
HAL Id: hal-00717758
https://hal.science/hal-00717758

Submitted on 30 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regular Repair of Specifications
Michael Benedikt, Gabriele Puppis, Cristian Riveros

To cite this version:
Michael Benedikt, Gabriele Puppis, Cristian Riveros. Regular Repair of Specifications. Proceedings
of LICS 2011, 2011, Toronto, Canada. pp.335-344, �10.1109/LICS.2011.43�. �hal-00717758�

https://hal.science/hal-00717758
https://hal.archives-ouvertes.fr

Regular Repair of Specifications

Michael Benedikt Gabriele Puppis Cristian Riveros

Abstract—What do you do if a computational object (e.g.
program trace) fails a specification? An obvious approach is to
perform repair: modify the object minimally to get something
that satisfies the constraints. In this paper we study repair
of temporal constraints, given as automata or temporal logic
formulas. We focus on determining the number of repairs that
must be applied to a word satisfying a given input constraint in
order to ensure that it satisfies a given target constraint. This
number may well be unbounded; one of our main contributions
is to isolate the complexity of the “bounded repair problem”,
based on a characterization of the pairs of regular languages
that admit such a repair. We consider this in the setting where
the repair strategy is unconstrained and also when the strategy
is restricted to use finite memory. Although the streaming setting
is quite different from the general setting, we find that there are
surprising connections between streaming and non-streaming, as
well as within variants of the streaming problem.

I. INTRODUCTION

When a computational object does not satisfy a specifica-

tion, an obvious approach is to repair it – edit it minimally

so that it becomes valid. We may want to perform this editing

transformation on the object, or we may be merely interested

in knowing how difficult it would be to perform – that is,

determining how far a given object or collection of objects is

from satisfying the specification. In the database community,

this has been extensively studied under the notion of constraint

repair (see e.g. [1], [2]): the specifications considered there are

relational integrity constraints, such as keys and foreign keys,

and the problems considered include determining how much

a database needs to be modified in order to satisfy a given

constraint.

Here we initiate the study of repair for temporal constraints

on words. The notion of repairing a word is indeed more

obvious than in the case of databases: we can simply consider

the edit distance between strings, a standard measure of how

many basic operations it takes to get from one string to

the next. Edit distance is lifted in a natural way to give a

measure dist(w,L) of the distance of a string w to a language

(collection of strings) L: the minimal distance of w to any

string in L. It is well-known [3] that the standard dynamic

programming approach to edit distance extends to give an

efficient algorithm for calculating dist(w,L) when L is a

regular language given as an NFA.

In this work we take the next step and consider a “distance”

between languages – given languages R and T (specified

in different ways) we aim to calculate how difficult it is to

transform a string satisfying R into a string satisfying T . The

notation is motivated by considering R to be a restriction —

a constraint that the input is guaranteed to satisfied – while T

is a target – a constraint that we want to enforce. We consider

the worst-case over a string w ∈ R of the number of edit

operations needed to move w into T : supw∈R dist(w, T). That

is, we look at the worst-case number of operations needed to

get from R to T . Of course, this number may be infinite; the

core of our results is a procedure for solving the bounded

repair problem – determining whether the supremum above

is finite. In order to compute this effectively, we need to

restrict the languages R and T . We consider this problem

for regular languages, presented by both deterministic and

non-deterministic finite automata. We also consider languages

specified by linear temporal logic. In all these cases we

determine the complexity of the bounded repair problem.

Above we considered the use of an edit/correction function

that can read the whole string in memory. In this work we

consider the impact of limitations on the editing process –

what happens when we require the editing to be done by a

transducer, reading in the input letter-by-letter and producing

the corrected output, based only on a finite amount of control

state and a fixed amount of lookahead in the word. We refer to

this as a streaming repair processor. We isolate the complexity

of the streaming repair problem for any lookahead and for any

of the language classes considered in the non-streaming case.

The above deals with the problem of determining whether

the distance between two specifications is finite or infinite.

But in the finite case, we may want to compute this distance

exactly, and to produce the processor that optimally edits a

given specification. Note that in the non-streaming setting, it is

easy to describe the optimal processor: it is simply the function

that given a word w runs a dynamic-programming algorithm to

compute the edit distance to the target (e.g. the algorithm from

[3] in the case of NFAs). However, in the streaming setting

it is not clear how to derive the optimal editing algorithm

efficiently. We give results on the complexity of computing

the exact bound when it is finite in both the streaming and

non-streaming setting, and also give procedures for computing

the optimal processor in the streaming setting.

The streaming and non-streaming repair problems have very

different flavors: the former are closely related to games

played on the components of an automata, while the latter

require a more global analysis, and exhibit a close relation to

distance automata. However, there are connections between

the different problems: we show that in the case where there

is no restriction, the bounded repair problems are the same for

both the streaming and non-streaming setting. We also show

that the bounded repair problem in the streaming setting is

independent of the lookahead, and is robust under plausible

alternative definitions.

In summary our contributions are:

• We formalize the bounded repair problem for languages

and characterize when regular languages have bounded

repair, in both the streaming and non-streaming setting.

• We show that the bounded repair problem in the stream-

ing setting is independent of the lookahead, and is robust

under variants of the cost function.

• Using the characterizations above, we give results on the

complexity of the bounded repair problem in each setting.

• We present results on the complexity of computing the

optimal bound, and on computing the optimal strategy in

the streaming case.

• We demonstrate special cases where the streaming and

non-streaming bounded repair problems have the same

solution.

Organization: Section II gives preliminaries, while Section

III defines the basic problems and shows some connections

with games and distance automata. Section IV gives the

characterizations of bounded repair that we will use throughout

the remainder. Section V studies the non-streaming case, while

Section VI deals with the streaming case. Section VIII briefly

discusses extensions to infinite words, while Section IX gives

related work and conclusions. Proofs are in the full paper.

II. BASIC NOTATION AND TERMINOLOGY

Let Σ be a finite alphabet and Σ∗ be the set of finite words

over Σ. We denote the empty word by ε and the length of a

word w ∈ Σ∗ by |w|.
Automata. Non-deterministic finite state automata (shortly,

NFA) will be represented by tuples of the form A =
(Σ, Q,E, I, F), where Σ is a finite alphabet, Q is a finite set of

states, E ⊆ Q×Σ×Q is a transition relation, and I, F ⊆ Q

are sets of initial and final states. By L (A) we denote the

language recognized by A. If A is a deterministic finite state

automaton (DFA), then we usually denote the unique initial

state by q0 and turn its transition relation E into a partial

function δ from Q × Σ∗ to Q defined by δ(q, ε) = q and

δ(q, a · u) = δ(q′, u) iff (q, a, q′) ∈ E. For technical reasons,

we assume that all states of an NFA are reachable from some

initial state and from all states a final state is reachable. It

is worth noticing that, since the decision problems we are

going to deal with are at least NLOGSPACE-hard and since

any given automaton can be pruned using NLOGSPACE, this

assumption will have no impact on our complexity results.

