N
N

N

HAL

open science

What You Must Remember When Processing Data

Words
Michael Benedikt, Clemens Ley, Gabriele Puppis

» To cite this version:

Michael Benedikt, Clemens Ley, Gabriele Puppis.
Data Words. Proceedings of AMW 2010, 2010, Buenos Aires, Argentina. http://ceur-ws.org/Vol-

619/paperll.pdf. hal-00717773

HAL Id: hal-00717773
https://hal.science/hal-00717773
Submitted on 30 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

What You Must Remember When Processing

https://hal.science/hal-00717773
https://hal.archives-ouvertes.fr

What You Must Remember
When Processing Data Words

Michael Benedikt, Clemens Ley, and Gabriele Puppis

Oxford University Computing Laboratory, Park Rd, Oxford OX13QD UK

Abstract. We provide a Myhill-Nerode-like theorem that characterizes
the class of data languages recognized by deterministic finite-memory
automata (DMA). As a byproduct of this characterization result, we
obtain a canonical representation for any DMA-recognizable language.
We then show that this canonical automaton is minimal in a strong sense:
it has the minimal number of control states and also the minimal amount
of internal storage.

1 Introduction

Automata processing words and trees over infinite alphabets are attracting sig-
nificant interest from the database and verification communities, since they can
be often used as low-level formalisms for representing and reasoning about data
streams, program traces, and serializations of structured documents. Moreover,
properties specified using high-level formalisms (for instance, within suitable
fragments of first-order logic) can be often translated into equivalent automaton-
based specifications, easing, in this way, the various reasoning tasks.

Different models of automata which process words over infinite alphabets
have been proposed and studied in the literature (see, for instance, the surveys
[7, 8]). Among them, we would like to mention a few interesting categories, which
generalize the standard notion of regular language in several respects. Pebble
automata [6] use special markers to annotate locations in a data word. The data
automata of [2] parse data words in two phases, with one phase applying a finite-
state transducer to the input data word and another deciding acceptance on the
grounds of a classification of the maximal sub-sequences consisting of the same
data values (such a classification is usually specified in terms of membership
relationships with suitable regular languages). Of primary interest to us here
will be a third category, the finite memory automata [5], also called register
automata, which make use of a finite number of registers in order to store and
eventually compare values in the processed data word.

Ezample 1. Consider the automaton from Figure 1. We have used an intuitive
notation in the figure — a more precise syntax is given in Section 2. An edge
labeled with g = a where, g is a guard (precondition) and a an action (postcon-
dition); both g and a refer to the current symbol as z, and the ith register as r;.
This accepts exactly the data words w such that there are an even number of
places n < |w| with w(n) # w(n - 1).

xr =1y = store x in 1 r =1 = store x in

T # 71 = store x in ry

true = store x in rq
—@® ® .

_/

x # r; = store x in

Fig. 1. A finite-memory automaton.

One could hope that most of the fundamental results in standard (i.e., finite-
state) automata theory can be carried on in the setting of words over infinite
alphabets. However, prior work has shown that many elementary closure and
decision properties of finite automata are absent in the infinite-alphabet case.
For example, the equivalence of the non-deterministic and deterministic variants
of automata is known to fail for both memory automata and pebble automata
[6]. While in the finite case the equivalence and universality problems for non-
deterministic automata are decidable, for most of the infinite word models they
are not [5, 6].

Among several paradigmatic problems in automata theory, a crucial one, for
both theoretical and practical reasons, is certainly the minimization problem.
Roughly speaking, it consists of determining the automaton-based representa-
tion that uses the “smallest space” for a given language. In the case of standard
finite-state automata, minimal space usage is usually translated in terms of the
minimum number of states. The well-known Myhill-Nerode theorem [4] gives a
canonical automaton for every regular language, which is minimal among de-
terministic finite automata representing the same language. When dealing with
more general models of automata, however, one may need to take into account
different complexity measures at the same time, possibly yielding some tradeoffs
between the amount of control state and the number of values/locations being
stored.

In this paper, we consider minimization for a particular model of register au-
tomata, which process finite words over an infinite alphabet. On the one hand,
the class of memory automata we are dealing with (DMA, for short) is very
similar to that of deterministic finite memory automata introduced in [5]. Our
notion of register automaton is slightly more general in allowing to compare val-
ues both with respect to a fixed equality relation on values (as in the standard
class of finite memory automata) and with respect to a fixed total ordering rela-
tion. For instance, our model of register automaton can recognize the language
of all strictly-increasing finite sequences of natural numbers, which can not be
recognized by a finite memory automaton.

