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Recursive Schemes, Krivine Machines, and
Collapsible Pushdown Automata

Sylvain Salvati and Igor Walukiewicz?

LaBRI, CNRS/Université Bordeaux, INRIA, France

Abstract. Higher-order recursive schemes offer an interesting method of
approximating program semantics. The semantics of a scheme is an infi-
nite tree labeled with built-in constants. This tree represents the meaning
of the program up to the meaning of built-in constants. It is much easier
to reason about properties of such trees than properties of interpreted
programs. Moreover some interesting properties of programs are already
expressible on the level of these trees.
Collapsible pushdown automata (CPDA) give another way of generating
the same class of trees as the schemes do. We present two relatively simple
translations from recursive schemes to CPDA using Krivine machines
as an intermediate step. The later are general machines for describing
computation of the weak head normal form in the lambda-calculus. They
provide the notions of closure and environment that facilitate reasoning
about computation.

1 Introduction

Recursive schemes are abstract forms of programs where the meaning of con-
stants is not specified. In consequence, the meaning of a scheme is a potentially
infinite tree labeled with constants obtained from the unfolding of the recursive
definition. One can also see recursive schemes as another syntax for λY -calculus:
simply typed λ-calculus with fixpoint combinators. In this context the tree gen-
erated by a scheme is called the Böhm tree of a term. Collapsible pushdown
automata (CPDA) is another, more recent, model of the same generating power.
In this paper we present two translations from recursive schemes and λY -calculus
to CPDA. The translations use Krivine machines as an intermediate step.

Recursion schemes were originally proposed by Ianov as a canonical program-
ming calculus for studying program transformation and control structures [12].
The study of recursion on higher types as a control structure for programming
languages was started by Milner [21] and Plotkin [24]. Program schemes for
higher-order recursion were introduced by Indermark [13]. Higher-order features
allow for compact high-level programs. They have been present since the be-
ginning of programming, and appear in modern programming languages like
C++, Haskell, Javascript, Python, or Scala. Higher-order features allow to write
code that is closer to specification, and in consequence to obtain a more reliable
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code. This is particularly useful in the context when high assurance should come
together with very complex functionality. Telephone switches, simulators, trans-
lators, statistical programs operating on terabytes of data, have been successfully
implemented using functional languages1.

Recursive schemes are an insightful intermediate step in giving a denotational
semantics of a program. The meaning of a program can be obtained by taking the
tree generated by the scheme and applying a homomorphism giving a meaning
to each of the constants. Yet, in some cases the tree generated by the scheme
gives already interesting information about the program. For example, resource
usage patterns can be formulated in fragments of monadic second-order logic and
verified over such trees [17]. This is possible thanks to the fact that MSOL model
checking is decidable for trees generated by higher-order recursive schemes [22].

The definition of the tree generated by the scheme, while straightforward, is
somehow difficult to work with. Damm [9] has shown that considered as word
generating devices, a class of schemes called safe is equi-expressive with higher-
order indexed languages introduced by Aho and Maslov [2,19]. Those languages
in turn have been known to be equivalent to higher-order pushdown automata
of Maslov [20]. Later it has been shown that trees generated by higher-order
safe schemes are the same as those generated by higher-order pushdown au-
tomata [15]. This gave rise to so called pushdown hierarchy [8] and its numerous
characterizations [7]. The safety restriction has been tackled much more recently.
First, because it has been somehow implicit in a work of Damm [9], and only
brought on the front stage by Knapik, Niwiński, and Urzyczyn [15]. Secondly,
because it required new insights in the nature of higher-order computation. Push-
down automata have been extended with so called panic operation [16,1]. This
permitted to characterize trees generated by schemes of order two. Later this op-
eration has been extended to all higher order stacks, and called collapse. Higher-
order stack automata with collapse (CPDA) characterize recursive schemes at all
orders [11]. The fundamental question whether collapse operation adds expres-
sive power has been answered affirmatively only very recently by Parys: there is a
tree generated by an order 2 scheme that cannot be generated by a higher-order
stack automaton without collapse [23].

While recursive schemes and CPDA generated the same trees, they work
in a very different way. It is relatively difficult to work directly with schemes
since they do not provide any straightforward induction parameters. In contrast,
induction on the stack size of CPDA has been successfully used in numerous
instances. For example, the only approach known at present to prove, very useful,
reflection theorem goes through CPDA.

In this paper we present two translations from recursive schemes to CPDA.
The first translation of this kind for order 2 schemes has been done directly using
the definition of a tree generated by the scheme [16]. It has been based on ideas
of Kfoury and Urzyczyn from [14] where a similar translation but for call by
value mode has been presented. At that time, this direct approach seemed too

1 For some examples see “Functional programming in the real world”
http://homepages.inf.ed.ac.uk/wadler/realworld/
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cumbersome to generalize to higher orders. The first translation for schemes of
all orders [11] used traversals, a concept based in game semantics. Very recently,
Carayol and Serre [6] have presented a translation extending the one from [16]
to all orders. This translation has been obtained independently form the one
presented here. Indeed, the authors of [6] and the present paper have met in
February 2011, and exchanged notes on the respective translations. The trans-
lation from [6] introduces already some notions of types in higher-order stack.
We think that thanks to Krivine machine formulation our translations use even
richer structure that allows for further substantial simplifications.

Our translation works on all λY -terms without a need to put them in a special
form. Its drawback is that it may sometimes give a CPDA of order m+ 1 while
m would be sufficient. We explain how to remove this drawback using some
normalization of λY -terms. The second translation assumes that a given λY -
term is in a special form, and it moreover uses product types. These preparatory
steps allow for a translation where higher order stack reflects environments in a
very direct way.