Since automata can be viewed as directed (labeled) graphs,

we inherit the standard definitions and constructions in graph

theory. In particular, given an NFA A = (Σ, Q,E, I, F) and

a state q ∈ Q, we denote by C(q) the strongly connected com-

ponent (shortly, SCC) of A that contains all states mutually

reachable from q. Given a set C of states of A (e.g., a SCC),

we denote by A|C the automaton obtained by restricting A to

the set C and by letting the new initial and final states be all

and only the states in C. Note that if C consists of a single

transient state, then the language L (A|C) recognized by the

subautomaton A|C is empty. Finally, we denote by dag(A)
the directed acyclic (unlabeled) graph of the SCCs of A and

by dag∗(A) the graph obtained from the transitive closure of

the edges of dag(A).
Transducers. A (letter-to-word sequential) transducer is a

device of the form S = (Σ,∆, Q, δ, q0,Ω), where Σ is a finite

input alphabet, ∆ is a finite output alphabet, Q is a finite set

of states, δ is a transition function from Q × Σ to ∆∗ × Q,

q0 is an initial state, and Ω is a final output function from Q

to ∆∗. For every input word u = a1 . . . an ∈ Σ∗, there is one

run of S of the form q0
a1/v1

−−→ q1
a2/v2
−−→ . . .

an/vn
−−→ qn

ε/vn+1

−−→ , with

δ(qi, ai+1) = (vi+1, qi+1) for all 0 ≤ i < n and Ω(qn) =
vn+1; in this case, we define the output of S on u to be the

word S(u) = v1v2 . . . vnvn+1.

Transducers as above produce an output word immediately

after reading an input character. We will also consider trans-

ducers with a bounded amount of “delay”. A k-lookahead

transducer, with k ∈ N, is defined as a sequential transducer

where the transition function δ now has input in Q×Σ×(Σ⊥)
k

with Σ⊥ = Σ ∪ {⊥} and ⊥ 6∈ Σ. Given an input word u and

a position 1 ≤ i ≤ |u| in it, we denote by −�u i the (k + 1)-
character subword of u ·⊥k that starts at position i and ends at

position i+ k. The output of an k-lookahead transducer S on

an input u of length n is the unique word v = v1v2 . . . vnvn+1

for which there exists a sequence of states q0, ..., qn satisfying

δ(qi,
−�u i) = (vi, qi+1), for all 1 ≤ i ≤ n and Ω(qn) = vn+1.

Clearly, a 0-lookahead transducer is simply a standard (letter-

to-word sequential) transducer.

Logics. In this paper we look at languages defined by

automata, and also consider linear temporal logic LTL, which

uses the modal operators X (next) and U (until), along with

boolean operators. Hereafter, we shall interpret LTL formulas

on finite models only and this requires a careful use of

the modal operators. For instance, the LTL formula Xtrue

does not hold on singleton words. We also assume that the

propositional variables of an LTL formula are precisely the

symbols of the underlying alphabet. This implies that two

different propositional variables can not hold at the same

position in a model.

III. PROBLEM SETTING

Given two finite alphabets Σ and ∆, we denote by dist(u, v)
the Levenshtein distance (henceforth, edit distance) between

two words u ∈ Σ∗ and v ∈ ∆∗, which is defined as the length

of a shortest sequence s of edit operations (e.g., deleting,

modifying, and inserting a single character) that transforms

u into v [4]. A processor is simply a function from Σ∗ to ∆∗.

For a processor f , we refer to dist(u, f(u)) as the cost of f

on the word u. Given a language R ⊆ Σ∗ , we define the

worst-case cost of f over R as the supremum of the cost of

f over all words in R. If the cost is unbounded, then we say

that the worst-case cost is ω.

The general setting of a repair problem consists of two

languages R ⊆ Σ∗ and T ⊆ ∆∗, called the restriction

and target languages, respectively. We would like to repair

a string that is known to belong to the restriction language

into a string in the target language. A processor f is a repair

strategy of R into T if for every word u ∈ R, the output

f(u) is in T . We denote by dist(R, T) the worst-case cost

of an optimal repair strategy of R into T . It is easy to see

that dist(R, T) = supu∈R minv∈T dist(u, v), since the best

strategy is just to output on any u ∈ R the word in T that is

closest to u with respect to the edit distance.

The bounded repair problem is to decide, given languages

R and T , whether dist(R, T) is finite, that is, whether there

is a repair strategy f of R into T and a natural number n ∈ N
such that dist(u, f(u)) ≤ n for all u ∈ R. Similarly, the

threshold problem is to compute the exact value of dist(R, T).
Clearly, the languages R and T must be finitely represented,

for instance, in terms of machines or logical formulas. In this

paper, we study the complexity of the bounded repair problem

for input languages represented by means of the following

formalisms: (i) deterministic finite state automata (DFA), (ii)

non-deterministic finite state automata (NFA), and (iii) LTL

formulas with only future modal operators.

Streaming vs non-streaming. In its most general formula-

tion, a repair strategy could be any function mapping words to

edit words. However, we know from [3] that there is a dynamic

programming algorithm that, given a word u and a target

language T represented by a DFA, computes in polynomial

time an optimal edit sequence s such that s(u) ∈ T . In

particular, this shows that optimal repair strategies can be

described by functions of fairly low complexity. Sometimes

it is desirable to have repair strategies that are in even more

limited classes. Perhaps the ideal case is when a strategy is

realizable with a bounded memory one-pass algorithm, that

is, using a (letter-to-word sequential) transducer. Recall that a

letter-to-word transducer defines a word-to-word function (i.e.,

a processor); if this function is a repair strategy, we refer to the

transducer as a streaming repair strategy. The idea is that any

input word u from a restriction language should be repaired

in an online way. Similarly, we can talk about a k-lookahead

streaming repair strategy.

Accordingly, we define the bounded repair problem in the

(k-lookahead) streaming case as the problem of deciding,

given two languages R and T , whether there is a (k-lookahead)

streaming strategy for repairing R into T with uniformly

bounded cost. To stress the difference between the streaming

and the non-streaming settings, we explicitly refer to the

original problem as the bounded repair problem in the non-

streaming case. The following example, due to Slawomir

Staworko, illustrates the difference between the streaming and

non-streaming setting:

Example 1. Consider R = (a + b)c∗(a+ + b+) and T =
ac∗a+ + bc∗b+. In the non-streaming case, one can get from

R to T by only editing the initial letter and, thus, dist(R, T)
is equal to 1. In contrast, a streaming repair strategy must

decide whether to leave or change the initial letter, and then

it could be forced to repair an unbounded sequence of a or b

after the sequence of c.

Costs in the streaming case. Note that, if we have a

transducer S and a word u = a1 . . . an ∈ Σ∗, then we can

define the cost of S on u in two ways:

• letting q0
a1/v1
−−→ q1

a2/v2
−−→ . . .

an/vn
−−→ qn

ε/vn+1

−−→ be the run of

S on u, we define the aggregate cost of S on u to be

the sum over all indices 1 ≤ i ≤ n of dist(ai, vi) and

|vn+1|, where dist(ai, vi) is 1 if vi is empty, |vi| − 1 if

ai occurs in vi, and |vi| otherwise;

• considering the transducer S as a processor, we define

the edit cost of S on u to be simply the edit distance

between u and the output S(u).

