈ Σ ′ are MSO formulas. Such a

tuple I describes a transformation of any relational structure S =
(
V , (Er)r∈Σ

)
,

over the signature (Σ, k), into a new relational structure I(S) =
(
V ′, (E ′

r)r∈Σ′

)
,

over the signature (Σ ′, k ′), where

• the domain V ′ consists of all and only the elements v ∈ V such that
S � ψ[v];

• for every symbol r ∈ Σ ′, the relation Er consists of all and only the k ′(r)-
tuples of elements v1, ..., vk′(r) ∈ Dom(V ′) such that S � ϕ[v1, ..., vk′(r)].

Given the above definition, it becomes clear that if the relational structure S

has a decidable MSO theory, then the relational structure I(S) has a decidable
MSO theory as well (to see this, notice that any formula ϕ interpreted over
I(S) can be translated into an equi-satisfiable formula ϕ′ over S).

As an example, we show how the context-free graph of Figure 3.1 can be
obtained from the infinite complete binary tree via an MSO-definable interpre-
tation. Let (Σ, k) be the signature consisting of two binary relational symbols
E1 and E2 and let (Σ ′, k ′) be the signature consisting of three binary relational
symbols E ′

a, E ′
b, E ′

c. Furthermore, let us define the following MSO formulas
over the signature (Σ, k):

ϕE′
a
(x, y) = E1(x, y)

ϕE′
b
(x, y) = E2(x, y)

ϕE′
c
(x, y) = ∃ z1, z2. E1(z1, z2) ∧ E2(z1, y) ∧ E2(z2, x)

ψ(x) = ϕ∗
E′

a
(root , x) ∨ ∃ y.

(
ϕ∗

E′
a
(root , y) ∧ ϕE′

b
(y, x)

)
.

Intuitively, the formulas ϕEa
, ϕEb

, and ϕEc
specify the edge relations of an

{a, b, c}-labeled graph embedded into the infinite complete binary tree, while
the formula ψ specifies the domain of such a graph (note that ϕ∗

E′
a

defines

the reflexive and transitive closure of the relation E ′
a). It follows that the

MSO-definable interpretation I =
(
ψ(x), ϕa(x, y), ϕb(x, y), ϕc(x, y)

)
maps

the infinite complete binary tree to the context-free graph of Figure 3.1.
The operation of unfolding of a graph is defined as follows. Given a (colored)

graph G and a designated source vertex v0 in it, the unfolding of G from v0 is
the (colored) tree Unf (G, v0) whose domain consists of all and only the finite
paths from v0 to a vertex v in G and where the a-labeled edges are all and
only the pairs of paths (π, π ′) such that π ′ extends π through an a-labeled
edge of G (the color associated with each vertex π of Unf (G, v0) is that of the
target vertex of π).

It is easy to see that the unfolding of a graph G from a source vertex v0

is a tree bisimilar to G, provided that every vertex of G is reachable from
v0. Moreover, it can be proved the operation of unfolding is MSO-compatible,

3.1 Background Knowledge 99

1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

a

a

a

b

b

b

c

c

Fig. 3.1. A context-free graph embedded into the infinite binary tree

meaning that the model checking problem for the unfolding Unf (G, v0) of a
graph G is reducible to the model checking problem for the graph G itself.
Such a property has been proved through the following series of results. First,
in [21] the operation of unfolding restricted to deterministic graphs is shown to
be MSO-compatible. Subsequently, in [94, 112] MSO-compatibility is proved
for a more powerful transformation, called tree iteration. Finally, in [24], the
unfolding of a graph G is shown to be MSO-definable in the tree iteration of G,
thus proving the MSO-compatibility of the unrestricted unfolding operation.

The Caucal Hierarchy

By alternating MSO-definable interpretations and unfoldings, starting from
some basic relational structures, it is possible to generate a number of interest-
ing structures that enjoy decidable MSO-theories. For instance, one can start
with finite graphs, which obviously enjoy decidable MSO-theories, and then
apply unfoldings to them, thus obtaining (possibly non-deterministic) regular
trees of finite out-degree. In succession, one can apply MSO-definable inter-
pretations, thus obtaining the so-called prefix-recognizable graphs [14]. By
repeatedly applying the above operations one obtains an infinite hierarchy,
known as Caucal hierarchy (or pushdown hierarchy) [13]. Since the opera-
tions of MSO-definable interpretation and unfolding are MSO-compatible, it
is easy to see that every graph/tree in the Caucal hierarchy has a decidable
MSO theory. Below, we give a formal definition of the Caucal hierarchy in
accordance with [108].

Definition 18. The level 0 graphs of the Caucal hierarchy are all and only
the finite rooted graphs. For every n > 0, the level n trees (resp., the level n

graphs) of the Caucal hierarchy are obtained by unfolding level n − 1 graphs
(resp., by applying MSO-definable interpretations to level n − 1 trees).

Equivalent characterizations of the Caucal hierarchy can be found in the lit-
erature. Such a hierarchy has been originally introduced in [13] by repeatedly

100 3 Tree Automata and Logics

applying inverse rational substitutions, rational restrictions, and unfoldings
starting from finite graphs (the former two operations can be viewed as spe-
cial forms of MSO-definable interpretations and are described in detail in Sec-
tion 3.3.4. In [11] the same hierarchy is obtained by means of MSO-definable
transductions (i.e., generalized versions of MSO-definable interpretations) and
treegraph operations (i.e., a variant of the tree iteration). Moreover, always
in [11], it is proved that, for every n > 0, the level n Caucal graphs coincide
with the (ε-closures of) transition graphs of level n higher-order pushdown
automata, which can be viewed as generalizations of pushdown automata that
use level n stacks (a level 1, or simple, stack is a finite word, a level n + 1
stack is a simple stack containing level n stacks) (we refer the reader to [31, 32]
for further details about higher-order pushdown automata). Given the above
characterizations and the fact that the hierarchy of the languages recognized
by higher-order pushdown automata is strictly increasing [30, 39], it follows
that the Caucal hierarchy is strictly increasing as well.

Finally, in [13] the family of all deterministic colored (ranked) trees that
belong to the Caucal hierarchy is studied. Such a class of tree, called term
hierarchy, is obtained by tailoring the notions of unfolding, inverse rational
substitution, and rational restriction to the case of deterministic colored trees.
Equivalent characterizations of the term hierarchy has been also given in terms
of safe higher-order recursive schemes [31, 79, 54] and evaluations of first-order
substitutions over regular trees [23].

3.2 The Contraction Method for Tree Automata

In this section, we develop a powerful method to decide the acceptance prob-
lem for alternating tree automata equipped with Muller acceptance condition
(hereafter, shortly called tree automata) running over (possibly non-regular)
deterministic colored trees. The proposed technique can be viewed as a gener-
alization of the contraction method for infinite words [35]. Intuitively, the con-
traction method exploits a suitable ‘indistinguishability’ relation for a given
class of automata in order to reduce instances of the acceptance problem to
trivial instances involving basic ‘regular’ structures (e.g., ultimately periodic
words or deterministic regular trees). Given the very close connection be-
tween automata and MSO logic [2, 88], such a method allows one to decide
the model checking problem for MSO logic interpreted over a large class of
relational structures.

Given a non-empty full tree T , we shall denote by AccT the acceptance prob-
lem for T , namely, the problem of deciding whether any given tree automaton
A accepts T (if T is a D-augmented tree, then D-augmented tree automata
are used in place of standard ones).

Such a definition of acceptance problem can be extended to any (possibly
empty or non-full) tree T , by simply appending to every missing successor of
an internal vertex of T an infinite complete ⊥-colored tree. Such an operation

3.2 The Contraction Method for Tree Automata 101

is called completion of T . More precisely, if T is the empty tree, then the
completion of T , denoted T⊥, is the infinite complete ⊥-colored tree. If T is
a non-empty (D-augmented) tree, then the completion T⊥ of T is defined as
follows:

Dom(T⊥) = Dom(T) ∪
⋃

a∈A

(
Va {a}A∗

)

T⊥(v) =

{
T(v) for every v ∈ Dom(T),

⊥ for every v ∈ Dom(T⊥) \ Dom(T),

where Va is the set of all internal vertices of T that have no an a-successor.
Notice that T⊥ is a non-empty full tree and it is D-augmented if and only if

T is D-augmented. This makes it possible to apply the notions of run to any
arbitrary tree, under the proviso that the input alphabet of the automaton
contains the dummy symbol ⊥.

As a preliminary step, we show that the acceptance problem is decidable
for every regular tree T , provided that a suitable representation of T , e.g., a
rooted finite graph, is available. Such a result is based on a simple reduction
of the acceptance problem to the emptiness problem, that is, to the problem
of establishing whether any given tree automaton recognizes a non-empty
language, which is known to be decidable.

Proposition 26. Given (a representation of) a regular tree T and an aug-
mented tree automaton A, one can compute an input-free tree automaton A ′

such that L (A ′) �= ∅ iff T ∈ L (A).

Proof. Without loss of generality, we can assume that T is infinite and com-
plete (if this is not the case, simply add ⊥-colored vertices to T and properly
extend the transition function of A). The automaton A ′ is obtained from
the synchronized product of A and the finite graph representing T as follows.
Let (G, Ω), with G = (V , (Ea)a∈A), be a finite graph and let v0 be one of
its vertices such that the unfolding of G from v0 is isomorphic to T and let
A = (A, C, S, ∆, I, F). We define A ′ = (A, C′, S ′, ∆ ′, I ′, F ′), where

• C′ = {#};

• S ′ = S × V ;

• for every state s ′ = (s, v) ∈ S ′, ∆ ′(s ′, #) is the formula obtained from
∆(s, Ω(v)) by replacing every atom of the form 〈a, r〉 with 〈a, (r, v ′)〉,
where v ′ is the a-successor of v;

• I ′ = I × {v0};

• F ′ =
{
F′ ⊆ S × V : ↓1F

′ ∈ F
}
.

It is easy to verify that every (successful) run of A on T can be obtained from
a (successful) run R ′ of A ′ on the infinite complete #-colored tree by erasing
the second component of each state appearing in R ′. Symmetrically, for every
(successful) run R ′ of A ′, the tree obtained by erasing the second component
of each state appearing in R ′ is a (successful) run R of A on T . �

102 3 Tree Automata and Logics

3.2.1 Features and Types

In the following, we introduce the basic ingredients of the contraction method
for tree automata3. The relevant information about a run of a given automaton
on a D-augmented tree can be collected in a suitable finite data structure,
called feature.

Definition 19. Let T be a non-empty full D-augmented tree and let R be a
run of a D-augmented tree automaton A on T . We define the feature [T , R]

as the triple

⎛
⎜⎜⎝

↓2R(ε)
{
Inf (R|π) : π ∈ Bch(R)

}

{(
T(↓1R(v)), ↓2R(v), Img(R|πv)

)
: v ∈ Fr(R)

}

⎞
⎟⎟⎠

where ε denotes the root of R, ↓1R(v) denotes the vertex of T that corresponds
to v, ↓2 R(v) denotes the state that appears at the vertex v, Bch(R) denotes
the set of all infinite paths in R, Img(R|πv) denotes the set of all states that
occur at least once along the access path πv of v, and Fr(R) denotes the set of
all leaves of R.

The above definition accounts for occurrences of states along maximal (finite
or infinite) paths in R. In particular, the first component of the feature [T , R]

identifies the state appearing at the root of the run, the second component
identifies, for every infinite path π in R, the set of states that occur infinitely
often, and the third component identifies, for every leaf v of R, the color of
the vertex of T that corresponds to v, the state that appears at v, and the set
of states that occur at least once along the access path πv of v.

Given a non-empty full D-augmented tree T and a D-augmented tree au-
tomaton A, in order to decide whether T ∈ L (A), we introduce the notion
of A-type of T , which is a collection of features of the form [T , R], where R

ranges over a suitable set R of runs of A on T (different choices for R may
result into different A-types of T). We allow R to be a proper subset of the
set of all runs of A on T , because there can exist runs which are subsumed by
other ones and thus can be ‘forgotten’. The notion of subsumed run is defined
as follows. Given two runs R, R ′ of A on T , we say that R ′ is subsumed by R,
and we write R � R ′, if and only if the following conditions hold:

i) the state that appears at the root of R coincides with the state that
appears at the root of R ′;

ii) for every infinite path π in R, there is an infinite path π ′ in R ′ such that
Inf (R|π) = Inf (R ′|π ′);

3 As a matter of fact, the proposed definitions can be easily adapted to differ-
ent classes of automata, such as, for instance, non-deterministic/alternating par-
ity/Rabin tree automata.

3.2 The Contraction Method for Tree Automata 103

iii) for every leaf v of R, there is a leaf v ′ of R ′ such that T(↓1R(v)) = T(↓1

R ′(v ′)), ↓2R(v) =↓2R
′(v ′), and Img(R|πv) = Img(R ′|πv′).

Example 2. Let A = {a1, a2} be a set of labels, C = {c} be a set of col-
ors, and D = {d1, d2} be a set of markers for the leaves of the trees. We
consider the tree T = c〈d1, d2〉 and a D-augmented tree automaton A =

(A, C, D, {s1, s2}, ∆, I, F) such that

∆(s1, c) =
(
〈a1, s1〉 ∧ 〈a2, s2〉

)
∨

(
〈a1, s1〉 ∧ 〈a2, s1〉 ∧ 〈a2, s2〉

)

∆(s2, c) = 〈a1, s2〉 ∨
(
〈a2, s1〉 ∧ 〈a2, s2〉

)

The automaton A admits the following possible runs on T :

(ε, s1)

(a1, s1) (a2, s2)

(ε, s1)

(a1, s1) (a2, s1) (a2, s2)

(ε, s2)

(a1, s2)

(ε, s2)

(a2, s1) (a2, s2)

It is easy to see that the first run subsumes the second one and that this is
the only relationship that holds between the above runs.

The relation � on the runs is a preorder, i.e., a reflexive and transitive relation,
and it induces a partial order � on the set of features of A on T . Precisely,
for every pair of features t, t ′, we have t � t ′ if and only if (i) ↓1t = ↓1t

′, (ii)
↓2t ⊆ ↓2t

′, and (iii) ↓3t ⊆ ↓3t
′. It is easy to see that if R and R ′ are two runs

of A on T such that R � R ′, then R is successful whenever R ′ is successful.
Given a set R of runs of A on T , we say that R is complete if for every run R ′

of A on T , there is R ∈ R such that R � R ′.

Definition 20. Given a tree T and a D-augmented tree automaton A, an
A-type of T is a set of features of the form [T , R], where R ranges over some
complete set R of runs of A on T .

In the above definition, the A-type
{
[T , R] : R ∈ R

}
is said to be major (resp.,

minor) if R is chosen to be maximal (resp., minimal) among the complete sets
of runs of A on T . Clearly, the maximal complete set of runs is the set of all
runs, hence the major A-type is unique. Analogously, since complete sets of
runs are closed under intersections, the minor A-type is unique as well.

We can easily extend the notion of A-type to any possibly empty or non-full
tree T , under the proviso that the input alphabet of the automaton A contains
the dummy symbol ⊥. More precisely, if T is the empty tree or a non-full tree,
then the A-type of T is defined as the A-type of the completion T⊥ of T .

Hereafter, given a D-augmented tree automaton A, we denote by TA the set
of the minor A-types of all possible D-augmented trees. Since TA is included
in the finite set P

(
S×P(P(S))×P(D×S×P(S))

)
, there exist only finitely

many different minor A-types for any choice of the automaton A.

104 3 Tree Automata and Logics

3.2.2 Types and the Acceptance Problem

Now we prove that the acceptance problem for a tree T is equivalent to the
problem of computing (and checking) one of its A-types, for any given tree
automaton A.

Proposition 27. Given a D-augmented tree automaton A and an A-type σ

of a (non-empty full) D-augmented tree T , one can decide whether T ∈ L (A).

Proof. Let A = (A, C, D, S, ∆, I, F, G) and let σ be the set:
⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

rh

{
Fh,i : i ∈ Ih

}

{
(dh,j, rh,j, Gh,j) : j ∈ Jh

}

⎞
⎟⎟⎠ : h ∈ H

⎫
⎪⎪⎬

⎪⎪⎭

where H is a finite set of indices (each one representing a set of computations
characterized by the same feature) and, for all h ∈ H, Ih and Jh are finite sets
of indices, rh and rh,j, with j ∈ Jh, are states from S, dh,j, with j ∈ Jh, are
labels from D, and Fh,i, with i ∈ Ih, and Gh,j, with j ∈ Jh, are sets of states
from S.

Suppose that A accepts T . This implies the existence of a successful run R

of A whose feature [T , R] belongs to σ, that is, there is h ∈ H such that

• rh ∈ I;

• Fh,i ∈ F for all i ∈ Ih;

• (dh,j, rh,j) ∈ G for all j ∈ Jh.

The above conditions can be easily checked on the given A-type σ. The con-
verse implication holds symmetrically: if there exists an index in H that sat-
isfies the above conditions, the automaton A accepts T . �

Proposition 28. Given a D-augmented tree T , a D-augmented tree automa-
ton A, and a decision procedure for AccT , one can build the minor and the
major A-types of T .

Proof. Given a D-augmented tree T , suppose AccT to be decidable. Let A =

(A, C, D, S, ∆, I, F, G) be a D-augmented tree automaton. We show how to
build the minor A-type σ of T by exploiting the decision procedure for AccT

(a similar argument can be used for the major A-type of T). We take advantage
of the partial order � between features induced by the preorder � between
runs of A on T .

The construction of σ is based on an automaton-driven selection of the
candidate features, starting from the minimal (with respect to �) ones. For
any candidate feature t of the form

⎛
⎜⎜⎝

r
{
Fi : i ∈ I

}

{
(dj, rj, Gj) : j ∈ J

}

⎞
⎟⎟⎠

3.2 The Contraction Method for Tree Automata 105

we define the D-augmented tree automaton At = (A, C, D, St, ∆t, It, Ft, Gt)

as follows:

• St = S × P(S);

• for every state q = (s, Y) ∈ St and every symbol c ∈ C, ∆t(q, c) is the
formula obtained from ∆(s, c) by replacing every atom of the form 〈a, s ′〉
with 〈a, q′〉, where q′ = (s ′, Y ′) and Y ′ = Y ∪ {s ′};

• It is the singleton {(r, {r})};

• Ft consists of all sets of the form {(s1, Y), ..., (sk, Y)} such that s1, ..., sk ∈
S, Y ⊆ S, and {s1, ..., sk} = Fi for some i ∈ I;

• Gt consists of all tuples (dj, qj), where qj = (rj, Gj), for j ranging over J.

It is easy to check that At accepts T if and only if there is a feature t ′ of A on
T such that t ′ � t. In general, t is a feature of σ if and only if T ∈ L (At) and,
for every feature t ′′ �= t, with t ′′ � t, At′′ rejects T . Therefore, the minor A-
type σ can be build by selecting only the minimal features t that are accepted
by the corresponding automaton At. Such a selection can be performed using
the decision procedure for AccT . �

From Propositions (26-28), it follows that: (i) one can compute A-types of
regular trees and (ii) pairs of trees T , T ′ having a common A-type are indis-
tinguishable by the automaton A, that is, T ∈ L (A) iff T ′ ∈ L (A). Further-
more, by looking at the proof of Proposition 28, we know the set of all trees
T that have the same designated minor A-type σ is a rational tree language,
namely, it is a language recognized by a suitable tree automaton.

Summing up, we have shown that the model checking problem, the accep-
tance problem, and the problem of computing the minor (or the major) type
of a tree T are inter-reducible. In the next section, we shall prove that, when
dealing with such problems, one can safely replace T with a retraction of it,
that is, a suitable tree-shaped structure that collects the minor types of the
‘factors’ of T .

3.2.3 From Trees to Their Retractions

We now show how minor A-types can actually be exploited to solve non-trivial
instances of the acceptance problem. To this end, we introduce the notion of
factorization, which allows us to decompose a tree T into its basic components.
Each component, called factor, is obtained by selecting the elements of T that
lie in between some distinguished vertices. Taking advantage of the notion
of factorization, we define the corresponding retraction of T , which is a tree-
shaped arrangement of the minor A-types of the factors of T . Then, we prove
that the acceptance problem for T can be reduced to the acceptance problem
for (a suitable encoding of) the retraction of T .

106 3 Tree Automata and Logics

c1

c2

c3 c4

b1

b2

b1

Fig. 3.2. An example of factorization

Definition 21. Given a D-augmented tree T , a factorization of T is a (pos-
sibly non-deterministic) labeled uncolored tree Π such that

• Dom(Π) is a subset of Dom(T) that contains the root of T ;

• for every pair of distinct vertices u, v of Π, (u, v) is an edge of Π iff u is
an ancestor of v in T and there exists no other vertex v ′ ∈ Dom(Π) that
occurs along the path from u to v in T ;

• the labels of the edges of Π are arbitrarily chosen in a designated finite set B.

We can graphically represent a factorization of a tree by first identifying its
vertices (e.g., circled nodes in the left-hand side of Figure 3.2) and then draw-
ing the resulting edges together with the chosen labels (e.g., the bold arrows
in the right-hand side of Figure 3.2).

The (marked) factors of a tree T with respect to a factorization Π of T

are defined as follows. Let u be a vertex of Π and Succ(u) the set of all
successors of u in Π. The unmarked factor of T rooted at u, denoted TΠ[u], is
the tree obtained by selecting all descendants of u in T which are not proper
descendants of any vertex v ∈ Succ(u) in T . For every v ∈ Succ(u), we define
the marker of v, denoted mΠ[v], as the label b ∈ B of the (unique) edge of Π

having v as target vertex. The marked factor of T rooted at u, denoted T+
Π [u],

is defined as the tree obtained from TΠ[u] by recoloring each leaf v with the
corresponding marker mΠ[v].

Clearly, the marked factors of a D-augmented tree T with respect to a B-

labeled factorization Π are (B∪D)-augmented trees. For the rest of this section,
in order to simplify the notation, we assume that the set B of the edge labels
of a factorization Π includes the set D of the markers of the leaves of T .

Definition 22. Let T be a D-augmented tree, Π a B-labeled factorization of
T , with D ⊆ B, and A be a B-augmented tree automaton. The retraction of T

with respect to A and Π is the B-labeled TA-colored (TA-augmented) tree T̃

such that

• Dom(T̃) = Dom(Π);

• for every b ∈ B, (u, v) is a b-labeled edge in T̃ iff (u, v) is a b-labeled edge
in Π;

• each vertex u of T̃ is colored with the minor A-type of the corresponding
marked factor T+

Π [u].

3.2 The Contraction Method for Tree Automata 107

c1

b2

b1

c3
c2

b1

b1
b2

b1 b2

b1 b2

minor A-type of

minor A-type of

minor A-type of

Fig. 3.3. An example of retraction

As an example, Figure 3.3 depicts the retraction of the tree of Figure 3.2 with
respect to a given tree automaton A.

In general, the retraction T̃ , as well as the factorization Π, may be a non-
deterministic tree, possibly having vertices with unbounded (or even infinite)
out-degree. However, since tree automata operate on deterministic trees, we
must restrict ourselves to retractions which are either deterministic trees or
bisimilar to deterministic trees. As an example, the latter case occurs when for
every pair of edges (u, v) and (u, v ′) in T̃ labeled with the same symbol, the

subtrees of T̃ rooted at v and v ′ are isomorphic. Formally, we say that a tree
−�
T

encodes a retraction T̃ if
−�
T is an infinite complete deterministic tree bisimilar

to the infinite complete tree obtained from T̃ by adding ⊥-colored vertices.
Such an encoding of a retraction (if exists) is unique up to isomorphisms and
it can be provided as input to a suitable tree automaton.

As a matter of fact, one may define different factorizations of the same tree
T for different tree automata. This allows one to vary the (encoding of the)
retraction from one automaton to the other. However, it is not known whether
such a flexibility really improves the strength of the method. As a matter of
fact, all trees we shall take into consideration feature a single factorization
such that, for any given automaton, the corresponding retraction is encoded
by a suitable infinite complete deterministic tree.

Now, we show how, given a tree T , a B-labeled factorization Π of T , and a

B-augmented tree automaton A, one can build a suitable tree automaton
−�
A

(which only depends on A) such that A accepts T iff
−�
A accepts the encoding

of the retraction of T with respect to A and Π. Intuitively, the automaton
−�
A

108 3 Tree Automata and Logics

mimics the behavior of A at a ‘coarser’ level. Its input alphabet is the set TA

of all minor A-types plus the additional symbol ⊥; its states encode the finite
amount of information processed by A during its computations up to a certain
point; its transitions compute the new states which extend information given
by the current state with information provided by the input symbol, i.e., the
minor A-type of a marked factor or the dummy symbol ⊥.

Definition 23. For every B-augmented tree automaton A = (A, C, B, S, ∆, I,

F, G), we define the retraction automaton
−�
A = (B, TA ∪ {⊥},

−�
S ,

−�
∆,

−�
I ,

−�
F) as

follows:

•
−�
S consists of all subsets X of S, all triples (b, s, Y) ∈ B × S × P(S), and
all quadruples (b, s, Y, Z) ∈ B × S × P(S) × P(S)4;

• for every state −�s ∈ P(S) ∪ (B × S × P(S)) and every input symbol
σ ∈ TA ∪ {⊥},

−�
∆(−�s , σ) =

∧

b′∈B

〈b ′,−�s 〉;

• for every state −�s = (b, s, Y, Z) ∈ B × S × P(S) × P(S),

−�
∆(−�s ,⊥) =

∧

b′∈B

〈b ′,−�s ′〉,

where −�s ′ = (b, s, Y);

• for every state −�s = (b, s, Y, Z) ∈ B × S × P(S) × P(S) and every minor
A-type σ of the form

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

rh

{
Fh,i : i ∈ Ih

}

{
(bh,j, rh,j, Gh,j) : j ∈ Jh

}

⎞
⎟⎟⎠ : h ∈ H

⎫
⎪⎪⎬

⎪⎪⎭

4 The subsets X of S store information about the states of A that occur infinitely
often along infinite paths of previously visited factors, while the triples of the form

(b, s, Y) appear as soon as a ⊥-colored vertex in
−�
T is visited and they describe,

for some leaf of T , the marker b of the leaf, the state s at the leaf, and the set Y

of states that occurred at least once along the access path to the leaf. When the

automaton
−�
A reaches one of the above states, it loops forever on it. Quadruples

of the form (b, s, Y, Z) are used to store information about the computation of A

up to a certain vertex v of Π. The first component identifies the label b of the
edge of Π that reaches v (if v is the root of Π, it is an arbitrary label), the second
component identifies the state s at v, and the third (resp., the fourth) component
gives the set Y of states that occurred at least once along the whole access path
to v (resp., the set Z of states that occurred along the suffix of the access path of
v that lies entirely inside the last visited factor).

3.2 The Contraction Method for Tree Automata 109

we have

−�
∆(−�s , σ) =

∨

h∈H
with rh=s

(∧

i∈Ih

b′∈B

〈b ′, Fh,i〉 ∧
∧

j∈Jh

〈bh,j,
−�s h,j〉

)

where −�s h,j = (bh,j, rh,j, Y ∪ Gh,j, Gh,j)

(if H is empty,
−�
∆(−�s , σ) = false and thus there is no valid run of

−�
A);

•
−�
I consists of all quadruples (b, s, {s}, {s}), with b ∈ B and s ∈ I;

•
−�
F consists of all sets of one of the following forms:

i)
{
X
}
, with X ∈ F,

ii)
{
(b, s, Y)

}
, with (b, s) ∈ G and Y ⊆ S,

iii)
{
(b1, s1, Y1, Z1), ..., (bk, sk, Yk, Zk)

}
, with k > 0 and

⋃
1�l�k Zl ∈ F.

The next theorem reduces the acceptance problem for a tree T to the accep-
tance problem for the encoding of a retraction of T (the proof is quite long
and technical and thus moved to the appendix).

Theorem 5. Let T be a D-augmented tree, Π be a B-labeled factorization of
T , with D ⊆ B, and A be a B-augmented tree automaton. We have that

T ∈ L (A) iff
−�
T ∈ L (

−�
A),

where
−�
T denotes the encoding of the retraction of T with respect to A and Π

and
−�
A denotes the retraction automaton of A.

The upshot of Theorem 5 is that, given a tree T and an automaton A, if we
are able to find a retraction T̃ of T with respect to A whose encoding has a
decidable acceptance problem, then we can decide whether or not A accepts
T . Moreover, if two trees T , T ′ have bisimilar retractions T̃ , T̃ ′ with respect to
a given automaton A, then they are indistinguishable by A.

Theorem 5 can be further generalized to allow one to compute the minor

A-type σ of a tree T from the minor
−�
A-type −�σ of the encoding

−�
T of a retraction

of T with respect to A. As a matter of fact, there is no easy way to lift such a
result to major types, even if we accordingly adapt the definition of retraction.
We defer the proof of the following theorem to the appendix.

Theorem 6. Let T be a D-augmented tree, Π be a B-labeled factorization of
T , with D ⊆ B, and A be a B-augmented tree automaton. The minor A-type of

T can be computed from the minor
−�
A-type of the encoding

−�
T of the retraction

of T with respect to A and Π, where
−�
A is the retraction automaton of A.

Below, we provide an intuitive account of the main ingredients of the proofs
of Theorem 5 and Theorem 6. The key element of both proofs is a two-way
correspondence between (the features of) the runs of A on T and (the features

of) the runs of
−�
A on

−�
T , defined on the basis of the following ‘mimicking’

relation.

110 3 Tree Automata and Logics

Definition 24. We say that a run
−�
R of

−�
A on

−�
T mimics a run R of A of T

iff the following conditions are satisfied:

(C1) the state at the root of
−�
R is of the form (b, s, {s}, {s}), where s is the state

at the root of R;

(C2) for every infinite path −�π in
−�
R such that Inf (

−�
R |−�π) is a singleton of the

form {X}, with X ⊆ S, there exists an infinite path π in R such that
Inf (R|π) = X;

(C3) for every infinite path −�π in
−�
R such that Inf (

−�
R |−�π) is a set of the form

{(b1, s1, Y, Z1), ..., (bk, sk, Y, Zk)}, there exists an infinite path π in R

such that Inf (R|π) =
⋃

1�l�k Zl;

(C4) for every infinite path −�π in
−�
R such that Inf (

−�
R |−�π) is a singleton of the

form {(b, s, Y)}, there exists a leaf v of R such that T(↓1 R(v)) = b,
↓2R(v) = s, and Img(R|πv) = Y, where πv is the access path of v in R;

(C5) for every infinite path π in R, there exists an infinite path −�π in
−�
R that

satisfies one of the following two conditions:

a) Inf (
−�
R |−�π) is a singleton of the form {X}, with X = Inf (R|π),

b) Inf (
−�
R |−�π) is a set of the form {(b1, s1, Y, Z1), ..., (bk, sk, Y, Zk)}, with⋃

1�l�k Zl = Inf (R|π);

(C6) for every leaf v of R, there exists an infinite path −�π in
−�
R such that

Inf (
−�
R |
−�
π) is a singleton of the form {(b, s, Y)}, with b = T(↓1 R(v)),

s =↓2R(v), and Y = Img(R|πv), where πv is the access path of v in R.

The above conditions guarantee that the feature [T , R] is uniquely determined

by the feature [
−�
T ,

−�
R].

The proofs of the two theorems rest on the following properties, which
are respectively proved by Lemma 15, Lemma 16, and Lemma 17 given in
Appendix A.1:

(P1) For every run
−�
R of

−�
A on

−�
T such that the state at the root of

−�
R is a

quadruple of the form (b, s, {s}, {s}), there is a run R of A on T which is

mimicked by
−�
R.

This property is proved by first extracting from
−�
R suitable runs of A on

the marked factors of T and then combining these runs to form a valid
run of A on T , which satisfies Conditions C1–C6.

(P2) For every run R of A on T , there is a run R ′ of A on T such that R ′ � R

and there is a run
−�
R of

−�
A on

−�
T that mimics R ′. (Note that there may

exist no run
−�
R of

−�
A on

−�
T that directly mimics R.)

This requires a three-step construction. First, given a run R of A on T ,

one builds a run
−�
R of

−�
A on

−�
T by choosing suitable transitions of

−�
A that

3.2 The Contraction Method for Tree Automata 111

L T
−�
T

Fig. 3.4. An example of application of Theorem 5

match those of R. Then, by exploiting Property P1, one builds a new run

R ′ of A on T which is mimicked by
−�
R. Finally, one verifies that R ′ � R.

(P3) Let R1 and R2 be two runs of A on T and let
−�
R1 and

−�
R2 be two runs of

−�
A on

−�
T . If

−�
R1 mimics R1,

−�
R2 mimics R2, and

−�
R1 �

−�
R2, then R1 � R2.

This easily follows from the definition of the mimicking relation.

It is easy to show that the above properties allow one to build a complete set

of runs of A on T from a given complete set of runs of
−�
A on

−�
T .

3.2.4 An Example

We conclude the section with a simple example of application of Theorem 5.