The structure of the paper is simple. In the next section we introduce the
objects of our study: λY -calculus, schemes, Krivine machine, and collapsible
pushdown automata (CPDA). We also present translations between schemes
and λY -terms. While the translation from schemes to λY -terms is straightfor-
ward, the opposite is less so. This leads to a useful notion of a λY -term in a
canonical form. Looking at the restrictions on the syntax, terms in the canonical
form are in a mid way between λY -terms and recursive schemes. The two con-
secutive sections give the two translations from λY -terms to CPDA. They both
use Krivine machine as an intermediate step. The first works with all λY -terms,
and is optimal with respect to order for terms in a canonical form. Hence in
particular it is also optimal for recursive schemes. The second translation starts
immediately from λY -terms in a canonical form, and is also optimal with re-
spect to order. The two translations represent environments of configurations of
Krivine machine in a very different way. The first delays all operations on the
stack till a variable look-up is performed. The second is more direct, it starts
with a fixed encoding of environments on the stack, and makes the structure of
the stack always reflect this encoding.

2 Basic notions

In this preliminary section we introduce the basic objects of interest. We start
with λY -calculus: a simply-typed lambda calculus with a fixpoint combinator.
We use it as a more convenient syntax of recursive schemes. We briefly describe
how schemes can be translated to λY -terms in a sense that the tree generated
by a scheme is a Böhm tree of a term obtained from the translation (Lemma 2).
We also show how λY -terms can be represented by schemes (Theorem 1). This
translation is an inverse of the first one in a sense that composed together the two
translations do not increase the order of the scheme. To obtain this property we
need to have a closer look at the structure of λY -terms, and introduce a notion
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of a canonical form. This form will be also very useful in the context of CPDA
in later sections. Later in this section we present a more operational way of
generating Böhm trees of terms, and here Krivine machines will come into the
picture. Finally, we present collapsible pushdown automata and the trees they
generate.

2.1 Simply typed lambda calculus and recursive schemes

Instead of introducing higher-order recursive schemes directly we prefer to start
with the simply-typed lambda calculus with fixpoints: the λY -calculus. The two
formalisms are essentially equivalent for the needs of this paper, but we opt
for working with the later one. It gives us an explicit notion of reduction, and
brings the classical notion of Böhm tree [3] that can be used directly to define
the meaning of a scheme.

The set of types T is constructed from a unique basic type 0 using a binary
operation→. Thus 0 is a type and if α, β are types, so is (α→ β). As usual, so as
to use less parentheses, we consider that→ associates to the right. For example,
0 → 0 → 0 stands for 0 → (0 → 0). We will write 0i → 0 as short notation for
0→ 0→ · · · → 0→ 0, where there are i+1 occurrences of 0. The order of a type
is defined by: order(0) = 1, and order(α→ β) = max(1 + order(α), order(β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T there is a
constant ωα standing for the undefined term of type α.

Of special interest to us will be tree signatures where all constants other than
ω have order at most 2. Observe that types of order 2 have the form 0i → 0 for
some i.

The set of simply-typed λ-terms is defined inductively as follows. A constant
of type α is a term of type α. For each type α there is a countable set of variables
xα, yα, . . . that are also terms of type α. IfM is a term of type β and xα a variable
of type α then λxα.M is a term of type α→ β. If M is a term of type α and xα

is a variable of type α, then Y xα.M is a term of type α. Finally, if M is of type
α→ β and N is a term of type α then MN is a term of type β. The order of a
term order(M) is the order of its type. In the sequel we often omit the typing
decoration of variables. For some technical convenience we does not use Y as a
term per se, but as a variable binder. This slight modification of the syntax will
not affect the computational power of λY -calculus.

The usual operational semantics of the λ-calculus is given by β-contraction
(→β). To give the meaning to the Y -binder we use δ-contraction (→δ). These
are defined by the rewriting rules:

(λx.M)N →β M [N/x] Y x.M →δ M [Y x.M/x]

We write →∗βδ for the reflexive and transitive closure of the sum of the two
relations. Is is called βδ-reduction. This relation defines an operational equality
on terms. We write =βδ for the smallest equivalence relation containing →∗βδ. It
is called βδ-conversion.
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We define the notion of complexity of a λ-terms to account for the complexity
of its reductions. This notion will look at all subterms of a term but the constants
ω.

Definition 1. An interesting subterm of a term M , isub(M), is a subterm other
than constants ω. The complexity of a term M is m, when m+ 1 is the maximal
order of an interesting subterm of M : m+ 1 = max{order(N) | N ∈ isub(M)}.
We write comp(M) for the complexity of M .

Notice that the order of any bound λ-variable x of a closed term M is smaller
or equal to comp(M).

Another usual reduction rule is η-contraction (→η) defined by the rewriting
rule:

λx.Mx→η M when x is not in the set FV (M) of free variables of M .

Following our naming conventions, η-reduction and η-conversion are respectively
the reflexive transitive closure and the symmetric reflexive transitive closure of
η-contraction. We will not use η-contraction in this paper, but we introduce it
so as to explain a particular syntactic presentation of simply typed λ-terms. It is
customary in simply typed λ-calculus to work with terms in η-long forms that
have a nice property of syntactically reflecting the structure of their typing. A
term M is in η-long form when every of its subterms is either of type 0, or starts
with a λ-abstraction, or is applied to an argument in M . It is known that every
simply typed term is η-convertible to a term in η-long form. A particularity of
closed terms in η-long form is that comp(M) is equal to the maximal order of a
λ-variable in M .

Thus, the operational semantics of the λY -calculus is the βδ-reduction. It is
well-known that this semantics is confluent and enjoys subject reduction (i.e.
the type of terms is invariant under computation). So every term has at most
one normal form, but due to δ-reduction there are terms without a normal form.
It is classical in the lambda calculus to consider a kind of infinite normal form
that by itself is an infinite tree, and in consequence it is not a term of λY -
calculus [3,10,5]. We define it below.

A Böhm tree is an unranked, ordered, and potentially infinite tree with nodes
labeled by ωα or terms of the form λx1. . . . xn.N (we may write such a label
λ−→x .N); where N is a variable or a constant, and the sequence of lambda ab-
stractions is optional. So for example x0, λx.w0 are labels, but λy0.x0→0 y0 is
not.