The first contribution of the paper is an isolation of the ideal “minimal stor-
age” for a DMA. This is formalized in terms of the memorable values for any
word in the language — the set of values that must be stored at any point. Us-
ing this we can give a characterization of the class of languages recognized by

some DMA, which closely resembles the Myhill-Nerode theorem. Precisely, we
associate with each language L a suitable equivalence =y, using the memorable
values, and we characterize the class of DM A-recognizable languages as the class
of languages L for which =7, has finite index.

A similar characterization, with a more algebraic flavor, has already appeared
in [3]. The authors of [3] state as an open question whether the DMA obtained
from the algebraic characterisation is minimal. We answer this question posi-
tively: We show that the canonical DMA Ayp, which is obtained from a given
language L when the corresponding equivalence =; has finite index, satisfies a
strong notion of minimality that takes into account both the number of control
states and the number of values stored.

Organization: Section 2 gives preliminaries. Section 3 introduces the no-
tion of memorable value that will be used throughout the paper. Section 4
presents our characterization of DMA-definable languages, along with the re-
sults on canonical and minimal automata, while Section 5 gives conclusions. All
proofs can be found in [1]

2 Preliminaries

We fix an infinite alphabet D of (data) values. A (data) word is a finite sequence
of values from the infinite alphabet D. Two words w and u are said to be
isomorphic, and we denote it by w ~ u, if |w| = |u| and w(i) = w(j) iff u(i) = u(j)
for all pairs of positions 4,7 in w. The ~-equivalence class of a word w, denoted
by [w]= or simply by [w], is called the ~-type of w. A (data) language is a set of
data words. Given two words w and u, we write w =, u if either both w and u are
in L, or both are not. From now on, we tacitly assume that any data language
L is closed under ~-preserving morphisms, namely, ~ refines =y,.

2.1 Finite-memory automata

In this section, we introduce a variant of Kaminski’s finite-memory automata [5].
These automata process data words by storing a bounded number of values into
their memory and by comparing them with respect to the data-equality relation

Definition 1. A (non-deterministic) finite-memory automaton is a tuple A =
(Qo,...,Qk, I,F,T), where Qq,...,Q are pairwise disjoint finite sets of control
states, I € Qg is a set of initial states, F'C Qo U ...U Qg is a set of final states,
and T is a finite set of transition rules of the form (p,a, E,q), where p € Q; for
some 0 <i <k, a is the ~-type of a word of length i +1, E c {1,..,i+ 1}, and
qeQj, with j=i+1-|E|.

A configuration of A is defined as a pair of the form (g, c) consisting of a control
state g € Q;, with 0 <4 < k, and a memory content ¢ € D'. The meaning of a
transition rule of the form (¢, a, E,q") is that the automaton can move from a
configuration (g,c) to a configuration (¢’,0") by consuming an input value a iff

the word o-a has ~type o and ¢’ is obtained from ¢ -a by removing all positions
in B.

We enforce two sanity conditions to every transition rule (q,«, E,q"). To
guarantee that the length of the target memory content o’ never exceeds k, we
assume that F is non-empty whenever q € Q). Second, the memory is updated
like a stack: if the ~type a is of the form [0 -a]., with o(j) = a for some
1< j<|ol|, then E contains the index j. This has two advantages: The memory
content o’ always contains pairwise distinct elements and the order of the data
values in the memory is the order of their last occurrences in the input word.
We will exploit the latter property when we show that for every FMA language
L there is a canonical FMA recognizing L.

A run of A is defined in the usual way. If w is a data word and A has a run
on w from a configuration (g,c) to a configuration (¢’,c"), then we write

(q,0) =5 (¢',0").

The language recognized by A, denoted .Z(A), is the set of all words w such
that (¢,e) —5— (¢’,0"), for some ¢ € I and some ¢’ € F'.

We say that a finite-memory automaton A = (Qo,...,Qw, T,I,F) is deter-
ministic if the set of initial states I is a singleton and there is no pair of transitions
(p,a, E,q),(p,a, E',q") € T, with either ¢ # ¢' or E # E’. Similarly, A is said to
be complete if for every state ¢ € @; and every ~-type « with ¢ + 1 variables, T’
contains a transition rule of the form (¢, «, E,¢"). By a slight abuse of terminol-

ogy, we abbreviate any deterministic and complete finite-memory automaton by
DMA.