The first cost considers the distortions performed in producing

the input from the output – it is equivalent to considering the

transducer as producing edits rather than strings and counting

the number of edits produced. The second cost is global and it

considers only the output and not its production. Clearly, the

last cost never exceeds the aggregate cost.

It is important to notice that these two models of cost can be

very different in general. Consider a transducer S on the input

alphabet Σ = {a, b} that swaps a’s and b’s. On the string un =
(ab)n, the aggregate cost is 2n since S changes each letter,

but the edit cost between u and S(u) is only 2. Nevertheless,

it will turn out that for the bounded repair problem it does not

matter which model of cost we choose (see Theorem 3).

Special cases. We are also interested in a variant of the

bounded repair problem where the restriction language is a

universal language of the form Σ∗. In this case, the input to

the bounded repair problem consists of a restriction alphabet

Σ and a target language T . We refer to this variant of the

bounded repair problem as the unrestricted case.

A. Repair Problems, Automata, and Games

In the case of DFA, both the non-streaming and streaming

problems correspond to special cases of prior problems stud-

ied in automata and games. Non-streaming repair problems

correspond to distance automata, while the streaming variant

corresponds to energy games. We explain the correspondences

in detail now. In both cases, we find that the results for the

more general framework do not give tight bounds.

Non-streaming repairs and distance automata. Intu-

itively, a distance automaton is a transducer D that receives as

input a finite word w and outputs a corresponding cost D(w)
in N∞ = N∪{∞}. Formally, a distance automaton is a trans-

ducer of the form D = (Σ, Q,E, I, F), where Σ is the input

alphabet, Q is a finite set of states, E ⊆ Q×Σ×N∞×Q is the

transition relation, and I, F : Q→ N∞ are the initial and final

cost functions. The cost D(w) on input w = a1 . . . an ∈ Σ∗ is

obtained by taking the minimum among the costs of the runs of

D on w, where the cost of a run q0
a1/c1
−−→ q1

a2/c2
−−→ . . .

an/cn
−−→ qn

is defined as I(q0) +
∑n

i=1 ci + F (qn). We let D(w) = ∞ if

D admits no successful run on w.

The main problem that has been studied for distance au-

tomata is the limitedness problem which consists of deciding

whether the cost function computed by a given distance

automaton D is uniformly bounded on all words w ∈ Σ∗

with cost D(w) 6= ∞. This problem was shown decidable

by Hashigushi [5] and later in [6] was shown to be PSPACE-

complete. Distance automata have been related to edit-distance

problems in several prior works – see Section IX for further

discussion of the connections. Here we note only a simple

reduction of the bounded repair problem to limitedness. Given

two NFA R and T , one can construct a distance automaton

D that computes the cost of repairing any word from L (R)
into a word from L (T). Let R = (Σ, Q,E, I, F) and

T = (∆, Q′, E′, I ′, F ′) be two NFA for the restriction and

target languages. First of all, we associate with each symbol

a ∈ Σ a matrix M(a) whose entries M(a)[p, q] are indexed

over the pairs of states p, q of T and give the minimum

edit-distance between the symbol a and a word v ∈ ∆∗

such that T can move from p to q consuming v. If q is

not reachable from p, then we let M(a)[p, q] = ∞. We then

define the distance automaton D as the quadruple (Σ, Q ×
Q′, EM , IM , FM), where EM is the set of all transitions of

the form
(

(p, p′), a, c, (q, q′)
)

, with a ∈ Σ, (p, a, q) ∈ E, and

c = M(a)[p′, q′]. Further, we define IM (p, p′) as the length

of the minimum word from a state in I ′ to p′ if p ∈ I and ∞
otherwise. Similarly, FM (p, p′) is the length of the minimum

word from p′ to a state in F ′ if p ∈ F and ∞ otherwise. It

is easy to see that the cost function computed by D maps a

word u ∈ L (R) (which is accepted by D too) to the cost

of the best non-streaming repair of u into L (T). Moreover,

the distance automaton D has size polynomial in the size of

R and T . Combining this reduction with the PSPACE upper

bound for the limitedness problem, we see that the bounded

repair problem for NFA is in PSPACE.

The same reduction technique can be applied to solve the

bounded repair problem for DFA. In this case, however, the

resulting complexity bound is not optimal: the bounded repair

problem for DFA is in fact in coNP (cf. Corollary 4). Roughly

speaking, the reason why the bounded repair problem for

DFAs is easier than the limitedness problem for distance

automata is that the distance automata emerging from DFA

repair problems are deterministic on the 0-cost moves. In

addition to not giving tight bounds, approaches via distance

automata give less insight into the problems. We invite the

reader, for example, to compare the PSPACE upper bound that

we derive from our characterization of repairability, Theorem

2, with the PSPACE upper bound given in [6].

Streaming repairs and energy games. Just as non-

streaming repair problems can be seen within the framework of

distance automata, bounded repair problems in the streaming

setting are special cases of games on graph with quantitative

objectives. An interesting family of such games is that of en-

ergy games studied in [7], which are played on finite weighted

arenas. The game is played between an energy player, who

wants to mantain the the running sum of the weights (i.e.,

the energy) always positive, and her opponent. A variant of

energy games allows the parameterization by an initial credit

of energy; the higher the credit the more possibility for the

energy player to win.

It is well known that the problem of determining whether

there is a finite initial credit so that the energy player has a

winning strategy is in NP ∩ coNP [8], but the exact complexity

is still unknown. Furthermore, this problem can be solved in

time polynomial in the size of the arena and the largest weight

in absolute value. As a matter of fact, the latter complexity

result implies that energy games can be solved in polynomial

time with respect to the size of the arena provided that the

weights are represented in unary.

One can easily reduce the bounded repair problem in the

streaming setting, under the aggregate cost model for lan-

guages recognized by DFA, to the finite initial credit problem

for energy games. Informally, the choice of the opponent in

the energy game corresponds to the letters emitted by the

restriction, while the edits correspond to choices of the energy

player. Formally, we have a node in the arena for each pair

of states of the restriction DFA R and of the target DFA T
– call this node a “Restriction Player Node”. We also have a

node for each combination of restriction state, target state, and

letter played – call this a “Target Player Node”. The former

represents the states reached by the restriction and target

automata after parsing the unedited and edited words, while

the latter adds the last letter emitted by the restriction. There

is an edge of weight 0 going from a Restriction Player Node

(p, p′) to any Target Player Node (q, p′, a), where (p, a, q) is

a transition of the restriction DFA R. Similarly, there is an

edge of weight −c going from a Target Player Node (q, p′, a)
to a Restriction Player Node (q, q′) provided that there is a

word v at distance c from a (i.e., dist(a, v) = c) such that

T can move from p′ to q′ consuming v. It is important to

observe that this reduction provides a PTIME upper bound to

the complexity of the bounded streaming repair problem for

DFA given that the size of the resulting arena is polynomial

in the size of the restriction and target DFA and, moreover,

the weights are bounded by the size of the target DFA.