Definition 2. A Böhm tree of a term M is obtained in the following way.

– If M →∗βδ λ
−→x .N0N1 . . . Nk with N0 a variable or a constant then BT (M)

is a tree having root labeled by λ−→x .N0 and having BT (N1), . . . , BT (Nk) as
subtrees.

– Otherwise BT (M) = ωα, where α is the type of M .
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Observe that a term M has a βδ-normal form if and only if BT (M) is a finite tree
without ω constants. In this case the Böhm tree is just another representation
of the normal form. Unlike in the standard theory of the λ-calculus we will be
rather interested in terms with infinite Böhm trees.

Recall that in a tree signature all constants at the exception of Y and ω
are of order at most 2. A closed term without λ-abstraction and Y over such
a signature is just a finite tree, where constants of type 0 are in leaves and
constants of a type 0k → 0 are labels of inner nodes with k children. The same
holds for Böhm trees:

Lemma 1. If M is a closed term of type 0 over a tree signature then BT (M)
is a potentially infinite tree whose leaves are labeled with constants of type 0 and
whose internal nodes with k children are labeled with constants of type 0k → 0.

Higher-order recursive schemes use a somehow simpler syntax: the fixpoint
operators are implicit and so is the lambda-abstraction. A recursive scheme
over a finite set of nonterminals N is a collection of equations, one for each
nonterminal. A nonterminal is a typed functional symbol. On the left side of an
equation we have a nonterminal, and on the right side a term that is its meaning.
For a formal definition we will need the notion of an applicative term, that is a
term constructed from variables and constants, other than Y and ω, using the
application construction. Let us fix a tree signature Σ, and a finite set of typed
nonterminals N . A higher-order recursive scheme is a function R assigning to
every nonterminal F ∈ N , a term λ−→x .MF where: (i) MF is an applicative term,
(ii) the type of λ−→x .MF is the same as the type of F , and (iii) the free variables
of M are among −→x and N .

Definition 3. The order of a scheme R is m if m+ 1 is the maximal order of
the type of its nonterminals. We write order(R) for the order of R.

For example, the following is a scheme of the map function that applies its first
argument f to every element of the list l given as its second argument. It is a
scheme of order 2.

map(0→0)→0→0 ≡ λf0→0.λl0. if(l = nil, nil, cons(f(head(l)),map(f, tail(l))))

2.2 From recursive schemes to λY -calculus

The translation from a recursive scheme to a lambda-term is given by a standard
variable elimination procedure, using the fixpoint binder Y . Suppose R is a
recursive scheme over a set of nonterminals N = {F1, . . . , Fn}. The term Tn
representing the meaning of the nonterminal Fn is obtained as follows:

T1 =Y F1.R(F1)

T2 =Y F2.R(F2)[T1/F1]

...

Tn =Y Fn.(. . . ((R(Fn)[T1/F1])[T2/F2]) . . . )[Tn−1/Fn−1]

(1)
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The translation (1) applied to the recursion scheme for map gives a term:

Y map(0→0)→0→0.λf0→0.λl0.

if (l = nil) nil
(
cons (f(head(l))) (map f (tail(l))

This time we have used the λ-calculus way of parenthesizing expressions.

We will not recall here a rather lengthy definition of a tree generated by
a recursive scheme referring the reader to [15,9]. For us it will be sufficient to
say that it is the Böhm tree of a term obtained from the above translation. For
completeness we state the equivalence property. Anticipating contexts where the
order of a scheme or a term is important let us observe that strictly speaking the
complexity of the term obtained form the translation is bigger than the order of
the schema.

Lemma 2. Let R be a recursion scheme and let Fn be one of its nonterminals. A
term Tn obtained by the translation (1) is such that BT (Tn) is the tree generated
by the scheme from nonterminal Fn. Moreover comp(Tn) = order(R) + 1.

2.3 From λY -calculus to recursive schemes

Of course, λY -terms can also be translated to recursive schemes so that the tree
generated by the obtained scheme is the Böhm tree of the initial term. We are
going to present two translations. The first one will be rather straightforward
and will not assume any particular property of λY -terms it transforms. However
the obtained transformation will not be dual to the one from Lemma 2 above in
the sense that applying the two transformations one after another can increase
the order of a scheme by 1. To obtain a dual transformation we will first need to
transform a λY -term into a form that we call canonical. As we will see later, the
transformation from Lemma 2 produces directly a term in a canonical form. We
will present a translation of canonical terms into schemes that gives a scheme of
the expected order: translating a scheme to a λY -term using Lemma 2 and back
to scheme does not increase the order (Theorem 1).

For the first translation we assume that the bound variables of M are pairwise
distinct and that they are totally ordered; thanks to this total order, we associate
to each important subterm N of M the sequence of its free variables SV (N),
that is the set of free variables of N ordered with respect to that total order. We
then define a recursive scheme RM whose set of nonterminals is NM = {〈N〉 |
N ∈ isub(M)}; if 〈N〉 is in NM , SV (N) = xα1

1 . . . xαnn and N has type α, then
〈N〉 has type α1 → · · · → αn → α. Each element 〈N〉 of NM determines a single
equation in RM , this equation is obtained following this table:
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N The associated equation
y 〈y〉 ≡ λy.y
a 〈a〉 ≡ a

N1N2 〈N1N2〉 ≡ λ−→x .〈N1〉−→y (〈N2〉−→z )
where SV (N1N2) = −→x , SV (N1) = −→y and SV (N2) = −→z

λy.P 〈λy.P 〉 ≡ λ−→x y.〈P 〉−→z where SV (λy.P ) = −→x and SV (P ) = −→z
Y x.P 〈Y x.P 〉 ≡ λ−→z .〈P 〉−→z1(〈Y x.P 〉−→z )−→z2 when x ∈ FV (P ),

SV (Y x.P ) = −→z and SV (P ) = −→z1x−→z2
Y x.P 〈Y x.P 〉 ≡ λ−→z .〈P 〉−→z when x /∈ FV (P ) and SV (P ) = −→z

The following lemma summarizes the properties of the translation. We omit the
proof that follows directly from the definitions.