Example 3. Let us consider an infinite word w : N → C. It can be thought
of as an expanded linear structure L = (N, E, (Pc)c∈C), where (i, j) ∈ E iff
j = i + 1, and i ∈ Pc iff w(i) = c. Let T be the infinite complete C-colored
binary tree, where every vertex belonging to i+1-th level of the tree is colored
by w(i). Formally, if we label the edges of T with elements from the set
A = {a1, a2}, we have that T(v) = w(|v|) for every v ∈ A∗ (see Figure 3.4).
It is well-known that if the MSO theory of L is decidable, then that of T is
decidable as well. This can be proved by showing that T is nothing but the
unfolding of the graph G obtained from L via an MSO-definable interpretation
that replaces each edge e of L with two distinct copies e1 and e2 labeled,
respectively, with a1 and a2. By exploiting the MSO-compatibility of the
unfolding operation [94, 21, 111, 112], one can reduce the model checking
problem of T to that of G, which can in its turn be reduced to the model
checking problem of L. Equivalently, one can prove that the MSO theory of
T is decidable by exploiting the correspondence between the runs of non-
deterministic tree automata on T are the runs of a alternating sequential
automata on L. Our method provides an alternative proof of the decidability
of the MSO theory of T , which is independent from the MSO-compatibility of

112 3 Tree Automata and Logics

T ′

Fig. 3.5. A distorted tree from Example 3

the unfolding operation and from the equivalence between non-deterministic
and alternating automata. Let B = {b} and let Π be the B-labeled factorization
of T such that Dom(Π) = Dom(T). Let us consider a generic B-augmented

tree automaton A = (A, C, B, S, ∆, I, F, G) running on T . The retraction T̃ of
T with respect to A and Π is defined as follows:

• Dom(T̃) = Dom(Π);

• for every vertex v of T̃ , T̃ (v) is the minor A-type of the marked factor of
T rooted at v (notice that such a marked factor coincides with the finite
B-augmented tree c〈b, b〉, where c = w(|v|)).

If we denote by Ω the (computable) function that maps each color c ∈ C to

the minor A-type of the B-augmented tree c〈b, b〉, then we easily see that T̃

is bisimilar to the linear structure
−�
T = Ω(L), which can be obtained from

L via an MSO-definable interpretation that replaces every color c ∈ C with
the corresponding minor A-type Ω(c). By Theorem 5, the decidability of the
acceptance problem for T (and thus the decidability of the MSO theory of
T) follows immediately from the decidability of the acceptance problem for L

(equivalently, from the decidability of the MSO theory of L).

Even though tree automata are intimately related to MSO formulas evaluated
over deterministic colored trees, we do not know whether the above example
can be dealt with by means of classical compositional results from logic (see,
for instance, [95, 106, 89]). Precisely, we found it difficult to directly map
(without using MSO-compatibility of the unfolding operation) MSO formulas
over T to equivalent MSO formulas over L. Moreover, the arguments used in
the above example can be easily generalized to several ‘distortions’ of the tree
T , e.g., to the following trees:

• the tree T ′ defined by Dom(T ′) = A∗ and T ′(v) = w(|v|a2
), for all v ∈

Dom(T ′), where |v|a2
denotes the number of occurrences of the label a2

along the access path of v (see Figure 3.5);

3.3 Tree Transformations 113

T ′′

Fig. 3.6. Another distorted tree from Example 3

• the tree T ′′ defined by Dom(T ′′) = A∗ and T ′′(v) = w
(⌊

|v|+|v|a2

2

⌋)
, for

all v ∈ Dom(T ′′) (see Figure 3.6).

Finally, it is worth noticing that the decidability results involving the ‘distor-
tions’ T ′ and T ′′ can be equivalently obtained by exploiting the correspondence
between the runs of non-deterministic tree automata on T ′ (resp., T ′′) and
the runs of alternating tree automata with ε-transitions on L.

3.3 Tree Transformations

This section describes and compares several natural transformations on trees,
namely, recolorings, substitutions, transductions, inverse substitutions, and
unfoldings. Some of them, such as transductions and unfoldings, are pretty
standard, other ones, e.g., tree insertions, are less common. In the following,
we provide a self-contained uniform presentation of all of them. In the next
section, we shall introduce a large class of trees with a decidable acceptance
problem and we prove closure properties for such a class with respect to the
considered tree transformations.

3.3.1 Tree Recolorings

We distinguish three kinds of tree recoloring: memoryless recoloring, finite-
state recoloring (without lookahead), and finite-state recoloring with rational
lookahead. In the following, we assume D to be disjoint from C and we restrict
our attention to A-labeled C-colored (C∪D)-augmented trees.

Definition 25. A memoryless recoloring is a function Ω : C → C′. The
memoryless recoloring of an A-labeled C-colored (C∪D)-augmented tree T is
the A-labeled C′-colored (C′ ∪D)-augmented tree Ω(T) such that

114 3 Tree Automata and Logics

• Dom(Ω(T)) = Dom(T);

• for all C-colored vertices v of T , Ω(T)(v) = Ω(T(v));

• for all D-colored leaves v of T , Ω(T)(v) = T(v).

A memoryless recoloring is a local transformation that only processes the C-
colored vertices of an input tree, leaving the D-colored leaves unchanged. A
local transformation is an operation that can be performed on each vertex
v of an input tree without taking into account the colors of its ancestors or
descendants. A typical example of local transformation is the operation of
second-order tree substitution. On the contrary, non-local tree recolorings use
states and transitions to make the recoloring of a vertex of the input tree
dependent on the current state.

A finite-state recoloring without lookahead is specified by a top-down de-
terministic Mealy tree automaton. Such an automaton is a deterministic tree
automaton devoid of an acceptance condition and provided with an output
function that, given the current state and color, produces a new color. Unlike
the case of memoryless recoloring, the recoloring computed by a Mealy tree
automaton M can change the color of D-colored leaves in the following re-
stricted way: the new color assigned to each d-colored leaf v of T , with d ∈ D,
is the pair (q, d), where q is the state of M at the leaf v. Such a restriction
does not involve any loss of generality and it eases the study of compositional
properties of trees obtained from non-local tree transformations.

Definition 26. A (deterministic top-down) Mealy tree automaton is a tuple
M = (A, C, D, C′, Q, δ, Ω, q0), where

• Q is a finite set of states;

• δ : Q × C × A → Q is a transition function;

• Ω : Q × C → C′ is a recoloring function;

• q0 is the initial state.

The Mealy tree automaton M maps any A-labeled C-colored (C∪D)-augmented
tree to a suitable A-labeled C′-colored (C′ ∪D ′)-augmented tree, where D ′ =

Q × D. The (unique) run of M on an A-labeled C-colored (C∪D)-augmented
tree T is the A-labeled Q-colored (Q-augmented) tree R such that

• Dom(R) = Dom(T);

• R(ε) = q0;

• for every a-labeled edge (v, v ′) in R, with a ∈ A, R(v ′) = δ(R(v), T(v), a).

The finite-state recoloring of T via M is the A-labeled C′-colored (C′ ∪D ′)-
augmented tree M(T) such that

• Dom(M(T)) = Dom(T);

• for all C-colored vertices v of T , M(T)(v) = Ω(R(v), T(v));

• for all D-colored leaves v of T , M(T)(v) = (R(v), T(v)).

3.3 Tree Transformations 115

Example 4. A rational marking [14] is a particular form of finite-state recol-
oring. It is specified by a rational language L consisting of finite words over
the alphabet A and it maps any A-labeled C-colored (C-augmented) tree T to
the A-labeled C′-colored (C′-augmented) tree T ′, with C′ = C × {0, 1}, such
that, for every vertex v of T ′,

T ′(v) =

{
(T(v), 1) if v ∈ L,

(T(v), 0) otherwise.

Such a recoloring can be performed by a top-down deterministic Mealy tree
automaton as follows. Let us denote by A = (A, S, δ, s0, F) a deterministic

finite-state automaton that recognizes L, where δ is a function from S× A to
S, s0 is the initial state S, and F is the set of accepting states. We define the
Mealy tree automaton M = (A, C, ∅, C′, S, δ ′, Ω, s0), where

• δ ′(s, c, a) = δ(s, a) for all s ∈ S, c ∈ C, and a ∈ A;

• Ω(s, c) = (c, 1) for all s ∈ F and c ∈ C;

• Ω(s, c) = (c, 0) for all s �∈ F and c ∈ C.

The reader can easily check that, for every tree T , M(T) coincides with the
rational marking of T with respect to the language L.

Example 5. Let (C, ·) be a finite (multiplicative) semigroup, namely, let C be a
finite set and let · be an associative binary operator over C. Furthermore, sup-
pose that C contains the identity element 1 such that 1 ·c = c ·1 = c for every
c ∈ C. The structure (C, ·) is said to be a (finite) multiplicative monoid. Let
us now consider the transformation that maps any C-colored (C-augmented)
tree T to the C-colored (C-augmented) tree T ′ such that Dom(T ′) = Dom(T)

and T ′(v) = T(v0) ·T(v1) · ... ·T(vn), where v0 v1 ... vn identifies the access path
of v in T . Such a transformation is computed by the Mealy tree automaton
M = (A, C, ∅, C, Q, δ, Ω, q0), where

• Q = C;

• δ(q, c, a) = q · c for every q ∈ Q, c ∈ C, and a ∈ A;

• Ω(q, c) = q · c for every q ∈ Q and c ∈ C;

• q0 is the identity element of (C, ·).

Finite-state recolorings with rational lookahead are specified by Mealy tree
automata with the ability of inspecting the subtree issued from the current
position before processing it (‘lookahead’).

Definition 27. A Mealy tree automaton with rational lookahead is a tuple
M = (A, C, D, C′, L, Q, δ, Ω, q0), where

• L = {L1, ...,Lk} is a set of rational languages consisting of A-labeled C-
colored (C∪D)-augmented trees (namely, each language Le, with 1 � e �

k, is recognized by a (C∪D)-augmented tree automaton);

• Q is a finite set of states;

116 3 Tree Automata and Logics

• δ : Q × P({1, ...,k}) × A → Q is a transition function;

• Ω : Q × P({1, ...,k}) → C′ is a recoloring function;

• q0 is the initial state.

Both the transition function and the recoloring function take into account
the set of the indices of the languages Le that contain the subtree rooted
at the current position. The (unique) run of M on an A-labeled C-colored
(C ∪D)-augmented tree T is the A-labeled Q-colored (Q-augmentd) tree R

such that

• Dom(R) = Dom(T);

• R(ε) = q0;

• for every a-labeled edge (v, v ′) in R, with a ∈ A, R(v ′) = δ(R(v), E, a),
where E ⊆ {1, ...,k} is the set of all indices e such that Le contains the
subtree of T rooted at v (T↓v for short).

The finite-state recoloring with rational lookahead of T via M is the A-labeled
C′-colored (C′ ∪D ′)-augmented tree M(T), with D ′ = Q × D, such that

• Dom(M(T)) = Dom(T);

• for all C-colored vertices v of T , M(T)(v) = Ω(R(v), E), where E ⊆ {1, ...,k}

is the set of all indices e such that T↓v ∈ Le;

• for all D-colored leaves v of T , M(T)(v) = (R(v), T(v)).

It is immediate to see that memoryless recoloring, finite-state recoloring, and
finite-state recoloring with rational lookahead form a strictly increasing hier-
archy of tree transformations.

3.3.2 Tree Substitutions

We focus our attention on tree morphisms and tree insertions, both of which
are derived from the general notion of second-order tree substitution. Intu-
itively, a second-order tree substitution replaces all c-colored vertices in a tree
T by a designated tree Fc, for all colors c ∈ C. Even though second-order
tree substitutions are usually applied to ranked trees (i.e., trees where the
out-degree of each vertex is uniquely determined by the arity of the vertex),
here we adapt the standard definitions to the case of deterministic unranked
trees. Hereafter, we assume that the domains of the trees are prefix-closed
languages over the set of the edge labels.

As a preliminary step, we introduce the notion of first-order tree substitu-
tion.

Definition 28. Given an A-labeled C-colored (C ∪D)-augmented tree T , a
prefix-free language L ⊆ Dom(T), and, for each v ∈ L, an A ′-labeled C′-
colored (C′ ∪D)-augmented tree Fv, the first-order tree substitution produces
an A∪A ′-labeled (C∪C′)-colored (C∪C′∪D)-augmented tree T [Fv/v]v∈L defined
as follows:

3.3 Tree Transformations 117

• Dom
(
T [Fv/v]v∈L

)
=

(
Dom(T) \ (LA∗)

)
∪

{
v w : v ∈ L, w ∈ Dom(Fv)

}
;

• T [Fv/v]v∈L(u) =

{
T(u) if u ∈ Dom(T) \ (LA∗),

Fv(w) if u = v w, v ∈ L, w ∈ Dom(Fv).

First-order tree substitutions are usually applied to the D-colored leaves of a
tree T (in such a case, L is a subset of the frontier of T). By a slight abuse of
notation, we shall write T [Fd/d]d∈D to denote the first-order tree substitution
in T of all d-colored leaves by Fd for all markers d ∈ D (we shall take advantage
of this notation in Definition 29).

Unlike first-order tree substitutions, second-order substitutions do not force
one to remove the subtrees rooted at the replaced nodes. Intuitively, the sub-
trees rooted at the 1-st, 2-nd, ..., k-th successor of a replaced c-colored vertex
v in T are attached to the replacing tree Fc as follows: we mark some leaves
of Fc (if any) with elements from the label set A, thus making Fc a (C′ ∪D)-
augmented tree, with D ⊇ A, and we use these markers as placeholders for
the subtrees of T to be attached to Fc. Notice that, unlike first-order ones,
second-order tree substitutions can occur simultaneously at vertices belonging
to the same path of a tree T .

Second-order tree substitutions can be formalized as follows. As in the case
of tree recolorings, let us assume the sets C and D to be disjoint. According
to Courcelle [20], we first define second-order tree substitutions over finite

trees and then we show how to extend them to the infinite case by using
a limit argument (precisely, we shall exploit the fact that second-order tree
substitutions are monotone in their arguments with respect to a suitable ω-
complete partial order).

Definition 29. Given a finite A-labeled C-colored (C∪D)-augmented tree T

and, for each color c ∈ C, a (possibly infinite) A ′-labeled C′-colored (C′∪D)-
augmented tree Fc, the second-order tree substitution produces an A ′-labeled
C′-colored (C′∪D)-augmented tree T�Fc/c�c∈C inductively defined as follows:

T�Fc/c�c∈C =

⎧
⎪⎪⎨

⎪⎪⎩

∅ if T = ∅,

Fc[T (a)/a]a∈A if T �= ∅ and T(ε) = c ∈ C,

d if T �= ∅ and T(ε) = d ∈ D,

where, for every label a ∈ A, T (a) = T↓a�Fc/c�c∈C (T↓a is the subtree of T

rooted at a).

Figure 3.7 depicts the result of the second-order tree substitution of c-colored
vertices in T by Fc.

The above definition can be generalized to infinite trees as follows. Let
us denote by Trees (resp., Trees′) the set of all possibly infinite A-labeled
C-colored (C∪D)-augmented trees (resp., the set of all possibly infinite A ′-
labeled C′-colored (C′ ∪D)-augmented trees) and by FinTrees the subset

118 3 Tree Automata and Logics

c c
a1 a2 a1 a2

T

a1

a2 a2

Fc T�Fc/c�

Fig. 3.7. An example of second-order tree substitution

of Trees consisting of finite trees only. The operation of second-order tree
substitution can be viewed as a function from FinTrees×(Trees′)C to Trees′,
which maps any finite A-labeled C-colored (C∪D)-augmented tree T and any
tuple F̄ = (Fc)c∈C of A ′-labeled C′-colored (C′ ∪D)-augmented trees to the
A ′-labeled C′-colored (C′ ∪D)-augmented tree T�Fc/c�c∈C. A partial order
⊑ over the set of all trees can be naturally defined: for every pair of trees T1

and T2, we let T1 ⊑ T2 iff Dom(T1) ⊆ Dom(T2) and, for every vertex v of T1,
T1(v) = T2(v). Intuitively, T1 ⊑ T2 holds iff T1 can be obtained from T2 by
pruning some of its subtrees. It is easy to see that the empty tree is the least
element of ⊑; moreover, ⊑ turns out to be an ω-complete partial order. This
means that every ⊑-directed set X of trees has a least upper bound Sup(X),
which is defined as follows:

• Dom(Sup(X)) =
⋃

T∈X Dom(T);

• for every vertex v of Sup(X), Sup(X)(v) = T(v), where T is any tree in X

that contains the vertex v (notice that Sup(X)(v) is well-defined).

The operation of second-order tree substitution is monotone in its argu-
ments. This implies (see Proposition 2.4.2 in [20]) that there is only one way
to extend second-order tree substitution to an ω-continuous function from
Trees× (Trees′)C to Trees′.

Notice that, since second-order tree substitutions are local as memoryless
recolorings, we can combine sequences of second-order tree substitutions, e.g.,
T
�
Fc�F′

c′/c′�c′∈C′/c
�

c∈C
.

Finally, it is possible to show that second-order tree substitutions are as-
sociative.

Lemma 10. Second-order tree substitutions are homomorphisms with respect
to first-order tree substitutions on D-colored leaves, namely, for every tree T

and every pair of tuples (Fd)d∈D and (Fc)c∈C of trees, we have

T [Fd/d]d∈D�Fc/c�c∈C = T�Fc/c�c∈C

[
Fd�Fc/c�c∈C/d

]
d∈D

.

A proof of Lemma 10 can be found in Section 3.5 of [20].

3.3 Tree Transformations 119

Proposition 29. Second-order tree substitutions are associative, namely, for
every A-labeled C-colored (C ∪D)-augmented tree T , every tuple (Fc)c∈C of
A ′-labeled C′-colored (C′ ∪ D)-augmented trees, and every tuple (F′

c′)c′∈C′

A ′′-labeled C′′-colored (C′′ ∪D)-augmented trees, we have

T�Fc/c�c∈C�F′
c′/c′�c′∈C′ = T

�
Fc�F′

c′/c′�c′∈C′/c
�

c∈C
.

Proof. From previous arguments, it is sufficient to prove the claim for any
finite tree T (the infinite case follows from ω-continuity). We prove it by in-
duction on the height of T (the cases T = ∅ and T = c are trivial). Suppose that
T has at least one internal node. By exploiting Lemma 10 and the definition
of second-order tree substitution, we obtain

T�Fc/c�c∈C�F′
c′/c′�c′∈C′

= FT(ε)

[
T↓a�Fc/c�c∈C/a

]
a∈A

�F′
c′/c′�c′∈C′

= FT(ε)�F′
c′/c′�c ′∈C′

[
T↓a�Fc/c�c∈C�F′

c′/c′�c′∈C′/a
]
a∈A

= FT(ε)�F′
c′/c′�c ′∈C′

[
T↓a�Fc�F′

c′/c′�c ′∈C′/c�
c∈C

/a
]

a∈A

= T
�
Fc�F′

c′/c′�c ′∈C′/c
�

c∈C
.

Tree morphisms and tree insertions can be viewed as special cases of second-
order tree substitutions. As already pointed out, a second-order tree substitu-
tion is a function that maps a tree T and a tuple F̄ = (Fc)c∈C of replacing trees
to the tree T�Fc/c�c∈C. Tree morphisms (resp., insertions) are second-order
tree substitutions where the second argument F̄ (resp., first argument T) is
fixed.

A tree morphism is a function μ, specified by a tuple (Fc)c∈C of A ′-labeled
C′-colored (C′ ∪D)-augmented trees, which maps any A-labeled C-colored
D-augmented tree T to the A ′-labeled C′-colored (C′ ∪D)-augmented tree

μ(T) = T�Fc/c�c∈C.

The notion of tree morphism is a natural generalization of that of word mor-
phism [12]. In particular, we have that, given A = {a1, ...,ak}, every tree
morphism μ is uniquely determined by the images μ(c〈a1, ...,ak〉), for c rang-
ing over C (this follows from the monotonicity of μ with respect to the partial
order ⊑). A tree morphism μ is said to be regular if Fc is a regular tree for
every color c ∈ C. At the top of Figure 3.8, we depict a regular tree morphism
for the set of edge labels A = {a1, a2}.

The notion of regular tree morphism naturally leads to that of morphic trees,
viewed as the limits of n-fold iterations of suitable regular tree morphisms. For
each color c ∈ C, let Fc a regular A-labeled C-colored (C∪D)-augmented tree,
and let μ be the corresponding regular tree morphism. Moreover, let c̃ be a

120 3 Tree Automata and Logics

a1 a2

�→

a1 a2

a1 a2

�→
a2

a1 a2

μ0(c̃)

�→
μ1(c̃)

�→
μ2(c̃)

�→
μ3(c̃)

�→ ...

Fig. 3.8. An example of regular tree morphism and its n-fold iteration

distinguished color in C, called seed. We consider the n-fold iteration of the tree
morphism μ starting from the seed c̃:

μn(c̃) =

{
c̃ if n = 0,

μn−1(μ(c̃)) if n > 0.

If the color of the root of the replacing tree Fc̃ is exactly the seed c̃, then
it is immediate to see that the sequence μ0(c̃), μ1(c̃), μ2(c̃), ... is (weakly)
increasing with respect to the partial order ⊑, namely, μi(c̃) ⊑ μj(c̃) holds for
all i � j. Since ⊑ is an ω-complete partial order, the above-defined sequence
has a least upper bound, which we shortly denote by μω(c̃). Any tree which
is obtained in this way is called morphic.

Example 6. Let μ be the tree morphism depicted at the top of Figure 3.8.
The sequence of trees obtained from n-fold iterations of μ is shown at the
bottom of Figure 3.8. The limit of such a sequence is the morphic tree μω(c̃),
whose domain is the set of all words of the form an

2 or an
2 am

1 , where n ranges
over N and m is less than or equal to the highest power of 2 that divides n+1.

A tree insertion is a function ν, specified by a tuple of distinct colors c1, ..., cn

and by an A-labeled C-colored (C ∪D)-augmented tree T , which maps any
n-tuple (F1, ..., Fn) of A ′-labeled C′-colored (C′ ∪D)-augmented trees to the
A ′-labeled C′-colored (C′ ∪D)-augmented tree

ν(F1, ..., Fn) = T�F1/c1, ..., Fn/cn�.

3.3 Tree Transformations 121

Notice that we allow {c1, ..., cn} to be a proper subset of the set C of all
colors (in such a case, the vertices of T which are associated with colors out-
side {c1, ..., cn} are not modified by the second-order tree substitution). The
tree insertion ν is said to be regular if T is regular. As a matter of fact, it
comes natural to extend the notion of tree insertion by applying substitu-
tions in more than one tree. Precisely, given an n ′-tuple ν̄ of tree insertions
ν1, ...,νn′ , we can think of ν̄ as function that maps the n-tuple (F1, ..., Fn) to
the n ′-tuple

(
ν1(F1, ..., Fn), ..., νn′(F1, ..., Fn)

)
. In such a case, we say that ν̄

is a tree insertion with dimension (n, n ′). By Proposition 29, (regular) tree
insertions with matching dimensions can be composed together, namely, for
every (regular) tree insertion ν with dimension (n, n ′) and every (regular)
tree insertion ν ′ with dimension (n ′, n ′′), ν ◦ ν ′ is a (regular) tree insertion
with dimension (n, n ′′).

3.3.3 Tree Transducers

We now introduce another family of tree transformations, which are speci-
fied by top-down deterministic tree transducers [37, 38]. By a slight abuse
of terminology, any transformation defined by a tree transducer is called tree
transduction (in fact, according to [16], these transformations are equivalent
to the MSO-definable transductions that preserve bisimilarity of graphs).

Top-down deterministic tree transducers are finite-state machines that pro-
cess a tree in a top-down fashion and replace the vertex in the current position
with a regular tree, which may depend on the current state and color. At each
computation step, different states can be spread along different (copies of
the) successors of the current vertex. Hence, unlike second-order tree substi-
tutions, a tree transducer may exhibit different behaviors on different copies
of the same subtree. In order to distinguish between such different behaviors,
we mark some leaves in each replacing tree with pairs belonging to the finite
set B = Q × A, making the replacing tree a (C′ ∪D∪B)-augmented tree. At
each step, the transducer first chooses a replacing tree F on the ground of
the state and color of the current vertex v; then, for each q ∈ Q and each
a-successor va of v in the input tree, it attaches a copy of the subtree rooted
at va to every (q, a)-colored leaf of F and it recursively processes that copy
starting from state q.

A tree transducer can be formally defined as follows (different, but equiv-
alent, definitions can be found in the literature [37, 38]). Hereafter, given a
set Q of states, we use B as a shorthand for the set Q×A of markers for the
leaves of the replacing trees and we denote by Trees, Trees′, and RegTrees

the set of all possibly infinite A-labeled C-colored (C∪D)-augmented trees, the
set of all possibly infinite A ′-labeled C′-colored (C′ ∪D ′)-augmented (where
D ′ = Q×D, as in the case of finite-state recoloring), and the set of all regular

A ′-labeled C′-colored (C′ ∪D∪B)-augmented trees, respectively.

122 3 Tree Automata and Logics

Definition 30. A (top-down deterministic) tree transducer is a tuple T =

(A, C, D, A ′, C′, Q, Ω, q0), where

• Q is a finite set of states;

• Ω : Q × C → RegTrees is a replacement function;

• q0 is the initial state.

The tree transducer T maps A-labeled C-colored (C∪D)-augmented trees to
A ′-labeled C′-colored (C′ ∪D ′)-augmented trees. In the case of infinite trees,
the output of T is defined as follows, according to [16].

For every n � 0, we recursively define the function Tn from Q × Trees to
Trees′ as follows:

• if n = 0 or T = ∅, then we set Tn(q, T) = ∅;

• if n > 0, T �= ∅, and T(ε) ∈ C, then we define Tn(q, T) = Ω(q, T(ε))

[T (b)/b]b∈B, where, for all b = (r, a) ∈ B, T (b) = Tn−1(r, T↓a);

• if n > 0 and T is the singleton tree d, with d ∈ D, then we let Tn(q, T)

be the singleton D ′-colored tree (q, d).

Let us consider now the usual ω-complete partial order ⊑ on the set of all
trees. It is easy to verify, by exploiting induction on n, that, for every tree T ∈
Trees, the sequence T0(q0, T), T1(q0, T), T2(q0, T), ... is (weakly) increasing
with respect to ⊑. This allows us to define the output T(T) of the transducer
as the limit Tω(q0, T) of the sequence T0(q0, T), T1(q0, T), T2(q0, T), The
function that maps a tree T to the tree T(T) is called tree transduction.

Example 7. Let us fix A = {1, 2} and C = {∧, ∨, ¬, p1, p2, p3}. Furthermore,
let T = (A, C, ∅, A ′, C′, Q, Ω, q0) be a tree transducer, where Q = {q0, q1}

and Ω(q, c) id defined as follows:

Ω(q, c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c〈(q0, 1), (q0, 2)〉 if q = q0 and c ∈ {∧, ∨},

∨〈(q1, 1), (q1, 2)〉 if q = q1 and c = ∧,

∧〈(q1, 1), (q1, 2)〉 if q = q1 and c = ∨,

(q1, 1) if q = q0 and c = ¬,

(q0, 1) if q = q1 and c = ¬,

c if q = q0 and c ∈ {p1, p2, p3},

¬〈c, ∅〉 if q = q1 and c ∈ {p1, p2, p3}.

Intuitively, the transducer T processes an input tree T by pushing the negation
symbol ¬ to the leaves through the boolean connectives ∧ and ∨. Figure 3.9
shows the computation of the transducer T on an A-labeled C-colored input
tree T that represents the formula ¬

(
p1 ∨ ¬ (p2 ∧ p3)

)
.

Similarly to finite-state recolorings, tree transducers can be enriched with the
facility of rational lookahead.

3.3 Tree Transformations 123

q0 ¬

∨

p1 ¬

∧

p2 p3

�→ q1 ∨

p1 ¬

∧

p2 p3

�→ ∧

q1 p1 q1¬

∧

p2 p3

�→

∧

¬

p1

q0∧

p2 p3

�→ �→ ∧

¬

p1

∧

q0 p2 q0p3

�→ ∧

¬

p1

∧

p2 p3

Fig. 3.9. An example of tree transduction

Definition 31. A tree transducer with rational lookahead is a tuple of the
form T = (A, C, D, A ′, C′, L, Q, Ω, q0), where

• L = {L1, ...,Lk} is a set of rational tree languages consisting of A-labeled
C-colored C ∪ D-augmented trees;

• Q is a finite set of states;

• Ω is a replacement function from Q × P({1, ...,k}) to RegTrees;

• q0 is the initial state.

For every n ∈ N, we define the function Tn : Q×Trees → Trees′ as follows:

• if n = 0 or T = ∅, then we set Tn(q, T) = ∅;

• if n > 0, T �= ∅, and T(ε) ∈ C, then we set Tn(q, T) = Ω(q, E)[T (b)/b]b∈B,
where E ⊆ {1, ...,k} is the set of all indices e such that T ∈ Le;

• if n > 0 and T is the singleton tree d, with d ∈ D, then we let Tn(q, T)

be the singleton tree (q, d).

The output T(T) of the transducer T on a tree T is defined as the limit
Tω(q0, T) of the ⊑-directed sequence T0(q0, T), T1(q0, T), T2(q0, T), The
function that maps any tree T to the tree T(T) is called tree transduction with
rational lookahead5.
5 As pointed out in [37, 38], tree transductions, with or without rational lookahead,

are not closed under functional composition, that is, the operation resulting from
the composition of two tree transductions is not, in general, a tree transduction.
Closure under functional composition can be recovered by imposing suitable re-
strictions on the replacement function, as in the cases of total and of non-deleting
tree transductions [91, 104].

124 3 Tree Automata and Logics

The relationships between tree transductions, finite-state recolorings, and
regular tree morphisms are captured by the following proposition.

Proposition 30. Regular tree morphisms are special cases of tree transduc-
tions without lookahead; moreover, finite-state recolorings without lookahead
(resp., with rational lookahead) are special cases of tree transductions without
lookahead (resp., with rational lookahead). Conversely, any tree transduction
without lookahead (resp., with rational lookahead) can be viewed as the com-
position of a regular tree morphism, a finite-state recoloring without lookahead
(resp., with rational lookahead), and another regular tree morphism.

Proof. We restrict our attention to finite-state recolorings and tree transduc-
tions without lookahead (the claims for transformations with rational looka-
head can be proved in a similar way).

The proof that tree transductions without lookahead subsume both finite-
state recolorings without lookahead and regular tree morphisms is straight-
forward, and thus omitted.

Let T = (A, C, D, A ′, C′, Q, Ω, q0) be a tree transducer and let B = Q×A.
We show that the output of T on any A-labeled C-colored (C∪D)-augmented
tree T can be obtained from T by applying suitable regular tree morphisms
and finite-state recolorings. The proof can be decomposed in three steps: (i)
we build a regular tree morphism μ1 that maps T to a B-labeled C-colored
(C ∪D)-augmented tree μ1(T) which is bisimilar to T (up to a relabeling of
the edges); (ii) we build a Mealy tree automaton M that associates with each
vertex of μ1(T) the corresponding state of the run of T on T ; (iii) we exploit a
second regular tree morphism μ2 to map the tree M(μ1(T)) to the tree T(T).

Let {b1, ...,bh} be an arbitrary enumeration of all elements of B (= Q×A),
where each bi is a pair of the form (qi, ai), with qi ∈ Q and ai ∈ A, and,
for every color c ∈ C, let Fc be the B-labeled C-colored A-augmented tree
c〈a1, ...,ah〉. Furthermore, let μ1 be the regular tree morphism specified by
the tuple (Fc)c∈C. Intuitively, such a morphism transforms the tree T into a B-
labeled C-colored (C∪D)-augmented tree μ1(T) by replacing every a-labeled
edge in T with a (q, a)-labeled copy of it, for each q ∈ Q. As a consequence,
the tree T is bisimilar to a suitable relabeling of the tree μ1(T). Thus, on the
ground of the bisimulation relation between T and μ1(T), we can associate with
each (c-colored) vertex v of μ1(T) a corresponding (c-colored) vertex vA of T .
It follows that the tree transducer T ′ = (B, C, D, A ′, C′, Q, Ω ′, q0), which is
obtained from T by replacing the label set A with B and the function Ω with
Ω ′ such that Ω ′(q, c) = Ω(q, c)[(q′, b)/b]b=(q′,a)∈B, satisfies T ′(μ1(T)) =

T(T).
Let us now introduce a fresh copy q̃ of each state q ∈ Q and we denote

by Q̃ the set of all such states. Furthermore, let C̃ = Q̃ × C and D̃ = Q × D

(notice that these two sets are disjoint). We define the Mealy tree automaton

M = (B, C, D, C̃, Q̃, δ̃, Ω̃, q̃0) as follows:

3.3 Tree Transformations 125

• δ̃(q̃, c, b) = δ(q, c, b) for all q ∈ Q, c ∈ C, and b ∈ B;

• Ω̃(q̃, c) = (q̃, c) for all q ∈ Q and c ∈ C.

The Mealy tree automaton M maps the B-labeled C-colored (C∪D)-augmented

tree μ1(T) to a suitable B-labeled C̃-colored (C̃∪D̃)-augmented tree M(μ1(T))

by associating to each vertex of μ1(T) the corresponding state of the run of
T ′ on μ1(T).

Finally, let μ2 the regular tree morphism specified by the tuple
(
F̃c̃

)
c̃∈C̃

,

where F̃c̃ is the A ′-labeled C′-colored (C′ ∪D)-augmented tree Ω(q, c), for

every c̃ = (q̃, c) ∈ C̃, with q ∈ Q and c ∈ C. On the grounds of the above
definitions, for every A-labeled C-colored (C∪D)-augmented tree T , we have

T(T) = T ′ (μ1(T)) = M (μ1(T)) �F̃c̃/c̃�
c̃∈C̃

= μ2 (M(μ1(T))) . �

3.3.4 Inverse Substitutions

We now consider tree transformations resulting from inverse substitutions fol-
lowed by unfoldings. First, we recall some basic definitions and then we prove
some relevant properties of inverse (rational) substitutions and unfoldings.