Our characterization results (see Theorem 3) give analo-

gous (tight) complexity bounds for languages recognized by

DFA and moreover, prove that the bounded repair problem

in the streaming setting is not sensitive to the models of

aggregate/edit cost. They also provide tight bounds for special

cases of the problem that cannot naturally be captured in the

setting of energy games. Our repair strategy can be seen as a

special case of the notion of good-for-energy strategy, which

is introduced in [8] to solve energy parity games.

Despite the connections mentioned above, many concepts

and problems concerning repair do not have natural analogs

in the game setting, and vice versa. For instance, in the game

setting one could allow lookahead for one player, but it is

not as natural as in the repair setting. Moreover, while the

aggregate cost metric fits the game setting naturally, our usual

cost function does not. Conversely, the binary weights that

are allowed in the game setting have no natural analog in the

context of edits. Our characterization also allows us to easily

isolated special cases of lower complexity that are not easily

seen from the embedding into energy games.

IV. CHARACTERIZATIONS OF BOUNDED REPAIRABILITY

The non-streaming case. We fix a restriction language R

and a target language T and we assume that these languages

are recognized by two NFA R and T , respectively. Recall that

dag(R) is the directed acyclic graph of the SCCs of R and

dag∗(T) is the symmetric and transitive closure of dag(T).
Moreover, recall that we assume that all unreachable and sink

states are removed from both R and T .

We say that a path π = C1 . . . Cn in dag(R) is covered by

a path π′ = C ′
1 . . . C

′
n in dag∗(T) if we have L (R|Ci) ⊆

L (T |C ′
i) for all indices 1 ≤ i ≤ n, namely, if the language

recognized by the i-component along π is contained in the

language recognized by the i-component along π′.

The following characterization reduces the bounded repair

problem in the non-streaming case to the path matching

problem in finite directed acyclic graphs.

Theorem 2. Given two NFA R and T , the following condi-

tions are equivalent

1) there is a repair strategy of L (R) into L (T) with

uniformly bounded cost,

2) every path in dag(R) is covered by some path in

dag∗(T),

3) there is a repair strategy of L (R) into L (T) with worst-

case cost at most (1 + |dag(R)|) · |T |.

The interesting directions are from 2) to 3) and from 1)

to 2). For the first implication, if the coverability condition

is satisfied, then we repair a word w ∈ L (R) by choosing

any path π = C1 . . . Cn in dag(R) taken by a run of w,

and looking at a covering path in dag∗(T). We can consider

w = u1a1u2 . . . an−1un such that ui ∈ L (R|Ci) and aj ∈ Σ
for all i ≤ n and j < n. For a covering path π′ = C ′

1 . . . C
′
n

of π this implies that ui ∈ L (T |C ′
i). Therefore, at the

boundary points ai where w jumps from the SCC Ci to the

next SCC Ci+1 in R, we can insert small words that push the

computation from C ′
i to C ′

i+1 in T ; because these are strongly

connected components and there is a path from C ′
i to C ′

i+1,

we can arrange a jump to any state in C ′
i+1. Thus we can

repair w by inserting a bounded number of small words and

adding a small word at the end to reach a final state in T .

The second implication is more complex, and is proven by

contraposition. Assuming the negation of 2) we know that

there is a path π = C1 . . . Ck of dag(R) that is not covered

by paths in dag∗(T). For each SCC Ci of π we construct

a word ui that witnesses all non-containments of L (R|Ci)
in SCCs of T . We then construct, for each n, a word wn

formed by concatenating n-fold iterations of each word ui,

that is, wn = u′0 u
n
1 u′1 . . . unk u′k where the fixed words

u′0, . . . , u
′
k are arranged to make sure the resulting word is in

L (R). Finally, we argue that wn requires at least n edits to

be repaired into a word in L (T).
The streaming case. We now modify Theorem 2 to give

a characterization of the streaming repair problem, adding

in a game setting. Fix two DFAs R and T recognizing the

restriction and target languages. We associate with the DFA

a reachability game between two players, Adam and Eve, on

a suitable arena AR,T , defined in terms of the SCCs of R
and T . The idea underlying this game is as follows: during

Adam’s construction of a path π in dag(R), Eve has to provide

a construction of a corresponding path f(π) in dag∗(T) that

covers π; moreover, the resulting function f must satisfy the

following condition: if π · C is an extension of the path π in

dag(R) by a single SCC, then either f(π ·C) coincides with

f(π) or it is an extension of f(π) by a single SCC, namely,

f(π · C) is of the form f(π) ·D.

Formally, the nodes of the arena AR,T for Adam (resp.,

Eve) are the pairs of the form (C,D) (resp., (D,C)), where

C is a SCC of R and D is a SCC of T . The edges of the arena

connect Adam’s nodes (C,D) to Eve’s nodes (D,C ′) where

(C,C ′) is an edge of dag(R) and, similarly, Eve’s nodes

(D,C) to Adam’s nodes (C,D′) where (D,D′) is an edge of

dag∗(T) and, in addition, L (R|C) ⊆ L (T |D′). The initial

node is an Eve node (D0, C0), where C0 is the SCC of the

initial state of R and D0 is the SCC of the initial state of T .

The last player who moves wins. Intuitively, Adam’s objective

is to reach a node (C,D) where Eve cannot respond with any

move. Conversely, Eve’s objective is to reach a node (D,C)
where Adam cannot respond with any move. As usual, we

say that a player has a winning strategy on the arena AR,T if

he/she can win the reachability game on AR,T independently

of the choices of the other player.

The following characterization reduces the bounded repair

problem in the streaming case to the problem of determining

the winner of a reachability game. It also shows that, quite

surprisingly, the bounded repair problem in the streaming

setting is not sensitive to the notions of transducer with/without

lookahead and to the models of aggregate/edit cost.

Theorem 3. Given two DFA R and T , the following condi-

tions are equivalent

1) there is a k-lookahead streaming strategy, for some k ∈
N, that repairs L (R) into L (T) with uniformly bounded

edit cost,

2) Eve has a winning strategy for the reachability game on

AR,T ,

3) there is a 0-lookahead streaming strategy that repairs

L (R) into L (T) with worst-case aggregate cost at most

(1 + |dag(R)|) · |T |.

Going from 2) to 3), if we have a strategy for Eve, we can

get a streaming repair strategy by tracking the current SCC

C of the input string and maintaining the invariant that the

component of the current repaired string D is such that (C,D)
is a position consistent with Eve’s winning strategy. When a

new letter comes in and changes the SCC in the restriction

from C to C ′, we respond with a repair that moves from D

to the response SCC D′ that preserves the invariant.