Lemma 3. For every term M the tree generated by RM defined by the table
above is identical to BT (M). The order of RM is comp(M).

The order of the obtained scheme does not correspond to the order of the trans-
formation from schemes to λY -terms. In principle, each time we compose the
two translations, the order of the scheme we obtain is increased by 1 with respect
to the original scheme.

The problem comes from the fact that all the variables in a λY -term are
treated uniformly while nonterminals, that is recursive variables, in schemes
have a special treatment. In order to obtain a better translation from terms to
schemes, we need to make the distinction between the variables that are bound
by a λ and the ones that are bound by a Y . For this purpose we consider that the
set of variables is partitioned into the set of λ-variables and the set of Y -variables
which can respectively only be bound with λ or Y . We will mark this distinction
between λ-variables and Y -variables by writing Y -variables in boldface font.

From now on we will assume that every variable (both λ-variables and Y -
variables) in a term M is bound at most once. This means that we can write
termM (x) (resp. termM (x)) for the unique subterm Y x.N (resp. λx.N) of M
starting with the binder of x (resp. x). We will omit a subscript M if it is clear
from the context.

Definition 4. The term M is in canonical form when it satisfies the following
three properties:

1. M is in β-normal form: it has no subterms of the form (λx.P )Q.
2. If Y x.N is a subterm of M , then all free variables in N are Y -variables.

It is worth noticing that the transformation from schemes to terms we have
described in the previous subsection produces terms in canonical form. We first
remark an interesting property β-normal terms.

Lemma 4. Given M a term of type 0 is in β-normal form, for every λ-variable
z in M there is a Y -variable x in M such that order(z) < order(x).

Proof. Since M is closed, the variable z is bound somewhere in M . We proceed
by induction on the depth to which z is bound. As M is in β-normal form we
have two cases:
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– Variable, z appears in the sequence −→z in a term Y x.(λ−→z .Q). Here we get
immediately that order(z) < order(x) from the fact that the type of λ−→z .Q
is the same as the type of x.

– Otherwise z is a variable in one of the sequences −→z1 , . . . , −→zp in a subterm
like P (λ−→z1 .N1) . . . (λ−→zp .Np) where, either P = y, or P = x, or P = Y x.Q.
Observe that P cannot be a constant, since all our constants are of order at
most 2 so the sequences −→z1 , . . . , −→zp would be empty. In case P = x, we have
order(z) < order(x). But the λ-variable x is bound at a lower depth than
z and by induction there is a Y -variable x such that order(x) < order(x)
and therefore order(z) < order(x) which gives the expected result. In both
the cases where P = x and where P = x we obviously we have order(z) <
order(x).

ut

As expected, every term can be put into a canonical form.

Lemma 5. If M is a term of type 0, then there is a term M ′ in canonical form
such that BT (M ′) = BT (M) and comp(M ′) ≤ comp(M).

Proof. Consider a term M0 of type 0. The first step is to normalize M0 with
respect to β-reduction without performing δ-reductions. It is well known that
simply typed lambda calculus has the strong normalization property so this
procedure terminates. Let M1 be the resulting term. By definition BT (M1) is
the same as BT (M0) and comp(M1) ≤ comp(M0). Moreover M1 satisfies the
first condition of being in a canonical form (cf. Definition 4).

The second step involves removing non-recursive variables from fixpoint sub-
terms. We replace every subterm Y xα.P of M2 by Q−→y where

Q = Y zγ .λ−→y .P [zγ−→y /xα]

−→y = yβ1

1 . . . yβmm is a sequence of λ-variables free in P , and γ = β1 → · · · →
βm → α. Since, by Lemma 4, the orders of β1, . . . , βm are strictly smaller than
comp(M1), since, moreover, order(α) ≤ comp(M1), we have that order(γ) ≤
comp(M1). This transformation thus gives a term M2 such that comp(M2) =
comp(M1). To show that BT (M2) = BT (M1) it is sufficient to show that Q−→y
and Y xα.P have the same Böhm trees. By the fact that equivalence of Böhm
trees is a congruence with respect to putting into a context (see [4]), we will get
desired BT (M2) = BT (M1). To see that BT (Q−→y ) = BT (Y xα.P ), let us first
remark that:

Q−→y = (Y zγλ−→y .P [zγ−→y /xα])−→y
→δ (λ−→y .P [Q−→y /xα])−→y
→∗β P [Q−→y /xα]).
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By iterating this sequence of reduction steps we obtain

Q−→y →∗δβ P [Q−→y /xα])

→∗βδ P [P [Q−→y /xα]/xα]

→∗βδ P [P [. . . [Q−→y /xα] . . .]/xα].

This identity and an easy induction shows that BT (Q−→y ) = BT (Y xα.P ).
Therefore we have that M2 satisfies all the conditions of being in a canonical

form. Moreover we have BT (M2) = BT (M0) and comp(M2) ≤ comp(M0). ut

It remains to present a transformation of term M in a canonical form into a
scheme RM such that order(RM )+1 = comp(M). This is made possible thanks
to the distinction between the two kinds of variables. The scheme obtained by
translation will use λ-abstraction only for λ-variables of the original λY -term
and not, as in the previous translation, for the Y -variables.