An inverse substitution (also called an inverse mapping) [13, 75] is a special
form of interpretation, which specifies the edges of the resulting structure by
means of suitable path expressions. Intuitively, the application of an inverse
substitution to an A-labeled graph G results in a A ′-labeled graph G ′, whose
domain coincides with that of G and where (v, v ′) is an a ′-labeled edge of
G ′ iff there exists a path from v to v ′ in G labeled with a word in a des-
ignated language. In the general case, we allow paths to traverse edges in
either direction. Thus, given a label a ∈ A, we use the symbol a (resp., the
symbol ā) to denote an edge traversed in forward (resp., backward) direction
and we introduce a disjoint copy Ā of A, which contains a symbol ā for any

a ∈ A. Hereafter, we denote by
−↔
A the set A ∪ Ā. Given a finite sequence of

vertices v1, v2, v3, ... in a graph G, we say that v1, v2, v3, ... is a traversal of G

labeled with a word w ∈
−↔
A∗ iff, for every 1 � i < n, one of the following two

conditions holds:

1. (vi, vi+1) is an a-labeled edge of G and w(i) = a;

2. (vi+1, vi) is an a-labeled edge of G and w(i) = ā.

As an example, the word ā1 a2 describes a traversal of a graph G that visits
some vertices v1, v2, v3, where (v2, v1) is an a1-labeled edge of G and (v2, v3)

is an a2-labeled edge of G. Sometimes, inverse substitutions can also take
into account the colors of the traversed vertices. In such a case, traversals

are described by words over the expanded alphabet
−↔
A ∪ C. For the sake of

simplicity, we do not consider such a general case.
Let A (resp., A ′) be the set of edge labels of the input (resp., output) graph

of inverse substitutions.

126 3 Tree Automata and Logics

a

a

a

a

a a a

b

b b

b b b b

c

c c

Fig. 3.10. An example of an inverse rational substitution

Definition 32. Given a graph G = (V , (Ea)a∈A) and a function h from a

set of labels A ′ to the set P(
−↔
A∗), the inverse substitution h−1 of G is an

A ′-labeled (rooted) graph defined as follows:

• the domain of h−1(G) is V;

• if G is a rooted graph with root v0, then v0 is the root of h−1(G) as well;

• for every pair of vertices v, v ′ of G and every label a ′ ∈ A ′, (v, v ′) is an
a ′-labeled edge of h−1(G) iff G contains a traversal from v to v ′ labeled
with a word w ∈ h(a ′).

Since both inverse substitutions and unfoldings preserve graph bisimilarity,
it is easy to show that they commute up to bisimulation, namely, for every
(rooted) graph G, Unf (h−1(G)) and h−1(Unf (G)) are bisimilar.

We say that the function h of Definition 32 is rational if, for every label a ′ ∈
A ′, the language h(a ′) is rational. Such a notion can be naturally extended
to inverse substitutions. As an example, consider the infinite complete {1, 2}-
labeled tree T and the rational function h : {a, b, c} → P({1, 2, 1̄, 2̄}

∗
) defined

by h(a) = {1}, h(b) = {2}, and h(c) = {2̄ 1̄ 2}. Figure 3.10 depicts the {a, b, c}-
labeled rooted graph h−1(T) generated from T via the inverse substitution
h−1 (dashed arrows denote the edges of the underlying tree T , bold arrows
denote the edges of h−1(T)).

We now focus our attention on particular forms of inverse substitutions,
precisely, the inverse flip substitutions and the inverse forward substitutions.

Below, # denotes a fresh symbol, not belonging to
−↔
A , and

−↔
A# denotes the

set
−↔
A ∪ {#}.

The inverse flip substitution h−1
A transforms a given A-labeled tree T into

an
−↔
A#-labeled rooted graph by adding, for each a-labeled edge (v, v ′) of T , one

backward ā-labeled edge (v ′, v) and, for each vertex v of T , one #-labeled loop
(v, v). Formally, the inverse flip substitution can be obtained from Definition

32 by letting A ′ =
−↔
A#, h(#) = {ε}, h(a) = {a} for all a ∈ A, and h(ā) = {ā}

for all ā ∈ Ā.

3.3 Tree Transformations 127

Hereafter, we denote by FlipUnf the operation of unfolding with backward
edges and loops (also called two-way unfolding), which maps any A-labeled

tree T to the
−↔
A#-labeled tree Unf (h−1

A (T)) (i.e., the unfolding of the graph
h−1

A (T)).
Inverse A-forward substitutions are all and only those inverse substitutions

where path expressions can only use forward edges and must avoid the empty
word. It is immediate to see that inverse substitutions in this restricted class
map trees to acyclic graphs.

The following lemma shows that any inverse (rational) substitution is equiv-
alent to an inverse flip substitution followed by an inverse (rational) forward
substitution.

Lemma 11. For every inverse (rational) substitution h−1, there is a (ratio-

nal)
−↔
A#-forward substitution

−�
h−1 such that h−1 =

−�
h−1 ◦ h−1

A .

Proof. We define the function
−�
h as follows: for every a ′ ∈ A ′, we set

−�
h(a ′) =

{w# : w ∈ h(a ′)}. It is immediate to see that

hA

(−�
h(a ′)

)
= hA

(
{w# : w ∈ h(a ′)}

)
=

{
hA(w#) : w ∈ h(a ′)

}
= h(a ′).

This proves that h−1 =
−�
h−1 ◦ h−1

A .

Clearly,
−�
h−1 is rational if and only if h−1 is rational. �

By exploiting Lemma 11, we obtain the following result.

Proposition 31. For every inverse (rational) substitution h−1, there is an

inverse (rational)
−↔
A#-forward substitution

−�
h−1 such that, for every A-labeled

tree T , the tree Unf (h−1(T)) and the graph
−�
h−1(FlipUnf (T)) are bisimilar.

Proof. Given an inverse (rational) substitution h−1, by Lemma 11, there is

an inverse (rational) forward substitution
−�
h−1 such that, for every A-labeled

tree T , h−1(T) =
−�
h−1(h−1

A (T)). Since inverse (rational) forward substitutions

and unfoldings commute up to bisimulation, the tree Unf
(−�
h−1(h−1

A (T))
)

is

bisimilar to the graph
−�
h−1

(
Unf (h−1

A (T))
)

(=
−�
h−1(FlipUnf (T))). �

We conclude the section by showing that inverse rational forward substitutions
can be implemented by tree transducers with rational lookahead.

Proposition 32. For every inverse rational A-forward substitution h−1,
there is a tree transducer T with rational lookahead such that, for every A-
labeled tree T , if h−1(T) is a deterministic (acyclic) graph, then T(T) is the
(unique) deterministic tree bisimilar to h−1(T).

Proof. First, observe that any inverse rational forward substitution can be
viewed as a particular form of MSO-definable interpretation which preserves

128 3 Tree Automata and Logics

finite-state recolorings

+ regular tree morphisms

finite-state recolorings

w. rational lookahead

+ regular tree morphisms

regular tree

morphisms

tree

transductions

tree transductions

w. rational lookahead

inverse rational

forward

substitutions

memoryless

recolorings

finite-state

recolorings

finite-state recolorings

w. rational lookahead

Fig. 3.11. Relationships between the various tree transformations

bisimilarity of graphs [108]. Indeed, the existence of a path labeled by a word
in a designated rational language can be expressed by a suitable formula
in the monadic second-order logic. Therefore, the claim of the proposition
follows from a result by Colcombet and Löding [16], which shows that any
MSO-definable interpretation which preserves bisimilarity is equivalent (up
to bisimulation) to a suitable tree transduction with rational lookahead.

3.3.5 A Summary

In Figure 3.11, we graphically represent the relationships between the various
pairs of tree transformations. An arrow departing from a (set of) operation(s)
X and reaching a (set of) operation(s) Y means that Y can be expressed in
terms of (a composition of operations of) X, or, shortly, X subsumes Y.

3.4 The Class of Reducible Trees

In this section, we introduce the notion of rank, which can be thought of as
the number of iterated retractions which are sufficient to reduce a given tree
to a regular one, and we prove some closure properties for the classes of trees
having rank n, for n ∈ N.

Given the results of Section 3.2, we know that the acceptance problem

for a tree T is reducible to the acceptance problem for the encoding
−�
T of a

retraction of it. As a matter of fact, the encoding
−�
T may be a regular tree

and hence enjoy a decidable acceptance problem. On the one hand, it comes
natural to study how many iterated retractions are sufficient to reduce a given
tree T to a regular one. On the other hand, if we do not restrict the form of
the factorizations which are used to define retractions of trees, we easily see

3.4 The Class of Reducible Trees 129

that any tree is reducible to a regular retraction in a single (trivial) step.
Given a tree T and an automaton A running on T , we can indeed denote
by Π the factorization of T such that Dom(Π) = {ε}. Such a factorization

induces a retraction T̃ of T that consists of a single vertex colored with the

minor A-type of T . The encoding
−�
T of T̃ is obviously a regular tree, hence

enjoying a decidable acceptance problem. Such an attempt to identify a class
of decidable trees is interesting neither from an algorithmic point of view nor
from a combinatorial point of view, since the decidability of the acceptance
problem is reduced to the computability of a singleton retraction. In order to
find a reasonable notion of rank for trees, we need to restrict the form of the
factorizations in such a way that the minor types of the marked factors are
guaranteed to be computable. The natural choice is to enforce the condition
that the marked factors resulting from a factorization of a tree are regular. In
such a case, we say that the factorization is regular.

Definition 33. Let T be a D-augmented tree. We say that T has rank 0 if it
is regular. For n > 0, we say that T has rank n if there is a set B ⊇ D and
a B-labeled regular factorization Π of T such that, for every B-augmented tree
automaton A, the encoding of the retraction of T with respect to A and Π has
rank n − 1. We say that T is reducible if it has a finite rank n ∈ N.

From Definition 33 and Theorem 6, the acceptance problem for any reducible
tree turns out to be decidable, provided that there is an effective way to
compute (a finite representation) of the encoding of an iterated retraction
of T . Let the footprint of a tree T be the minimum amount of information
that must be provided to make the reduction from T to the encoding of its
retraction effective. Such a footprint can be inductively defined as follows.
Given a D-augmented tree T , if T has rank 0, then a footprint of T is a finite
rooted graph whose unfolding is isomorphic to T . If T has rank n > 0, then a
footprint of T is a pair ξ = (B, f), where B ⊇ D and f is a computable function
that maps any B-augmented tree automaton A to a footprint of a suitable B-

labeled (TA∪{⊥})-colored tree
−�
T which has rank n−1 and encodes a retraction

of T with respect to A. Equivalently, a footprint of a D-augmented tree with
rank n > 0 can be finitely presented as a pair consisting of a set B ⊇ D

and a program that, given any B-augmented tree automaton A, computes a

footprint of a suitable B-labeled (TA ∪ {⊥})-colored tree
−�
T which has rank

n − 1 and encodes a retraction of T with respect to A.
As pointed out in Section 3.2, factorizations may depend on automata.

To keep the notation as simple as possible, for every reducible tree we fix
a single factorization, which does not depend on the automata running on
it. Whenever necessary, however, such a restriction can be safely removed
by adopting more general notions of reducible tree and footprint. Hereafter,
we restrict ourselves to reducible trees which are modeled according to any
suitable representation system that allows the computation of their footprints.
Under such a restriction, we have the following result.

130 3 Tree Automata and Logics

Theorem 7. Reducible trees have decidable acceptance problems.

Proof. Let T be a tree having rank n > 0 and let ξ = (B, f) be its foot-
print. For every B-augmented tree automaton A, we define (i) a sequence
of sets of markers B0, B1, ...,Bn, (ii) a sequence of augmented tree automata
A0, A1, ...,An, and (iii) a sequence of footprints ξ0, ξ1, ...,ξn as follows:

• B0 = B, A0 = A, and ξ0 = ξ;

• for every 0 � i < n, Bi+1 is the first component of the footprint ξi;

• for every 0 � i < n, ξi+1 = fi(Ai), where fi is the second component of
the footprint ξi;

• A1 is the retraction automaton of A0 and, for every 1 � i < n, Ai+1

is the retraction automaton of the Bi-augmented tree automaton Ai[Bi]

obtained by expanding the retraction automaton Ai (recall that Ai is a
‘bare’ alternating tree automaton running on an infinite complete tree)
with the set of markers Bi and with the set G = ∅.

For every 0 � i � n, ξi is a footprint of a tree having rank n−i. In particular,
ξn is a footprint of a regular tree (that is, a finite rooted graph). Moreover,
from Theorem 5, T is accepted by A iff the unfolding of ξn is accepted by An.
Finally, from Proposition 26, the problem of deciding whether the unfolding
of ξn is accepted by An is decidable and this concludes the proof. �

It is easy to see that the class of all reducible trees properly includes the class
of all profinitely (or residually) ultimately periodic words [12]. Similarly, it is
possible to prove that the class of all reducible trees properly includes the class
of profinitely (or residually) ultimately periodic trees [72]. The latter inclusion
shows the generality of the notion of factorization proposed in Section 3.2.3,
which allows reductions not only to linear structures, but also to branching
ones. More precisely, let us call a factorization that satisfies the definition
given in [72] a linear factorization. A linear factorization of a tree T can be
viewed as a factorization Π of T (according to Definition 21), which further
satisfies the following condition: for every pair of paths π and π ′ in Π, labeled
with the words u and u′, respectively, if u and u′ have the same length and
terminate with the same symbol, then the marked factors of T associated with
u and u′ coincide. Moreover, the definition proposed in [72] associates with
each linear factorization an ordinal n, called level, which takes into account
the form of its factors. For instance, all factors in a level 1 linear factorization
must be regular trees, while those in a level 2 linear factorization must be
decomposable into level 1 linear factorizations. It can be shown that there
exist simple trees which do not admit any linear factorization (of any level).
Consider, for instance, the A-labeled C-colored tree T , with A = {a, b, c} and
C = {0, 1}, defined as follows:

• the domain of T is the set of all finite words over the alphabet A;

• for every vertex v of T , T(v) = 1 iff v is a word of the form u (cu)n, for
some u ∈ {a, b}

∗ and n ∈ N.

3.4 The Class of Reducible Trees 131

a b

a b a b

a b a b a b a b

c

c c

c c c c

Fig. 3.12. A reducible tree which is not profinitely ultimately periodic

Figure 3.12 depicts a portion of the tree T , where the white-colored circles
and the black-colored circles represent, respectively, the 0-colored vertices and
the 1-colored vertices of T . Clearly, all subtrees of T rooted at the vertices
u ∈ {a, b}

∗ are pairwise non-isomorphic. Due to such a particular structure,
there exists no linear factorization of T of any level. However, by exploiting
the compositional properties of types provided in the next section, one can
easily prove that T has rank 1. As a matter of fact, one can also prove that T

belongs to the third level of the Caucal hierarchy.
The inductive definition of rank of a tree induces a hierarchical structure on

the class of all reducible trees. Establishing whether or not such a hierarchy
is strictly increasing, namely, whether or not there exists an upper bound
n ∈ N on the minimum rank of all reducible trees, is an open (and difficult)
problem. As a matter of fact, from the results given in [90], it is clear that
every unary tree, i.e., every word, with a decidable MSO theory has rank 1.
We expect that this does not hold anymore for the class of binary trees with
a decidable MSO theory. Clearly, the above mentioned problem is also related
to the problem of determining the minimum rank of any given tree. For such
a reason, whenever we say that a tree T has rank n, we actually mean that
its minimum rank is less than or equal to n.

3.4.1 Compositional Properties of Types

In the following, we prove a composition theorem for types with respect to
second-order tree substitutions. More precisely, we relate the types of a tree
T and the types of a tuple (Fc)c∈C of replacing trees to the types of the tree
T�Fc/c�c∈C. From now on, for any given automaton A, we shortly denote by
τA the function that maps any tree to its minor A-type.

As in the definition of second-order tree substitution, we fix a set A (resp.,
A ′) for the edge labels of the input tree (resp., the output tree), a set C (resp.,
C′) for the colors of the internal vertices of the input tree (resp., the output
tree), and a set C ∪D (resp., C′ ∪D) for the colors of the leaves of the input

132 3 Tree Automata and Logics

tree (resp., the output tree). As usual, we assume that C is disjoint from D and
D ⊇ A. Moreover, by a slight abuse of terminology, given a D-augmented tree
automaton A and a tuple F̄ = (F1, ..., Fn) of A ′-labeled C′-colored (C′ ∪D)-
augmented replacing trees, we say that σ̄ = (σ1, ...,σn) is the minor A-type
of F̄, if, for every 1 � i � n, σi is the minor A-type of Fi; then we accordingly
extend the function τA.

The following theorem resembles the composition theorems for MSO logics
(see [95, 106, 89]). Unlike them, however, it involves the operation of second-
order tree substitution instead of simpler operations like the juxtaposition of
words [95, 106] or the appending of trees at the root [89].

Theorem 8. Let A ′ be a (C′ ∪D)-augmented tree automaton and let σ̄ =

(σc)c∈C be a tuple of minor A ′-types. One can compute a (C∪D)-augmented
tree automaton A such that, for every tree T and every tuple F̄ = (Fc)c∈C

of replacing trees, the minor A ′-type σ ′ of T ′ = T�Fc/c�c∈C is uniquely de-
termined by (and computable from) the minor A-type σ of T and the minor
A ′-type σ̄ of F̄.

We describe the key ingredients of the proof of Theorem 8 and we refer the
interested reader to Appendix A.2 for the technical details. To start with,
we distinguish between two kinds of second-order tree substitution, namely,
erasing and non-erasing ones. A second-order tree substitution T�Fc/c�c∈C

is said to be erasing if there is at least one color c ∈ C such that the A ′-
labeled C′-colored (C′∪D)-augmented tree Fc is either empty or consists of
a single vertex marked with an element a ∈ A. In such a case, the color c

(resp., the replacing tree Fc) is said to be an erasing color (resp., an erasing
tree) of the second-order tree substitution. Given an erasing second-order
tree substitution T�Fc/c�c∈C, we then denote by C− the set of all erasing
colors in C and by C+ the set of all other colors. If we further have that
A ′ = A = {a1, ...,ak}, C′ = C, and, for every non-erasing color c ∈ C+,
Fc = c〈a1, ...,ak〉, namely, if the substitution preserves all non-erasing colors
without adding new nodes, then say that the substitution is shrinking. It is
easy to see that for every (possibly erasing) second-order tree substitution
T�Fc/c�c∈C, if we define

F−
c =

{
Fc if c ∈ C−

c〈a1, ...,ak〉 if c ∈ C+
and F+

c =

{
Fc if c ∈ C+

c〈a1, ...,ak〉 if c ∈ C−
,

then we have
T�Fc/c�c∈C = T�F−

c /c�c∈C�F+
c /c�c∈C. (3.1)

The first substitution in the right-hand side of Equation 3.1 is shrinking and
the second one is non-erasing. Such a property allows us to prove Theorem
8 separately for shrinking substitutions (see Lemma 18 in Appendix A.2)
and for non-erasing ones (see Lemma 19 in Appendix A.2). As a matter of
fact, the proof of the compositional property for non-erasing second-order tree

3.4 The Class of Reducible Trees 133

substitutions is a rather easy application of Theorem 6. Theorem 8 can thus
be thought of as a sort of generalization of Theorem 6.

The following corollary relates the minor A ′-types of the input trees of a
regular tree insertion to the minor A ′-types of the output trees.

Corollary 1. Let A ′ be a (C′ ∪D)-augmented tree automaton and let ν be
a regular tree insertion with dimension (n, n ′). One can compute a function
−�ν : T n

A′ → T n′

A′ such that, for every n-tuple F̄ of replacing trees,

−�ν
(
τA′(F̄)

)
= τA′

(
ν(F̄)

)
.

Proof. The claim follows trivially from Theorem 8. The regular tree insertion
ν is indeed specified by an n-tuple of colors c1, ..., cn and by a regular tree
T . Therefore, given any (C′ ∪D)-augmented tree automaton A ′, we can use
Theorem 8 to compute the (C ∪D)-augmented tree automaton A and then
Proposition 26 and Proposition 28 to compute the minor A-type σ of T . From
previous results, we know that the function −�ν is computable. �

The function −�ν of Corollary 1 is called the A ′-abstraction of the regular tree
insertion ν. Let us denote by A ′-Abstractions the set of all A ′-abstractions
of regular tree insertions with dimension (1, 1) and let us equip it with the
associative operation of functional composition ◦. It turns out that (A ′-
Abstractions, ◦) is a finite monoid:

i) the set TA′ (and hence the set A ′-Abstractions) is finite;

ii) from Proposition 29, it easily follows that A ′-abstractions of regular tree
insertions are closed under functional composition;

iii) there exists a regular tree insertion νid which maps any tree F to itself
and hence the A ′-abstraction −�ν id plays the role of the identity in (A ′-
Abstractions, ◦).

In the following, we consider iterated applications of regular tree insertions. In
particular, we focus on properties of the so-called profinitely ultimately peri-
odic functions, which include those functions f : N → N such that, for every
A-abstraction −�ν of a regular tree insertion, the sequence −�νf(0), −�νf(1), −�νf(2), ...
turns out to be ultimately periodic. Roughly speaking, profinitely ultimately
periodic functions exhibit a (computable) repeating pattern whenever they
are projected into any finite monoid, e.g., (A-Abstractions, ◦). Examples of
such functions are n2, 2n, 2n − n2, nn, n!, and the exponential tower 22...2

.
Hereafter, for every p � 0, every q > 0, and every n � 0, we denote by [n]p,q

either the value n or the value ((n − p) mod q) + p, depending on whether
n < p or n � p.

Definition 34. A function f : N → N is said to be profinitely ultimately
periodic if, given l � 0 and r > 0, one can compute p � 0 and q > 0 such
that, for every n � 0,

[
f(n)

]
l,r

=
[
f([n]p,q)

]
l,r

. (3.2)

134 3 Tree Automata and Logics

Every function f that satisfies Equation 3.2 can be characterized in terms
of the periodicity of the sequences of the form (ef(n))n∈N, where e is any
element of a finite (multiplicative) monoid. This is formally stated in Proposi-
tion 33. As a matter of fact, such a characterization implies that the notion of
profinitely ultimately periodic function is actually equivalent to (i) the notion
of profinitely ultimately periodic sequence (see [12]), and (ii) the notion of
ultimately periodic function with respect to finite semigroups/monoids (see
[114, 115, 72, 73]).

Proposition 33. A function f : N → N satisfies Definition 34 iff, given any
finite (multiplicative) monoid (X, ·) and any element e ∈ X, one can compute
p � 0 and q > 0 such that, for all n ∈ N,

ef(n) = ef([n]p,q),

namely, the sequence (ef(n))n∈N is (effectively) ultimately periodic.

Proof. Let us assume that f satisfies Definition 34. Given any finite monoid
(X, ·) and any element e ∈ X, by exploiting the Pigeonhole Principle, one can
compute two natural numbers l � 0 and r > 0 such that en = e[n]l,r for every
n ∈ N. Since f satisfies Definition 34, one can compute two natural numbers
p � 0 and q > 0 such that, for all n ∈ N, [f(n)]l,r = [f([n]p,q)]l,r. Thus, we
have

ef(n) = e[f(n)]l,r = e[f([n]p,q)]l,r = ef([n]p,q).

For the converse implication, let f : N → N be a function such that, for
every finite monoid (X, ·) and every element e ∈ X, one can compute p � 0
and q > 0 such that, for all n ∈ N, ef(n) = ef([n]p,q). Let us fix two natural
numbers l � 0 and r > 0. One can choose a finite monoid (X, ·) and an element
e ∈ X such that r turns out to be the least integer such that er is the identity
of X. Thus, one can compute two natural numbers p � 0 and q > 0 such
that, for every n ∈ N, ef(n) = ef([n]p,q). Notice that, by construction, for any
i, j ∈ N, ei = ej implies i mod r = j mod r, whence [i]l,r = [j]l,r. Therefore,
for every n ∈ N, we have

[
f(n)

]
l,r

=
[
f([n]p,q)

]
l,r

. �

The following proposition identifies a number of ways to obtain profinitely
ultimately periodic functions, starting from a set of basic functions. It extends
previous results from [12]. Hereafter, we use i = j (mod m) as a shorthand
for i mod m = j mod m. Moreover, we say that a function f : N → N has
unbounded infimum if lim infn → ∞ f(n) = ∞ (in such a case, we tacitly assume
that for any given l ∈ N, one can compute an index n0 such that, for every
n � n0, f(n) � l holds).

3.4 The Class of Reducible Trees 135

Proposition 34. Let f and g be two profinitely ultimately periodic functions.
The following functions are profinitely ultimately periodic as well:

1. (Sum) h = f + g, defined by h(n) = f(n) + g(n);

2. (Product) h = f · g, defined by h(n) = f(n) · g(n);

3. (Difference) h = f − g, defined by h(n) = f(n) − g(n), provided that h

has unbounded infimum;

4. (Quotient) h =
⌊

f
d

⌋
, defined by h(n) =

⌊
f(n)

d

⌋
, where d is any positive

constant;

5. (Exponentiation) h = fg, defined by h(n) =
(
f(n)

)g(n)
, provided that

h has unbounded infimum;

6. (Exponential tower) h defined by h(0) = 1 and h(n+1) = bh(n), where
b is any positive constant;

7. (Fibonacci numbers) h defined by h(0) = h(1) = 1 and h(n + 2) =

h(n) + h(n + 1);

8. (Generalized sum) h defined by h(n) =
∑n−1

i=0 f(i);

9. (Generalized product) h defined by h(n) =
∏n−1

i=0 f(i);

10. (Composition) h = f ◦ g, defined by h(n) = g(f(n)).

In order to not interrupt the flow of the presentation, the rather straightfor-
ward proof of Proposition 34 is postponed to Appendix A.3.

We conclude the section by showing how to apply Proposition 34 to a tree,
which does not belong to the Caucal hierarchy.

Example 8. Let tow be the tower of exponentials, defined by tow (0) = 1 and
tow(n + 1) = 2tow(n) for all n ∈ N. We denote by T the {a1, a2}-labeled tree
whose domain consists of all and only the finite words of the form an

2 am
1 ,

with n ∈ N and m � tow(n) (see the upper left part of Figure 3.13). We
assume that all vertices of T are colored over a singleton {c}. In [11], Carayol
and Wöhrle show that such a tree enjoys a decidable MSO theory, even
though it does not belong to the Caucal hierarchy. Here, we give an alter-
native (automaton-based) proof of the decidability of the MSO theory of T .
We define the B-labeled factorization Π of T , with B = {a2}, as follows:

• the domain of Π is the set of all words of the form an
2 , with n ∈ N (the

vertices of Π are represented by circled nodes in Figure 3.13)’;

• (u, v) is an a2-labeled edge of Π iff u is a word of the form an
2 , for some

n ∈ N, and v is the word an+1
2 .

Now, let F be the singleton tree c, let G be the {c, x}-colored {a2}-augmented
tree c〈x, a2〉 (see the upper right part of Figure 3.13), and let ν be the regular
tree insertion specified by the tree G (x is the color to be replaced by the
input of ν). Notice that, for every n ∈ N, the marked factor of T rooted at the
vertex an

2 is isomorphic to the tree νtow(n)(F), i.e., the tow(n)-fold application

136 3 Tree Automata and Logics

...

...

n edges
︷ ︸︸ ︷

to
w

(
n

)
e
d
g
e
s

︷
︸
︸

︷

T
F

a2

x

G

−�ν1
(
σ
) −�ν2

(
σ
)

... −�ν tow(n)
(
σ
)

−�
T

Fig. 3.13. An example of tree outside the Caucal hierarchy

of ν to F. Then, given any B-augmented tree automaton A, let −�
ν be the A-

abstraction of ν and σ be the minor A-type of F. From Corollary 1, we have
that −�ν tow(n)(σ) is the minor A-type of the marked factor of T rooted at the
vertex an

2 . This implies that the infinite complete B-labeled TA-colored tree
−�
T defined by

−�
T (an

2) = −�ν tow(n)(σ),

depicted at the bottom of Figure 3.13, encodes the retraction of T with respect
to A and Π. Moreover, from Proposition 34, the function tow is profinitely

ultimately periodic and hence
−�
T is a regular tree. Therefore, the tree T has

rank 1 and it enjoys a decidable MSO theory.

As a matter of fact, the argument exploited in Example 8 can be easily gen-
eralized to several trees outside the Caucal hierarchy, like, for instance, the
tree T ′ depicted in Figure 3.14. In such a case, one can show that the tree T ′

has rank 1 by first defining two basic trees F and G as follows

a1 a2

F x

a1 a2 a1 a2

G

and then identifying some marked factors Fn inside T ′ that satisfy the equation
Fn = νtow(n)−1(F) for all n ∈ N, where ν is the regular tree insertion specified
by G.

3.4.2 Closure Properties

For every n ∈ N, we say that a class C of trees of rank n is effectively closed
under a family F of tree transformations if, for every tree T ∈ C and every

3.4 The Class of Reducible Trees 137

...

...

︷
︸
︸

︷

1 level

︷
︸
︸

︷
2 levels

t
o

w
(
n

)
le

v
e
ls

︷
︸
︸

︷

Fig. 3.14. Another example of tree outside the Caucal hierarchy

transformation f ∈ F , the application of f to T results in a tree T ′ ∈ C , whose
footprint is computable on the grounds of the footprint of T . In this section,
we prove that, for every n ∈ N, the class of trees of rank n is effectively
closed under tree transductions with rational lookahead. We also prove that
the class of all reducible trees is effectively closed with respect to unfoldings
with backward edges and loops.

First of all, we give an intuitive account of the proof of the closure property
with respect to tree transductions with rational lookahead. It is by induc-
tion on the rank of the involved trees and it exploits the fact that any tree
transduction with rational lookahead is equivalent to a functional composition
of suitable regular tree morphisms and finite-state recolorings with rational
lookahead (see Proposition 30). The class of all trees of rank 0, i.e., regular
trees, is easily proved to be closed under both regular tree morphisms and
finite-state recolorings with rational lookahead. As for the inductive step, we
fix a tree T of rank n > 0 and a regular tree morphism μ (resp., a finite-state re-
coloring with rational lookahead M) and we let T ′ = μ(T) (resp., T ′ = M(T)).
Then, given an automaton A ′ running on T ′, we build (i) an automaton A

running on T , (ii) a tree
−�
T of rank n − 1 and encoding a retraction of T with

respect to the automaton A, and (iii) a regular tree morphism −�μ (resp., a tree

transduction with rational lookahead
−�
T) that maps the infinite complete tree

−�
T to a suitable infinite complete tree

−�
T ′, which encodes a retraction of T ′

with respect to A ′. By exploiting the inductive hypothesis, it turns out that
−�
T ′ has rank n − 1 and hence T ′ has rank n. As a matter of fact, such an
argument allows us to interpret the MSO-compatibility of tree transductions

138 3 Tree Automata and Logics

with rational lookahead, as well as several other transformations of trees, in
terms of computability of footprints.

For the sake of simplicity, in this section we restrict our attention to infinite
complete trees (we can easily get rid of such a restriction, because, for every
n ∈ N, the class of trees of rank n is effectively closed under completions with
⊥-colored vertices).

Lemma 12. For every n ∈ N, the class of all trees of rank n is effectively
closed under regular tree morphisms.

Proof. The proof of the base case (n = 0) can be found in Section 4.1 of [20].
As for the inductive case, let us fix (i) a positive natural number n, (ii)

an infinite complete A-labeled C-colored tree T of rank n, (iii) a footprint
ξ = (B, f) of T , and (iv) a regular tree morphism μ specified by a tuple
F̄ = (Fc)c∈C of A ′-labeled C′-colored A-augmented trees. Without loss of
generality, we can assume that B ⊇ A. We first show that the infinite complete
A ′-labeled C′-colored tree T ′ = μ(T) has rank n. Suppose that we are given
a B-augmented tree automaton A ′ and the minor A ′-type σ̄ = (σc)c∈C of
F̄. From Theorem 8, we can compute a B-augmented tree automaton A and
a function −�μ : TA → TA′ such that, for every A-labeled C-colored B-
augmented tree F, if σ is the minor A-type of F, then −�

μ(σ) is the minor A ′-
type of μ(F). We then partition the set of all A-labeled C-colored B-augmented
trees into 2 + |B| different classes:

1. the language L0 consisting of all B-augmented trees whose image under
the regular tree morphism μ is the empty tree;

2. the language L1 consisting of all B-augmented trees whose image under
the regular tree morphism μ is a non-empty non-singleton tree;

3. the language Lb, for each b ∈ B, consisting of all B-augmented trees whose
image under the regular tree morphism μ is the singleton tree b.

All the above languages are rational; moreover, they can be recognized by
suitable deterministic B-augmented tree automata. Without loss of generality,
we can assume that the automaton A is able to distinguish between the above
languages of trees, namely, for every pair of B-augmented trees F and F′ having
the same minor A-type, F ∈ Li iff F′ ∈ Li, for all i ∈ {0, 1} ∪ B (for any given
automaton A, which does not satisfy such a condition, we can indeed produce
another automaton that satisfies it, which can be obtained from A by properly
refining its state space).