For the direction from 1) to 2), we assume a k-lookahead

repair strategy and derive a strategy for Eve; our strategy will

maintain the invariant that the position (C,D) corresponds

to some input string w and response w′ consistent with the

repair strategy. If, by way of contradiction, we have such

a pair (C,D) corresponding to some string w, a successor

SCC C ′ of C corresponding to some extension wu of w

and (D,C ′) is a lossing position for Eve, then we can

construct a single counterexample word for every candidate

SCC. Given that for every successor SCC D′ of D there

is v ∈ L (R|C ′) \ L (T |D′), we can concatenate multiple

copies of v together. If we make the number of copies large

enough, such a string cannot be repaired by our transducer

with a bounded number of edit operations, a contradiction.

V. COMPLEXITY RESULTS IN THE NON-STREAMING CASE

In this section, we study the bounded repair problem and

the threshold problem in the non-streaming setting.

A. The bounded repair problem

We begin by analyzing the complexity in the case of

languages recognized by non-deterministic finite automata.

NFA. Theorem 2 gives a straightforward PSPACE algorithm

that solves the bounded repair problem between two NFA R
and T in this setting: the algorithm first guesses universally a

path π = C1...Cn in dag(R), then it guesses existentially a

path π′ = C ′
1...C

′
n of the same length in dag∗(T), and finally

it checks the containment of the subautomaton R|Ci in the

subautomaton T |C ′
i for all indices 1 ≤ i ≤ n. Together with

the PSPACE lower bound for the problem proven later (see

Corollary 19), we obtain:

Corollary 4. The bounded repair problem in the non-

streaming case, where the restriction and target languages are

represented by NFA, is PSPACE-complete.

DFA. The same characterization result can be used to solve

the problem when the restriction language is represented by

an NFA and the target language is represented by a DFA. In

this case, we can take advantage of the determinism to show

that the problem turns out to be coNP-complete. Intuitively,

the complexity upper bound follows from the observation that

containment of languages recognized by SCCs of DFA is

decidable in PTIME even if the successful runs can start from

arbitrary states inside the SCCs and that the above mentioned

coverability problem for paths of SCCs is in coNP. In other

words, we can guess a path in dag(R) and check in PTIME

if this path is not covered in dag∗(T). The complexity lower

bound follows from a reduction from the validity problem

for propositional formulas in disjunctive normal form (i.e.,

the dual of the SAT problem): the idea is to encode in

the restriction language all the possible valuations for the

propositional variables and then restrict the target language to

consist only of encodings of valuations that satisfy at least one

clause of the formula. Notice that some redundancy is needed

in the restriction to forbid the repair strategy from modifying

the encoded valuations.

Theorem 5. The bounded repair problem in the non-streaming

case, where the restriction language is represented by an NFA

and the target language is represented by a DFA, is in coNP

and it is coNP-hard already for languages represented by DFA.

Before turning to the complexity of the bounded repair

problem for languages specified by LTL formulas, we briefly

outline some parameterized complexity results in the automa-

ton case. We first consider the case where the restriction

automaton is fixed and the target automaton is a DFA provided

as input to the problem. Using arguments similar to the

previous coNP upper bound, one can show that the bounded

repair problem between a fixed restriction language and the

target language recognized by a given DFA is in PTIME.

It is more difficult to show that the bounded repair problem

is tractable when we fix the target automaton. Here, instead

of guessing a path π in dag(R) and then checking whether π

is covered by some path π′ in dag∗(T), we directly compute

all instances of the coverability relation. We then perform a

top-down algorithm to compute which restriction components

are covered.

Proposition 6. Let T be a fixed target language. The problem

of deciding, given an NFA R, whether there is a non-streaming

repair strategy of L (R) into T with uniformly bounded cost

is in PTIME.

LTL. We conclude the section by analyzing the complexity

of the bounded repair problem where languages defined by

LTL formulas are involved. We first consider the problem

where both the restriction language R and the target language

T are defined by some LTL formulas φ and ψ. It is not

difficult to see that this problem is in coNEXPTIME. Indeed,

one can use standard automaton-based techniques to construct,

in exponential time, two DFA
−�
R and

−�
T that recognize the

reversals
−�
R and

−�
T of the languages R and T . Since, in the non-

streaming setting, the cost of repairing R into T is the same

as the cost of repairing
−�
R into

−�
T , one can exploit Theorem 5

to solve the bounded repair problem on the DFA
−�
R and

−�
T in

coNEXPTIME. For the complexity lower bound, one can re-

duce the problem of deciding the non-existence of a tiling of an

exponential square grid, which is known to be coNEXPTIME-

complete [9], to the problem of deciding the existence of a

repair strategy of uniformly bounded cost between two regular

languages defined by suitable LTL formulas. The idea of such

a reduction is to let the formula for the restriction language

encode all candidate tilings and the formula for the target

language check that none of them is correct.

Theorem 7. The bounded repair problem in the non-streaming

case, where the restriction and target languages are repre-

sented by LTL formulas, is coNEXPTIME-complete.

The bounded repair problem becomes easier when it in-

volves repairs of languages recognized by NFA into languages

defined by LTL formulas. The idea is to convert the formula

into a symbolic automata (represented using propositional

formulas), and then apply the characterization theorem, look-

ing for paths in the NFA that are not covered by paths

in the symbolically-represented target language. Because the

required containment checks can be done in PSPACE on the

symbolic representations, we get:

Theorem 8. The bounded repair problem in the non-streaming

case, where the restriction language R is represented by an

NFA and the target language T is represented by an LTL

formula, is in PSPACE.

Similarly, the bounded repair problem remains in PSPACE

when the restriction is specified by an LTL formula φ and the

target is recognized by an NFA T . In this case, one still uses

Theorem 2 and a symbolic DFA
−�
R recognizing the reversal

of the language defined by φ. However, instead of universally

guessing an entire path π in dag(
−�
R) one guesses the leaf of

a counterexample path, and verifies that it is not covered by

moving down from the root to the leaf.

Theorem 9. The bounded repair problem in the non-streaming

case, where the restriction language R is represented by an

LTL formula and the target language T is represented by an

NFA, is in PSPACE.

B. The threshold problem

We now consider the problem of calculating the exact cost.

In the case of DFA, we know from Theorem 5 that we can

determine whether the repair cost is finite or infinite in coNP.

Furthermore, Theorem 2 tells us that if the cost is finite it

must be bounded by a polynomial in the input size.

Thus, to determine the exact repair cost in the case where

it is finite, it suffices to test whether the cost is above or

below a given threshold k in unary, since then we can try

every k below the polynomial bound. Perhaps surprising, this

problem is harder than the finiteness problem, although still

within polynomial space:

Theorem 10. The problem of determining, given k and two

languages R and T recognized by DFA, whether dist(R, T)
is above k, is PSPACE-complete. The same holds when R and

T are given as an NFA.