Again we assume that we have a fixed total order on variables in M . For an
important subterm N of M , we let nr(N) be the sequence, ordered according to
the fixed total order, of λ-variables that are free in N . The non-terminals NM
of RM are [N ] where N is a subterm of M . If N has a type α and [N ] is in
NM , then its type will be α1 → · · · → αn → α when nr(N) = xα1

1 . . . xαnn . We
associate with each element [N ] of NM an equation according to the following
table:

N The associated equation
y [y] ≡ λy.y when y is a λ-variable
x [x] ≡ [term(x)] when x is a Y -variable

N1N2 [N1N2] ≡ λ−→x .[N1]−→y ([N2]−→z )
where nr(N1N2) = −→x , nr(N1) = −→y , and nr(N2) = −→z

λy.P [λy.P ] ≡ λ−→x y.[P ]−→z where y ∈ NV , nr(λy.P ) = −→x , and nr(P ) =
−→z

Y x.P [Y x.P ] ≡ [P ]

Let us compare this translation to the previous one. First, Y -variables are not
translated at all. The cases for application and abstraction are as before but
notice that the rule for [Y x.P ] is particularly simple, this is mostly because Y -
variables do not need to be passed as parameters simply because recursive terms
do not contain free λ-variable.

Lemma 6. For every λY -term M of type 0 in canonical form the scheme RM
defined by the table above generates the tree BT (M), and moreover order(R) +
1 = comp(M).

Proof. It is easy to check that the tree generated by RM is BT (M). We are
going to explain why order(R) + 1 = comp(M). Recall that order(R) + 1 is
the maximal order of a nonterminal in R. Similarly comp(M) + 1 is equal to
max{order(N) | N ∈ isub(M)}.

Letm = comp(M). By definition, if x is a Y -variable fromM then order(x) ≤
m. From Lemma 4 we get that if y is a λ-variable inM then order(y) < m. It then
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follows that the order of a nonterminal [λy.P ], for a non-recursive variable y, is
at most m. The order of a nonterminal [Y x.P ], is at most m too. This shows that
the order of every nonterminal in R is bounded by m. Hence order(R) = m− 1
as required. ut

Combining Lemma 6 and Lemma 5 we obtain:

Theorem 1. For every closed term M of type 0, there is a scheme R generating
the tree BT (M) and such that order(R) + 1 ≤ comp(M).

2.4 Krivine machines

A Krivine machine [18], is an abstract machine that computes the weak head
normal form of a λ-term. For this it uses explicit substitutions, called environ-
ments. Environments are functions assigning closures to variables, and closures
themselves are pairs consisting of a term and an environment. This mutually
recursive definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C] .

As in this grammar, we will use ∅ for the empty environment. The notation
ρ[x 7→ C] represent the environment which associates the same closure as ρ to
variables except for the variable x that it maps to C. We require that in a closure
(M,ρ), the environment is defined for every free variable of M . Intuitively such
a closure denotes a closed λ-term: it is obtained by substituting for every free
variable x of M the lambda term denoted by the closure ρ(x).

A configuration of the Krivine machine is a triple (M,ρ, S), where M is a
term, ρ is an environment, and S is a stack. A stack is a sequence of closures.
By convention the topmost element of the stack is on the left. The empty stack
is denoted by ε. The rules of the Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(Y x.M, ρ, S)→(M,ρ[x 7→ (Y x.M, ρ)], S)

(x, ρ, S)→(M,ρ′, S) where (M,ρ′) = ρ(x)

Note that the machine is deterministic. We will write (M,ρ, S)→∗ (M ′, ρ′, S′) to
say that Krivine machine goes in some finite number of steps from configuration
(M,ρ, S) to (M ′, ρ′, S′).

Intuitions behind the rules are rather straightforward. The first rule says that
in order to evaluate an abstraction λx.M , we should look for the argument at
the top of the stack, then we bind this argument to x, and calculate the value
of M . To evaluate an application MN we put the argument N on the stack
together with the current closure that permits to evaluate N when needed; then
we continue to evaluate M . The rule for Y x.M simply amounts to bind the
variable x in the environment to the current closure of Y x.M and calculate M .
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Finally, the rule for variables says that we should take the value of the variable
from the environment and should evaluate it; the value is not just a term but
also an environment giving the right meanings of free variables in the term.

We will be only interested in configurations accessible from (M, ∅, ε) for some
term M of type 0. Every such configuration (N, ρ, S) enjoys very strong typing
invariants summarized in the following lemma.

Lemma 7. If M is a simply typed term of type 0 and (N, ρ, S) is a configuration
reachable from the initial configuration (M, ∅, ε) then

– N is a subterm of M , hence it is simply typable.
– Environment ρ associates to a variable xα a closure (K, ρ′) so that K has

type α; we will say that the closure is of type α too. Moreover K is a subterm
of M .

– The number of elements in S is determined by the type of N : there are k
elements when the type of N is α1 → · · · → αk → 0.

Let us explain how to use Krivine machines to calculate the Böhm tree of a
term. For this we define an auxiliary notion of a tree constructed from a con-
figuration (M,ρ, ε) where M is a term of type 0 over a tree signature. (Observe
that the stack should be empty when M is of type 0.) We let KTree(M,ρ, ε)
be the tree consisting only of a root labeled with ω if the computation of
the Krivine machine from (M,ρ, ε) does not terminate. If it terminates then
(M,ρ, ε)→∗ (b, ρ′, (N1, ρ1) . . . (Nk, ρk)), for some constant b different from ω and
Y . In this situation KTree(M,ρ, ε) has b in the root and for every i = 1, . . . , k
it has a subtree KTree(Ni, ρi, ε). Due to typing invariants we have that k is the
arity of the constant b. Since we are working with tree signature, b has order at
most 2, and in consequence all terms Ni have type 0.

Definition 5. For a closed term M of type 0 we let KTree(M) be KTree(M, ∅, ε);
where ∅ is the empty environment, and ε is the empty stack.

The next lemma says what is KTree(M). The proof is immediate from the fact
that Krivine machine performs head reduction.

Lemma 8. For every closed term M of type 0 over a tree signature: KTree(M) =
BT (M).