It easily follows that we can compute a function −�γ : TA → {0, 1} ∪ B

such that, for every B-augmented tree F, if σ is the minor A-type of F, then
−�γ(σ) is the index i ∈ {0, 1} ∪ B of the (unique) language Li that contains
F. Now, we extend the function −�μ to a regular tree morphism which maps
infinite complete B-labeled (TA ∪ {⊥})-colored trees to infinite complete B-
labeled (TA′ ∪{⊥})-colored trees as follows. Let B = {b1, ...,bh} and let T∅ be

3.4 The Class of Reducible Trees 139

the infinite complete B-labeled ⊥-colored tree. For every symbol σ ∈ TA∪{⊥},
we define

−�μ(σ〈b1, ...,bh〉) =

⎧
⎪⎪⎨

⎪⎪⎩

T∅ if σ = ⊥ or −�γ(σ) = 0,

−�μ(σ)〈b1, ...,bh〉 if σ �= ⊥ and −�γ(σ) = 1,

b if σ �= ⊥ and −�γ(σ) = b ∈ B

Let us show now that the regular tree morphism −�
μ maps the encoding of

a B-labeled retraction of T with respect to A to the encoding of a suitable B-
labeled retraction of T ′ with respect to A ′. Let Π be a B-labeled factorization

of T such that the encoding
−�
T of the retraction of T with respect to A and Π

has rank n−1. First, we have to provide a suitable B-labeled factorization Π ′ of
T ′ such that each marked factor of T ′ with respect to Π ′ can be viewed as the
image, under the regular tree morphism μ, of a corresponding marked factor
of T with respect to Π. The factorization Π ′ is a straightforward generalization
of the notion of induced factorization for a given non-erasing second-order tree
substitution (see the proof of Lemma 19 in Appendix A.2). Precisely, for every
vertex v of T , we recursively define the set Vv of vertices of T ′ that correspond
to v as follows:

Vv =

{
{ε} if v = ε,

Vu {w ∈ Fr(Fc) : Fc(w) = a} if v = ua and T(u) = c.

We define Π ′ as follows:

• the domain of Π ′ is the union, over all vertices v of Π, of the sets Vv;

• (u′, v ′) is a b-labeled edge of Π ′ iff Π contains a b-labeled edge (u, v) such
that u′ ∈ Vu and v ′ ∈ Vv.

For every vertex v ′ of Π ′, there is at least one vertex v of Π such that v ′ ∈ Vv.
Moreover, for every pair of distinct vertices u, v of Π, the sets Vu and Vv

are either disjoint or coincide. In the latter case, u is either an ancestor or a
descendant of v in T and, for every color c that occurs along the path from
u to the predecessor of v in T , or from v to the predecessor of u in T , Fc is a
singleton A-augmented tree. Thus, for every vertex v ′ of Π ′, we can define the
corresponding vertex v of Π as the least vertex (according to the order given by
the ancestor relation of Π) among all vertices u of Π such that v ′ ∈ Vu (by the
previous argument, all such vertices lie on the same path). We let the reader
check that, for every vertex v ′ of Π ′, if v is the vertex of Π that corresponds
to v ′ and F (resp., F′) is the marked factor of T (resp., T ′) rooted at v (resp.,

v ′), then F′ = μ(F) and hence τA′(F′) = −�μ(τA(F)). Given the encoding
−�
T of

the retraction of T with respect to A and Π, the tree
−�
T ′ = −�μ(

−�
T) encodes the

corresponding retraction of T ′ with respect to A ′ and Π ′. Moreover, by the

inductive hypothesis, we have that
−�
T ′ has rank n−1 and hence T ′ has rank n.

To conclude the proof, we must show how to compute a footprint ξ ′ of T ′ on
the grounds of the given footprint ξ = (B, f) of T . We simply let ξ ′ = (B, f ′),

140 3 Tree Automata and Logics

where f ′ is the function that maps any given B-augmented tree automaton A ′

to a footprint
−�
ξ ′ of

−�
T ′, which, by the inductive hypothesis, is computable on

the grounds of the footprint
−�
ξ = f(A) of

−�
T . �

Lemma 13. For every n ∈ N, the class of all trees of rank n is effectively
closed under finite-state recolorings with rational lookahead.

Proof. We first prove the base case (n = 0). Let T be an infinite complete
A-labeled C-colored regular tree and let (G, v0) be a finite rooted graph whose
unfolding is isomorphic to T . Furthermore, let M = (A, C, , C′, L, Q, δ, Ω, q0)

be a Mealy tree automaton with rational lookahead, where L = {L1, ...,Lk}.
We have to build a finite rooted graph (G ′, v ′

0) whose unfolding produces the
infinite complete A-labeled C′-colored tree T ′ = M(T). We define the graph
G ′ as follows:

• the domain of G ′ consists of all pairs of the form (v, q), with v being a
vertex of G and q being a state of M;

• for every c-colored vertex v of G, with c ∈ C, and every state q ∈ Q, we
let Ω(q, E) be the color of the vertex (v, q) of G ′, where E is the set of all
indices e such that the language Le contains the tree Unf (G, v);

• for every pair of vertices v, v ′ of G, every pair of states q, q′ of M, and
every label a ∈ A, we let (v ′, q′) be an a-successor of (v, q) in G ′ iff (i)
(v, v ′) is an a-labeled edge of G and (ii) δ(q, E, a) = q′, where E is the set
of all indices e such that the language Le contains the tree Unf (G, v).

The unfolding of G ′ from the vertex v ′
0 = (v0, q0) is isomorphic to the tree T ′.

As for the inductive step, let us fix (i) a positive natural number n, (ii)
an infinite complete A-labeled C-colored tree T of rank n, (iii) a footprint
ξ = (B, f) of T , and (iv) a Mealy tree automaton with rational lookahead
M = (A, C, ∅, C′, L, Q, δ, Ω, q0). To show that the infinite complete A-labeled
C′-colored tree T ′ = M(T) has rank n, we follow the same path of the proof
of Lemma 12: first, given an automaton A ′ running on T ′, we build a suitable

automaton A running on T ; then, we show how to obtain the encoding
−�
T ′ of a

retraction of T ′ with respect to A ′ (and some factorization Π ′) by applying a

suitable transformation to the encoding
−�
T of a retraction of T with respect to

A (and some factorization Π). However, two major difficulties arise with such a
proof. First, since the transformation computed by the Mealy tree automaton
M is not local, we have that isomorphic factors of T may be transformed by M

into non-isomorphic factors of T ′. Thus, the transformation that maps
−�
T to

−�
T ′ may not preserve the out-degree of the vertices (for such a reason, it will
be defined as a tree transduction, that is, as the composition of a regular tree
morphism and a finite-state recoloring with rational lookahead). Second, the
Mealy tree automaton M is equipped with the facility of rational lookahead,
which makes the color of each vertex in the output tree T ′ dependent on the
colors of the descendants of the corresponding vertex in the input tree T .
This makes the definition of the automaton A rather involved, since A must

3.4 The Class of Reducible Trees 141

correctly mimic any computation of A ′ on T ′, while running on the tree T .
To this end, we allow the automaton A to guess the colors of the vertices of
T ′ and to subsequently check whether the guess was correct (this requires the
use of alternation in the transition function of A).

Let P denote the (unique) run of M on T . For any B-labeled factorization
Π of T , we define a corresponding B′-labeled factorization Π ′ of T ′, where
B′ = Q × B, as follows:

• Dom(Π) = Dom(Π ′);

• (u, v) is a (q, b)-labeled edge of Π ′ iff (u, v) is a b-labeled edge of Π and
q = P(v), namely, q is the state of M at the vertex v of T .

Let A ′ = (A, C′, B′, S ′, ∆ ′, I ′, F ′, G ′) be a generic B′-augmented tree automa-
ton, which runs on the marked factors of T ′. For the sake of simplicity, we
assume that the set L = {L1, ...,Lk}, containing the lookahead languages of M,
forms a partition of the set of all infinite complete A-labeled C-colored trees
(relaxing such a simplification is trivial). Let E = {1, ...,k} and, for each index
e ∈ E, let Ae = (A, C, B, Se, ∆e, Ie, Fe, Ge) be a B-augmented tree automaton
that recognizes Le (we assume that the state sets Se, for all e ∈ E, are dis-
joint). We define the B-augmented tree automaton A = (A, C, B, S, ∆, I, F, G),
which runs on the marked factors of T , as follows:

• S = (S′ × Q) ∪
⋃

e∈E Se;

• for every state s = (s ′, q) ∈ S ′ × Q and every color c ∈ C,

∆(s, c) =
∨

e∈E

(Φs,c,e ∧ Ψc,e)

where Φs,c,e is obtained by replacing every atom of the form 〈a, s ′′〉 in
∆ ′(s ′, Ω(q, e)) with 〈a, (s ′′, δ(q, e, a))〉 and Ψc,e is the disjunction, over
all s0 ∈ Ie, of ∆e(s0, c);

• for every index e ∈ E, every state s ∈ Se, and every color c ∈ C,

∆(s, c) = ∆e(s, c);

• I = S ′ × Q;

• F = P(S ′ × Q) ∪
⋃

e∈E Fe;

• G = P(B × (S ′ × Q)) ∪
⋃

e∈E Ge.

Notice that the acceptance condition of A envisages only the occurrences of
those states that belong to Se, for some e ∈ E (the other states are used to
mimic the computations of A ′ on T ′). Moreover, it is easy to see that the
(unique) run P of M on T can be obtained from any successful run R of A on
T that starts from a state of the form (s, q0) by first selecting the branches
of R that involve only the states in S ′ × Q and then projecting them into
their second component. Similarly, every run R ′ of A ′ on T ′ can be obtained
from a suitable successful run R of A on T by first selecting the branches of

142 3 Tree Automata and Logics

R that involve only the states in S ′ × Q and then projecting then into their
first component.

In the following, we show how to lift the above properties to the level
of retractions. More precisely, we want to find an effective correspondence
between the minor A-types of the marked factors of T and the minor A ′-types
of the marked factors of T ′. Since the transformation computed by M is non-
local, such a correspondence must consider both the positions of the marked
factors in T and the L-classification of the subtrees rooted at their leaves. Let
us denote by

−�
E the set {⊥} ∪ (S × P(P(S)) × P(B × S × P(S))), which

contains the dummy symbol ⊥ and all possible features of the automaton A.

For every t ∈
−�
E, we define the language

−�
Lt as follows:

1. if t = ⊥, then
−�
L t is the language that consists of a single infinite complete

B-labeled {⊥}-colored tree;

2. if t �= ⊥, then
−�
L t is the language of all infinite complete B-labeled (TA ∪

{⊥})-colored trees
−�
H such that (i) t ∈

−�
H(ε), namely, t is a feature contained

in the minor A-type
−�
H(ε), and (ii) the retraction automaton

−�
A of A accepts

the tree
−�
Ht obtained from

−�
H by recoloring its root with the singleton {t}.

Notice that the above languages are rational. Now, let
−�
T (resp.,

−�
T ′) be the

encoding of the retraction of T (resp., T ′) with respect to A and Π (resp., A ′

and Π ′). For every vertex v ∈ Dom(Π)(= Dom(Π ′)), we denote by −�
v (resp.,

−�v ′) the corresponding vertex of
−�
T (resp.,

−�
T ′), which is recursively defined by

−�v = −�v ′ = ε for v = ε and −�v = −�u b (resp., −�v ′ = −�u ′ b ′) for every b-labeled
edge (u, v) of Π (resp., for every b ′-labeled edge (u, v) of Π ′). It is routine to
verify that, for every vertex v of Π, if

t =

⎛
⎜⎜⎝

s
{
Fi : i ∈ I

}

{
(bj, sj, Gj) : j ∈ J

}

⎞
⎟⎟⎠

is a feature of A on the marked factor of T rooted at v (equivalently, if t ∈
−�
T (

−�
v)) that satisfies

i) s ∈ S ′ × Q;

ii) ↓2 s = P(v), namely, the state appearing in the second component of s

coincides with the state at the vertex v of the run P of M on T ;

iii)
−�
T ↓−�v ∈

−�
L t, namely, the language

−�
Lt contains the subtree of

−�
T rooted at

−�v ,

then the triple

t ′ =

⎛
⎜⎜⎝

↓1s
{
↓1Fi : i ∈ I, Fi ⊆ S ′ × Q

}

{(
(↓2sj, bj), ↓1sj, ↓1Gj

)
: j ∈ J, Gj ⊆ S ′ × Q

}

⎞
⎟⎟⎠

3.4 The Class of Reducible Trees 143

is a feature of A ′ on the marked factor of T ′ rooted at v, that is, t ′ ∈
−�
T ′(

−�
v ′)).

In addition, we have that the following two conditions hold:

i) for every j ∈ J such that Gj ⊆ S ′ × Q, the marked factor of T rooted at
v contains a leaf w such that P(v w) =↓2sj;

ii) for every leaf w of the marked factor of T rooted at v, there is an index
j ∈ J such that Gj ⊆ S ′ × Q and ↓2sj = P(v w).

To complete the proof, it suffices to provide a suitable tree transducer with

rational lookahead
−�
T that implements the above correspondence between fea-

tures t ∈
−�
T (

−�
v) and features t ′ ∈

−�
T ′(

−�
v ′). Such a transducer, which only

depends on A ′ (and M), is defined as the tuple (B, TA ∪ {⊥}, ∅, B′, TA′ ∪

{⊥},
−�
L,

−�
Q,

−�
Ω,−�q0), where

•
−�
L is the set of all languages

−�
L t, for t ranging over

−�
E;

•
−�
Q = Q ∪ {q⊥}, where q⊥ is a fresh state;

• for every state −�q ∈
−�
Q and every subset

−�
E ′ of

−�
E,

−�
Ω(−�q,

−�
E ′) =

⎧
⎨

⎩

⊥〈mq,b〉(q,b)∈B′ if ⊥ ∈
−�
E ′ or −�

q = q⊥,

σ ′〈mq,b〉(q,b)∈B′ if ⊥ �∈
−�
E ′ and −�q �= q⊥,

where

i) for every (q, b) ∈ B′, mq,b is either the pair (q, b) or the pair (q⊥, b),

depending on whether or not
−�
E ′ contains a feature of the form t =

(s, {Fi}i∈I, {(bj, sj, Gj)}j∈J), with bj = b and ↓2sj = q for some j ∈ J,

ii) σ ′ is the set of all triples

⎛
⎜⎜⎝

↓1s
{
↓1Fi : i ∈ I, Fi ⊆ S ′ × Q

}

{(
(↓2sj, bj), ↓1sj, ↓1Gj

)
: j ∈ J, Gj ⊆ S ′ × Q

}

⎞
⎟⎟⎠

for t = (s, {Fi}i∈I, {(bj, sj, Gj)}j∈J) ranging over
−�
E ′ and satisfying

s ∈ S ′ × Q and ↓2s = −�q ;

• −�q0 = q0.

It is easy to show that the transduction is correct, that is, that
−�
T actually

computes the encoding
−�
T ′ of a retraction of T ′, with respect to A ′ and Π ′,

from the encoding of a retraction
−�
T of T , with respect to A and Π.

From the inductive hypothesis and from Lemma 12 and Proposition 30, we

have that
−�
T ′ =

−�
T (

−�
T) has rank n − 1 (and thus T ′ has rank n), whenever

−�
T

has rank n − 1. It remains to show how to compute a footprint ξ ′ of T ′ on
the grounds of the given footprint ξ = (B, f) of T . We simply let ξ ′ = (B′, f ′),
where f ′ is the function that maps any given B′-augmented tree automaton

144 3 Tree Automata and Logics

a

ā

a

ā

a

ā

#

F0

F0

F0

F0 F1

F1

F1

F1

a

a

#

#

a

a

#

#

a

a

#

#

a

a

#

#

#

#

a

a

ā

ā

ā

ā ā

ā

ā

ā

a

a

a

a a

a

a

a

F0

F1

F1

F2

F2

Fig. 3.15. The two-way unfolding of the semi-infinite line

A ′ to a footprint
−�
ξ ′ of

−�
T ′, which, by the inductive hypothesis (plus Lemma 12

and Proposition 30), is computable from the footprint
−�
ξ = f(A) of

−�
T . �

The following theorem states the general closure property for the class of trees
of rank n.

Theorem 9. For every n ∈ N, the class of all trees of rank n is effectively
closed under tree transductions with rational lookahead.

Proof. This is a consequence of Lemma 12, Lemma 13, and Proposition 30. �

We conclude the section by showing that the class of all reducible trees is
effectively closed under unfoldings with backward edges and loops. We start
with the well-known example of the unfolding of the semi-infinite line with
backward edges and loops (see, for instance, [7]). Such an example, which uses
the compositional results given in Section 3.4.1, should provide a rough idea
of how the general closure property is proved.

Example 9. Let L = (N, Ea, Eā, E#) be the semi-infinite line equipped with
a-labeled forward edges, ā-labeled backward edges, and #-labeled loops (see
the upper part of Figure 3.15). Let T be the unfolding of L from the leftmost
vertex. The lower part of Figure 3.15 depicts the tree T , where, for each
n ∈ N, Fn denotes the unfolding from the rightmost vertex of the subgraph
Ln obtained by restricting L to set of vertices {0, ...,n}. We give an alternative
proof of the decidability of the acceptance problem (and hence the decidability
of the MSO theory) of T . The basic idea is to recursively define the components

3.4 The Class of Reducible Trees 145

a

#

a
F x a

a

ā

#

a
G

a

a

a

a

a

a

#

#

#

F0 = Unf (F)

x

x

x

a

a

a

a

a

a

#

#

#

ā

ā

ā

a

a

a

G0 = Unf (G)

Fig. 3.16. Marked factors for the two-way unfolding of the semi-infinite line

F0, F1, F2, ... of T and then exploit such a characterization to build regular
retractions of T . By construction, every vertex v of T corresponds to a unique
path πv in L. We denote by uv the last vertex along the path πv in L and we
define the B-labeled factorization Π of T , with B = {a}, as follows:

• the domain of Π is the set of all vertices v of T such that there is no proper
ancestor v ′ of v for which uv = uv′ (the set Dom(Π) is represented in
Figure 3.15 by circled nodes);

• the resulting edges of Π are labeled with the unique symbol a.

Notice that the vertices of Π have an infinite out-degree. However, for every
pair of vertices u, u′ in Π, if the access path of u and that of u′ in Π have the
same length, then the marked factor of T rooted at u and the marked factor
of T rooted at u′ are isomorphic. This allows us to identify access paths in Π

having the same length. Hence, for any given B-augmented tree automaton A,
the retraction of T with respect to A and Π turns out to be bisimilar to a reg-
ular deterministic B-labeled TA-colored tree. More precisely, we can denote
by F and G the two graphs depicted in the upper part of Figure 3.16 and by F0

and G0 their unfoldings, which are depicted in the lower part. Furthermore,
we denote by ν the regular tree insertion specified by the tree G0 (x is the
color to be replaced by the input of ν). It is easy to see that, for every vertex u

of Π at distance n from the root, the marked factor of T rooted at u is isomor-
phic to the tree νn(F0) (i.e., the n-fold application of ν to F0). Now, given any

146 3 Tree Automata and Logics

B-augmented tree automaton A, we denote by −�ν the A-abstraction of ν and

we define the infinite complete B-labeled TA-colored tree
−�
T as follows:

−�
T (u) =

{
τA(F0) if u = ε,

−�
ν(

−�
T (u′)) if u = u′ a.

From Corollary 1, we know that, for every vertex v of Π at distance n from

the root,
−�
T (an) is the minor A-type of the marked factor of T rooted at v and

hence
−�
T encodes the retraction of T with respect to A and Π. Moreover, since

TA is a finite set, from the Pigeonhole Principle, we have that
−�
T is a regular

tree. This shows that T has rank 1 and hence it enjoys a decidable acceptance
problem.

The following theorem is the natural generalization of the above example to
the class of all reducible trees.

Theorem 10. For every tree T of rank n, the tree FlipUnf (T), i.e., the un-
folding of T with backward edges and loops, has rank n+1 and hence the class
of all reducible trees is effectively closed under FlipUnf .

Proof. Example 9 basically shows that any retraction of the unfolding of the
semi-infinite line L with backward edges and loops is encoded by a suitable
regular tree, which results from the application of a finite-state recoloring to
L (hence, from Theorem 9, it has rank 0). Not surprisingly, the same proof
technique can be applied to any tree T of rank n in order to show that its
unfolding with backward edges and loops has rank n + 1. Let us fix (i) a
positive natural number n and (ii) an infinite complete A-labeled C-colored
tree T of rank n. Furthermore, let G be the (A∪ Ā ∪ {#})-labeled C-colored
rooted graph obtained by adding Ā-labeled backward edges and #-labeled
loops to T and let T ′ = Unf (G) = Unf (h−1

A (T)) = FlipUnf (T), namely, T ′ be
the unfolding of G from its root. Notice that every vertex v ′ of T ′ identifies a
path in G (equivalently, a traversal in T) that starts from the root and reaches
a vertex v of G (equivalently, a vertex v of T). We express such a relationship
by saying that the vertex v corresponds to v ′. We now define an A-labeled
factorization Π ′ of T ′ as follows:

• Dom(Π ′) is the set of all vertices v ′ of T ′ for which there is no proper
ancestor u′ of v ′ in T ′ such that u = v, where u and v are the vertices of
T that corresponds, respectively, to u′ and v ′;

• (u′, v ′) is an a-labeled edge of Π ′ iff (u, v) is an a-labeled edge of T , where
u and v are the vertices of T that corresponds, respectively, to u′ and v ′.

Even though the vertices of Π ′ have infinite out-degree, for every pair of
vertices u′, v ′ of Π ′, if the sequences of labels along the access paths of u′ and
v ′ in Π ′ are the same, then, since the corresponding traversals in T lead to the
same vertex, we have that the two subtrees (T ′)↓u′

and (T ′)↓v′

are actually

3.4 The Class of Reducible Trees 147

cx

a1

...

ak

a

ā

#

a1

ak

Fig. 3.17. The (c, a)-slice

isomorphic and hence the two marked factors of T ′ rooted at u′ and v ′ are
isomorphic as well.

In the following, we prove that, for any given A-augmented tree automaton
A, the encoding of the retraction of T ′ with respect to A and Π ′ has rank
n, which immediately implies that T ′ has rank n + 1. As in the case of the
semi-infinite line, the basic idea is to recursively characterize the form of the
marked factor of T ′ rooted at a vertex v ′ of Π ′ on the grounds of the marked
factor of T ′ rooted at the parent u′ of v ′ in Π ′. We introduce a fresh color
x, not belonging to C, and, for every c ∈ C and a ∈ A, we define the finite
rooted A-labeled (A∪C∪{x})-colored graph Gc,a, called (c, a)-slice, as follows
(see Figure 3.17):

• Gc,a contains a single c-colored vertex vc, a single x-colored vertex vx,
and one a-colored vertex va for each a ∈ A;

• the root of Gc,a is the vertex vc;

• Gc,a contains a single #-labeled loop (vc, vc), two a-labeled edges (vx, vc)

and (vc, va), a single ā-labeled edge (vc, vx), one a ′-labeled edge (vc, va′)

(but no ā ′-labeled edges) for each label a ′ �= a in A.

For the sake of brevity, we denote by A ′ = A∪Ā∪{#} the set of the edge labels
of T ′. Each (c, a)-slice Gc,a defines a regular tree insertion νc,a that maps any
A ′-labeled C-colored A-augmented tree F to the second-order tree substitution
of all x-colored vertices in the unfolding of Gc,a by F (notice that the result
of such a substitution is an A ′-labeled C-colored A-augmented tree). Clearly,
if T(ε) = c, then, for any choice of a ∈ A, the marked factor of T ′ associated
with the root of Π ′ is isomorphic to the tree νc,a(∅), where ∅ denotes the
empty tree. Moreover, if (u′, v ′) is an a-labeled edge of the factorization Π ′,
v is the vertex of T that corresponds to v ′, and T(v) = c, then the marked
factor of T ′ rooted at v ′ is the result of the application of νc,a to the marked
factor of T ′ rooted at u′. This basically means that, for every vertex v ′ of
Π ′, the marked factor of T ′ rooted at v ′ only depends on the sequence of
edge labels along the access path of v ′ in Π ′ and on the sequence of vertex
colors along the corresponding path in T . Now, let A ′ be an A-augmented
tree automaton. By Corollary 1, for every c ∈ C and a ∈ A, we can denote
by −�νc,a the A ′-abstraction of νc,a, which maps the minor A ′-type of any

148 3 Tree Automata and Logics

A-augmented tree F to the minor A ′-type of the tree νc,a(F). This shows that

the infinite complete A-labeled (TA′ ∪ {⊥})-colored tree
−�
T ′, defined by:

•
−�
T ′(ε) = −�νc,a(τA′(∅)), where c = T(ε) and a is an arbitrary label from A;

• for every vertex v ∈ A∗ and every label a ∈ A,
−�
T ′(v a) = −�νc,a(

−�
T ′(v)),

where c = T(v a),

encodes the retraction of T ′ with respect to A ′ and Π ′.

It remains to prove that
−�
T ′ has rank n, namely, that

−�
T ′ can be obtained

from T via a finite-state recoloring (without lookahead). The Mealy tree au-

tomaton M that produces
−�
T ′ from input T is defined as follows. We let

M = (A, C, ∅, TA′ ∪ {⊥}, Q, δ, Ω, q0), where

• Q = TA′ × A;

• for every state q = (σ, a) ∈ Q, every input symbol c ∈ C, and every label
a ′ ∈ A,

δ(q, c, a ′) = (−�νc,a(σ), a ′);

• for every state q = (σ, a) ∈ Q and every input symbol c ∈ C,

Ω(q, c) = −�νc,a(σ);

• q0 = (σ0, a0), where σ0 is the minor A ′ of the empty tree and a is any
arbitrary label chosen from A.

We let the reader check that M(T) is the encoding
−�
T ′ of the retraction of T ′

with respect to A ′ and Π ′. To conclude the proof, we must build the footprint
ξ ′ of T ′ on the grounds of a given footprint ξ of T . We simply set ξ ′ = (A, f ′),
where f ′ is the function that maps any A-augmented tree automaton A ′ to

the footprint
−�
ξ ′ of

−�
T ′ (= M(T)), which, by Theorem 9, is computable from

the footprint ξ. �

3.5 Effectiveness of the Contraction Method

In this section, we show the effectiveness of the closure properties for reducible
trees through a number of meaningful application examples, namely, the iden-
tification of suitable upper bounds to the ranks of the deterministic trees in
the Caucal hierarchy, a characterization of the languages recognized by the
so-called two-way alternating Muller tree automata, and the decidability of
the acceptance problem for morphic trees. These results, besides showing the
robustness of the notion of rank of a tree, provide a neat framework to reason
on retractions of trees and to easily transfer decidability results.

3.5.1 Reducible Trees and the Caucal Hierarchy

In the following, we focus our attention on the deterministic trees of the Caucal
hierarchy and we provide an alternative characterization of them in terms

3.5 Effectiveness of the Contraction Method 149

of tree transductions with rational lookahead and unfoldings with backward
edges and loops. Moreover, by exploiting the closure properties established
in Section 3.4.2, we show that every deterministic tree in the level n of the
Caucal hierarchy has rank n.

First of all, we recall that, according to Definition 18, every deterministic
tree in the Caucal hierarchy can be obtained from some finite graph by re-
peatedly applying MSO-definable interpretations and unfoldings. Moreover,
as shown in the proof of Proposition 32, any inverse rational substitution can
be viewed as a special form of MSO-definable interpretation. On the contrary,
there exist MSO-definable interpretations which are not expressible as inverse
rational substitutions. Even though inverse rational substitutions are less ex-
pressive than MSO-definable interpretations, one can generate all and only
the graphs in the Caucal hierarchy either by means of MSO-definable inter-
pretations and unfoldings [108] or by means of inverse rational substitutions
and unfoldings [13], starting from finite graphs. In the following, we shall use
this latter characterization of the Caucal hierarchy. Precisely, we assume that,
for every n > 0, the level n trees of the Caucal hierarchy can be obtained from
the level n − 1 trees by applying an inverse rational substitution followed by
an unfolding operation.

From [11], we know that for each level of the Caucal hierarchy, there exists
a representative graph, called graph generator, from which all other graphs
belonging to that level can be obtained via MSO-definable interpretations.
For a given n ∈ N, the generator Gn for the level n graphs of the Caucal
hierarchy is defined as the n-fold application of the treegraph operation [112]
to the infinite complete binary tree [11]. Graph generators are closely related
to some special trees which have been introduced in [7] to simulate games
on higher order pushdown systems. These trees, which we call Cachat tree
generators, are obtained from the infinite complete binary tree via n-fold
applications of FlipUnf . Let us denote by Cn, with n ∈ N, the tree obtained
from the n-fold applications of FlipUnf to the infinite complete binary tree. It
is easy to see that each graph generator Gn can be obtained from the tree Cn

via a suitable MSO-definable interpretation that first restricts the domain to
those vertices/words that do not contain any occurrence of substrings of the
form a ā or ā a, with a ∈ A, and then reverses all ā-labeled edges. It thus
follows that Cachat trees are generators of the graphs of the Caucal hierarchy
via MSO-definable interpretations.

Here, we define a new class of tree generators, which contains all Cachat
tree generators and generates all deterministic trees in the Caucal hierarchy
via inverse rational forward substitutions, that is, restricted forms of MSO-
definable interpretations. On the one hand, such a result is weaker than those
by Carayol and Wöhrle and by Cachat, because it allows one to generate
only the proper subset of the Caucal hierarchy consisting of all deterministic
trees; moreover, to this end, it makes use of a set of tree generators, rather a
single graph (resp., tree) generator, for each level. On the other, it is stronger

150 3 Tree Automata and Logics

than them, because it exploits a transformation which weaker than MSO
interpretation.

Definition 35. For every n ∈ N, a level n tree generator is any tree of the
form Tn = FlipUnf n(T), where T is a deterministic regular tree.

From Theorem 10, we immediately have that every level n tree generator has
rank n. Below, we show that inverse rational forward substitutions applied to
level n tree generators yields all level n trees of the Caucal hierarchy (up to
bisimulation).

Lemma 14. Every level n tree T of Caucal hierarchy is bisimilar to a tree

of the form
−�
h−1

n (Tn), where Tn is a level n tree generator, labeled over a set

An, and
−�
h−1

n is an inverse rational An-forward substitution. Moreover, if T

is deterministic, then T =
−�
h−1

n (Tn).

Proof. We prove the claim by using induction on the level n of the tree T

and Proposition 31. The case n = 0 is trivial. Let n > 0 and let A be the
set of edge labels of T . By construction, there exist a level n − 1 tree T ′

of the Caucal hierarchy and an inverse rational substitution h−1 such that
T = Unf (h−1(T ′)). From the inductive hypothesis, there exist a level n − 1
tree generator Tn−1, labeled over a set An−1, and an inverse rational An−1-

forward substitution
−�
h−1

n−1 such that T ′ is bisimilar to the tree
−�
h−1

n−1(Tn−1).
Thus, we have

T = Unf
(
h−1(

−�
h−1

n−1(Tn−1))
)
.

Then, by applying Proposition 31 to the inverse rational substitution h−1 ◦
−�
h−1

n−1, we have that there exist a level n tree generator Tn = FlipUnf (Tn−1),

labeled over a set An, and an inverse rational An-forward substitution
−�
h−1

n

such that T is bisimilar to the tree
−�
h−1

n (Tn). Moreover, if T is deterministic,
then the two trees are also isomorphic. �

The following theorem provides an alternative characterization of the class
of all deterministic trees of the Caucal hierarchy in terms of unfoldings with
backward edges and loops and tree transductions with rational lookahead.

Theorem 11. For every n ∈ N, the level n deterministic trees of the Caucal
hierarchy are all and only the trees of the form

T
(
FlipUnf n(T)

)
,

where T is a regular tree and T is a tree transduction with rational lookahead.

Proof. This follows from Lemma 14 and Proposition 32. �

Corollary 2. For every n ∈ N, the level n deterministic trees of the Caucal
hierarchy have rank n.

3.5 Effectiveness of the Contraction Method 151

rank 1 trees

rank 2 trees

...

lev
el

1 Caucal trees

lev
el 2 Caucal trees

...

︸ ︷︷ ︸

rank 0 trees

=
regular trees

=

level 0 Caucal trees

Figure 3.15

Figure 3.12

Figure 3.13

Fig. 3.18. Relationships between reducible trees and Caucal trees

Proof. This follows from Theorem 11 and Theorem 9, since level n tree gen-
erators have rank n. �

It is worth remarking that the converse of Corollary 2 does not hold for n > 0.
As an example, the tree depicted in Figure 3.12 is known to belong to the third
level of the Caucal hierarchy; however, by exploiting compositional properties
of types, it is easy to prove that it has rank 1. Moreover, we already know
that there exist several deterministic trees (see, for instance, Figure 3.13) that
do not belong to the Caucal hierarchy but still have rank n, for some n ∈ N.
This basically means that the class of all reducible trees properly include the
class of all deterministic trees of the Caucal hierarchy. Figure 3.18 gives and
intuitive account of the relationships between the classes of trees of rank n

and the classes of the level n deterministic trees of the Caucal hierarchy, for
n ranging over N.