The upper bound is shown by reachability analysis in a

product automata representing all states reachable via at most

k edits. The lower bound uses a reduction from tiling a

polynomial width corridor. Roughly speaking, our restriction

language will represent codes of potential tilings, with each

tile repeated k times. Our target language will check that the

word still codes a tiling k-redundantly, and will also check for

markings on tiles that indicate that a violation of horizontal or

vertical constraints lies within a k-neighborhood of the marked

tile. If there is no accepting run, then every potential tiling

can be marked with a constraint violation. Conversely, if the

restriction is repairable, then it can be shown that marking

must correctly indicate violations on every candidate tiling.

In the case of LTL, it is not a priori even clear how to

compute the distance of a single word to a formula. However,

this can be shown to be in PSPACE. In the general case of

two LTL formulas we get an exponential blow-up over the

automata case, as expected:

Theorem 11. The problem of determining, given k and

two languages R and T defined by LTL formulas, whether

dist(R, T) is above k, is EXPSPACE-complete.

The lower bound is proven using a variation of the tiling

technique in the previous theorem.

VI. COMPLEXITY RESULTS IN THE STREAMING CASE

A. The bounded repair problem

DFA. Let us consider two DFA R and T . The characteri-

zation of Theorem 3 shows that the problem of deciding the

existence of a streaming repair strategy of L (R) into L (T)
with uniformly bounded cost amounts at solving a reachability

game over a suitable (acyclic) arena AR,T . In particular,

we observe that the arena AR,T can be computed from R
and T in polynomial time and that checking containment

of languages recognized by SCCs of automata is in PTIME.

Moreover, it is known that the problem of deciding the winner

of reachability games over acyclic graphs is PTIME-complete

[10]. This shows that the bounded repair problem for DFA in

the streaming case is PTIME-complete:

Corollary 12. The bounded repair problem in the streaming

case, where the restriction and target languages are repre-

sented by DFA, is PTIME-complete.

It is worth noticing that the complexity of the bounded

repair problem for DFA in the streaming setting is lower

than the analogous problem in the non-streaming setting

(indeed Theorem 5 shows that the latter problem is coNP-

complete). This will be in contrast with the complexity results

for languages defined by LTL formulas, where the streaming

setting becomes more difficult than the non-streaming setting

(compare Theorem 5 and Theorem 15).

NFA. When both restriction and target are NFA we are not

able to provide tight complexity bounds, thus we only claim

that the complexity of the bounded repair problem for NFA

is between PSPACE and EXPTIME. The lower bound follows

from Corollary 19 and the upper bound from the standard

subset construction on NFA:

Corollary 13. The bounded repair problem in the streaming

case, where the restriction and target languages are repre-

sented by NFA, is in EXPTIME and it is PSPACE-hard.

In the case where the restriction is a DFA R and the target

is an NFA T , we obtain a tight PSPACE bound. PSPACE-

hardness follows again from Corollary 19. As for the PSPACE

upper bound, we observe that the longest collection of moves

of Adam in the arena AR,det(T), where det(T) denotes

the DFA obtained from T by applying the standard subset

construction, is linear in the size of dag(R). By representing

each SCC of det(T) using a set of states from T , one obtains

an alternating polynomial-time procedure that simulates the

reachability game over AR,det(T).

In the symmetric case, where the restriction is an NFA and

the target is a DFA, one could prove an EXPTIME upper

bound on the bounded repair problem via reduction to energy

games with imperfect information (studied by Degorre et.

al. in [11]). However, we can improve this upper bound to

PSPACE by simulating a reachability game over the arena

Adet(R),T . In this case the crucial observation is that it is safe

to modify the arena Adet(R),T by allowing Adam to move

down the DAG of det(R) with shortcuts, namely, from a SCC

of R to any descendant of it (rather than simply a successor

of it). Allowing this freedom in the new reachability game

clearly makes it easier for Adam to win. On the other hand,

if Adam wins in the modified arena, then he can also win in

the original arena via longer plays. Moreover, if Adam wins

the modified reachability game, then he can do so in at most

|dag∗(T)| rounds by properly choosing shortcut moves that

push Eve towards a sink node. This shows that the problem is

in PSPACE (we do not know whether it is also PSPACE-hard).

Theorem 14. The bounded repair problem in the streaming

case, where the restriction language is a DFA and the target

language is an NFA, is PSPACE-complete. The bounded repair

problem in the streaming case, where the restriction language

is an NFA and the target language is a DFA, is in PSPACE.

LTL. We now turn to the complexity of the bounded

repair problem in the streaming case, where both restriction

and target languages are represented by LTL formulas. By

following standard constructions in automata theory, one can

translate any pair of LTL formulas φ and ψ into DFA R and

T that have size doubly exponential in the size of the formulas

φ and ψ and that recognize the same languages defined by φ

and ψ. This gives a straightforward 2EXPTIME upper bound

to the complexity of the bounded repair problem. As for

the complexity lower bound, we can reduce the problem of

deciding the winner of tiling game over an exponential square

grid – this problem is known to be EXPSPACE-complete [9] –

to the problem of deciding the existence of a streaming repair

strategy of uniformly bounded cost between the languages

defined by suitable LTL formulas (the idea of such a reduction

is similar to the coNEXPTIME-hardness proof of Theorem 7):

Theorem 15. The bounded repair problem in the streaming

case, where the restriction and target languages are given by

LTL formulas, is in 2EXPTIME and is EXPSPACE-hard.

B. The threshold problem and constructing streaming repairs

For the streaming case, if we consider streaming repair

strategies with aggregate cost, the threshold problem maintains

its PTIME complexity. Further, one can easily reduce this

threshold problem to a reachability game over a suitable arena.

Theorem 16. The problem of determining, given k and

two languages R and T recognized by DFA, whether one

can repair R into T with a streaming repair strategy with

aggregate cost at most k, is in PTIME.

In fact, it follows from the reduction that one can efficiently

compute the optimal streaming repair that satisfies a given

threshold. This is because we can construct a streaming repair

strategy that satisfies a given threshold by finding a winning

strategy for Eve in the reachability game. Finding such a

strategy is well-known to be in PTIME.

Corollary 17. Let R and T be the restriction and target

languages specified by DFA. If R is streaming repairable into

T with aggregate cost at most k, then an optimal streaming

repair strategy of R into T with aggregate cost at most k can

be computed in PTIME.

Note that in the above we deal with the aggregate cost; the

example from Section III shows that this cost can differ from

the edit cost, while our characterization theorem shows that

one is finite iff the other is. We do not know if finding the

exact edit cost is even tractable.

VII. SPECIAL CASES: UNRESTRICTED REPAIR PROBLEMS

We now consider a special case of the bounded repair

problem, namely, the unrestricted case where the restriction

language is assumed to be Σ∗ and the target language T is

represented by a finite state automaton.

The following result adapts the characterization theorems

given in Section IV to give a necessary and sufficient condition

for the unrestricted case. This result, which can be viewed as

a special case of both Theorem 2 and Theorem 3, also shows

that there is no difference between the non-streaming and the

streaming settings when the restriction language is universal.

Corollary 18. Given an alphabet Σ and an NFA T , the

following conditions are equivalent

1) there is a repair strategy of Σ∗ into L (T) with uniformly

bounded cost,

2) T has a SCC C such that Σ∗ ⊆ L (T |C),

3) there is a 0-lookahead streaming strategy that repairs Σ∗

into L (T) with worst-case aggregate cost at most 2|T |.