2.5 Collapsible pushdown automata

Collapsible pushdown automata (CPDA), are like standard pushdown automata,
except that they work with a higher-order stack, and can do a collapse operation.
We will first introduce higher-order stacks and operations on them. Then we
will define collapsible pushdown automata, and explain how they can be used to
generate infinite trees. In this subsection we fix a tree signature Σ.

A stack of order m is a stack of stacks of order m − 1. Let Γ be a stack
alphabet. Order 0 stack is a symbol from Γ . Order m stack is a nonempty
sequence [S1 . . . Sl] of Order (m − 1) stacks. A higher-order stack is a stack of
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order m for some m. The topmost element of a m-stack S, top(S), is S if m = 0,
and the topmost element of the topmost (m− 1)-stack of S otherwise.

Collapsible pushdown automaton of order m (m-CPDA) works withm-stacks.
Symbols on stacks are symbols from Γ with a superscript that is a pair of
numbers; written ai,k. As we will see below, this superscript is a recipe for
the collapse operation: it means to do k-times the operation popi. So k may
be arbitrary large but i ∈ {1, . . . ,m}. We call such a superscript a pointer of
order i.

The operations on a stack of orderm are indexed by their order i ∈ {1, . . . ,m}
when needed. We have popi, copy i, pusha,i1 for a ∈ Σ, and collapse. On a stack
S = [S1 . . . Sl+1] of order j ≥ i these operations are defined as follows:

popi(S) =

{
[S1 . . . Sl] if i = Ord(S) and

[S1 . . . Sl popi(Sl+1)] otherwise

copy i(S) =

{
[S1 . . . SlSl+1 S

�i
l+1] if i = Ord(S)

[S1 . . . Sl copy i(Sl+1)] if i < Ord(S)

Here S�il is Sl with all the superscripts (i, ki), for some ki, replaced by (i, ki+ 1).

pusha,i1 (S) =

{
[S1 . . . SlSl+1a

i,1] if Ord(S) = 1

[S1 . . . Sl pusha,i(Sl+1)] otherwise

So we can push new elements only on the topmost order 1 stack: stacks of bigger
order are created with copy operation. Observe that with a push operation we
also specify the order of the pointer that is attached to the letter we put on the
stack.

collapse(S) = popki (S) where top(S) = ai,k, for some a ∈ Γ

The collapse operation performs popi operation k times, where k and i are spec-
ified by the pointer, i.e. superscripts, attached to the topmost letter of the stack.

A CPDA of order m is a tuple A = 〈Σ,Γ,Q, q0, δ〉, where Σ is the tree
signature, Γ is the stack alphabet, Q is a finite set of states, q0 is an initial state,
and δ is a transition function:

δ : Q× Γ →
(
Opm(Γ ) ∪

⋃
b∈Σ

({b} ×Qarity(b))
)

The idea is that a state and a top stack symbol determine either a stack
operation or a constant that the automaton is going to produce. The arity of
the constant determines the number of new branches of the computation of
the automaton. As usual, we will suppose that there is a symbol ⊥ ∈ Γ used
to denote the bottom of the stack. We will also denote by ⊥ the initial stack
containing only ⊥.
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We now explain how a CPDAA produces a tree when started in a state q with
a stack s. We let CTree(q, S) to be a the tree consisting of only a root labeled
ω if from (q, S) the automaton does an infinite sequence of stack operations.
Otherwise from (q, S) after a finite number of stack operations the automaton
arrives at a configuration (q′, S′) with δ(q′, top(S′)) = (b, q1, . . . , qk) for some
constant b. In this situation CTree(q, S) has the root b and for every i = 1, . . . , k
it has CTree(qi, S

′) as a subtree.

Definition 6. For a CPDA A we let CTree(A) be CTree(q0,⊥); where q0 is the
initial state of A, and ⊥ is the initial stack.

3 From λY -calculus to CPDA

As we have seen, recursive schemes can be translated to λY -terms,and vice-versa
(cf. Sections 2.2 and 2.3). In this section we will show how, for a λY -term M0,
to construct a CPDA A such that the tree generated by A, that is CTree(A),
is BT (M0). For this we will use the characterization of BT (M0) in terms of
Krivine machine.

The first step will be to represent differently configurations of the Krivine
machine. This is done purely for reasons of exposition. Then we will present the
construction of A simulating the behaviour of the Krivine machine on a fixed
term M0. From the correctness of the simulation it will follow that CTree(A) =
KTree(M0) = BT (M0) (Theorem 4). The order of the stack of A will be the
same as the order of arguments of M0. Put together with the translation from
Lemma 2 this does not give an optimal, with respect to order, translation from
recursive schemes to CPDA. In the last subsection we explain how to avoid this
problem using some simple manipulations on λY -terms and Krivine machines.

For the entire section we fix a tree signature Σ.

3.1 Stackless Krivine machines

From Lemma 7 it follows that the initial term M0 determines a bound on the
size of the stack in reachable configurations of a Krivine machine. Hence one
can eliminate the stack at the expense of introducing auxiliary variables. This
has two advantages: the presentation is more uniform, and there is no confusion
between the stack of the Krivine machine and the stack of the CPDA.

We will use a variable γi to represent the i-th element of the stack of the
Krivine machine. Technically we will need one variable γi for every type, but
since this type can be always deduced from the value we will omit it. With the
help of these variables we can make the Krivine machine stackless. Nevertheless
we still need to know how many elements there are on the stack. This, of course,
can be deduced from the type of M , but we prefer to keep this information
explicitly for the sake of clarity. So the configurations of the new machine are
of the form (M,ρ, k) where k is the number of arguments M requires. The new
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rules of the Krivine machine become

(z, ρ, k)→(N, ρ′′, k) where (N, ρ′) = ρ(z)

and ρ′′ = ρ′[γ1/ρ(γ1), . . . γk/ρ(γk)]

(λx.M, ρ, k)→(M,ρ[x 7→ ρ(γk)][γk → ⊥], k − 1)

(MN, ρ, k)→(M,ρ[γk+1 7→ (N, ρ)], k + 1)

(Y x.M, ρ, k)→(M,ρ[x 7→ (Y x.M, ρ)], k)

There are two novelties in these rules. The first is in the variable rule where
the stack variables of ρ′ are overwritten with the values they have in ρ. The
second one is in the abstraction rule, where the value of the stack variable is
used. Observe that due to the form of the rules, if x is a normal variable and
ρ(x) = (N, ρ′) then N is a normal term (not a stack variable) and the values of
associated to stack variables in ρ′ are never going to be used in the computation
since, as we already mentioned, each time a closure is invoked with the variable
rule the values of the stack variables are overwritten.