3.5.2 Two-Way Alternating Tree Automata

Two-way alternating parity tree automata have been introduced by Vardi
in [109] in order to solve the satisfiability problem for the so-called two-way
modal μ-calculus, i.e., the extension of propositional modal μ-calculus [57]
with backward modalities �

− and �
−. In that paper, two-way alternating

parity tree automata are also shown to be expressively equivalent to non-
deterministic parity tree automata. Here, we consider two-way alternating
tree automata equipped with Muller acceptance condition (hereafter called

152 3 Tree Automata and Logics

simply two-way tree automata) and we exploit Theorem 5 and Theorem 10
to translate any given two-way alternating (Muller) tree automaton into an
equivalent (one-way) alternating (Muller) tree automaton.

Intuitively, while an alternating tree automaton can only spread its states
along the successors of the current vertex, a two-way alternating tree automa-
ton is allowed to move along the successors and the predecessor of the current
vertex, as well as to stay at the current vertex (and possibly change the state).
As in the definition of inverse substitutions (see Section 3.3.4), we distinguish
between edges traversed in forward direction and edges traversed in backward
direction. Let A be a set of edge labels and C be a set of vertex colors. More-

over, we denote by
−↔
A the set A ∪ Ā ∪ {#}, where Ā is a disjoint copy of A

and # is a fresh symbol not belonging to A ∪ Ā. For the sake of simplicity,
hereafter we restrict our attention to infinite complete trees only.

Definition 36. A two-way alternating (Muller) tree automaton is a tuple
A = (A, C, S, ∆, I, F), where

• S is a finite set of states;

• ∆ : S × C → B+(
−↔
A × S) is a transition function;

• I ⊆ S is a set of initial states;

• F ⊆ P(S) is a family of accepting sets.

Given an infinite complete (A-labeled C-colored) tree T , a run of A on T is
an unlabeled (Dom(T) × S)-colored tree R such that

• the root of R is colored with a pair (ε, s), where ε is the root of T and
s ∈ S;

• for every vertex u of R colored with (v, s), if ∆(s, T(v)) = ϕ, then (i)

there is a minimal set M = {(a1, s1), ..., (ak, sk)}, with a1, ...,ak ∈
−↔
A and

s1, ..., sk ∈ S, that satisfies ϕ, (ii) R contains exactly k successors u1, ...,uk

of u, and (iii) for all 1 � i � k,

R(ui) =

⎧
⎪⎪⎨

⎪⎪⎩

(v ai, si) if ai ∈ A,

(v ′, si) if ai = ā ∈ A and v = v ′ a, for some a ∈ A,

(v, si) if ai = #.

The run R is said to be successful, and hence A accepts T , if it further satisfies
the following two conditions:

i) the state associated with the root of R is an initial state from I;

ii) for every infinite path π in R, the set of states that occur infinitely often
along π is an accepting set from F.

The following theorem shows that any two-way alternating tree automaton
A is equivalent to a suitable (one-way) alternating tree automaton Ã.

3.5 Effectiveness of the Contraction Method 153

Theorem 12. For any given two-way alternating tree automaton A, one can
build an alternating tree automaton Ã such that, for every infinite complete
tree T ,

T ∈ L (A) iff T ∈ L (Ã).

Moreover, the size of Ã is doubly exponential in the size of A.

Proof. Let A = (A, C, S, ∆, I, F) be a two-way alternating tree automaton.
By definition of run of A, we have that

T ∈ L (A) iff T ′ ∈ L (A ′)

where T ′ = FlipUnf (T), namely, T ′ is the two-way unfolding of T , and A ′ is the

A-augmented alternating tree automaton (A ′, C, A, S, ∆, I, F, G), with A ′ =
−↔
A

and G = ∅. Moreover, we can define the A-labeled factorization Π ′ of T ′ as in

the proof of Theorem 10 and then denote by
−�
T ′ the encoding of the retraction

of T ′ with respect to A ′ and Π ′ and by
−�
A ′ = (A, TA′ ∪ {⊥},

−�
S ,

−�
∆,

−�
I ,

−�
F) the

retraction automaton of A ′. Hence, by Theorem 5, we have

T ′ ∈ L (A ′) iff
−�
T ′ ∈ L (

−�
A ′).

Again, according to the argument of the proof of Theorem 10, we know that

the infinite complete A-labeled (TA′ ∪ {⊥})-colored tree
−�
T ′ can be obtained

from T via a suitable finite-state recoloring (without lookahead). We can then

‘synchronize’ the retraction automaton
−�
A ′ with such a finite-state recolor-

ing, thus obtaining an alternating tree automaton Ã equivalent to A. More
precisely, we denote by M = (A, C, ∅, TA′ ∪ {⊥}, Q, δ, Ω, q0) the Mealy tree

automaton that produces
−�
T ′ on input T and we define the alternating tree

automaton Ã = (A, C, S̃, ∆̃, Ĩ, F̃) as follows:

• S̃ = S × Q;

• for every state s̃ = (s, q) ∈ S̃ and every color c ∈ C, ∆̃(s̃) = Φs,q,c, where

Φs,q,c is the formula obtained from
−�
∆(s, Ω(q, c)) by replacing every atom

of the form 〈a, s ′〉 with 〈a, (s ′, δ(q, c, a))〉;

• Ĩ consists of all pairs of the form (s, q0), with s ∈ I;

• F̃ consists of all subsets F of S̃ such that ↓1F ∈ F.

It is immediate to prove that

−�
T ′ ∈ L (

−�
A ′) iff T ∈ L (Ã).

Finally, from the definitions of the retraction automaton
−�
A and the Mealy

tree automaton M, it easily follows that the size of Ã is doubly exponential
in the size of A. �

154 3 Tree Automata and Logics

3.5.3 Morphic Trees

We conclude the section by proving that any morphic tree, namely, any tree
obtained as the limit of n-fold applications of a regular tree morphism (see
Section 3.3.2), has rank 1. Below, we recall the definition of morphic tree.

Definition 37. A morphic tree is any tree of the form

μω(c̃) = sup
{
μ0(c̃) ⊑ μ1(c̃) ⊑ ...

}
,

where μ is a regular tree morphism, c̃ is a seed, namely, a color such that
μ(c̃)(ε) = c̃, and ⊑ is the usual ω-complete partial order on trees.

Roughly speaking, the proof that all morphic trees have rank 1 is based on
the fact that, given any finite (multiplicative) semigroup (X, ·), there only
exist finitely many different functions that map trees to elements of X and
are compatible with first-order tree substitutions, that is, ‘concatenations’ at
the leaves. Such a property can be easily explained by referring to the simpler
case of words. Recall that a word homomorphism is a function f from the
set of all finite words over an alphabet C to a (multiplicative) semigroup
(X, ·) such that, for every pair of words w1, w2 ∈ C∗, f(w1 w2) = f(w1) f(w2)

holds. Such a definition immediately implies that any word homomorphism f

is uniquely determined by the images f(c) of the symbols c ∈ C and hence
there only exist finitely many different word homomorphisms to a given finite
semigroup. These notions and results can be immediately lifted to trees. For
the sake of simplicity, we restrict our attention to ‘tree homomorphisms’ of
the form τA′ ◦μ, where A ′ is a (C′∪D)-augmented tree automaton and μ is a
regular tree morphism mapping A-labeled C-colored (C∪D)-augmented trees
to A ′-labeled C′-colored (C′ ∪D)-augmented trees. In the sequel, we assume
that A = {a1, ...,ak}.

Proposition 35. Let A ′ be a (C′∪D)-augmented tree automaton and let μ1

and μ2 be two regular tree morphisms. We have that τA′ ◦ μ1 = τA′ ◦ μ2 iff,
for every color c ∈ C, τA′

(
μ1(c〈a1, ...,ak〉)

)
= τA′

(
μ2(c〈a1, ...,ak〉)

)
.

Proof. The left to right implication is trivial. We prove the converse impli-
cation by exploiting Theorem 8. Let F̄1 (resp., F̄2) be the tuple of regular
replacing trees that specifies the tree morphism μ1 (resp., μ2) and let σ̄1

(resp., σ̄2) be the minor A ′-type of F̄1 (resp., F̄2). It suffices to prove that,
whenever σ̄1 = σ̄2 holds, τA′(μ1(T)) = τA′(μ2(T)) holds for every tree T . We
denote by A the (C′∪D)-augmented tree automaton obtained from Theorem
8 by letting σ̄ = σ̄1 (= σ̄2). Furthermore, let T be an A-labeled C-colored
(C ∪D)-augmented tree and σ its minor A-type. Theorem 8 states that the
minor A ′-type of the tree μ1(T) (resp., μ2(T)) is uniquely determined by
the minor A-type of T and the minor A ′-type σ̄1 (= σ̄2). This shows that
τA′(μ1(T)) = τA′(μ2(T)). �

3.5 Effectiveness of the Contraction Method 155

a1 a2

Fc1

a2

a1 a2

Fc2

T

Fig. 3.19. The factorization of a morphic tree

As a consequence of Proposition 35, we have that any function of the form
τA′ ◦ μ, where μ is a regular tree morphism, is uniquely determined by the
images of the basic trees c〈a1, ...,ak〉, for c ranging over C. Since these images
range over the finite set TA′ , there only exist finitely many different functions
of the form τA′ ◦ μ, for any choice of the (C′∪D)-augmented tree automaton
A ′. In particular, by applying the Pigeonhole Principle, we have that, for
every regular tree morphism μ, the sequence τA′ ◦ μn, for n = 0, 1, 2, ..., is
ultimately periodic.

In the following example, we take advantage of Proposition 35 to provide
a regular retraction of a given morphic tree.

Example 10. Let A = {a1, a2}, C = {c1, c2} (c1-colored vertices and c2-
colored vertices will be graphically represented by black-colored circles and
white-colored circles, respectively), and D = A. Furthermore, let μ be the
regular tree morphism of Example 6 specified by the two replacing trees
Fc1

= c1〈c2, c1〈a1, a2〉〉 and Fc2
= c2〈c2〈a1, a2〉, a2〉 (left part of Figure 3.19).

We consider the morphic tree T = μω(c̃), which is obtained as the limit of
n-fold applications of μ to the seed c̃ = c1 (right part of Figure 3.19). We can
define an A-labeled factorization Π of T as follows. First, for every n ∈ N, the
tree μn(c̃〈a1, a2〉) is an expansion of μn(c̃) with A-colored vertices. We thus
say that a vertex v of T is an a-extension of T , with a ∈ A, if there is an index
n ∈ N such that v is an a-colored leaf of μn(c̃〈a1, a2〉). We define the domain
of the factorization Π of T as the set of all a-extensions of T , for a ∈ A (plus
the root of T). Moreover, we label each edge (u, v) of Π with a ∈ A if v is an
a-extension of T . Figure 3.19 (right part) depicts the factorization Π (which
is only accidentally a deterministic tree).

Now, let Ga1
and Ga2

be, respectively, the left subtree and the right subtree
of Fc̃. It is easy to see that, for every vertex v of Π at distance n > 0 from
the root, if v is an a-extension of T , then the marked factor of T rooted at

156 3 Tree Automata and Logics

v is isomorphic to the tree μn−1(Ga). Thus, for any given A-augmented tree

automaton A, the infinite complete A-labeled (TA ∪{⊥})-colored tree
−�
T such

that

−�
T (u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τA(Fc̃) if u = ε,

τA(μn(Ga1
)) if u = an

2 a1, for some n ∈ N,

τA(μn(Ga2
)) if u = an

2 a2, for some n ∈ N,

⊥ otherwise

encodes the retraction of T with respect to A and Π. Moreover, from Propo-

sition 35, we know that
−�
T is a regular tree and hence T has rank 1, which

proves that T enjoys a decidable acceptance problem.

The following theorem is a straightforward generalization of Example 10.

Theorem 13. All morphic trees have rank 1.

Proof. Let F̄ = (Fc)c∈C be a tuple of A ′-labeled C′-colored (C′∪D)-augmented
regular replacing trees, with D ⊇ A and let μ be the corresponding regular tree
morphism, which maps A-labeled C-colored (C ∪D)-augmented trees to A ′-
labeled C′-colored (C′ ∪D)-augmented trees. Furthermore, let c̃ be a seed of
μ, namely, a color c̃ ∈ C such that Fc̃(ε) = c̃. Finally, let A = {a1, ...,ak}.
For every n ∈ N, we denote by Tn (resp., T+

n) the A ′-labeled C′-colored (C′ ∪
D)-augmented tree μn(c̃) (resp., μn(c̃〈a1, ...,ak〉)). For every n ∈ N, both
Tn ⊑ Tn+1 and Tn ⊑ T+

n hold. We have to show that the morphic tree T =

sup {T0 ⊑ T1 ⊑ ...} has rank 1. We first define an A-labeled factorization Π of T

(following the construction we outlined in Example 10). We say that a vertex
v of T is an a-extension of T , with a ∈ A, if there is an index n ∈ N such that
v is an a-colored leaf of T+

n . We define the domain of the factorization Π as the
set of all a-extensions of T for a ∈ A, plus the root of T . Moreover, we label any
edge (u, v) of Π by a iff v is an a-extension of T . Notice that, by construction,
v is a vertex of Π at distance n > 0 from the root iff v is an a-colored leaf of
T+

n−1.
We now focus our attention on the marked factors of T with respect to Π.

Let v be a vertex of Π at distance n > 0 from the root and let a be the label
of the edge of Π that has v as its target vertex. If we denote by Ga the subtree
of Fc̃ rooted at the a-successor of Fc̃, for every a ∈ A, we have

T+
n = μn

(
c̃〈a1, ...,ak〉

)

= μn−1
(
μ(c̃〈a1, ...,ak〉)

)

= μn−1
(
Fc̃

)

= μn−1
(
c̃〈a1, ...,ak〉[Gai

/ai]ai∈A

)

= μn−1
(
c̃〈a1, ...,ak〉

)[
μn−1(Gai

)/ai

]
ai∈A

= T+
n−1[μ

n−1(Gai
)/ai]ai∈A

3.5 Effectiveness of the Contraction Method 157

Since by construction every successor of v in Π is a leaf of T+
n , we have that

the marked factor of T rooted at v is isomorphic to the A ′-labeled C′-colored
(C′ ∪D)-augmented tree μn−1(Ga) and hence τA ◦ μn−1(Ga) is its minor A-
type, for any given (C′ ∪D)-augmented tree automaton A. From Proposition
35, we have that there exist only finitely many different functions of the form
τA ◦ μn, for n ranging over N. It immediately follows that the retraction of

T with respect to A and Π is encoded by a suitable regular tree
−�
T . We now

show how such a tree can be defined as the result of the application of a
finite-state recoloring (without lookahead) to the infinite complete A-labeled
⊥-colored tree. More precisely, let us denote by Γ the finite set of all functions
of the form τA ◦μn, for n ranging over N. We define a Mealy tree automaton
M = (A, {⊥}, ∅, TA ∪ {⊥}, Q, δ, Ω, q0), which only depends on A, such that

• Q consists of two distinguished states q0 and q⊥, plus all pairs of the form
(γ, a), with γ ∈ Γ and a ∈ A;

• for every state q ∈ Q and every label a ∈ A,

δ(q,⊥, a) =

⎧
⎪⎪⎨

⎪⎪⎩

(τA, a) if q = q0 and Fc̃ has some a-colored leaf,

(γ ◦ μ, a) if q = (γ, a ′) and Ga′ has some a-colored leaf,

q⊥ otherwise;

• for every state q ∈ Q,

Ω(q,⊥) =

⎧
⎪⎪⎨

⎪⎪⎩

τA(c̃〈a1, ...,ak〉) if q = q0,

γ(Ga) if q = (γ, a),

⊥ otherwise.

It is clear that the (unique) output of the Mealy tree automaton M is the

A-labeled (TA ∪ {⊥})-colored regular tree
−�
T that encodes the retraction of

T with respect to A and Π. This shows that T has rank 1. Moreover, one

can effectively build a finite rooted graph
−�
G representing the tree

−�
T on the

grounds of the given tree morphism μ and the given (C′∪D)-augmented tree
automaton A. Thus, the footprint of T can be defined as the pair (B, f), where
B = C′ ∪D and f is the function that maps any B-augmented tree automaton

A to the corresponding graph
−�
G. �

It is worth pointing out the existence of a natural connection between regular
tree morphisms and (higher-order) recursive program schemes. Higher-order
recursive program schemes were first introduced by Damm in [29, 31] and are a
hot topic of current research in theoretical computer science (see, for instance,
[54, 1, 55, 84, 48, 47, 10]). At the bottom (first-order) level, these schemes
consist of simple term rewriting rules, whose semantics can be thought of as
a substitution of non-terminal symbols in a tree, that is, as a second-order tree

158 3 Tree Automata and Logics

substitution. Therefore, the class of morphic trees seems to be closely related
to that of recursive program schemes of level 1, even though, at the moment,
we are not able to provide translations from one class to the other. More
generally, it would be interesting to study suitable classes of ‘higher-order’
morphic trees by possibly comparing them with corresponding levels in the
hierarchy of recursive program schemes.

3.5.4 Layered Temporal Structures

In this section, we consider layered temporal structures, which have been orig-
inally introduced by Montanari et al. in [66, 67, 71] to model finite and infinite
hierarchies of time granularities. The focus is on three kinds of layered tem-
poral structures: the k-refinable n-layered structure (n-LS for short), which
consists of a fixed finite number n of temporal layers such that each time
point can be refined into k time points of the immediately finer layer, if any,
the k-refinable downward-unbounded layered temporal structure (DULS for
short), which consists of an infinite number of arbitrarily fine layers, and the
k-refinable upward-unbounded layered temporal structure (UULS for short),
which consists of an infinite number of arbitrarily coarse layers.

In their original formulation, layered temporal structures were equipped
with suitable ordering relations and viewed as tree-shaped structures. As an
example, the k-refinable DULS can be viewed as an infinite ordered sequence
of infinite k-ary trees, while the k-refinable UULS can be viewed as a complete
k-ary infinite tree generated from the leaves or, equivalently, as an infinite
ordered sequence of finite increasing k-ary trees.

The MSO theories of layered temporal structures have been shown to be
expressive enough to capture meaningful temporal properties of reactive sys-
tems (such as ‘the event p occurs at all time points ki, with i ∈ N’ or ‘the

event p occurs densely over a given time interval’) and moreover decidable.
Originally, the decidability of the model checking problems for the k-refinable
n-LS, DULS, and UULS has been proved by reducing each of these problems
to the decidability of the MSO theory of a suitable ‘collapsed’ structure. In
particular, the MSO theory of the k-refinable n-LS is reduced to the MSO
theory of the semi-infinite line, the MSO theory of the k-refinable DULS
is translated into the MSO theory of the infinite complete k-ary tree, and
that of the k-refinable UULS into the MSO theory of the k-ary systolic tree
[69, 73, 68, 71].

Let us fix a natural number k � 2 and let us define the set A = {a1, ...,ak}

of edge labels of k-refinable layered temporal structures. Below, we give a
generic definition of k-refinable layered temporal structure. Subsequently, we
instantiate such a definition with specific forms of layered temporal structure,
which have been considered in the literature.

3.5 Effectiveness of the Contraction Method 159

Definition 38. A k-refinable layered temporal structure is a graph G =
(
V ,

<, (Ea)a∈A

)
, where

• the set V is a union of the form
⋃

i∈I Li, where I is a subset of Z and,
for every i ∈ I, Li =

{
(i, n) : n ∈ N

}
(hereafter, each set Li is called a

layer);

• < is a total order on V;

• for each label aj ∈ A, Eaj
is a partial function, called j-th projection

relation, that maps a vertex (i, n) ∈ Li to the vertex (i + 1, kn + j − 1) ∈
Li+1, provided that i + 1 ∈ I.

For the sake of simplicity, for now on, we assume k = 2, namely, we restrict our
attention to 2-refinable layered temporal structures only (the general case of k-
refinable layered temporal structures can be dealt with by a similar approach).
We denote by ≺0, ≺1, and ≺2 the ordering relations defined, respectively, by
the pre-order, in-order, and post-order visits of the vertices in a binary tree
(for arbitrary k-ary trees, it is straightforward to generalize these definitions
by using k+1 distinct ordering relations ≺0, ...,≺k). Given a layered temporal
structure G =

(
V , <, (Ea)a∈Λk

)
, we call subtree of G any subgraph of G which

is induced by the set of vertices reachable from a designated source vertex
(i, n) ∈ V through the projection relations Ea1

, ...,Eak
.

We now describe the set I and the total order < of Definition 38 for the var-
ious specific forms of layered temporal structure, precisely, for to the upward-
unbounded and the downward-unbounded layered temporal structures. We
also introduce a third form of layered temporal structure, called totally-
unbounded layered temporal structure (TULS for short), which can be viewed
as the composition of the DULS and the UULS.

• The (2-refinable) DULS is obtained by defining I = N and < as the total
order which is induced by ≺0, for the elements that belong to a common
subtree, and by the linear order <0 of the top layer L0 (i.e., (0, 0) <0

(0, 1) <0 (0, 2) <0 ...), for the elements that belong to distinct subtrees.
• The (2-refinable) UULS is obtained by defining I = −N (i.e., the set of all

non-positive integers) and < as the total order induced by ≺1.
• The (2-refinable) TULS is obtained by defining I = Z and < as the total

order induced by ≺1.

Figures 3.20, 3.21, and 3.22 depict (parts of) the 2-refinable DULS, UULS,
and TULS (the projection relations are represented by {a1, a2}-labeled vertical
edges, while the transitive reduction of the ordering relation <0 is represented
by <0-labeled horizontal edges).

We denote by DULS�< (resp., UULS�<, TULS�<) the downward-unbounded
(resp., upward-unbounded, totally-unbounded) layered temporal structure de-
void of the ordering relation <. On the one hand, it turns out that the order <

is MSO-definable in UULS�< and in TULS�< (this follows from the fact that the
relation ≺1 induced by the in-order visit of a tree structure is MSO-definable
in the structure itself). On the other hand, the order < is not MSO-definable

160 3 Tree Automata and Logics

a1 a2 a1 a2

a1 a2 a1 a2a1 a2 a1 a2

a1 a2 a1 a2a1 a2 a1 a2a1 a2 a1 a2a1 a2 a1 a2

<0 <0

Fig. 3.20. The 2-refinable DULS

a1 a2

a1 a2 a1 a2

a1 a2 a1 a2 a1 a2 a1 a2

a1

<0 <0 <0 <0 <0 <0 <0 <0

Fig. 3.21. The 2-refinable UULS

a1 a2

a1 a2 a1 a2

a1 a2 a1 a2 a1 a2 a1 a2

a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2

a1

<0 <0 <0 <0

Fig. 3.22. The 2-refinable TULS

in DULS�< (this follows from the fact that the partial order <0 allows one
to distinguish between infinitely many isomorphic subtrees of DULS�<). How-
ever, the order < turns out to be MSO-definable in DULS�<, provided that we
augment the structure with the partial order <0 on the top layer.

Moreover, both downward-unbounded and upward-unbounded layered tem-
poral structures, endowed with the ordering relation <, are MSO-definable in
the structure TULS�<,L0 , which denotes the totally-unbounded layered tempo-
ral structure devoid of the ordering relation < and expanded with the unary
predicate L0 (such an extension is needed in order to make it possible to iden-
tify the top and the bottom layers of the DULS and the UULS, respectively).

3.5 Effectiveness of the Contraction Method 161

a1 a2

a1 a2 a1 a2

a2

a1 a2

a1 a2 a1 a2

a2

a1 a2

a1 a2 a1 a2

a1 a2 a1 a2 a1 a2 a1 a2

a3 a3 a3

Fig. 3.23. The ternary colored tree embedding TULS �<,L0

On the grounds of these results, we can restrict our attention to the structure
TULS�<,L0 only.

In the sequel, we use the contraction method for tree automata to prove
that the MSO theory of TULS�<,L0 is decidable. Note that, by exploiting the
MSO-compatibility of MSO-definable interpretations, one can transfer such a
decidability result to the other layered temporal structures, thus generalizing
previous results in the literature. Later on, we proof original decidability re-
sults for the chain fragment of MSO logic interpreted over the TULS expanded
with either an equi-level predicate or an equi-column predicate.

As a preliminary step, we show that the structure TULS�<,L0 can be ob-
tained via an MSO-definable interpretation (indeed an inverse rational sub-
stitution) from a suitable ternary colored tree. Such an MSO-definable inter-
pretation allows us to move from the setting of layered temporal structures
to the more standard framework of deterministic colored trees and, therefore,
exploit the results presented in Section 3.2.

Let us denote by T the {a1, a2, a3}-labeled {0, 1}-colored tree defined by

• Dom(T) = A∗ ∪
(
{a3}

+
{a2} A

∗
)
,

• for every vertex v of T , if v is the empty word ε or v is a word in
{a3}

n
{a2}A

n, then T(v) = 1, otherwise T(v) = 0.

Figure 3.23 depicts the tree T . For the sake of brevity, hereafter, we denote by
E ′

a1
, E ′

a2
, and E ′

a3
the successor relations of T and by P the set of all 1-colored

vertices of T .
Below, we prove that T has rank 1 and hence, by Theorem 7, it has a

decidable MSO theory.

Proposition 36. The tree T that embeds TULS �<,L0 has rank 1.

Proof. We prove that T has rank 1 by providing a suitable factorization of
it and by showing that, for any given tree automaton A, the corresponding
retraction is regular. The factorization Π of T is defined by letting Dom(Π) =

{a3}
∗ and by labeling the induced edges with a single symbol b (see the circled

vertices in Figure 3.23). We denote by F0 the infinite complete A-labeled {0, 1}-
colored tree such that F0(ε) = 1 and F0(v) = 0 for all v ∈ A+. Then, for every

162 3 Tree Automata and Logics

n > 0, we recursively define the tree Fn as Fn = 0〈Fn−1, Fn−1〉. Since for
all n > 0, Fn is obtained from Fn−1 via a suitable regular tree insertion,
from compositional properties of types (see Corollary 1), we know that, for
any given {b}-augmented tree automaton A, there is a computable function
−�γ that maps the minor A-type of Fn−1 to the minor A-type of Fn. Moreover,
it is easy to see that, for every vertex v of Π of the form an+1

3 , the marked
factor T+

Π [v] is isomorphic to the tree 0〈∅, Fn, b〉. Therefore, one can compute
an ultimately periodic sequence σ0, σ1, σ2, ... such that, for every n � 0, σn

is the minor A-type of T+
Π [an

3]. This implies that the retraction of T with

respect to A is encoded by a regular {b}-labeled tree
−�
T , whose footprint can

be effectively build on the grounds of the given automaton A. Therefore, T

has rank 1.

Now, let G =
(
V , (Ea)a∈A, L0

)
be the structure TULS�<,L0 . It is easy to see

that G is the result of an MSO-definable interpretation of T that maps vertices
in P to vertices in L0, reverses all a3-labeled edges, and renames them by a1.
It thus follows that G has a decidable MSO theory. As a matter of fact, an
alternative proof of such a decidability result stems from the fact that both T

and G belong to the second level of the Caucal hierarchy.

Corollary 3. The structure TULS �<,L0 enjoys a decidable MSO theory.

Proof. The result follows immediately from Proposition 36, Theorem 7, and
MSO-compatibility of MSO-definable interpretations.

As previously mentioned, Corollary 3 subsumes previous results about the
decidability of MSO theories of DULS and UULS. In [43], model checking
problems for (fragments of) MSO logic over n-LS, DULS, and UULS expanded
with the binary equi-level and equi-column predicates L and C have been
also considered. The equi-level predicate L allows one to check whether two
given elements belong to the same layer of the structure, while the equi-
column predicate C allows one to check whether two given elements are at
the same distance from the origin of the layer they belong to. Formally, if
V =

{
(i, n) : i ∈ I, n ∈ N

}
is the domain of the layered temporal structure,

with I being a subset of Z, then

L =
{(

(i, n), (i, n ′)
)

: i ∈ I, n, n ′ ∈ N
}

C =
{(

(i, n), (i ′, n)
)

: i, i ′ ∈ I, n ∈ N
}
.

In [43], it has been shown that the (weak) MSO theories of DULSL, UULSL,
DULSC, UULSC (i.e., the extensions of DULS and UULS with the equi-level
and the equi-column predicates) are not decidable. Such results have been
achieved by reducing several undecidable problems (e.g., the tiling problem
over the two-dimensional infinite grid) to the model checking problems for the

3.5 Effectiveness of the Contraction Method 163

corresponding structures. Moreover, in the same paper, the authors prove the
decidability of the model checking problem for the chain fragment of MSO
logic interpreted over DULSL, UULSL, and UULSC, but they leave open the
problem for DULSC.

We conclude the section by showing that the model checking problem for
the chain fragment of MSO logic6 interpreted over the structure TULS�<,L0

expanded with either the equi-level or the equi-column predicate is decidable.
As a matter of fact, since MSO-definability of DULS and UULS with respect to
TULS�<,L0 holds even if restricting to quantifications over chains, Theorem 14
and Theorem 15 below generalize previous results in the literature. Moreover,
Theorem 15 answers positively to the open problem for DULS�<,C [43].

The following proofs are partly based on a method introduced by Thomas
in [105], which allows one to reduce the monadic chain logic interpreted over
a tree structure to the full MSO logic interpreted over a linear structure. As
usual, we consider, for simplicity, 2-refinable layered temporal structures.

Theorem 14. The model checking problem for monadic chain logic inter-
preted over the expanded structure TULS �<,L0,L, namely, TULS �<,L0 equipped
with the equi-level predicate, is decidable.

Proof. The idea is to translate a given monadic chain sentence ϕ interpreted
over the expanded structure TULS�<,L0,L to an equi-satisfiable MSO sentence
−�ϕ interpreted over the linear order (Z, <) expanded with the constant 0.
Without loss of generality, we can assume that ϕ only uses existential quan-
tifications over non-empty chains and atoms of the following forms:

• X ⊆ Y, meaning that ‘the chain X is included in the chain Y’,

• Eaj
(X, Y), meaning that ‘X, Y are singletons of the form {x}, {y}, with y

being the successor of x with respect to the j-th projection relation’,

• L0(X), meaning that ‘X is a singleton of the form {x}, with x ∈ L0’,

• L(X, Y), meaning that ‘X, Y are singletons of the form {x}, {y}, with x and
y belonging to the same layer’.

The translation from ϕ to −�ϕ is achieved by encoding each set variable X

appearing in ϕ with a pair of variables ZX, WX, to be instantiated by subsets
of Z, as follows. Let V =

⋃
i∈Z

Li be the domain of the structure TULS�<,L0,L.
As a preliminary remark, notice that for every non-empty chain H and for
every index i ∈ Z, there is at most one natural number n such that (i, n) ∈ H.
We say that a subset P of V is a cover of H if P is a maximal path (consisting
of A-labeled edges) that includes H, namely, if H ⊆ P and for every i ∈ Z,
there is exactly one n ∈ N such that (i, n) ∈ P. We denote by PH the leftmost
cover of H, that is, the (unique) cover PH such that, if i is the greatest integer
satisfying ∃ n ∈ N. (i, n) ∈ H, then every descendant of (i, n) along PH is of

6 Recall that the chain fragment of MSO logic obtained by allowing quantifications
over chains only, namely, subsets of paths.

164 3 Tree Automata and Logics

the form
(
i ′, 2i′−in

)
, with i ′ � i. We then define ZH and WH as the unique

sets of integers such that

i) i ∈ ZH iff there is a (unique) odd natural number n satisfying (i, n) ∈ PH,
namely, (i, n) is the target of an a2-labeled edge along the path PH,

ii) i ∈ WH iff (i, n) ∈ H for some n ∈ N, namely, H intersects the layer Li.

Notice that the encoding (ZH, WH) uniquely determines the non-empty chain
H. Moreover, we can translate the above construction in the logic. Precisely,
we introduce two set variables ZX and WX for each chain variable X in ϕ and
we define −�ϕ recursively on the structure of ϕ as follows:

• if ϕ is of the form X ⊆ Y, then we let −�ϕ be WX ⊆ WY ∧
(
ZX =

ZY ∨ ∃ w ∈ WX. (∀ w′ ∈ WX. w � w′ ∧ ∀ z � w. z ∈ ZX ↔ z ∈ ZY)
)

(meaning that ‘WX is included in WY and either ZX = ZY holds or WX

has a greatest element w and ZX ∩ {z � w} = ZY ∩ {z � w}’);

• if ϕ is of the form Ea1
(X, Y), then we let −�ϕ be ∃ w. ZX = ZY ∧ WX =

{w} ∧ WY = {w + 1};

• if ϕ is of the form Ea2
(X, Y), then we let −�ϕ be ∃ w. ZX ∪ {w + 1} =

ZY ∧ WX = {w} ∧ WY = {w + 1};

• if ϕ is of the form L0(X), then we let −�ϕ be WX = {0};

• if ϕ is of the form L(X, Y), then we let −�ϕ be ∃ w. WX = WY = {w};

• if ϕ is of the form ϕ1 ∨ ϕ2, then we let −�ϕ be −�ϕ1 ∨ −�ϕ2;

• if ϕ is of the form ¬ϕ′, then we let −�ϕ be ¬−�ϕ′;

• if ϕ is of the form ∃ X. ϕ′, then we let −�ϕ be ∃ ZX. ∃ WX. −�ϕ ′ ∧ WX �=
∅ ∧ ∀ w ∈ WX. (∀ w′ ∈ WX. w � w′) → (∀ z ∈ ZX. w � z) (meaning
that ‘there exist ZX and WX �= ∅ satisfying −�ϕ ′ and, whenever WX has a
greatest element w, w is greater than or equal to every element of ZX’,
namely, the cover corresponding to the encoding of the chain X is the
leftmost one).