Our model of finite-memory automata is very similar the model of finite-
memory automata introduced in [5]. There are several distinguishing elements
though. The main difference is that while in the original model the number of
registers is fixed throughout the run, the number of stored values can vary in our
model. This flexibility will allow us to track space consumption more finely. In
particular, our definition allows automata that are canonical in a strong sense, in
that they store only the values that are essential for an automaton — the number
of such values may vary with the input word. A second distinction is that the
original model has an initial register assignment while the memory content is
initially empty in our model. It should be pointed out that, all models have the
same expressive power (provided that, in the original model, all registers are
initialized with a dummy value 1 ¢ D).

3 Memorable Values

Given a DMA-recognizable language L and a prefix w of an input word, there
exist some values in w that need to be stored by any DMA that recognizes
L. We will call these values memorable. As an example consider the language
L ={w]|w(l) =w(jw|)}. Observe that any DMA that recognizes L must store

the first symbol in its register. For this reason, we will define a to be memorable
in the word abcde with respect to the language L.

Definition 2. Let L be a language. A value a is L-memorable in a word w if a
occurs in w and there exists a word u and a value b such that

{uwu ~ (w-u)[a/b]

w-u # w-ula/b].

Here u[a/b] denotes the word obtained from u by replacing each occurrence
of a with b. Note that it follows from the definition that b does not appear in
any of w, u, and that a does appear in u.

It is convenient to fix a string-based representation of the L-memorable values
of a word w. We thus denote by memp (w) the finite sequence that consists of
all L-memorable values of w ordered according to the positions of their last
occurrences in w. This is well defined because every L-memorable value of w
must occur at least once in w.

The following proposition makes the intuition precise that any DMA has to
store the memorable values of the input word. That is, if a DMA A reaches
a configuration (¢,0) after reading a word w, then memy(w) must be a sub-
sequence of o.

Proposition 1. Let A be a DMA and let L = L(A). Then, for every word w,
memp,(w) is a sub-sequence of the stored values of A after reading w. Moreover,
if (q,0) and (¢',0") are the configurations reached by A after reading words w
and w', respectively, then

!
q = q
{ implies memy (w)-o ~ memz(w')-o’.
g =~ J’

Hence every DMA must store the memorable values of an input word. We
will show in Section 4 that there is a DMA that does not need to store more
than the memorable values.

Intuitively, the next proposition shows that, if two words v and v are iso-
morphic with respect to the L-memorable values of a word w, then L can not
distinguish between w-u and w - v.

Proposition 2. Let L be a language over (D, R), where R is a either the iden-
tity or a dense total order on D. Then, for all words w,u,v we have

memy(w)-u ~ memp(w)-v implies weu =g w-o.
4 Myhill-Nerode for Data Languages
and Minimal Automata

This section is devoted to a characterization of the class of DMA-recognizable
languages. This result also shows that these languages have automata that are

minimal in a strong sense: they have minimal number of control states and they
store only the things that they must store, namely, the memorable values.

We begin by associating with each language L a new equivalence relation =y,
which is finer than =7, but coarser than =~.

Definition 3. Given a language L, we define =, € D* x D* by w =g w' iff
e memg(w) ~ mempg(w'),

e for all words u,u’ if memp(w)-u ~memp(w')-u then w-u = w'-u'.

In a similar way, we associate with each DMA A a corresponding equivalence
relation =4.

Definition 4. Given a DMA A, we define=4 € D*xD* byw =4 w' iff whenever
A reaches the configurations (q,0) and (¢',c") by reading w and w', respectively,
then q=¢q' and o ~ o' follow.

It is easy to see that both = and =4 are equivalence relations. In fact, =, is
also a congruence with respect to concatenation of words to the right, namely,
w =, w’ implies w-u =7, w'-u, under the assumption that memy (w) = memp (w').
Note that, the = 4-equivalence class of any word w is uniquely determined by the
control state ¢ and by the ~-type of the register assignment o of the configuration
(gq,0) that is reached by A after reading w. Hence, for any DMA A with n control
states and storing at most k values, the corresponding equivalence = 4 has at most
n - k! classes.

We are now ready to state the main characterization result.

Theorem 1. A language L is DMA-recognizable iff =1 has finite indez.

We briefly summarize the key ingredients of the proof of Theorem 1. The full
proof is given in [1]. The left-to-right-direction is proved by assuming that L is
recognized by a DMA A and by exploiting Proposition 1 in order to show that
the corresponding equivalence relation =4 refines =y,. This is sufficient because
=4 has finite index. The converse direction is proved by assuming that =; has
finite index and by building a finite-memory automaton Ay, called canonical
automaton. Below, we give a formal definition of such an automaton. The fact
that Ay is deterministic and complete follows from Proposition 2.