We say that a configuration (M ′, ρ′, k) represents a configuration (M,ρ, S)
if

– M ′ = M .
– for every normal variable x: ρ(x) = ρ′(x),
– k is the number of elements on the stack S and ρ′(γi) is the i-th element

on S for i = 1, . . . , k; with 1 being at the bottom of the stack. Moreover
ρ′(γi) = ⊥ for i > k.

The following simple lemma says that the stackless machine behaves in the
same way as the original one.

Lemma 9. Suppose that (M ′, ρ′, k′) represents (M,ρ, S). There is a transition
from (M ′, ρ′, k′) iff there is a transition from (M,ρ, S). Moreover, if (M ′, ρ′, k′)→
(M ′1, ρ

′
1, k
′
1) and (M,ρ, S)→ (M1, ρ1, S1) then (M ′1, ρ

′
1, k
′
1) represents (M1, ρ1, S1).

Thanks to this lemma we can use stackless Krivine machines in constructing
KTree(M) (cf. Definition 5) which is no other than BT (M).

3.2 Simulation

Fix a closed term M0, let m be the complexity of M0 (cf. Definition 1). We want
to simulate the computation of the stackless Krivine machine on M0 by a CPDA
with collapse with stacks of order m.

The idea is that a configuration (M,ρ, k) will be represented by a state (M,k)
of the machine and the higher order stack encoding ρ. Since M is a subterm of
M0 and k is the number of arguments M has, there are only finitely many states.

The alphabet Γ of the stack of the CPDA will contain elements of the form

(x, γi), (x,N), (γi, N), (γi,⊥), and spl for l = 1 . . . ,m.
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Here x is a normal variable, γi is a stack variable, N is a subterm of M0, and
spl are special symbols denoting stack pointer as it will be explained below. The
meaning of an element (x, γi) is that the value of the variable x is the same as
the value of the stack variable γi, that in turn is determined by the rest of the
stack. Symbols (x,N) and (γi, N) respectively say that the value of x and γi is
N with the environment determined by the stack up to this element. Normally
the values will be found on the topmost order 1 stack. But for stack variables
we will sometimes need to follow a stack pointer spl. To define this precisely we
will need two auxiliary functions:

value(z, S) =


find(γi, pop1(S)) if top(S) = (z, γi) for some stack var i

(N, pop1(S)) if top(S) = (z,N)

value(z, pop1(S)) otherwise.

find(γi, S) =


(N, pop1(S)) if top(S) = (γi, N)

find(γi, collapse(S)) if top(S) = spl for some l

find(γi, pop1(S)) otherwise.

The first function traverses the top-most order 1 stack looking for a pair deter-
mining the value of the variable z. It will be always the case that this value is
a stack variable and then the second function is called to get to the real value
of the variable. Function find looks for a definition of γi. If it finds on the top
of the stack a pair (γi, N), it returns N as a value of γi with the environment
that is represented by the stack just below. If on the top of the stack it sees spl
pointer then it means that it should do collapse to search for the value. Observe
that the index l is not used; it is there to simplify the proof of the correctness. If
none of these cases holds then find function continues the search on the top-most
1-stack.

With the help of these two functions, the environment ρ[S] determined by S
is defined as follows:

Definition 7. A stack S determines an environment ρ[S] as follows:

ρ[S](x) = (N, ρ[S′]) if (N,S′) = value(x, S) and x normal variable

ρ[S](γi) = (N, ρ[S′]) if (N,S′) = find(γi, S) and γi stack variable

Observe that ρ[S] is a partial function.

The following simple observation is the central place where the collapse op-
eration is used. Since the value and find functions use only the pop1 and collapse
operations, the environment represented by a stack is not affected by the copy
operations.

Lemma 10. For every d = 2, . . . ,m: if S′ = copyd(S) then ρ[S] = ρ[S′]

Now we describe the behaviour of the CPDA simulating the stackless Krivine
machine.
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Definition 8. Let M0 be a closed term M0 and m0 be the maximal order of a
variable appearing in M0. We define m0-CPDA A(M0) whose states are pairs
(M,k), where M is a subterm of M0 and k a number of its arguments. The
stack S of the CPDA will represent the environment ρ[S] as described above. We
define the behaviour of the CPDA by cases depending on the form of its state.

– In a state (z, k), with z a variable we compute the number called the link
order of the variable: ll(z) = m0 − order(z) + 2.
If ll(z) ≤ m, the automaton does

(N,S′) = value(z, copy ll(z)(S)), and S′′ = push
sporder(z),ll(z)
1 (S′).

If ll(z) = m+ 1 then the automaton just does

(N,S′) = value(z, S) and S′′ = S′.

The new state is (N, k) and the new stack is S′′. These operations implement
the search for a value of the variable inside the higher-order stack. The copy
operation is necessary to preserve arguments of z. In the special case when
ll(z) = m0 + 1, variable z has type 0 so it has no arguments and we do not
need to do a copy operation.

– In a state (λx.M, k) the automaton does

S′ = push
(x,γk),1
1 (S) and S′′ = push

(γk,⊥),1
1 (S′)

The new state is (M,k − 1) and the new stack is S′′. These two operations
implement assignment to x of the value at the top of the stack: this value is
pointed by γk. Then the value of γk is set to undefined.