It is routine to check that ϕ holds in the structure TULS�<,L0,L iff −�ϕ holds in
(Z, <). From the decidability of the MSO theory of (Z, <) [2, 87], it follows
that the model checking problem for the monadic chain logic interpreted over
the expanded structure TULS�<,L0,L is decidable.

Theorem 15. The model checking problem for monadic chain logic inter-
preted over the expanded structure TULS �<,L0,C, namely, TULS �<,L0 equipped
with the equi-column predicate, is decidable.

Proof. In analogy to the previous proof, the idea is to translate a given
monadic chain sentence ϕ interpreted over the expanded structure TULS�<,L0,C

to an equi-satisfiable MSO sentence −�ϕ interpreted over (Z∪{∞}, <,neg), where
∞ denotes a special element not belonging to Z and neg denotes the sign-
flipping relation

{
(z, −z) : z ∈ Z

}
. As in the previous proof, we restrict our-

selves to a setting where formulas are build up from atoms of the form X ⊆ Y,

3.5 Effectiveness of the Contraction Method 165

Eaj
(X, Y), L0(X), and C(X, Y), via boolean connectives and existential quantifi-

cations over non-empty chains. Let V =
⋃

i∈Z
Li be the domain of the struc-

ture TULS�<,L0,C. Here, we encode non-empty chains in a slightly different way,
which makes it possible to check whether two vertices lies on the same diago-
nal. Precisely, we encode any non-empty chain H with an integer sH and three
subsets ZH, WH, QH of N defined as follows. We denote by PH the rightmost
cover of H, formally, the superset of H that contains exactly one element (i, n)

for each i ∈ Z and such that, whenever i is the greatest integer satisfying
∃ n ∈ N. (i, n) ∈ H, then every descendant of (i, n) along PH is of the form(
i ′, 2i′−i(n + 1) − 1

)
, with i ′ � i. Then, we distinguish between two cases:

either PH coincides with the leftmost branch of TULS�<,L0,C (this happens if H

is a downward infinite chain lying entirely on the leftmost branch), or there is a
greatest index i ∈ Z such that (i, 0) ∈ PH. In the former case, we set sH = ∞,
ZH = ∅, WH =

{
i ∈ N : (i, 0) ∈ H

}
, and QH =

{
i ∈ N>0 : (−i, 0) ∈ H

}
. In

the latter case, we let sH be the greatest index i ∈ Z such that (i, 0) ∈ PH and
we define ZH, WH, QH ⊆ N as the unique sets of integers such that

i) i ∈ ZH iff there is a (unique) odd natural number n satisfying (sH+i, n) ∈
PH, (sH + i, n) is the target of an a2-labeled edge along the path PH,

ii) i ∈ WH iff (sH + i, n) ∈ H for some n ∈ N, H intersects the layer LsH+i,

iii) i ∈ QH iff i > 0 and (sH − i, 0) ∈ H, namely, H intersects the layer LsH−i.

Notice that, in both cases, the encoding (sH, ZH, WH, QH) uniquely deter-
mines the non-empty chain H. Switching to logic, we introduce, for each chain
variable X, a vertex variable sX and three set variables ZX, WX, and QX. Then,
we define −�ϕ recursively on the structure of ϕ as follows:

• if ϕ is of the form X ⊆ Y, then we let −�ϕ be WX ⊆ WY ∧ QX ⊆
QY ∧

(
(sX = sY = ∞) ∨ (sX = sY �= ∞ ∧ ZX = ZY) ∨ (sX = sY �=

∞ ∧ ∃ w ∈ WX. (∀ w′ ∈ WX. w � w′ ∧ ∀ z � w. z ∈ ZX ↔ z ∈ ZY))
)
;

• if ϕ is of the form E ′
a1

(X, Y), then we let −�ϕ be ∃ w. (sX = w ∧ sY =

w+1 ∧ ZX = ZY ∧ WX = WY = {0} ∧ QX = QY = ∅) ∨ ∃ w. (sX = sY �=
∞ ∧ ZX = ZY∪{w + 1} ∧ WX = {w} ∧ WY = {w + 1} ∧ QX = QY = ∅);

• if ϕ is of the form E ′
a2

(X, Y), then we let −�ϕ be sX = sY �= ∞ ∧ ZX =

ZY ∧ ∃ w. WX = {w} ∧ WY = {w + 1} ∧ QX = QY = ∅;

• if ϕ is of the form L0(X), then we let −�ϕ be WX = {neg(sX)} ∧ QX = ∅;

• if ϕ is of the form C(X, Y), then we let −�ϕ be sX �= ∞ ∧ sY �= ∞ ∧ ZX =

ZY ∧ ∃ w. WX = WY = {w} ∧ QX = QY = ∅;

• if ϕ is of the form ϕ1 ∨ ϕ2, then we let −�ϕ be −�ϕ1 ∨ −�ϕ2;

• if ϕ is of the form ¬ϕ′, then we let −�ϕ be ¬−�ϕ′;

• if ϕ is of the form ∃ X. ϕ′, then we let −�ϕ be the formula ∃ sX. ∃ ZX, WX,
QX ⊆ N. −�ϕ ′ ∧ WX ∪ QX �= ∅ ∧

(
sX = ∞ ∧ ZH = ∅

)
∨

(
sX �=

∞ ∧ ∀ w ∈ WX. (∀ w′ ∈ WX. w � w′) → (∀ z > w. z ∈ ZX)
)

(meaning
that ‘there exist sX, ZX, WX, QX, with WX ∪ QX �= ∅, satisfying −�ϕ ′ and

166 3 Tree Automata and Logics

such that either sX = ∞ and ZH = ∅, or sX �= ∞, and, whenever WX has
a greatest element w, ZX contains all elements greater than w’, namely,
either the chain X is bounded from below, and in that case ZH = ∅, or
the cover corresponding to the encoding of X is the rightmost one).

We let the reader check that ϕ holds in the expanded structure TULS�<,L0,C

iff −�ϕ holds in (Z∪{∞}, <,neg). It remains to prove that (Z∪{∞}, <,neg) has a
decidable MSO theory. As a matter of fact, the relational structure (Z∪{∞}, <,
neg) can be defined inside the expanded linear order (N, <, Peven , Podd), where
Peven = {2n : n ∈ N} and Podd = {2n + 1 : n ∈ N}, via an MSO-definable
interpretation that maps

i) 0 to the element ∞ of (Z ∪ {∞}, <,neg),

ii) the even numbers 2, 4, 6, ... to the non-negative numbers 0, 1, 2, ... of (Z∪
{∞}, <,neg),

iii) the odd numbers 1, 3, 5, ... to the negative numbers −1, −2, −3, ... of (Z∪
{∞}, <,neg),

iv) the pairs of natural numbers x, y satisfying
(
x = 1 ∧ y = 2

)
∨

(
x �=

0 ∧ Peven(x) ∧ Peven(y) ∧ x < y
)

∨
(
Podd(x) ∧ Podd(y) ∧ y < x

)

to the <-labeled edges of (Z ∪ {∞}, <,neg),

v) the pairs of natural numbers x, y satisfying
(
x = 2 ∧ y = 2

)
∨(

Peven(x) ∧ x = y + 3
)

∨
(
Podd(x) ∧ y = x + 3

)
to the neg-labeled

edges of (Z ∪ {∞}, <,neg).

Since the predicates Peven and Podd are MSO-definable in the linear order
(N, <) and since MSO-definable interpretations preserve the decidability of
MSO theories, we have that (Z∪ {∞}, <,neg) enjoys a decidable MSO theory
and TULS�<,L0,C as well.

3.6 Discussion

In this chapter, we described in full detail the contraction method for tree
automata.

By taking advantage of a suitable notion of tree indistinguishability with
respect to alternating Muller tree automata, we showed that the acceptance
problem for a given colored tree can be reduced to the acceptance problem for
a suitable retraction of it. Such a technique allowed us to give a uniform proof
of the decidability of the MSO theories of a large class of tree structures,
including the deterministic trees of the Caucal hierarchy and several trees
outside it.

As mentioned in the beginning of this chapter, the contraction method for
tree automata presents some similarities with Shelah’s composition method
[95], which directly exploits a notion of indistiguishability of relational struc-
tures with respect to monadic second-order formulas. As a matter of fact, we

3.6 Discussion 167

believe it possible to generalize both the contraction method and the compo-
sition method in order to effectively deal with model checking problems for
generic relational structures.

We also introduced a suitable notion of rank for deterministic colored trees,
which can be thought of as the number of iterated retractions which are
sufficient to reduce a given tree to a regular one. An interesting problem,
which is left open, consists of establishing whether the hierarchy of rank n

trees, for n ranging over the set of natural numbers, is strictly increasing or
not. Such a problem is related to the problem of determining the minimum

rank of any given tree.
Subsequently, we analyzed some natural tree transformations, such as

second-order tree substitutions, tree transductions, and unfoldings with back-
ward edges and loops, and we disloced notable relationships between them.
We then investigated compositional and closure properties of reducible (rank
n) trees. Precisely, we proved (i) a composition theorem for (minor) types of
trees with respect to second-order tree substitutions, (ii) the closure of the
class of rank n trees with respect to tree transductions with rational looka-
head (thus solving an open problem in [74]), and (iii) the closure of the class
of reducible trees with respect to the operation of unfolding with backward
edges and loops.

We finally provided meaningful applications of the contraction method. In
particular, we proved that the languages recognized by two-way alternating
Muller tree automata are rational, namely, recognizable by alternating Muller
tree automata, and we proved that any morphic tree, namely, the limit of
n-fold applications of any regular tree morphism, has rank 1.

In the last part of the chapter, we considered the model checking problem
for (fragments of) MSO logics interpreted over the so-called layered tempo-
ral structures. First, we introduced a new notion of layered temporal struc-
ture, which we called totally unbounded layered temporal structure (TULS for
short) and which generalizes previous definitions proposed in the literature.
We proved that such a kind of structure (extended with a suitable coloring
predicate) embeds both downward-unbounded and upward-unbounded lay-
ered temporal structures. Then, by exploiting the contraction method for tree
automata, we established the decidability of the MSO theory of the TULS.
Finally, we proved an original decidability result for the chain fragment of
MSO logic interpreted over the TULS equipped with either the equi-level or
the equi-column predicate.

4

Summary

The main contributions of the book can be summarized as follows:

• We explored the automaton-based approach to time granularity in full
detail. In particular, we introduced suitable notions of single-string au-
tomata (possibly extended with counters), which allow one to compactly
represent and efficiently manipulate single (ultimately periodic) time gran-
ularities. We provided effective procedures to solve the crucial problems
of granule conversion, equivalence, and optimization of automaton-based
representations of time granularities.

• We dealt with the problem of managing (possibly infinite) sets of time
granularities. We characterized the subclass of Büchi automata that rec-
ognize exactly the rational ω-languages consisting of ultimately periodic
words only (these languages represent possibly infinite sets of ultimately
periodic time granularities) and we provided efficient solutions to sev-
eral basic problems (the emptiness problem, the acceptance problem, the
equivalence problem, the inclusion problem, and the state optimization
problem), as well as to the granularity comparison problem.

• We addressed the model checking problem for monadic second-order logics
interpreted over deterministic vertex-colored trees. We generalized Elgot
and Rabin’s contraction method to deal with such a problem and we
introduced a large class of trees, called reducible trees, which naturally
extends that of regular trees and for which the model checking problem
turns out to be decidable.

• We identified several natural operations on trees (e.g., tree morphisms,
tree transductions, unfoldings with backward edges and loops) and we
proved closure properties of the class of reducible trees with respect to
such operations. Then, we exploited these closure properties to prove that
the class of reducible trees includes all deterministic trees in the Cau-
cal hierarchy as well as several trees outside it. Moreover, we gave var-
ious application examples of the contraction method. In particular, we

170 4 Summary

exploited it to show the equivalence between one-way and two-way alter-
nating Muller tree automata and to prove the decidability of the model
checking problem for morphic trees.

• We introduce the class of totally-unbounded layered temporal structures,
whose theories subsume the theories of previously known layered temporal
structures (i.e., n-layered structures, downward-unbounded and upward-
unbounded layered structures). We proved the decidability of the monadic
second-order theories of these structures and the decidability of the model
checking problem for the chain fragment of monadic second-order logic
interpreted over the totally-unbounded layered temporal structures ex-
tended with either the equi-level or the equi-column predicate. These re-
sults subsume and extend previous results in the literature.

Finally, some open problems deserve further investigations:

• To either find a deterministic polynomial-time algorithm that solves the
equivalence problem for nested counter single-string automata or prove
that such a problem is co-NP-complete (the current solution is based
on a polynomial-time non-deterministic algorithm that tests the non-
equivalence of two given nested counter single-string automata).

• To improve the algorithms that optimize the complexity and the num-
ber of states of nested counter single-string automata (currently, the pro-
posed algorithms take polynomial time with respect to the given string-
based specifications, but they may require exponential time with respect
to equivalent automaton-based specifications).

• To establish whether the hierarchy of rank n trees is strictly increasing or
not.

• To extend the notion of tree retraction in order to deal with higher-order
morphic trees and trees generated by higher-order recursive schemes.

• To generalize the contraction method in order to effectively deal with the
model checking problem for monadic second-order logic interpreted over
generic relational structures.

A

Technical Proofs

A.1 Proofs of Theorem 5 and Theorem 6

This section is devoted to prove Theorem 5 and Theorem 6. For the rest of
this section, we fix the following objects:

• a (non-empty full) D-augmented tree T ;

• a B-labeled factorization Π of T , with B ⊇ D;

• a B-augmented tree automaton A = (A, C, B, S, ∆, I, F, G);

• the retraction T̃ of T with respect to A and Π;

• the encoding
−�
T of T̃ ;

• the retraction automaton
−�
A = (B, TA ∪ {⊥},

−�
S ,

−�
∆,

−�
I ,

−�
F).

Before entering the technical details of the proofs of the two main theo-
rems, we provide some preliminary definitions and results about tree decom-
positions. To easily understand the contents of this section, the reader should
keep in mind that factorizations, as well as unmarked and marked factors, can
be defined over arbitrary trees, e.g., over uncolored trees, non-deterministic
trees, and unlabeled trees. As a matter of fact, given a tree T and a run R

of the automaton A on T , every factorization Π of T induces a corresponding
factorization Γ of R, defined as follows:

• the vertices of Γ are all and only the vertices v of R such that ↓1R(v) is a
vertex of Π;

• (v, v ′) is a b-labeled edge in Γ iff v is an ancestor of v ′ in Π ′ and (↓1R(v),
↓1R(v ′)) is a b-labeled edge in Π.

Accordingly, we denote by RΓ [v] the unmarked factor of R rooted at v with
respect to Γ (note that v is a vertex of Γ).

In order to keep the notation simple, we shall use some natural shorthands,
which should be clear from the context. As an example, given a run R of an
alternating tree automaton and a vertex v of R, we shall use the simplified

172 A Technical Proofs

notation Img(R|v), in place of Img(R|πv), to denote the set of all states that
occur at least once along the access path πv of v in R. Similarly, given a path
π in R, we shall use R(π), in place of R(v), to denote the color of the vertex v

of R whose access path is π.

Definition 39. Let T be a generic tree and Π a factorization of it. For every
vertex v of a tree T , the normal decomposition of v with respect to Π is the
(unique) sequence

v0
π0−−→ v1

π1−−→ ...
πn−1
−−→ vn

πn−−→ v

such that

• v0 v1 ... vn identifies a finite path in Π that starts from the root;

• each πi, with 0 � i < n, is a finite path inside the unmarked factor TΠ[vi]

that reaches a leaf of TΠ[vi];

• πn is a finite path inside the unmarked factor TΠ[vn] that reaches a leaf
of TΠ[vn] iff v is a leaf of T ;

• for all 0 � i < n, the sequence π0 · π1 · ... · πi yields the access path of the
vertex vi+1 in T ;

• the sequence π0 · π1 · ... · πn yields the access path of the vertex v in T .

Since every vertex in a tree is identified by its access path, we can extend the
notion of normal decomposition to finite paths in the obvious way.

It is easy to see that, for every vertex v of T having normal decomposition

v0
π0−−→ v1

π1−−→ ...
πn−1
−−→ vn

πn−−→ v, we have:

i) for all 0 � i < n, T+
Π [vi](πi) is the label of the edge (vi, vi+1) of Π;

ii) T+
Π [vn](πn) = T(v).

Moreover, given a run R, a factorization Γ of R, and a vertex v of R with

normal decomposition v0
π0−−→ v1

π1−−→ ...
πn−1
−−→ vn

πn−−→ v, we have

Img(R|v) =
⋃

0�i�n

Img(RΓ [vi]|πi).

An analogous notion of decomposition can be given for the infinite paths of
a tree T . Below, we distinguish between paths that traverse finitely many
vertices of Π and paths that traverse infinitely many vertices of Π.

Definition 40. For every infinite path π in T that traverses only finitely
many vertices of Π, the normal decomposition of π with respect to Π is the
(unique) finite sequence

v0
π0−−→ v1

π1−−→ ...
πn−1
−−→ vn

πn−−→

A.1 Proofs of Theorem 5 and Theorem 6 173

such that

• v0 v1 ... vn identifies a finite path in Π that starts from the root;

• each πi, with 0 � i < n, is a finite path inside the unmarked factor TΠ[vi]

that reaches a leaf of TΠ[vi];

• πn is an infinite path inside the unmarked factor TΠ[vn];

• for all 0 � i < n, the sequence π0 · π1 · ... · πi yields the access path of the
vertex vi+1 in T ;

• the sequence π0 · π1 · ... · πn yields the infinite path π in T .

Given a run R and a factorization Γ of R, for every infinite path π in R

that traverses only finitely many vertices of Π and has normal decomposition

v0
π0−−→ v1

π1−−→ ...
πn−1
−−→ vn

πn−−→, we have

Inf (R|π) = Inf (RΓ [vn]|πn).

Definition 41. For every infinite path π in T that traverses infinitely many
vertices of Π, the normal decomposition of π with respect to Π is the (unique)
infinite sequence

v0
π0−−→ v1

π1−−→ v2
π2−−→ ...

such that

• v0 v1 v2 ... identifies an infinite path in Π that starts from the root;

• each πi, with i � 0, is a finite path inside the unmarked factor TΠ[vi] that
reaches a leaf of TΠ[vi];

• for all i � 0, the sequence π0 ·π1 · ... ·πi yields the access path of the vertex
vi+1 in T ;

• the sequence π0 · π1 · π2 · ... yields the infinite path π in T .

Given a run R and a factorization Γ of R, for every infinite path π in R

that traverses infinitely many vertices of Π and has normal decomposition

v0
π0−−→ v1

π1−−→ v2
π2−−→ ..., we have

Inf (R|π) =
{
s ∈ S : ∃ω i � 0. s ∈ Img(RΓ [vi]|πi)

}
.

Now, we can prove Properties P1–P3, which were first stated in Section
3.2.3. Subsequently, we shall prove Theorem 5 and Theorem 6.

Lemma 15 (Property P1). For every run
−�
R of

−�
A on

−�
T such that the state

at the root of
−�
R is a quadruple of the form (b, s, {s}, {s}), there is a run R of

A on T which is mimicked by
−�
R.

Proof. Let us fix a run
−�
R of

−�
A on

−�
T satisfying the hypothesis of the lemma.

To start with, we build a suitable run R of A on T and, at the same time, we
define the factorization Γ of R induced by Π and we associate with each vertex

v ∈ Dom(Γ)∪Fr (R) a corresponding vertex −�v of
−�
R. These objects are defined

by exploiting mutual induction, starting from the root of
−�
R , as follows.

174 A Technical Proofs

• Let us denote by −�
v the root of

−�
R and let −�s =↓2(

−�
R(

−�
v)) be the state asso-

ciated with it in
−�
R . Furthermore, let v be the root of R, which obviously

belongs to the factorization Γ and corresponds to the vertex −�v of
−�
R .

By hypothesis, we know that the state −�s is a quadruple of the form
(b, s, {s}, {s}). Hence, we can define R(v) = (ε, s) (intuitively, the first com-
ponent ε of R(v) represents the root of T , while the second component s

of R(v) represents the state of the automaton A at the root of T).

• Suppose, by inductive hypothesis, that R is defined over a vertex v ∈

Dom(Γ), R(v) = (u, s), −�v is the corresponding vertex of
−�
R, and

−�
R = (−�u,−�s)

(note that u is a vertex of T , s is a state of the automaton A, −�u is a vertex

of
−�
T , and −�s is a state of the automaton

−�
A of the form (b, s, Y, Z), with

b ∈ B and Y, Z ⊆ S).
We have to define the successors of v in Γ that correspond to the

successors of −�v in
−�
R . Moreover, we have to describe the portion of the tree

R which is delimited by the vertex v and its successors in Γ . First, notice

that the vertex −�v of
−�
R has finite out-degree. Since the vertex −�u of

−�
T is

colored with an A-type σ, we know that all successors of −�v in
−�
R are marked

with states of the form X (⊆ S) or (b, s, Y, Z) (∈ B×S×P(S)×P(S). Thus,
we can denote by −�v i, for i ranging over a suitable finite set I of indices, all

and only the successors of the vertex −�v in
−�
R that are marked with states

of the form −�s i = Xi. Similarly, we can denote by −�v ′
j, for j ranging over a

suitable finite set J, all and only the successors of the vertex −�v in
−�
R that

are marked with states of the form −�s ′
j = (bj, sj, Yj, Zj).

Now, from the definition of the transition function of
−�
A, we know that

there exists a run R−�
v of A on the marked factor T+

Π [u] such that

i) the state at the root of R−�v coincides with the state at the vertex v of
R;

ii) the sets Inf (R−�
v |π), where π ranges over all infinite paths of R−�

v , are
all and only the sets Xi, where i ranges over I;

iii) the quadruples (T+
Π [u](uw), sw, Img(R|v)∪ Img(R−�

v |w), Img(R−�
v |w)),

where uw =↓1R−�v (w), sw =↓2R−�v (w), and w ranges over all leaves
of R−�v , are all and only the quadruples (bj, sj, Yj, Zj), where j ranges
over J.

Therefore, the portion of the tree R which is delimited by the vertex v and
its successors in Γ is obtained by appending the run R−�

v to the vertex v of R.
More precisely, given a vertex w of R−�v , we shortly denote by uw the vertex
↓1R−�v (w) of T and by sw the state ↓2R−�v (w) associated with the vertex w

of R−�
v . Then, for every vertex w of R−�

v , we define R(v ·w) = (u · uw, sw).
Accordingly, for each leaf w of R−�v , we choose an index j ∈ J such that

i) bj = T+
Π [u](uw),

ii) sj =↓2sw,

A.1 Proofs of Theorem 5 and Theorem 6 175

iii) Yj = Img(R|v) ∪ Img(R−�v |w),

iv) Zj = Img(R−�
v |w),

and we let v · w be the vertex of Γ that corresponds to the successor −�v ′
j

of −�v in
−�
R. Finally, if u · uw is a vertex of Π, then we let (v, v · w) be a

bj-labeled edge in Γ .

It is easy to verify that the tree R defined above is a valid run of A on T and
that Γ is the factorization of R induced by Π.

It remains to show that
−�
R mimics R, namely, that Conditions C1–C6 of Defi-

nition 24 hold. It is immediate to see that Condition C1 holds.
To prove that Condition C2 holds, we consider an infinite path −�π in

−�
R such

that Inf (
−�
R |−�π) is a singleton of the form {X}, with X ⊆ S. From the definition

of the transition function of
−�
A, we know that −�π contains an edge (−�v ,−�v ′) such

that (i) the state −�s that appears at −�v is a quadruple in B × S × P(S) ×
P(S) and (ii) the state −�s ′ that appears at −�v ′ coincides with X. Moreover,
by construction, there exist a vertex v of Γ , which corresponds to −�

v , and an
infinite path τ in RΓ [v] such that Inf (RΓ [v]|τ) = X. Therefore, we conclude
that R contains an infinite path π, which is obtained by concatenating the
access path of v and the infinite path τ, such that Inf (R|π) = Inf (RΓ [v]|τ)

(= X).

As for Condition C3, let us consider an infinite path −�π in
−�
R such that

Inf (
−�
R |−�π) is a set of the form {(b1, s1, Y, Z1), ..., (bk, sk, Y, Zk)}. This means

that −�π traverses infinitely many vertices −�v 0,
−�v 1,

−�v 2, ... in
−�
R, which are marked

by states in B × S × P(S) × P(S). By construction, there exists an infinite
sequence of vertices v0, v1, v2, ... of Γ , which correspond to −�v 0,

−�v 1,
−�v 2, ..., that

describes an infinite path π in R having normal decomposition v0
π0−−→ v1

π1−−→

v2
π2−−→ Thus, we have Inf (R|π) =

{
s ∈ S : ∃ω i � 0. s ∈ Img(RΓ [vi]|πi)

}
.

Moreover, it is easy to see that a state s belongs to Img(RΓ [vi]|πi) for infinitely
many indices i � 0 iff s belongs to Zl, for some 1 � l � k. Thus, we can
conclude that Inf (R|π) =

⋃
1�l�k Zl.

As for Condition C4, we consider an infinite path −�π in
−�
R such that Inf (

−�
R |−�π)

is a singleton of the form {(b, s, Y)}. From the definition of the transition

function of
−�
A, we know that −�π contains an edge (−�v ,−�v ′) such that (i) the

state −�s that appears at −�v is a quadruple in B × S × P(S) × P(S) and (ii)
the state −�s ′ that appears at −�v ′ coincides with the triple (b, s, Y). There-
fore, there exists a leaf v ′ of R, which corresponds to −�v ′, that satisfies −�s ′ =

(T(↓1R(v)), ↓2R(v), Img(R|v)).
We omit the proofs for Condition C5 and Condition C6, which can be

obtained by using symmetric arguments. �

Lemma 16 (Property P2). For every run R of A on T , there is a run R ′

of A on T such that R ′ � R and there is a run
−�
R of

−�
A on

−�
T that mimics R ′.

176 A Technical Proofs

Proof. Let us fix a run R of A on T and let us denote by Γ the factorization

of R induced by T . First of all, we have to build a run
−�
R of

−�
A on

−�
T and, for

each vertex −�v of
−�
R with an associated state of the form (b, s, Y, Z), we have

to identify a corresponding vertex v in Dom(Γ)∪Fr (T) such that ↓2R(v) = s.

• Let us denote by v the root of R and let s =↓2R(v) be the state associ-

ated with it in R. Furthermore, let −�v be the root of
−�
R , which obviously

corresponds to v.

We define
−�
R(−�v) = (ε,−�s), where −�s = (b, s, {s}, {s}) and b is an arbitrary

label from the set B (intuitively, the first component ε of
−�
R(−�v) represents

the root of T , while the second component −�s of
−�
R(−�v) represents the state

of the automaton
−�
A at the root of T).

• Suppose, by inductive hypothesis, that
−�
R is defined over a vertex −�

v ,
−�
R(−�v) = (−�u,−�s), v is the designated vertex in Dom(Π) ∪ Fr(T) that corre-
sponds to −�v , and R(v) = (u, s), with u being a suitable vertex in T .

If the state −�s that appears at −�v is of the form X (⊆ S) or of the form
(b, s, Y) (∈ B × S × P(S)), then, for each label b ′ ∈ B, we let −�v b′ be a

successor of −�v in
−�
R and we define

−�
R(

−�
v b′) = (

−�
u · b ′,−�s).

Otherwise, the state −�s must be of the form (b, s, Y, Z) (∈ B×S×P(S)×
P(S)). In such a case, we know that the vertex v (∈ Dom(Π) ∪ Fr(T)),
which, by inductive hypothesis, corresponds to −�v , satisfies ↓2 R(v) = s.

Recall that the first component −�u of
−�
R(−�v) represents a vertex of

−�
T . If

−�
T (−�u) = ⊥, then, for each label b ′ ∈ B, we let −�v b′ be a successor of −�v in
−�
R and we define

−�
R(−�v b′) = (−�u · b ′,−�s ′), where −�s ′ = (b, s, Y). Otherwise,

if
−�
T (−�u) is an A-type σ, then we know that there exists a feature t ∈ σ of

the form ⎛
⎜⎜⎝

r
{
Fi : i ∈ I

}

{
(bj, rj, Gj) : j ∈ J

}

⎞
⎟⎟⎠

that satisfies the following conditions:

i) r =↓2R(v) (= s);

ii) the sets Fi, for i ranging over I, are all and only the sets Inf (RΓ [v]|π),
for π ranging over all infinite paths in RΓ [v];

iii) the triples (bj, rj, Gj), for j ranging over J, are all and only the triples
(T+

Π [u](uw), sw, Img(RΓ [v]|w)), where uw =↓1 RΓ (w) and sw =↓2

RΓ (w), for w ranging over all leaves of RΓ [v].

Now, we can define the successors of the vertex −�v in
−�
R. For each label

b ′ ∈ B and for each index i ∈ I, we let −�v b′,i be a successor of −�v in
−�
R

and we define
−�
R(−�v b′,i) = (−�u · b ′,−�s i), where −�s i = Fi. Similarly, for each

label b ′ ∈ B and for each index j ∈ J such that bj = b ′, we let −�v ′
b′,j

A.1 Proofs of Theorem 5 and Theorem 6 177

be a successor of −�v in
−�
R and we define

−�
R(

−�
v ′

b′,j) = (
−�
u · b ′,−�s ′

b′,j), where
−�s ′

b′,j = (bj, rj, Y ∪ Gj, Gj).
It remains to identify the vertices in Dom(Γ) ∪ Fr(T) that correspond

to the above defined successors −�v ′
b′,j of −�v . For each label b ′ ∈ B and for

each index j ∈ J such that bj = b ′, we denote by wb′,j an arbitrary leaf
of RΓ [v] that satisfies (i) T+

Π [u](ub′,j) = bj, where ub′,j =↓1RΓ [v](wb′,j),
(ii) ↓2 RΓ [v](wb′,j) = rj, and (iii) Img(RΓ [v]|wb′,j) = Gj. Finally, we let
v ′

b′,j = v·wb′,j be the vertex in Dom(Γ)∪Fr(T) that corresponds to −�v ′
b′,j.

It is routine to check that the tree
−�
R is a valid run of

−�
A on

−�
T . Moreover, the

root of
−�
R is marked with a state of the form (b, s, {s}, {s}). Hence, by Lemma

15, there is another run R ′ of A on T which is mimicked by
−�
R.

To complete the proof, we have to show that R ′ � R, namely, that the
following properties hold:

i) the state that appears at the root of R ′ coincides with the state that
appears at the root of R;

ii) for every infinite path π ′ in R ′, there is an infinite path π in R such that
Inf (R ′|π ′) = Inf (R|π);

iii) for every leaf v ′ of R ′, there is a leaf v of R such that T(↓1R
′(v ′)) = T(↓1

R(v)), ↓2R
′(v ′) =↓2R(v), and Img(R ′|v ′) = Img(R|v).

The first property holds trivially by construction.
As for the second property, let us consider an infinite path π ′ in R ′. Since

−�
R mimics R ′, there is an infinite path −�π in

−�
R that satisfies one of the following

conditions:

1. Inf (
−�
R |−�π) is a singleton of the form {X} such that X = Inf (R ′|π ′);

2. Inf (
−�
R |−�π) is a set of the form {(b1, s1, Y, Z1), ..., (bk, sk, Y, Zk)} that satis-

fies
⋃

1�l�k Zl = Inf (R ′|π ′).

In the former case, we know, by construction, that −�π contains an edge (−�v ,−�v ′)

such that (i) the state associated with −�v is a quadruple in B×S×P(S)×P(S)

and (ii) the state associated with −�v ′ coincides with the set X. This implies
that there exist a vertex v of Γ , which corresponds to −�v , and an infinite path
τ in RΓ [v] such that Inf (RΓ [v]|τ) = X. Hence, R contains an infinite path π,
which is obtained by concatenating the access path of v and the infinite path
τ, that satisfies Inf (R|π) = Inf (RΓ [v]|τ) (= X = Inf

(
R ′|π ′

)
). In the latter case,

we know that −�
π traverses infinitely many vertices −�

v 0,
−�
v 1,

−�
v 2, ... in

−�
R , which

are marked with states from B × S × P(S) × P(S). Let v0, v1, v2, ... be the
infinite sequence of vertices of Γ that correspond to −�v 0,

−�v 1,
−�v 2, Such a

sequence describes an infinite path π in R, which has normal decomposition

v0
π0−−→ v1

π1−−→ v2
π2−−→ Hence, from properties of normal decomposi-

tions, we know that Inf (R|π) =
{
s ∈ S : ∃ω i � 0. s ∈ Img(RΓ [vi]|πi)

}
. We

thus conclude that Inf (R|π) =
⋃

1�l�k Zl (= Inf (R ′|π ′)).

178 A Technical Proofs

As for the last property, let us consider a leaf v ′ of R ′. Since
−�
R mimics R ′,

there is an infinite path −�π in
−�
R such that Inf (

−�
R |−�π) is a singleton of the form

{(b, s, Y)}, where b = T(↓1 R ′(v ′)), s =↓2 R ′(v ′), and Y = Img(R ′|v ′). From

the definition of the transition function of
−�
A, we know that −�π must contain

an edge (−�v ,−�v ′) such that (i) the state associated with −�v is a quadruple from
B× S×P(S)×P(S) and (ii) the state associated with −�

v ′ coincides with the
triple (b, s, Y). This implies that there is a leaf v of R, which corresponds to
−�v , such that T(↓1 R(v)) = b (= T(↓1R ′(v ′))), ↓2R(v) = s (=↓2R ′(v ′)), and
Img(R|v) = Y (= Img(R ′|v ′)). �

Lemma 17 (Property P3). Let R1 and R2 be two runs of A on T and let
−�
R1 and

−�
R2 be two runs of

−�
A on

−�
T . If

−�
R1 mimics R1,

−�
R2 mimics R2, and

−�
R1 �

−�
R2, then R1 � R2.