Definition 5. Let L be a language. If =1, has finite index, then we define the
canonical automaton for L as the DMA Ar, = (Qo,...,Qk, I, F,T), where

o k=max{|memy(w)||weD*};

o Q;={[w]z, |weD* |memp(w)| =i} for all0<i<k;

e I={[e]l,}, wheree is the empty word;

o F={[w]:, |lweD*,welL}.

e T is the set transitions ([w]z,,a, E,[w-a]=,), with w € D*, a € D, a =
[memp(w)-al~, and E € {1,...,|memg(w)|+1} such that memp(w-a) is the
sub-sequence obtained from memp(w)-a by removing all positions in E;

Minimal DMA. We now explain informally why it is that the canonical automa-
ton for a given language L is minimal among all equivalent DMA recognizing L.
Here, we adopt a general notion of minimality for DMA that takes into account
both the number of control states and the number of stored values on each input
word. Precisely, we say that a DMA A = (Qo,...,Qk, T, {qr}, F) is state-minimal
if for every equivalent DMA A’ = (Qg, ..., QL. T",{¢;}, F') that recognizes the
same language, we have

QI= Y Qi < Y 1Qil=1Q'

0<i<k 0<i<k’

Similarly, we say that A is data-minimal if, for every equivalent DMA A’ =
(Qf, .-, QT {q;}, F") that recognizes the same language and every input
word w, we have

(q17€) _%i_) (Q7U)
) o implies o] <|o”|.
(41,¢) = (¢ 0")

Finally, we say that A is minimal if it is both state-minimal and data-minimal.
Below, we state that the canonical automaton is minimal among all equivalent
DMA. The proof is given in [1].

Theorem 2. The canonical automaton Ay, for a given DRA-recognizable lan-
guage L is minimal.

We conclude the section by explaining in what sense the minimal DMA,
and in particular canonical automata, are unique up to isomorphisms. Here we
think of each DMA A = (Qo,...,Qk, T,{qr}, F') as a finite directed graph, whose
vertices are labeled by indices i € {0,...,k} and represent control states in Q;
and whose edges are labeled by pairs («, F) and represent transitions of the form

(Q’ a? E? q,))'

Corollary 1. Any minimal DMA recognizing a language L is isomorphic to the
canonical automaton for L.

5 Conclusion

We provide a Myhill-Nerode-like theorem that characterizes the class of DMA-
recognizable languages. As in the classical Myhill-Nerode Theorem over finite
alphabets, we show that for a given DMA language L there is an automaton
— the canonical automaton for L — whose definition depends only on L. This
answers a question left open in [3], since the canonical automaton is minimal in
a strong sense: it has the minimal number of states and also the minimal amount
of internal storage.

Some problems still remain open. It would be interesting to see whether or not
analogous characterization results can be given in the case of DM A-recognizable

languages over an infinite alphabet equipped with a partial order. Finally, more
general models of automata could be taken into account, including, for instance,
automata that process sequences of database instances and, possibly, use more
powerful policies for updating their memory.

References

[1]

2]

Michael Benedikt, Clemens Ley, and Gabriele Puppis. Minimal mem-
ory automata, 2010. Available at http://www.comlab.ox.ac.uk/michael.
benedikt/papers/myhilldata.pdf.

Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and
Claire David. Two-variable logic on words with data. In Proceedings of the
21st Annual IEEE Symposium on Logic in Computer Science, pages 7-16,
Washington, DC, USA, 2006. IEEE Computer Society.

Nissim Francez and Michael Kaminski. An algebraic characterization of de-
terministic regular languages over infinite alphabets. Theoretical Computer
Science, 306(1-3):155-175, 2003.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (8rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical
Computer Science, 134(2):329-363, 1994.

Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines
for strings over infinite alphabets. ACM Trans. Comput. Logic, 5(3):403-435,
2004.

Thomas Schwentick. Automata for xml - a survey. Journal of Computer and
System Sciences, 73(3):289-315, 2007.

Luc Segoufin. Automata and logics for words and trees over an infinite
alphabet. In Proceedings of the 15th Annual Conference of the EACLS, 20th
International Workshop on Computer Science Logic, volume 4207 of Lecture
Notes in Computer Science, pages 41-57, Szeged, Hungary, 2006. Springer.