Using the above characterization, one can easily devise an

NLOGSPACE algorithm that solves the bounded repair prob-

lem for DFA in the unrestricted (streaming or non-streaming)

case. Indeed, if the target automaton T is a DFA and C is a

component of T , then we have Σ∗ ⊆ L (T |C) iff for every

symbol a ∈ Σ and every state q in C, T contains a transition

of the form (q, a, q′), with q′ ∈ C. Checking this property

amounts to performing a standard NLOGSPACE reachability

analysis over T . Conversely, NLOGSPACE-hardness follows

from the fact that the emptiness problem for DFA is reducible

to the bounded repair problem: given a DFA A over an

alphabet Σ, we have that L (A) 6= ∅ iff Σ∗ is repairable into

L (A′) with uniformly bounded cost, where A′ is a DFA that

can be constructed from A in logarithmic-space.

In a similar way, one can show that the bounded repair

problem for NFA in the unrestricted case is PSPACE-complete.

This follows from Corollary 18 and from suitable reductions

from the universality problem for NFA. Indeed, checking

whether a target NFA T has a SCC C such that Σ∗ ⊆
L (T |C) is equivalent to the problem of deciding whether

Σ∗ is repairable into L (T) with uniformly bounded cost, and

it is clearly reducible to the universality problem for NFA.

As for the PSPACE-hardness, we observe that a given NFA

A recognizes the universal language Σ∗ iff (Σ ⊎ {#})∗ is

repairable into (L (A) · {#})∗ with uniformly bounded cost.

Notice that a finite automaton for the language (L (A)·{#})∗

can be computed in linear time.

We thus conclude the following:

Corollary 19. The bounded repair problem in the unre-

stricted case, where the target languages are represented by

DFA (resp., NFA) is NLOGSPACE-complete (resp., PSPACE-

complete).

Another consequence of Corollary 18 is the following.

Suppose that a target language T is recognized by a DFA T
that is complete over the target alphabet ∆, namely, for every

symbol a ∈ ∆ and every state p of T , T contains a transition

from p labeled by a. Let us consider a restriction alphabet

Σ contained in ∆ and suppose that Σ∗ is not repairable into

T with uniformly bounded cost. Let us consider a SCC C

of T that is reachable from the initial state and terminal,

namely, with no outgoing edges. We know that C does not

contain any final state (otherwise, C would be a final SCC and

hence, by Corollary 18, Σ∗ would be repairable into L (T)
with uniformly bounded cost). In this case, however, the same

component C in the complement DFA T ∁ would be final and

hence Σ∗ would be repairable into L (T ∁) (= ∆∗ \ T) with

uniformly bounded cost. This shows that:

Corollary 20. Given an alphabet Σ and a regular language

T ⊆ ∆∗, with Σ ⊆ ∆, one of the following two cases (possibly

both) holds:

1) Σ∗ is repairable into T with uniformly bounded cost,

2) Σ∗ is repairable into ∆∗\T with uniformly bounded cost.

We now turn to the complexity of the bounded repair prob-

lem in the unrestricted case, but where the target languages

are represented by LTL formulas. We claim that problem

is PSPACE-hard for LTL formulas. This complexity lower

bounds follows from arguments similar to the automaton-based

setting, namely, from a reduction of the satisfiability problem

for LTL formulas, which is known to be PSPACE-hard [12].

As for the complexity upper bound, we claim that the problem

for LTL formulas is in PSPACE and, thus, PSPACE-complete.

Indeed, given an LTL formula ψ defining a target language T ,

one can compute in polynomial time a symbolic representation

of a DFA
−�
T that recognizes the reversal

−�
T of T . Moreover,

one can perform standard reachability analysis on the symbolic

representation of T in polynomial space. Finally, we observe

that Σ∗ is repairable into T with uniformly bounded cost iff Σ∗

is repairable into
−�
T with uniformly bounded cost. This shows

that the bounded repair problem in the unrestricted case for

LTL formulas is in PSPACE.

Corollary 21. The bounded repair problem in the unrestricted

case, where the target languages are represented by LTL

formulas, is PSPACE-complete.

VIII. TOWARDS INFINITE WORDS

In this section, we briefly discuss a natural generalization of

our characterization result for the bounded repair problem over

infinite words. Recall that Theorem 2 reduces the bounded

non-streaming repair problem to the problem of deciding the

property of coverability between paths of SCCs in the DAGs of

the restriction and target automata. If we turn to languages of

R :

a

T :

b

b

a

R′ :

b

b

a T ′ :

b

b

c

c

a a

Figure 1: Some non-deterministic Büchi automata.

infinite words recognized by non-deterministic Büchi automata

(NBA), then the characterization result is similar. There is

however a slight complication due to the acceptance condition

in the infinite case.

First of all, we modify the notation for the sub-automata

obtained from a SCC. As in the previous cases for NFA, given

an NBA B and a SCC C of it, we write B|C to denote the

usual NFA obtained by restricting B to the states in C and

by letting them be both initial and final states. We also write

B|ωC to denote the NBA obtained by restricting B to the set of

states in C and by letting them be initial (we do keep instead

the final states as in B).

To understand why we introduce the two variants B|C
and B|ωC of sub-automata, it is worth looking at the fol-

lowing examples. Let R and T be the single-component

NBA depicted at the top of Figure 1 and let C and D be

their unique SCCs, respectively. Observe that, when we view

R and T as NFA, we have L (R|C) ⊆ L (T |D), and

hence, by Theorem 2, dist
(

L (R),L (T)
)

< ω. However,

when we view R and T as NBA, we have L (R|C) ⊆
L (T |D), but dist

(

L ω(R),L ω(T)
)

= ω. On the other

hand, if we consider the NBA R′ and T ′ at the bottom

of Figure 1, and we denote by C ′ and D′ be their unique

SCCs, then we have that L ω(R′|ωC ′) * L ω(T ′|ωD′), but

dist
(

L ω(R′),L ω(T ′)
)

< ω. The above examples suggest

that we should use both variants of sub-automata for estab-

lishing a characterization result for bounded non-streaming

repairability of languages recognized by NBA.

We now turn to the generalization of the notion of cover-

ability. Given two NBA R and T , a path π of length k in

dag(R), and a set of paths Π′ in dag∗(T), we say that π is

Büchi-covered by Π′ iff

1) all paths in Π′ have length precisely k + 1,

2) L (R|π(i)) ⊆
⋂

π′∈Π′

L (T |π′(i)) for all indices i < k,

3) L ω(R|ωπ(k)) ⊆
⋂

π′∈Π′

L (T |π′(k))·
⋃

π′∈Π′

L ω(T |ωπ′(k+1)).