Proof. Since
−�
R1 �

−�
R2,

−�
R1 mimics R1, and

−�
R2 mimics R2, we have

↓2

−�
R1(ε) =

(
b, ↓2R1(ε), {↓2R1(ε)}, {↓2R1(ε)}

)

=
(
b, ↓2R2(ε), {↓2R2(ε)}, {↓2R2(ε)}

)
=↓2

−�
R2(ε)

from which ↓2R1(ε) =↓2R2(ε) follows.

Now, let π1 be an infinite path in R1. Since
−�
R1 mimics R1 (see Condition

C5), there exists and infinite path −�π1 in
−�
R1 that satisfies one of the following

conditions:

1. Inf (
−�
R1|

−�π1) is a singleton of the form {X} such that X = Inf (R1|π1);

2. Inf (
−�
R1|

−�π1) is a set of the form {(b1, s1, Y, Z1), ..., (bk, sk, Y, Zk)}, that sat-
isfies

⋃
1�l�k Zl = Inf (R1|π1).

In the former case, since
−�
R1 �

−�
R2, there exists an infinite path −�π2 in

−�
R2 such

that Inf (
−�
R2|

−�π2) = Inf (
−�
R1|

−�π1). Now, since
−�
R2 mimics R2, by Condition C2,

we know that there exists an infinite path π2 in R2 such that Inf (R2|π2) = X

(= Inf (R1|π1)). An analogous argument holds for the latter case.

As for the last condition, let v1 be a leaf of R1. Since
−�
R1 mimics R1 (see

Condition C6), there exists an infinite path −�π1 in
−�
R1 such that Inf (

−�
R1|

−�π1)

is a singleton of the form {(b, s, Y)}, with b = T(↓1R1(v1)), s =↓2R1(v1), and

Y = Img(R1|v1). Again, since
−�
R1 �

−�
R2, we know that there exists an infinite

path −�π2 in
−�
R2 such that Inf (

−�
R2|

−�π2) = Inf (
−�
R1|

−�π1). Finally, since
−�
R2 mimics

R2, from Condition C4 we devise the existence of a leaf v2 of R1 such that (i)
T(↓1 R2(v2)) = b (= T(↓1 R1(v1))), (ii) ↓2R2(v2) = s (=↓2 R1(v1)), and (iii)
Img(R2|v2) = Y (= Img(R1|v1)). This proves that R1 � R2. �

Theorem 5. Let T be a D-augmented tree, Π be a B-labeled factorization of
T , with D ⊆ B, and A be a B-augmented tree automaton. We have that

T ∈ L (A) iff
−�
T ∈ L (

−�
A),

A.1 Proofs of Theorem 5 and Theorem 6 179

where
−�
T denotes the encoding of the retraction of T with respect to A and Π

and
−�
A denotes the retraction automaton of A.

Proof. Let A = (A, C, D, S, ∆, I, F, G) and
−�
A = (B, TA ∪ {⊥},

−�
S ,

−�
∆,

−�
I ,

−�
F). We

first prove the left to right implication.
Let us consider a successful run R of A on T . By Lemma 16, we know that

there exist a run R ′ of A on T such that R ′ � R and a run
−�
R of

−�
A on

−�
T that

mimics R ′. We have to prove that
−�
R is a successful run of

−�
A. First of all, since

−�
R mimics R ′ (see Condition C1), we have that ↓2

−�
R(ε) is a set of the form

(b, s, {s}, {s}), with s =↓2 R ′(ε). Then, since R ′ � R and R is successful, we

have s ∈ I, which immediately implies ↓2

−�
R(ε) ∈

−�
I .

Now, let −�π be an infinite path in
−�
R . We distinguish between the following

three cases:

1. Inf (
−�
R |−�π) is a singleton of the form {X};

2. Inf (
−�
R |−�π) is is a set of the form {(b1, s1, Y, Z1), ..., (bk, sk, Y, Zk)};

3. Inf (
−�
R |−�π) is a singleton of the form {(b, s, Y)}.

In the first case, since
−�
R mimics R ′ (see Condition C2), there exists an infinite

path π ′ in R ′ such that Inf (R ′|π ′) = X. Moreover, since R ′ � R, there is
an infinite path π in R such that Inf (R|π) = Inf (R ′|π ′). Finally, since R is

successful, we have Inf (R|π) ∈ F, whence Inf (
−�
R |−�π) ∈

−�
F.

In the second case, since
−�
R mimics R ′ (see Condition C3), there exists

an infinite path π ′ in R ′ such that Inf (R ′|π ′) =
⋃

1�l�k Zl. Moreover, since
R ′ � R, there exists an infinite path π in R such that Inf (R|π) = Inf (R ′|π ′).

Finally, since R is successful, we have Inf (R|π) ∈ F, whence Inf (
−�
R |
−�
π) ∈

−�
F.

In the third case, since
−�
R mimics R ′ (see Condition C4), there exists a leaf v ′

of R ′ such that T
(
↓1R

′(v ′)
)

= b, ↓2R
′(v ′) = s, and Img(R ′|v ′) = Y. Moreover,

since R ′ � R, there exists a leaf v of R such that T(↓1R(v)) = b, ↓2R(v) = s,
and Img(R|v) = Y. Finally, since R is successful, we have (b, s, Y) ∈ G, whence

Inf (
−�
R |−�π) ∈

−�
F .

The above arguments show that
−�
R is a successful run of

−�
A on

−�
T .

As for the converse implication, let us consider a successful run
−�
R of

−�
A on

−�
T .

By Lemma 15, there is a run R of A on T which is mimicked by
−�
R. By using ar-

guments analogous to the previous ones, we can easily verify that (i) the state
at the root of R belongs to I, (ii) every infinite path π in R satisfies Inf (R|π) ∈
F, and (iii) every leaf v of R satisfies (T(↓1R(v)), ↓2R(v), Img(R|v)) ∈ G. This
shows that R is a successful run of A on T . �

Theorem 6. Let T be a D-augmented tree, Π be a B-labeled factorization of
T , with D ⊆ B, and A be a B-augmented tree automaton. The minor A-type of

T can be computed from the minor
−�
A-type of the encoding

−�
T of the retraction

of T with respect to A and Π, where
−�
A is the retraction automaton of A.

180 A Technical Proofs

Proof. Suppose that the minor
−�
A-type −�

σ of
−�
T is of the form

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

↓2

−�
R(ε)

{
Inf (

−�
R |−�π) : −�π ∈ Bch(

−�
R)

}

∅

⎞
⎟⎟⎠ :

−�
R ∈

−�
R

⎫
⎪⎪⎬

⎪⎪⎭

where
−�
R is a complete set of runs of

−�
A on

−�
T (notice that any run of

−�
A on

−�
T has no leaves). By Lemma 15, we know that, for every run

−�
R ∈

−�
R, if the

state that appears at the root of
−�
R is a quadruple of the form (b, s, {s}, {s}),

then there is a run R of A on T which is mimicked by
−�
R . Let R be the set

of all and only the runs of A which are mimicked, in virtue of Lemma 15,

by some run
−�
R ∈

−�
R. We have to show that R is a complete set of runs. Let

R3 be a generic run of A on T . By Lemma 16, there exist a run R2 of A on

T such that R2 � R3 and a run
−�
R2 of

−�
A on

−�
T that mimics R2. Now, since

−�
R is a complete set of runs, there exists a run

−�
R1 ∈

−�
R such that

−�
R1 �

−�
R2.

Moreover, by construction, there exists a run R1 ∈ R which is mimicked by
−�
R1. Summing up, we have

i)
−�
R1 mimics R1;

ii)
−�
R2 mimics R2;

iii)
−�
R1 �

−�
R2.

By Lemma 17, this implies that R1 � R2 and, by transitivity, R1 � R3. This
shows that R is a complete set of runs of A on T .

Now, we rewrite −�σ as follows:

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

−�r h

{−�
Fh,i : i ∈

−�
I h

}

∅

⎞
⎟⎟⎠ : h ∈

−�
H

⎫
⎪⎪⎬

⎪⎪⎭

where
−�
H is a suitable finite set of indices and, for all h ∈

−�
H,

−�
I h is another

finite set of indices, −�r h is a state of A, and
−�
Fh,i, with i ∈

−�
I h, is a set of

states of A. Let H be the subset of
−�
H that contains all and only the indices

h such that −�r h is a quadruple of the form (bh, sh, {sh}, {sh}). Moreover, for

every h ∈ H, we write
−�
I h as the union of three disjoint sets I1h, I2h, and I3h,

defined as follows:

• I1h consists of all and only the indices i ∈ Ĩh such that
−�
Fh,i is a singleton

of the form {Xh,i};

• I2h consists of all and only the indices i ∈ Ĩh such that
−�
Fh,i is a set of

the form {
−�
r h,i,1, ...,

−�
r h,i,kh,i

}, with each −�
r h,i,l being a state in B × S ×

P(S) × P(S);

A.2 Proof of Theorem 8 181

• I3h consists of all and only the indices i ∈ Ĩh such that
−�
Fh,i is a singleton

of the form {(bh,i, sh,i, Yh,i)}.

From previous results, we know that an A-type of T can be obtained by
collecting all triples of the form

⎛
⎜⎜⎝

sh

{
Xh,i : i ∈ I1h

}
∪

{⋃
1�l�kh,i

↓4
−�r h,i,l : i ∈ I2h

}

{
(bh,i, sh,i, Yh,i) : i ∈ I3h

}

⎞
⎟⎟⎠

where h ranges over H. Furthermore, one can easily discard from such an
A-type the redundant features, if any. This proves that the minor A-type σ

of T can be effectively computed from the given (minor)
−�
A-type −�σ of

−�
T . �

A.2 Proof of Theorem 8

This section is devoted to prove Theorem 8. As explained in Section 3.4.1,
we shall give separate proofs for shrinking second-order tree substitutions and
non-erasing second-order tree substitutions.

Let us first consider the case of a shrinking substitution. We assume that
A = A ′ = {a1, ...,ak} and C = C′ and we let F̄ = (Fc)c∈C be a tuple of A-
labeled C-colored (C∪D)-augmented replacing trees to be used in a shrinking
second-order tree substitution, where D ⊇ A. Notice that, for every (C∪D)-
augmented tree automaton A ′ and every color c ∈ C, one of the following
conditions holds:

1. Fc = ∅,

2. Fc = a ′, for some a ′ ∈ A,

3. Fc = c〈a1, ...,ak〉.

Moreover, one can detect whether case 1., 2., or 3. holds by looking at the
minor A ′-type of Fc. Indeed, if Fc = ∅, then the minor A ′-type of Fc consists
only of triples of the form (r, {Fi}i∈I, ∅) (recall that the minor A ′-type of
the empty tree is defined as the minor A ′-type of the infinite complete ⊥-
colored tree). If Fc = a ′, for some a ′ ∈ A, then the minor A ′-type of Fc

consists only of triples of the form (r, ∅, {(a ′, r, {r})}) (notice that the third
component of these triples is a singleton). Finally, if Fc = c〈a1, ...,ak〉, then
the minor A ′-type of Fc consists of triples of the form (r, ∅, {(a ′

j, rj, Gj)}j∈J
),

where {a ′
j}j∈J

= {a1, ...,ak}.

On the grounds of previous arguments, in the case of a shrinking substitu-
tion, Theorem 8 can be rephrased as follows.

Lemma 18. Let A ′ be a (C ∪ D)-augmented tree automaton and let F̄ =

(Fc)c∈C be a tuple of replacing trees of a shrinking second-order tree substitu-
tion. One can compute a (C∪D)-augmented tree automaton A and a function

182 A Technical Proofs

f : TA → TA′ such that, for every tree T , if σ is the minor A-type of T , then
f(σ) is the minor A ′-type of T�Fc/c�c∈C.

Proof. Let A ′ = (A, C, C ∪D, S, ∆, I, F, G) be a (C∪D)-augmented tree au-
tomaton, let T be a generic A-labeled C-colored (C∪D)-augmented tree, and
let T ′ = T�Fc/c�c∈C. For the sake of simplicity, we assume that T and T ′

are non-empty full trees (if this is not the case, we simply replace both trees
with their completions and we let F⊥ = ⊥〈a1, ...,ak〉). Below, we define the
(C∪D)-augmented tree automaton A, which runs on T , and mimics the com-
putations of the automaton A ′ on T ′. The states of A are the triples of the
form s̃ = (x, c, s), with x ∈ {0, 1}, c ∈ C, and s ∈ S. Intuitively, when the

first component x of s̃ is set to 1, the automaton Ã lies at an erased vertex of
T̃ and hence its computation is somehow ‘disabled’; when x = 0, the second
component c of s̃ stores the last (non-erased) color read by the automaton A ′

and the third component s of s̃ stores the current state of A ′. Formally, we
define A = (A, C, C ∪ D, S̃, ∆̃, Ĩ, F̃), where

• S̃ = {0, 1} × C × S;

• for every state s̃ = (x, c, s) ∈ S̃, with x = 1, and every color c′ ∈ C,

∆̃(s̃, c′) =
∧

a∈A

〈a, s̃〉;

• for every state s̃ = (x, c, s) ∈ S̃, with x = 0, and every color c′ ∈ C, with
Fc′ = ∅,

∆̃(s̃, c′) =
∧

a∈A

〈a, s̃ ′〉,

where s̃ ′ = (1, c′, s);

• for every state s̃ = (x, c, s) ∈ S̃, with x = 0, and every color c′ ∈ C, with
Fc′ = a ′ for some a ′ ∈ A,

∆̃(s̃, c′) = 〈a ′, s̃ ′〉,

where s̃ ′ = (0, c′, s);

• for every state s̃ = (x, c, s) ∈ S̃, with x = 0, and every color c′ ∈ C, with
Fc′ = c′〈a1, ...,ak〉,

∆̃(s̃, c′) = Φs,c′ ,

where Φs,c′ is the formula obtained from ∆(s, c′) by replacing every atom
of the form 〈a ′, s ′〉 with 〈a ′, (0, c′, s ′)〉;

• the sets Ĩ and F̃ are not relevant here.

It is easy to verify that, for every run R ′ of A ′ on T ′, there is a corresponding
run R of A on T , with ↓2 R(ε) being of a triple of the form (0, c, s) (and,
vice versa, for every run R of A on T , with ↓2R(ε) being a triple of the form

A.2 Proof of Theorem 8 183

(0, c, s), there is a corresponding run R ′ of A ′ on T ′) that satisfies the following
conditions:

i) ↓2R(ε) is of the form (0, c, s), with s =↓2R
′(ε);

ii) for every infinite path π in R such that Inf (R|π) is a set of the form
{(0, c1, s1), ..., (0, cn, sn)}, there exists an infinite path π ′ in R ′ such that
Inf (R ′|π ′) = {s1, ..., sn};

iii) for every leaf v of R such that T(↓1R(v)) = d, with d ∈ C+∪D (namely, d

is a non-erased color), ↓2R(v) is a triple of the form (0, c, s), and Img(R|v)

is a set of the form {(0, c1, s1), ..., (0, cn, sn)}, there exists a leaf v ′ of R ′

such that T ′(↓1R
′|v ′) = d, ↓2R

′(v ′) = s, and Img(R ′|πv′) = {s1, ..., sn};

iv) for every leaf v of R such that T(↓1R(v)) = d, with d ∈ C− (namely, d is
an erased color), ↓2R(v) is a triple of the form (0, c, s), and Img(R|v) is a
set of the form {(0, c1, s1), ..., (0, cn, sn)}, there exists a leaf v ′ of R ′ such
that T ′(↓1R

′(v ′)) = c, ↓2R
′(v ′) = s, and Img(R ′|v ′) = {s1, ..., sn};

v) for every infinite path π ′ in R ′, there exists an infinite path π in R

such that Inf (R|π) is a set of the form {(0, c1, s1), ..., (0, cn, sn)}, with
{s1, ..., sn} = Inf (R ′|π ′);

vi) for every leaf v ′ of R ′, there exists a leaf v of R such that ↓2 R(v) is a
state of the form (0, c, s), with s =↓2R

′(v ′), Img(R|v) is a set of the form
{(0, c1, s1), ..., (0, cn, sn)}, with {s1, ..., sn} = Img(R ′|πv′), and T(↓1R(v))

is a color d either in the set C+ ∪ D, in which case d = T ′(↓1R
′(v ′)), or

in the set C−, in which case c = T ′(↓1R
′(v ′)).

On the grounds of the above arguments, one can compute the minor A ′-type
of the tree T ′ from the given minor A-type of the tree T . More precisely, let
the minor A-type of T be a set of the form

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

s̃h

{
F̃h,i : i ∈ Ĩh

}

{
(dh,j, s̃h,j, G̃h,j) : j ∈ J̃h

}

⎞
⎟⎟⎠ : h ∈ H̃

⎫
⎪⎪⎬

⎪⎪⎭

We denote by H the subset of H̃ that contains all and only the indices h such
that s̃h is a triple of the form (0, ch, sh). Then, for each h ∈ H, we let Ih be

the subset of Ĩh that consists of all and only the indices i ∈ Ĩh such that the
first component of every triple in F̃h,i is 0 and we view J̃h as the union of the
two disjoint sets J1h and J2h satisfying the following conditions:

• J1h consists of all and only the indices j ∈ J̃h such that the second com-
ponent of s̃h,j is a color belonging to the set C+ ∪ D (i.e., a non-erased
color);

• J2h consists of all and only the indices j ∈ J̃h such that the second compo-
nent of s̃h,j is a color belonging to the set C− (i.e., an erased color).

184 A Technical Proofs

It is clear that the set σ ′ of all triples of the form

⎛
⎜⎜⎜⎝

↓3s̃h

{
↓3F̃h,i : i ∈ Ih

}

{
(dh,j, ↓3s̃h,j, ↓3G̃h,j) : j ∈ J1h

}
∪

{
(↓2s̃h,j, ↓3s̃h,j, ↓3G̃h,j) : j ∈ J2h

}

⎞
⎟⎟⎟⎠

for h ranging over H, is the minor A ′-type of the tree T ′. �

We now consider the case of a non-erasing second-order tree substitution. In
such a case, Theorem 8 is rephrased as follows.

Lemma 19. Let A ′ be a (C′ ∪D)-augmented tree automaton and let σ̄ =

(σc)c∈C be a tuple of minor A ′-types. One can compute a tree automaton

Ã such that, for every tree T and every tuple F̄ = (Fc)c∈C of non-erasing
replacing trees, the minor A ′-type σ ′ of T ′ = T�Fc/c�c∈C is uniquely deter-

mined by (and computable from) the minor Ã-type σ̃ of the infinite complete

(C∪D∪{⊥})-colored tree T̃ , which obtained from T by adding ⊥-colored vertices,
and the minor A ′-type σ̄ of F̄.

Proof. Let T be generic A-labeled C-colored (C∪D)-augmented tree, let F̄ =

(Fc)c∈C be a generic tuple of A ′-labeled C′-colored (C′ ∪D)-augmented non-
erasing replacing trees, and let T ′ = T�Fc/c�c∈C. Furthermore, let us denote

by T̃ the infinite complete A-labeled (C∪D∪{⊥})-colored tree obtained from
T by adding ⊥-colored vertices. For the sake of brevity, we expand the tuple
F̄ with one (singleton) replacing tree Fd = d, for each d ∈ D, and we assume
that T ′ is a non-empty full tree. For every vertex v of T , we denote by Vv the
set of vertices of T ′ that correspond to v. Formally, the set Vv is recursively
defined as follows:

Vv =

{
{ε} if v = ε,

Vu · {w ∈ Fr(Fc) : Fc(w) = a} if v = u · a and T(u) = c.

Then, we define the induced factorization Π ′ of T ′ as follows:

• the domain of Π ′ is the union, over all vertices v of T , of the sets Vv;

• (u′, v ′) is an a-labeled edge of Π ′, with a ∈ A, iff T contains an a-labeled
edge (u, v) such that u′ ∈ Vu and v ′ ∈ Vv.

Since, the replacing tree Fc, for every c ∈ C, is neither empty nor singleton,
we have that the sets Vv, where v ranges over Dom(T), are pairwise disjoint.
Therefore, for every vertex v ′ of Π ′, we can denote by v the (unique) vertex
of T that corresponds to v, namely, such that v ′ ∈ Vv. It turns out that, for
any vertex v ′ of Π ′, if v is the vertex of T that corresponds to v ′ and T(v) = c,
then the marked factor of T ′ rooted at v ′ is isomorphic to the tree Fc (note
that c ∈ C ∪ D).

A.2 Proof of Theorem 8 185

We can now prove the lemma by directly exploiting Theorem 6. Let A ′ be
a given (C′ ∪D)-augmented tree automaton and let σ̄ = (σc)c∈C∪D be the
minor A ′-type of the tuple F̄ of non-erasing replacing trees. We need to define
a suitable tree automaton Ã, which only depends on A ′ and σ̄, that mimics

A ′. Notice that the encoding
−�
T ′ of the retraction of T ′ with respect to A ′ and

Π ′ can be obtained from the infinite complete A-labeled (C∪D∪{⊥})-colored

tree T̃ by replacing each color c ∈ C∪D with the corresponding minor A ′-type

σc. Thus, we can denote by
−�
A = (C∪D, TA′ ∪ {⊥},

−�
S ,

−�
∆,

−�
I ,

−�
F) the retraction

automaton of A ′ and then define Ã = (A, C ∪ D ∪ {⊥}, S̃, ∆̃, Ĩ, F̃), where

• S̃ =
−�
S , namely, the states of Ã are exactly those of

−�
A;

• for every state s̃ ∈ S̃ and every input symbol c ∈ C ∪ D ∪ {⊥}, we set

∆̃(s̃, c) =

{−�
∆(s̃, σc) if c ∈ C ∪ D,
−�
∆(s̃,⊥) if c = ⊥;

• the sets Ĩ and F̃ are not relevant here.

Clearly, every run R̃ of Ã on T̃ is also a run of
−�
A on

−�
T ′, and vice versa. This

basically means that the minor Ã-type of T̃ coincides with the minor
−�
A-type

of
−�
T ′. Therefore, by Theorem 6, one can compute the minor A ′-type σ ′ of the

tree T ′ from the minor Ã-type σ̃ of T̃ and the minor A ′-type σ̄ of F̄. �

Finally, we can prove Theorem 8 (for the sake of clearness, we renamed some
of the objects appearing in the statement of the theorem).

Theorem 8. Let A ′′ be a (C′ ∪D)-augmented tree automaton and let σ̄ =

(σc)c∈C be a tuple of minor A ′′-types. One can compute a (C∪D)-augmented
tree automaton A such that, for every tree T and every tuple F̄ = (Fc)c∈C

of replacing trees, the minor A ′′-type σ ′′ of T ′′ = T�Fc/c�c∈C is uniquely
determined by (and computable from) the minor A-type σ of T and the minor
A ′′-type σ̄ of F̄.

Proof. Let A ′′ be a (C′ ∪ D)-augmented tree automaton, let T be an A-
labeled C-colored (C ∪D)-augmented tree, and let F̄ = (Fc)c∈C be a tuple
of A ′-labeled C′-colored (C′ ∪D)-augmented replacing trees. Recall that C−

(resp., C+) denotes the set of all erased (resp., non-erased) colors of C. We
define

F−
c =

{
Fc if c ∈ C−

c〈a1, ...,ak〉 if c ∈ C+
F+

c =

{
Fc if c ∈ C+

c〈a1, ...,ak〉 if c ∈ C−

T ′ = T�F−
c /c�c∈C T ′′ = T ′�F+

c /c�c∈C.

Clearly, T ′ is an A-labeled C+-colored (C+∪D)-augmented tree resulting from
a shrinking second-order tree substitution. Similarly, T ′′ is an A ′-labeled C′-
colored (C′ ∪D)-augmented tree resulting from a non-erasing second-order
tree substitution.

186 A Technical Proofs

Now, let T̃ ′ be the infinite complete A-labeled (C+ ∪D∪ {⊥})-colored tree
obtained from T ′ by adding ⊥-colored vertices. We prove the theorem in three
steps. First, given the minor A ′′-type σ̄ of the tuple F̄ = (F+

c)c∈C, we exploit

Lemma 19 to compute a tree automaton Ã ′ in such a way that the minor A ′′-
type σ ′′ of T ′′ is uniquely determined by (and computable from) the minor

Ã ′-type σ̃ ′ of T̃ ′ and the minor A ′′-type σ̄ of F̄. Then, we define a (C+ ∪D)-

augmented tree automaton A ′ from Ã and we show how to compute the minor
Ã ′-type σ̃ ′ of T̃ ′ on the grounds of the minor A ′-type σ ′ of T ′. Finally, we
exploit Lemma 18, to compute a (C ∪D)-augmented tree automaton A in
such a way that the minor A ′-type σ ′ of T ′ is uniquely determined by (and
computable from) the minor A-type σ of T .

Let us consider the non-erasing substitution T ′′ = T ′�F+
c /c�c∈C. Assume

that σ̄ is the minor A ′′-type of F̄ = (F+
c)c∈C. By Lemma 19, given a (C′∪D)-

augmented tree automaton A ′′, we can obtain a tree automaton Ã ′ in such a
way that the minor A ′′-type of T ′′ is uniquely determined by (and computable

from) the minor Ã ′-type σ̃ ′ of T̃ ′ and the minor A ′′-type σ̄ of F̄.
Now, let A ′ be the (C+ ∪D)-augmented tree automaton obtained by ex-

panding the above defined tree automaton Ã ′ with the set of markers C+ ∪D

(the acceptance conditions at the leaves are not relevant here). We show how

to compute the minor Ã ′-type of T̃ ′ on the grounds of the minor A ′-type of
T . For every d ∈ C+ ∪ D, we denote by Td the infinite complete A-labeled
(C+ ∪ {⊥})-colored tree defined by

Td(v) =

{
d if v = ε,

⊥ otherwise.

We further denote by σd the minor Ã ′-type of Td (note that σd is computable

since Td is a regular tree). We know that every infinite path in T̃ ′ is either
entirely contained in T ′ or it traverses an (C+ ∪D)-colored leaf of T ′. From
this it is easy to see that, if the minor A ′-type σ ′ of T ′ is a set of the form

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

rh

{
Fh,i : i ∈ Ih

}

{
(dh,j, rh,j, Gh,j) : j ∈ Jh

}

⎞
⎟⎟⎠ : h ∈ H

⎫
⎪⎪⎬

⎪⎪⎭

and, for all d ∈ C+ ∪ D, the minor A ′-type σd of Td is a set of the form

⎧
⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

r ′d,k
{
F′

d,k,l : l ∈ Ld,k

}

∅

⎞
⎟⎟⎠ : k ∈ Kd

⎫
⎪⎪⎬

⎪⎪⎭

A.3 Proof of Proposition 34 187

then the set σ̃ ′ of all triples of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rh

{

Fh,i : i ∈ Ih

}

∪

{

F′
d,k,l :

j ∈ Jh, k ∈ Kb, l ∈ Ld,k,

d = dh,j, r ′
d,k = rh,j

}

∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for h ranging over H, turns out to be the minor Ã ′-type of T̃ ′.
It remains to show how to compute the minor A ′-type σ ′ of T ′ from the mi-

nor A-type σ of T . Let us consider the shrinking substitution T ′ = T�F−
c /c�c∈C.

By Lemma 18, one can compute a (C ∪D)-augmented tree automaton A in
such a way that the minor A ′-type σ ′ of T ′ is uniquely determined by (and
computable from) the minor A-type σ of T and (the minor A ′-type of) the
tuple (F−

c)c∈C. �

A.3 Proof of Proposition 34

Here, we briefly recall the statement of Proposition 34 and we give a detailed
proof of it.

Proposition 34. Let f and g be two profinitely ultimately periodic functions.
The following functions are profinitely ultimately periodic as well:

1. (Sum) h = f + g, defined by h(n) = f(n) + g(n);

2. (Product) h = f · g, defined by h(n) = f(n) · g(n);

3. (Difference) h = f − g, defined by h(n) = f(n) − g(n), provided that h

has unbounded infimum;

4. (Quotient) h =
⌊

f
d

⌋
, defined by h(n) =

⌊
f(n)

d

⌋
, where d is any positive

constant;

5. (Exponentiation) h = fg, defined by h(n) =
(
f(n)

)g(n)
, provided that

h has unbounded infimum;

6. (Exponential tower) h defined by h(0) = 1 and h(n+1) = bh(n), where
b is any positive constant;

7. (Fibonacci numbers) h defined by h(0) = h(1) = 1 and h(n + 2) =

h(n) + h(n + 1);

8. (Generalized sum) h defined by h(n) =
∑n−1

i=0 f(i);

9. (Generalized product) h defined by h(n) =
∏n−1

i=0 f(i);

10. (Composition) h = f ◦ g, defined by h(n) = g(f(n)).

188 A Technical Proofs

Proof. As for the functions defined in 1. and 2., it suffices to note that the
operator []l,r respects sums and products, namely,

[
i+j

]
l,r

=
[
[i]l,r+[j]l,r

]
l,r

and
[
i · j

]
l,r

=
[
[i]l,r · [j]l,r

]
l,r

for every i, j ∈ N.

Similarly, one can prove that []l,r respects differences, namely,
[
i − j

]
l,r

=[
[i]l,r − [j]l,r

]
l,r

, under the proviso that i − j � l. It thus follows that the

difference function h = f − g defined in 3. is profinitely ultimately periodic
whenever it has unbounded infimum.

As for the function h =
⌊

f
d

⌋
defined in 4., note that for every l � 0 and every

r > 0,
[
h(i)

]
l,r

is either 0 or
[
[h(i−d)]l,r + 1

]
l,r

, depending on whether i < d

or i � d. Thus, by letting
(
h1(i), ...,hd(i)

)
=

(
[h(i)]l,r, ..., [h(i + d − 1)]l,r

)
,

we obtain

(
h1(i + 1), ...,hd(i + 1)

)
=

{(
0, ..., 0

)
if i = 0,

(
h2(i), ...,hd(i), [h1(i) + 1]l,r

)
if i > 0.

Since each value hj(i) ranges over the finite domain {0, ..., l + r − 1}, one can
exploit the Pigeonhole Principle to compute two integers p � 0 and q > 0
such that hj(i) = hj(i + q) for every i � p and every 0 � j < d. This proves
that

[
h(i)

]
l,r

=
[
h([i]p,q)

]
l,r

and hence h is a profinitely ultimately periodic

function.
As for the function h = fg defined in 5., we preliminarily recall the defini-

tion of the ‘Euler totient function’ φ : N>0 → N>0

φ(i) = i
∏

p prime dividing i

(
1 −

1

p

)

and the following two properties (d is a positive constant):

en = en +
∑n

i=1

(
n
i

)
en−i · 0

= en +
∑n

i=1

(
n
i

)
en−i · mi

= (e + m)n (mod m),

en = en · 1

= en · eφ(m)

= en+φ(m) (mod m).

Since f and g are profinitely ultimately periodic functions, one can compute
p, p ′ � 0 and q, q′ � 0 such that

[
f(i)

]
0,m

=
[
f([i]p,q)

]
0,m

and
[
g(i)

]
0,φ(m)

=[
g([i]p′,q′)

]
0,φ(m)

. Now, by letting r = max(p, p ′) and s = lcm(q, q′), we

obtain [
f(i)g(i)

]
0,m

=
[(

[f(i)]0,m
)[g(i)]0,φ(m)

]
0,m

=
[(

[f([i]r,s)]0,m
)[g([i]r,s)]0,φ(m)

]
0,m

=
[
f
(
[i]r,s

)g([i]r,s)
]
0,m

.

A.3 Proof of Proposition 34 189

We can further generalize the above result for any l � 0. Let γ(l) be the
least integer i such that i � r and f(i)g(i) � l (such a value exists and it is
computable by hypothesis). Then, for every i � γ(l), we have

[
f (i)

g(i)
]

l,m
=

[
f (i)

g(i)
− l

]
0,m

+ l

=
[[

f (i)
g(i)

]
0,m

− l
]
0,m

+ l

=
[[

f
(
[i]γ(l),s

)g([i]γ(l),s)]
0,m

− l
]
0,m

+ l

=
[
f
(
[i]γ(l),s

)g([i]γ(l),s)
]

l,m
.

This proves that h (= fg) is a profinitely ultimately periodic function.
We now consider the exponential tower h defined in 6.. We have h(0) = 1

and h(i) = bh(i−1) for every i > 0. Let r > 0 and, for every l � 0, let
γ(l) = ⌈logb(l)⌉. We prove, by induction on j, that, for every 0 � j � r, every
l � 0, and every i � γ(l), the following equation holds

[
h(i + j)

]
l,φr−j(r)

=
[
h(i + j + 1)

]
l,φr−j(r)

.

The case j = 0 is almost trivial. Since φ(i) is strictly decreasing for i > 1, we
have φr(r) = 1. This implies that [h(i)]l,φr(r) = l = [h(i + 1)]l,φr(r) holds for
every i � γ(l). Now, let j > 0. For every l � 0 and every i � γ(l), we have

[
h(i + j)

]
l,φr−j(r)

=
[
bh(i+(j−1))

]
l,φr−j(r)

=
[
b

[h(i+(j−1))]
γ(l),φr−(j−1)(r)

]
l,φr−j(r)

=
[
b

[h(i+(j−1)+1)]
γ(l),φr−(j−1)(r)

]
l,φr−j(r)

=
[
bh(i+(j−1)+1)

]
l,φr−j(r)

=
[
h(i + j + 1)

]
l,φr−j(r)

.

In particular, by letting j = r, we obtain that, for every l � 0 and every
i � γ(l), [

h(i + r)
]
l,r

=
[
h(i + r + 1)

]
l,r

.

Therefore, we can conclude that, for every l � 0, every r > 0, and every i � 0,[
h(i)

]
l,r

=
[
h([i]γ(l)+r,1

]
l,r

and hence h is a profinitely ultimately periodic

function.
If h is the Fibonacci function, as defined in 7., then we have

[
h(i)

]
l,r

=[
[h(i−2)]l,r+[h(i−1)]l,r

]
l,r

whenever i � 2. Thus, by letting
(
h1(i), h2(i)

)
=(

[h(i)]l,r, [h(i + 1)]l,r
)
, we obtain

(
h1(i + 1), h2(i + 1)

)
=

{(
[1]l,r, [1]l,r

)
if i = 0,

(
h2(i), [h1(i) + h2(i)]l,r

)
if i > 0.

190 A Technical Proofs

Since the values h1(i) and h2(i) range over the finite domain {0, ..., l + r − 1},
one can exploit the Pigeonhole Principle to compute two integers p � 0 and
q > 0 such that

(
h1(i), h2(i)

)
=

(
h1(i + q), h2(i + q)

)
for every i � p. This

shows that
[
h(i)

]
l,r

=
[
h([i]p,q)

]
l,r

and hence h is a profinitely ultimately

periodic function.
We now consider the function h defined in 8.. Let l � 0 and r > 0. Since

f is a profinitely ultimately periodic function, one can compute two integers
p, q such that

[
f(i)

]
l,r

=
[
f([i]p,q)

]
l,r

. We now define S =
∑p+q

j=p+1 f(j) and

we observe that for every n � 0,

⎡
⎣

p+nq∑

j=p+1

f(j)

⎤
⎦

l,r

=
[
n · S

]
l,r

.

By exploiting the Pigeonhole Principle, one can compute two integers p ′ � 0
and q′ > 0 such that

[
p ′ · n · S

]
l,r

=
[
(p ′ + q′) · n · S

]
l,r

. Moreover, for

any given index i � p + (q · q′), one can compute an integer ni such that
i =

[
i
]
p,q·q′ + ni · q · q′. Therefore, for every i � p + (q · q′), we have

[
h(i)

]
l,r

=
[∑i

j=0 f(j)
]

l,r

=
[∑[i]p,q·q′

j=0 f(j) +
∑i

j=[n]p,q·q′+1 f(j)
]

l,r

=
[∑[i]p,q·q′

j=0 f(j) + q′ · ni · S
]

l,r

=
[∑[i]p,q·q′

j=0 f(j) + q′ · [ni]p′,q′ · S
]

l,r

=
[
h([i]p,q·q′)

]
l,r

.

This shows that h is a profinitely ultimately periodic function.
By analogous arguments, one can prove that the function h defined in 9.

is profinitely ultimately periodic.
Finally, the function h defined in 10. is easily proved to be profinitely

ultimately periodic by noticing that, given l � 0 and r > 0, one can compute
p, p ′ � 0 and q, q′ > 0 satisfying

[
g(f(i))

]
l,r

=
[
g([f(i)

]
p,q

)]l,r =
[
g([f([i]p′ ,q′)]p,q)

]
l,r

=
[
g(f([i]p′,q′))

]
l,r

.
�

References

1. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: The monadic second order theory
of trees given by arbitrary level-two recursion schemes is decidable. In: Urzy-
czyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg
(2005)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In:
Proceedings of the International Congress for Logic, Methodology and Philos-
ophy of Science, pp. 1–11. Stanford University Press (1962)

3. Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer, Heidelberg (2000)

4. Booth, K.S.: Lexicographically least circular substrings. Information Process-
ing Letters 10(4-5), 240–242 (1980)

5. Bresolin, D., Montanari, A., Puppis, G.: Time granularities and ultimately
periodic automata. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 513–525. Springer, Heidelberg (2004)

6. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for
definite events. Mathematical Theory of Automata 12, 529–561 (1962)

7. Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs
and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg
(2003)

8. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes,
S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg
(1994)

9. Campeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic
operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999.
LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

10. Carayol, A., Hague, M., Meyer, A., Ong, C.-H.L., Serre, O.: Winning regions of
higher-order pushdown games. In: Proceedings of the 23rd IEEE Symposium
on Logic in Computer Science (LICS), pp. 193–204. IEEE Computer Society,
Los Alamitos (2008)

11. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of
logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg
(2003)

192 References

12. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and
generalizations. Information and Computation 176(1), 51–65 (2002)

13. Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks,
K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer,
Heidelberg (2002)

14. Caucal, D.: On infinite transition graphs having a decidable monadic theory.
Theoretical Computer Science 290, 79–115 (2003)

15. Clifford, J., Rao, A.: A simple general structure for temporal domains. In: Tem-
poral Aspects of Information Systems, pp. 17–28. Elsevier Science Publishers,
Amsterdam (1988)

16. Colcombet, T., Löding, C.: On the expressiveness of deterministic transduc-
ers over infinite trees. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS,
vol. 2996, pp. 428–439. Springer, Heidelberg (2004)

17. Combi, C., Franceschet, M., Peron, A.: Representing and reasoning about tem-
poral granularities. Journal of Logic and Computation 14, 51–77 (2004)

18. Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichten-
berg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg
(2000)

19. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algo-
rithms, 2nd edn. McGraw-Hill, New York (2001)

20. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer
Science 25, 95–169 (1983)

21. Courcelle, B.: The monadic second-order theory of graphs IX: Machines and
their behaviors. Theoretical Computer Science 151, 125–162 (1995)

22. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook of Graph Grammars and Computing
by Graph Transformation. Foundations, vol. I, pp. 313–400. World Scientific,
Singapore (1997)

23. Courcelle, B., Knapix, T.: The evaluation of first-order substitution is monadic
second-order compatible. Theoretical Computer Science 281(1-2), 177–206
(2002)

24. Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graph coverings,
and unfoldings of transition systems. Annals of Pure and Applied Logic 92,
35–62 (1998)

25. Dal Lago, U., Montanari, A.: Calendars, time granularities, and automata. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, pp. 279–298. Springer, Heidelberg (2001)

26. Dal Lago, U., Montanari, A., Puppis, G.: Towards compact and tractable
automaton-based representations of time granularity. In: Blundo, C., Laneve,
C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 72–85. Springer, Heidelberg (2003)

27. Dal Lago, U., Montanari, A., Puppis, G.: Compact and tractable automaton-
based representations for time granularities. Theoretical Computer Sci-
ence 373(1-2), 115–141 (2007)

28. Dal Lago, U., Montanari, A., Puppis, G.: On the equivalence of automaton-
based representations of time granularities. In: Proceedings of the 14th Inter-
national Symposium on Temporal Representation and Reasoning (TIME), pp.
82–93. IEEE Computer Society, Los Alamitos (2007)

29. Damm, W.: Languages defined by higher type program schemes. In: Salomaa,
A., Steinby, M. (eds.) ICALP 1977. LNCS, vol. 52, pp. 164–179. Springer,
Heidelberg (1977)

References 193

30. Damm, W.: An algebraic extension of the Chomsky-hierarchy. In: Becvar, J.
(ed.) MFCS 1979. LNCS, vol. 74, pp. 266–276. Springer, Heidelberg (1979)

31. Damm, W.: The IO- and OI-hierarchies. Theoretical Computer Science 20,
95–207 (1982)

32. Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-
hierarchy. Information and Control 71(1), 1–32 (1986)

33. Demri, S.: LTL over integer periodicity constraints. Theoretical Computer Sci-
ence 360(1-3), 96–123 (2006)

34. Dyreson, C.E., Evans, W.S., Lin, H., Snodgrass, R.T.: Efficiently supporting
temporal granularities. IEEE Transactions on Knowledge and Data Engineer-
ing 12(4), 568–587 (2000)

35. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of
second (first) order theory of (generalized) successor. Journal of Symbolic
Logic 31(2), 169–181 (1966)

36. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Com-
puter Science. Formal models and semantics, vol. B, pp. 995–1072. Else-
vier/MIT Press (1990)

37. Engelfriet, J.: Bottom-up and top-down tree transformations - a comparison.
Mathematical Systems Theory 9(3), 198–231 (1975)

38. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Mathemat-
ical Systems Theory 10, 289–303 (1977)

39. Engelfriet, J.: Iterated stack automata and complexity classes. Information and
Computation 95(1), 21–75 (1991)

40. Euzenat, J., Montanari, A.: Time granularity. In: Handbook of Temporal Rea-
soning in Artificial Intelligence, pp. 59–118. Elsevier Science Publishers, Ams-
terdam (2005)

41. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society 16, 109–114 (1965)

42. Franceschet, M., Montanari, A.: Time granularities in databases, data min-
ing, and temporal reasoning, by C. Bettini, S. Jajodia, and S.X. Wang (book
review). The Computer Journal 45(6), 683–685 (2002)

43. Franceschet, M., Montanari, A., Peron, A., Sciavicco, G.: Definability and de-
cidability of binary predicates for time granularity. In: Proceedings of the 10th
International Symposium on Temporal Representation and Reasoning (TIME)
and the 4th International Conference on Temporal Logic (ICTL), pp. 192–202.
IEEE Computer Society, Los Alamitos (2003)

44. Gécseg, F., Steinby, M.: Tree automata. Akadémiai Kiodó (1984)
45. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages.

Pacific Journal of Mathematics 16(2), 285–296 (1966)
46. Goralwalla, I., Leontiev, Y., Özsu, M.T., Szafron, D., Combi, C.: Temporal

granularity for unanchored temporal data. In: Proceedings of the 7th Interna-
tional Conference on Information and Knowledge Management (CIKM), pp.
414–423. Association for Computing Machinery (1998)

47. Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown
automata and recursion schemes. In: Proceedings of the 23rd Annual IEEE
Symposium on Logic in Computer Science (LICS), pp. 452–461. IEEE Com-
puter Society, Los Alamitos (2008)

48. Hague, M., Ong, C.-H.L.: Symbolic backwards-reachability analysis for higher-
order pushdown systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423,
pp. 213–227. Springer, Heidelberg (2007)

194 References

49. Henzinger, T.A., Majumdar, R.: A classification of symbolic transition systems.
In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 13–34.
Springer, Heidelberg (2000)

50. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages and Computation. Addison-Wesley Longman Publishing Co., Inc.,
Amsterdam (2001)

51. Janin, D., Walukiewicz, I.: On the expressive completeness of the proposi-
tional μ-calculus with respect to monadic second-order logic. In: Sassone, V.,
Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer,
Heidelberg (1996)

52. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22(6), 1117–1141 (1993)

53. Kameda, T., Weiner, P.: On the state minimization of nondeterministic finite
automata. IEEE Transactions on Computers 19(7), 617–627 (1970)

54. Knapik, T., Niwiński, D., Urzyczyn, P.: Deciding monadic theories of hyperal-
gebraic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267.
Springer, Heidelberg (2001)

55. Knapik, T., Niwinski, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars
and panic automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer,
Heidelberg (2005)

56. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6, 323–350 (1977)

57. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

58. Löding, C.: Optimal bounds for the transformation of omega-automata. In:
Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS,
vol. 1738, pp. 97–109. Springer, Heidelberg (1999)

59. Löding, C., Thomas, W.: Alternating automata and logics over infinite words.
In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.)
TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000)

60. Leban, B., McDonald, D., Foster, D.: A representation for collections of tem-
poral intervals. In: Proceedings of the AAAI National Conference on Artificial
Intelligence, vol. 1, pp. 367–371. AAAI Press, Menlo Park (1986)

61. Loma Linda International Heart Institute. Pediatric heart transplantation pro-
tocol. Technical report, International Heart Institute, Loma Linda University
Medical Center, Loma Linda, CA (2002),
http://www.llu.edu/ihi/pedproto.pdf

62. Matz, O., Potthoff, A.: Computing small nondeterministic automata. In: Pro-
ceedings of the Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). BRICS Notes Series, pp. 74–88 (1995)

63. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris (1988) (manuscript)

64. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, En-
glewood Cliffs (1967)

65. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical
Computer Science 32, 321–330 (1984)

66. Montanari, A.: Metric and Layered Temporal Logic for Time Granularity. ILLC
Dissertation Series. Institute for Logic, Language and Computation, University
of Amsterdam (1996)

http://www.llu.edu/ihi/pedproto.pdf

References 195

67. Montanari, A., Peron, A., Policriti, A.: Theories of ω-layered metric temporal
structures: Expressiveness and decidability. Logic Journal of the Interest Group
in Pure and Applied Logic 7(1), 79–102 (1999)

68. Montanari, A., Peron, A., Policriti, A.: The taming (timing) of the states. Logic
Journal of the Interest Group in Pure and Applied Logic 8(5) (2000)

69. Montanari, A., Peron, A., Policriti, A.: Extending Kamp’s theorem to model
time granularity. Journal of Logic and Computation 12(4), 641–678 (2002)

70. Montanari, A., Peron, A., Puppis, G.: On the relationships between theories of
time granularity and the monadic second-order theory of one successor. Applied
Non-classical Logics 16(3-4), 433–455 (2006)

71. Montanari, A., Policriti, A.: Decidability results for metric and layered tempo-
ral logics. Notre Dame Journal of Formal Logic 37(2), 260–282 (1996)

72. Montanari, A., Puppis, G.: Decidability of MSO theories of tree structures. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 434–446.
Springer, Heidelberg (2004)

73. Montanari, A., Puppis, G.: Decidability of the theory of the totally unbounded
ω-layered structure. In: Proceedings of the 11th International Symposium on
Temporal Representation and Reasoning (TIME), pp. 156–160. IEEE Com-
puter Society, Los Alamitos (2004)

74. Montanari, A., Puppis, G.: A contraction method to decide MSO theories
of deterministic trees. In: Proceedings of the 22nd Symposium on Logic in
Computer Science (LICS), pp. 141–150. IEEE Computer Society, Los Alamitos
(2007)

75. Morvan, C.: On rational graphs. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS,
vol. 1784, pp. 252–266. Springer, Heidelberg (2000)

76. Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-
order logics. Theoretical Computer Science 37, 51–75 (1985)

77. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th
Symposium on Switching Circuit Theory and Logical Design. LNCS, pp. 3–16.
IEEE Computer Society, Los Alamitos (1963)

78. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by non-
deterministic automata: New results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science 141(1-2), 69–107 (1995)

79. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–
222. Springer, Heidelberg (2002)

80. Niezette, M., Stevenne, J.: An efficient symbolic representation of periodic
time. In: Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pp. 161–168. Association for Computing
Machinery (1992)

81. Ning, P., Jajodia, S., Wang, X.S.: An algebraic representation of calendars.
Annals of Mathematics and Artificial Intelligence 36, 5–38 (2002)

82. Ohlbach, H.J.: Calendar logic. In: Temporal Logic: Mathematical Foundations
and Computational Aspects, vol. 2. Oxford University Press, Oxford (2000)

83. Ohlbach, H.J., Gabbay, D.M.: Calendar logic. Applied Non-classical Log-
ics 8(4), 291–324 (1999)

84. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of the 21st Symposium on Logic in Computer Science
(LICS), pp. 81–90. IEEE Computer Society, Los Alamitos (2006)

196 References

85. Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science 40, 67–84 (1985)

86. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley Longman
Publishing Co., Inc., Amsterdam (1994)

87. Perrin, D., Schupp, P.E.: Automata on integers, recurrence distinguishability,
and the equivalence and decidability of monadic theories. In: Proceedings of
the Symposium on Logic in Computer Science (LICS), pp. 301–304. IEEE
Computer Society, Los Alamitos (1986)

88. Rabin, M.O.: Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society 141, 1–35 (1969)

89. Rabinovich, A.: Composition theorems for generalized sum and recursively
defined types. In: Proceedings of the 11th Workshop on Logic, Language, In-
formation and Computation (WoLLIC 2004). Electronic Notes in Theoretical
Computer Science, vol. 123, pp. 209–211 (2005)

90. Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural
numbers with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
pp. 562–574. Springer, Heidelberg (2006)

91. Rounds, W.C.: Mappings and grammars on trees. Mathematical Systems The-
ory 4, 257–287 (1970)

92. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th An-
nual Symposium on Foundations of Computer Science, pp. 319–327. IEEE
Computer Society, Los Alamitos (1988)

93. Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, Weizmann
Institute of Science, Rehovot, Israel (1989)

94. Semenov, A.L.: Decidability of monadic theories. In: Chytil, M.P., Koubek, V.
(eds.) MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)

95. Shelah, S.: The monadic theory of order. Annals of Mathematics 102, 379–419
(1975)

96. Shiloach, Y.: Fast canonization of circular strings. Journal of Algorithms 2(2),
107–121 (1981)

97. Siefkes, D.: Decidable extensions of monadic second-order successor arithmetic.
In: Automatentheorie und Formale Sprachen, pp. 441–472. B.I. Hochschul-
taschenbücher, Mannheim (1970)

98. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery 32, 733–749 (1985)

99. Sistla, A.P., Vardi, M.Y., Wolper, P.: Reasoning about infinite computation
paths. In: Proceedings of the 24th Annual Symposium on Foundations of Com-
puter Science (SFCS), pp. 185–194. IEEE Computer Society, Los Alamitos
(1983)

100. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Sci-
ence 49, 217–237 (1987)

101. Skiena, S.S.: The Algorithm Design Manual. Springer, Heidelberg (1998)
102. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer Aca-

demic Publishers, Dordrecht (1995)
103. Stockmeyer, L.: The Complexity of Decision Problems in Automata and Logic.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA
(1974)

104. Thatcher, J.W.: Generalized sequential machine maps. Journal of Computer
and System Sciences 4, 339–367 (1970)

References 197

105. Thomas, W.: Infinite trees and automaton definable relations over ω-words. In:
Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 263–277.
Springer, Heidelberg (1990)

106. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic
theory of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.)
Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 118–143.
Springer, Heidelberg (1997)

107. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Lan-
guages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

108. Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In:
Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124.
Springer, Heidelberg (2003)

109. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–
641. Springer, Heidelberg (1998)

110. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic pro-
gram verification. In: Proceedings of the 1st IEEE Symposium on Logic in
Computer Science (LICS), pp. 332–344. IEEE Computer Society, Los Alami-
tos (1986)

111. Walukiewicz, I.: Monadic second-order logic on tree-like structures. In: Puech,
C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 401–413. Springer,
Heidelberg (1996)

112. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoretical
Computer Science 275, 311–346 (2002)

113. Wijsen, J.: A string-based model for infinite granularities. In: Proceedings of
the AAAI Workshop on Spatial and Temporal Granularities, pp. 9–16. AAAI
Press, Menlo Park (2000)

114. Zhang, G.: Periodic functions for finite semigroups (1998) (unpublished)
115. Zhang, G.: Automata, boolean matrices, and ultimate periodicity. Information

and Computation 152(1), 138–154 (1999)

Notation

L (A) language recognized by an
automaton A 12, 93

L
ω(A) language recognized by a

Büchi automaton A 13

|A| size of an automaton A
13, 23, 33

↓i i-th element of a tuple
19, 94

[δ, γ] global transition function
of an (N)CSSA 21, 27

IPC++ fragment of Presburger
Arithmetic 23

PLTLmod fragment of Presburger
LTL 24

ΓA nesting relation of an
NCSSA A 28

uA
s , vA

s subwords recognized by
an NCSSA A 29

w
−−→ existence of a partial run

that recognizes w between
two given configurations
29, 67

|w|
a

number of occurrences of
a in w 31, 82

‖A‖ complexity measure of an
NCSSA A 32

n(A) number of states of an
automaton A 40

set of ultimately periodic
words over A 58

set of ultimately periodic
words in L 58

domain of a graph G 91

set of states that occur infi-

nite often along π 93

acceptance problem for a

tree T 100

completion of T 100

UA

UP (L)

Dom (G)

Acc T

T⊥

Inf (R |π)

200 Notation

unfolding of a rooted graph
G 98

set of all infinite paths in
R 102

πv access path of v 102

set of states along π 102

feature of R on T 102

� preorder relation between
runs 103

TA set of minor A-types 103

TΠ [u] unmarked factor of T w.r.t.

Π 106

T+
Π

[u] marked factor of T w.r.t.
Π 106

T ↓v subtree of T rooted at
vertex v 116

first- order substitution in T

of d-colored leaves by Fd 117

second-order substitution in
T of d-colored vertices by

Fd 117

⊑ ω-complete partial order
on trees 117

h−1
A

inverse flip substitution 126

unfolding of T with back-
ward edges and loops 126

Fr(R) set of all leaves of R 102

Img (R |π)

[T , R]

T [Fd/d]

T JFd/dK

Flip Unf (T)

Unf (G)

Bch (R)

Index

A

acceptance problem
for augmented tree automata, 100,

104–105, 109
for Büchi automata, 74–75
for NFA, 74–75
for tree automata, 97
for UPA, 74–75

access path, 92
aligned form of granspecs, 18
aligned refinement relation, 15, 82–83
alphabet, 7
alternating tree automaton

see tree automaton, augmented
tree automaton, two-way tree
automaton

amortized analysis, 11
assignment, 95
augmented tree, 92
augmented tree automaton, 94

acceptance problem, 100, 104–105,
109

emptiness problem, 101
automaton

see NFA, DFA, Büchi automaton,
SSA, CSSA, RCSSA, NCSSA,
UPA, tree automaton, augmented
tree automaton, two-way tree
automaton, Mealy tree automaton

B

bisimulation, 92, 98, 107, 109, 121,
126–128

border, 10

Büchi automaton, 13, 24, 57, 62
acceptance problem, 74–75
emptiness problem, 74
equivalence problem, 75
inclusion problem, 75

C

Cachat tree generator, 149
Calendar Algebra, 16
Calendar Logic, 16
canonical form

of granspecs, 18
of UPA, 72–73

Caucal hierarchy, 99, 131, 135, 136,
148–151

chain fragment of MSO logic, 96
co-Büchi automata, 88
color, 91
comparison problem for UPA, 81–83
complete set of runs, 103, 111
complete tree, 92
completion of a tree, 100
complexity optimal NCSSA, 40, 44, 46
complexity optimization problem for

NCSSA, 40, 43–50
composition method, 90, 112, 166
composition theorem, 132
concatenation, 7
context-free graph, 97
continuous function, 117
contraction method, 89, 100–113, 166
counter single-string automaton

see CSSA

202 Index

cover relation, 35
covered-by relation, 35
CSSA, 20–23

equivalence problem, 22
nested
see NCSSA

reducible
see RCSSA

D

δ-degree, 28
deterministic finite-state automaton

see DFA
deterministic tree, 92
DFA, 12, 72–73, 75
downward conversion function, 35

E

emptiness problem
for augmented tree automata, 101
for Büchi automata, 74
for NFA, 74
for tree automata, 97
for UPA, 73

encoding of a retraction, 107
end-regular graph, 97
equi-column predicate, 162
equi-level predicate, 162
equivalence problem

for Büchi automata, 75
for CSSA, 22
for granspecs, 18
for NCSSA, 39–40
for NFA, 75
for RCSSA, 22, 25
for SSA, 19
for UPA, 74–78

erasing color, 132
see also second-order substitution

erasing second-order substitution, 132
erasing tree, 132

see also second-order substitution
Euler totient function, 188

F

factorization, 106
failure function, 11

feature, 102
finite-state recoloring, 114–115,

123–125, 128
with rational lookahead, 115–116,

123–125, 128, 140
see also Mealy tree automaton,

rational marking
first-order substitution, 100, 116
footprint, 129

see also reducible tree
full tree, 92

G

γ-degree, 28
γ-induction, 28, 31–33
generator

Cachat tree, 149
graph, 149
tree, 150

granspec, 18
aligned form, 18
canonical form, 18
equivalence problem, 18

granularity, 13–17
aligned refinement relation, 15, 82–83
comparison problem, 81–83
downward conversion function, 35
granule conversion problem, 34–38
grouping relation, 15, 82
partition relation, 15, 82
periodic grouping relation, 15, 82
refinement relation, 15, 82
upward conversion function, 35

granule conversion problem, 34–38
graph, 91
graph generator, 149
grouping relation, 15, 82

H

hierarchy
Caucal, 99, 131, 135, 136, 148–151
reducible trees, 129, 131, 151
term, 100

higher-order pushdown automaton, 99
higher-order recursive scheme, 157

safe, 100

Index 203

I

inclusion problem
for Büchi automata, 75
for NFA, 75
for UPA, 74–78

index of a granule, 14
indistinguishability, 104–105
initial pattern, 8
intersect relation, 35
inverse flip substitution, 126

see also inverse rational substitution
inverse forward substitution, 127, 128

see also inverse rational substitution
inverse rational substitution, 99, 126,

149, 161
see also MSO-definable interpretation

inverse substitution, 125–128
flip, 126
forward, 127, 128
rational, 99, 126, 149, 161

K

k-refinable layered temporal structure
see layered temporal structure

L

label, 91
language, 8

prefix-closed, 8, 92, 116
prefix-free, 8, 116
rational, 12

layer, 158
layered temporal structure, 158–166

downward unbounded, 159
totally unbounded, 159
upward unbounded, 159

linear progression, 37
linear temporal logic

see LTL
lookahead, 115, 123

see also Mealy tree automaton, tree
transducer

loop of UPA, 62
LTL, 16, 24, 88

Presburger, 17, 24
satisfiability problem, 16

M

major type, 103
Mealy tree automaton, 114

with lookahead, 115
see also finite-state recoloring

memoryless recoloring, 113–114, 128
mimic, 109

minor type, 103, 109

Minsky machine, 22
model checking problem, 96–100, 105

monadic second-order
see MSO

monoid, 115, 133, 134
morphic tree, 119, 154–157

MSO formula, 95

MSO logic, 95–96
chain fragment, 96

model checking problem, 96–100, 105
path fragment, 96

MSO sentence, 95
MSO theory, 95

MSO-compatible transformation, 97,
111, 137

see also MSO-definable
interpretation, MSO-definable
transduction, inverse rational
substitution, unfolding, tree
iteration, treegraph operation

MSO-definable interpretation, 98, 149,
161

MSO-definable relation, 96, 159
MSO-definable transduction, 99, 121

Muller tree automaton
see tree automaton, augmented

tree automaton, two-way tree
automaton

multiplicative monoid, 115, 133, 134
multiplicative semigroup, 115, 134

N

NCSSA, 25–57

complexity optimal, 40, 44, 46
complexity optimization problem, 40,

43–50
decomposable, 42

δ-degree, 28

204 Index

downward conversion function, 35
equivalence problem, 39–40
γ-degree, 28
γ-induction, 28, 31–33
granule conversion problem, 34–38
nesting relation, 28
optimal-substructure property, 41–57
state optimal, 40, 51, 53
state optimization problem, 40, 50–57
upward conversion function, 35

nested counter single-string automaton
see NCSSA

nesting relation, 28
NFA, 12

acceptance problem, 74–75
emptiness problem, 74
equivalence problem, 75
inclusion problem, 75
state optimal, 78
state optimization problem, 78

non-deterministic finite-state automaton
see NFA

normal form of UPA, 64–66

O

ω-continuous function, 117
ω-language, 8

rational, 13, 57, 64
optimal-substructure property, 41–57

P

partial order, 28, 103
ω-complete, 117, 154

partial period, 8
partial repeating pattern, 8

primitive, 8
partition relation, 15, 82
path fragment of MSO logic, 96
period, 8
periodic grouping relation, 15, 82
positive boolean formulas, 92
prefix, 8
prefix automaton, 66, 72, 74, 75, 79

see also prefix-friendly form
prefix function, 11
prefix language, 67

see also prefix-friendly form

prefix-closed language, 8, 92, 116
prefix-free language, 8, 116
prefix-friendly form of UPA, 66–72
preorder, 103
Presburger Arithmetic, 17, 23
Presburger LTL, 17, 24
primitive partial repeating pattern, 8
primitive repeating pattern, 8
profinitely ultimately periodic

function, 133–136, 187–190
sequence, 134
tree, 130
word, 130

pushdown automaton, 97
higher-order, 99

pushdown hierarchy
see Caucal hierarchy

R

rank, 129
rational language, 12
rational lookahead, 115, 123

see also Mealy tree automaton, tree
transducer

rational marking, 114
see also finite-state recoloring

rational ω-language, 13, 57, 64
rational restriction, 99
RCSSA, 20–23

equivalence problem, 22, 25
recoloring

see memoryless recoloring, finite-state
recoloring

recoloring function, 113
reducible counter single-string

automaton
see RCSSA

reducible tree, 129, 131, 151
refinement relation, 15, 82
regular tree, 92, 101, 105
regular tree insertion, 121, 133

see also second-order substitution
regular tree morphism, 119, 128, 138,

154
see also second-order substitution

relational structure, 95
repeating pattern, 8

primitive, 8

Index 205

residually ultimately periodic
see profinitely ultimately periodic

retraction, 106

retraction automaton, 108

root, 92
run

see NFA, DFA, Büchi automaton,
SSA, CSSA, RCSSA, NCSSA,
UPA, tree automaton, augmented
tree automaton, two-way tree
automaton

S

safe higher-order recursive scheme, 100

safety automata, 88
satisfiability problem

for PLTLmod, 25

for LTL, 16

for quantified boolean formulas, 25
for two-way modal µ-calculus, 151

second-order substitution, 117–121

associativeness, 119

erasing, 132
non-erasing, 132

shrinking, 132

see also tree morphism, tree insertion

semi-infinite line, 144

semigroup, 115, 134
shrinking second-order substitution, 132

signature, 95

single-string automaton

see SSA
size of an automaton, 13, 23, 33

SSA, 19–20

equivalence problem, 19

state optimal
NCSSA, 40

NFA, 78

UPA, 79

state optimal NCSSA, 51, 53
state optimization problem

for NCSSA, 40, 50–57

for NFA, 78

for UPA, 74, 78–81
string matching, 11

string matching problem, 9

strongly connected component, 62

substitution

see first-order substitution,
second-order substitution, inverse
substitution

substring, 8
subsumed loop of UPA, 79
subsumed run, 102
suffix, 8

T

term hierarchy, 100

transient state, 62

tree, 92

augmented, 92

complete, 92

completion, 100

deterministic, 92

full, 92

regular, 92

tree automaton, 92–94

acceptance problem, 97

emptiness problem, 97

see also augmented tree automaton

tree generator, 150

tree insertion, 120

regular, 121, 133, 144

see also second-order substitution

tree iteration, 98

tree morphism, 119

regular, 119, 128, 138, 154

see also second-order substitution

tree transducer, 122

with rational lookahead, 123, 127–128

see also tree transduction

tree transduction, 121–122, 128

non-deleting, 123

with rational lookahead, 122–125, 128

see also tree transducer

treegraph operation, 99, 149

two-way tree automaton, 151–153

two-way unfolding

see unfolding with backward edges

and loops

type, 103

major, 103

minor, 103, 109

U

ultimately periodic automaton

see UPA

206 Index

ultimately periodic word, 8
unfolding, 98, 111

with backward edges and loops, 126,
144, 146, 153

UPA, 57–85
acceptance problem, 74–75
canonical form, 72–73
comparison problem, 81–83
emptiness problem, 73
equivalence problem, 74–78
inclusion problem, 74–78
loop, 62
normal form, 64–66

prefix automaton, 66, 72, 74, 75, 79
see also prefix-friendly form

prefix language, 67
see also prefix-friendly form

prefix-friendly form, 66–72
state optimal, 79
state optimization problem, 74, 78–81
subsumed loop, 79

upward conversion function, 35

W

word, 7

Puppis
AutomataforBranchingandLayeredTemporalStructures

LNA
5955

FoLLIPublicationsonLogic,LanguageandInformation
PartofLectureNotesinArtificial Intelligence

TheFoLLI LNAI sublineaimstodisseminatecutting-edgeresults in logic,
languageand information (LLI) research,development andeducation.LLI is
thetopical focusof FoLLI,theAssociationof Logic,Languageand Information
(www.folli.org).

Inparallel to theprintedbook,eachnewvolumeispublishedelectronically
inSpringerLink.
Detailed informationonLNCS/LNAI canbefoundat
www.springer.com/lncs
Proposalsfor publication shouldbesent to
LNCS/LNAI Editorial,Tiergartenstr.17,69121Heidelberg,Germany
E-mail: lncs@springer.com

ISSN 0302-9743

›springer.com

AutomataforBranchingandLayeredTemporalStructures
Since2002,FoLLI hasawardedanannual prizefor outstandingdissertationsin the
fieldsof Logic,Languageand Information.Thisbook isbasedon thePh.D.thesisof
GabrielePuppis,whowasthewinner of theE.W.BethDissertationAward for 2007.
Puppis’sthesisfocuseson logicandcomputationand,morespecifically,on
automata-baseddecidability techniquesfor timegranularityandonanewmethod
for determiningMonadicsecondorder theoriesof trees.Theresultspresented
represent asignificant step towardsabetter understandingof thechangesin
granularity levelsthat humansmakesoeasily in cognitionof time,space,andother
phenomena,whereastheir logical andcomputational structureposesdifficult
conceptual andcomputational challenges.

1

ISBN 978-3-642-11880-7

9 7 8 3 6 4 2 1 1 8 8 0 7