The characterization theorem for bounded non-streaming re-

pairability of NBA-recognizable languages is as follows:

Theorem 22. Given two NBA R and T , the following condi-

tions are equivalent

1) there is a repair strategy of L ω(R) into L ω(T) with

uniformly bounded cost,

2) every path in dag(R) is Büchi-covered by a set of paths

in dag∗(T),

3) there is a repair strategy of L ω(R) into L ω(T) with

worst-case cost at most (2 + |dag(R)|) · |T |.

fixed DFA NFA LTL

fixed Const PTIME PSPACE PSPACE
DFA PTIME CoNP PSPACE PSPACE
NFA PTIME CoNP PSPACE PSPACE
LTL PSPACE PSPACE PSPACE CoNEXP

Table I: Complexity of bounded non-streaming repair

fixed DFA NFA LTL

fixed Const PTIME PSPACE PSP, EXPSP
DFA PTIME PTIME PSPACE PSP, EXPSP
NFA PT, PSP PT, PSP PSP, EXP PSP, 2EXP
LTL PSP, EXPSP PSP, EXPSP PSP, 2EXP EXPSP, 2EXP

Table II: Complexity of bounded streaming repair

We omit the proof of this theorem, which is almost identical

to that of Theorem 2, and we instead invite the reader to check

that the characterization for the infinite-word case is consistent

with the examples that we gave above. As a matter of fact,

the above characterization result easily yields a PSPACE upper

bound for the bounded non-streaming repair problem between

languages recognized by NBA.

IX. RELATED WORK AND CONCLUSIONS

In this work we have investigated language repair in the

most basic setting of words. Our results are summarized in

Table I and Table II – in the non-streaming setting our bounds

are tight (indicated by a single class), while in the streaming

setting we have several gaps (where a cell gives lower and

upper bounds). We omit the corresponding table for computing

the exact cost: in the case of non-streaming repair we can

derive tight bounds in all cases, and also in the case of

streaming repair for aggregate cost. In the latter case we also

know the complexity of computing the optimal stream repair

processor.

We have focused on the case of finite words, but infinite

words raise many new issues. In the case of infinite words in a

streaming setting, one can look for strategies that allow finitely

many edits per word, without a uniform bound, and likewise

look for strategies with “continuous” (but not uniformly-

bounded) lookahead. This last issue has been investigated for

purely qualitative games by Holtmann et. al. [13].

Related work on edit distance of languages. The problem

of finding the minimal distance of a string to a regular

language was first considered by Wagner in [3], who showed

that the problem could be solved by adapting the dynamic

programming approach to edit distance, giving a polynomial

time algorithm. Several authors have extended the definition

to deal with distances between languages. Mohri [14] de-

fines a distance function between two sets of strings, and

more generally between string distributions: in the case of

languages, this is the minimum distance between two strings

in the two respective languages, which is appropriate for many

applications. Konstantinidis [15] focuses on the minimum

distance between distinct strings within the same language,

giving tractable algorithms for computing it. Our notion of

“cost” is quite distinct from this, since it is asymmetric in the

two languages, focusing on the maximum of the distance of a

string in one language to the other language.

Grahne and Thomo [16] consider a related problem of

“approximate containment” of regular expressions. Expres-

sions are evaluated with respect to an edge-labeled graph

and are given a numerical semantics by a “distortion” – a

generalization of the notion of edit distance. Approximate

containment of T1 and T2 means, roughly speaking, that for

every input graph R and every word w generated by R, the

distance to target T1 is bounded by the distance to T2. Grahne

and Thomo also study “k-containment” (distance to T1 is at

most k more than T2) and “approximate-containment” (k-

containment for some k), relying primarily on a reduction to

the limitedness problem for distance automata. Their problem

differs in several fundamental respects from ours: they are

interested in bounding the difference over all words, not just

the worst case; in addition they quantify over all restrictions

(databases, in their terminology).

An entire line of research in XML data management has

dealt with comparisons and matching algorithms between

schema languages; many of these lift edit distance between

trees to the level of schemas (i.e. languages) – see, for

example, [17]. However the lifting is done by looking at the

syntactic structure of the schema description, rather than at the

instance level (distance between documents in each schema).

REFERENCES

[1] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers in
inconsistent databases,” in PODS, 1999, pp. 68–79.

[2] F. Afrati and P. Kolaitis, “Repair checking in inconsistent databases:
Algorithms and complexity,” in ICDT, 2009, pp. 31–41.

[3] R. Wagner, “Order-n correction for regular languages,” CACM, vol. 17,
no. 5, pp. 265–268, 1974.

[4] R. Wagner and M. Fischer, “The string-to-string correction problem,”
JACM, vol. 21, no. 1, pp. 168–173, 1974.

[5] K. Hashiguchi, “Improved limitedness theorems on finite automata with
distance functions,” Theor. Comp. Sci., vol. 72, no. 1, pp. 27–38, 1990.

[6] H. Leung and V. Podolskiy, “The limitedness problem on distance
automata: Hashiguchi’s method revisited,” Theor. Comp. Sci., vol. 310,
pp. 147–158, 2004.

[7] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga,
“Resource interfaces,” in EMSOFT, 2003, pp. 117–133.

[8] K. Chatterjee and L. Doyen, “Energy parity games,” in ICALP, 2010,
pp. 599–610.

[9] P. Van Emde Boas, “The convenience of tilings,” in Complexity, Logic

and Recursion Theory, vol. 187, 1997, pp. 331–363.
[10] C. Papadimitriou, Computational Complexity. Addison-Wesley Long-

man Publishing Co., Inc., 1994.
[11] A. Degorre, L. Doyen, R. Gentilini, J. Raskin, and S. Toruńczyk,

“Energy and mean payoff games with imperfect information,” in CSL,
2010, pp. 260–274.

[12] A. Sistla and E. Clarke, “The complexity of propositional linear temporal
logics,” JACM, vol. 32, no. 3, pp. 733–749, 1985.

[13] M. Holtmann, L. Kaiser, and W. Thomas, “Degrees of lookahead in
regular infinite games,” in FOSSACS, 2010, pp. 252–266.

[14] M. Mohri, “Edit-distance of weighted automata: general definitions and
algorithms,” Int’l Journal of Foundations of Comp. Sci., vol. 14, no. 6,
pp. 957–982, 2003.

[15] S. Konstantinidis, “Computing the edit distance of a regular language,”
Inf. and Comp., vol. 205, no. 9, pp. 1307–1316, 2007.

[16] G. Grahne and A. Thomo, “Query answering and containment for regular
path queries under distortions,” in FOIKS, 2004, pp. 98–115.

[17] H. Do and E. Rahm, “COMA - a aystem for flexible combination of
schema matching approaches,” in VLDB, 2002, pp. 610–621.

	Introduction
	Basic notation and terminology
	Problem setting
	Repair Problems, Automata, and Games

	Characterizations of bounded repairability
	Complexity results in the non-streaming case
	The bounded repair problem
	The threshold problem

	Complexity results in the streaming case
	The bounded repair problem
	The threshold problem and constructing streaming repairs

	Special cases: unrestricted repair problems
	Towards infinite words
	Related Work and Conclusions
	References