– In a state (MN, k) the automaton does

S′ = push
(γk+1,N),1
1 (S)

the state becomes (M,k + 1) and the stack S′. So the variable γk+1 gets
assigned (N, ρ[S]).

– In a state (Y x.M, k) the automaton does

S′ = push
(x,Y x.M),1
1 (S)

the state becomes (M,k) and the stack S′.
– In a state (b, k) with b a constant from Σ of arity k the automaton goes to

(b, qf1, . . . , qfk). From a state qfi and stack S it goes to ((Ni, 0), Si) where
(Ni, Si) = find(γi, S). This move implements outputting the constant an
going to its arguments.

Let us comment on this definition. The case of (z, k) is the most complicated.
Observe that if order(z) = m0 then ll(z) = 2, and if order(z) = 1 then ll(z) =
m0 + 1. The goal of the copy operation is to preserve the meaning of stack
variables. The later push makes a link to the initial higher-order stack where
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the values of stack variables can be found. More precisely we have that if we do

S1 = copy ll(z)(S) followed by S2 = push
a,ll(z)
1 (S1) and S3 = collapse(S2) then

S3 = S; in other words we recover the original stack. We will prove later that
the value operation destroys only the part of the stack of order < ll(z).

Observe that apart from the variable case, the automaton uses just the push1

operation.
For the proof of correctness we will need one more definition. We define

argument order of a higher-order stack S to be the maximal order of types of
elements assigned to stack variables.

ao(S) = max{order(Ni) : ρ[S](γi) = (Ni, ρi), and i = 1, . . . ,max}.

We are going to show that the CPDA defined above simulates the computa-
tion of the Krivine machine step by step. For the proof we need to formulate an
additional property of a stack S:

(∗) For every element spl in S: (i) the collapse pointer at spl is of order
d = m0 − l + 2, and (ii) l > ao(collapse(S′)) where S′ is the part of S
up to this element spl.

This property says that the subscript l of the spl symbol determines the order
of the collapse pointer, and that, moreover, l is strictly greater than the orders
of the stack variables stored on the stack obtained by following this pointer.
In other words, the orders of these stack variables give an upper bound on the
collapse order d since d depends inversely on l. This is a very important property
as it will ensure that we will not destroy a sack too much when we look for the
value of a variable.

We are ready to prove that the CPDA simulates Krivine machine. It is the
only technical lemma needed to prove the correctness of the translation.

Lemma 11. Let (M,ρ, k)→ (M1, ρ1, k1) be two successive configurations of the
stackless Krivine machine. Let S be a higher order stack satisfying the condition
(∗) and ρ[S] = ρ. From the state (M,k) and the stack S the CPDA A(M0)
reaches the state (M1, k1) with the stack S1 satisfying (∗) condition and ρ1 =
ρ1[S1].

Proof. The only case that is not straightforward is that of variable access. We
have:

(z, ρ, k)→ (N, ρ′′, k) where (N, ρ′) = ρ(z)

and ρ′′ = ρ′[γ1/ρ(γ1), . . . γk/ρ(γk)]

Let us first examine the simpler case when order(z) = 1. In this case k = 0.
By hypothesis the CPDA is in the state (z, 0) and ρ = ρ[S]. We have that the
CPDA does (N,S′) = value(z, S), the new state becomes (N, 0) and the new
stack is S′. Since ρ(z) = ρ[S](z), by the definition of the later we have ρ[S′] = ρ′,
and we are done.
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Now consider the case when order(z) > 1. By hypothesis the CPDA is in the
state (z, k) and ρ = ρ[S]. We recall the operation of the stack machines that are
performed in this case:

(N,S′) = value(z, copy ll(z)(S)), and S′′ = push
sporder(z),ll(z)
1 (S′).

By Lemma 10 and the assumption of the lemma we have that ρ[copy ll(z)(S)] =
ρ[S] = ρ. In particular, ρ(z) = ρ[S](z). By definition of ρ[S] we have (N, ρ′) =
(N, ρ[S′]). Once again by definition of ρ[S′], the meaning of every normal variable
in ρ[S′] is the same as in ρ[S′′].

It remains to verify that the meaning of every stack variable is the same in
ρ[S′′] and in ρ[S]. By definition ρ[S′′](γi) = (Ni, Si) where (Ni, Si) = find(γi, S

′′).
Then looking and the meaning of find we have find(γi, S

′′) = find(γi, collapse(S′′)).
It is enough to show that collapse(S′′) = S.

Recall that (N,S′) = value(z, copy ll(z)(S)). Let us examine the behaviour of
value function. We will show that it only destroys a part of the stack that has
been put on top of S with the copy ll(z) operation. First, the value function does a
sequence of pop1 operations until it gets to a pair (z, γi) for some γi. We have that
order(γi) = order(z). The operation find is then started. This operation does
pop1 operations until it sees spl on the top of the stack; at that moment it does
collapse. Suppose that it does collapse on a stack S1. We know that the value of γi
is defined for S1 since it is defined for S′ and S1 is an intermediate stack obtained
when looking for the value of γi. Hence l > ao(S1) ≥ order(z). By the invariant
(∗) the collapse done on S1 is of order m0 − l + 2 < m0 − order(z) + 2 = ll(z).
Repeating this argument we see that during the value operation the only stack
operations are pop1 and collapse of order smaller than ll(z). This implies that
the value operation changes only the topmost ll(z) stack. So collapse(S′′) = S
as required.

It remains to show that condition (∗) holds. The first part of the condition
follows from the definition as ll(z) = m0 − order(z) + 2. The second part of the
condition is clearly satisfied by S′ since it is preserved by the copy operation.
Next we do S′′ = pushsporder (z),ll(z)(S′). By the above, we have that popll(z)(S

′) =
S. Now since the elements on the stack are the arguments of z we have that for
all i it holds that order(z) > order(Ni) where (Ni, ρi) = ρ(γi). Since ρ = ρ[S]
we have order(z) > ao(S). This shows the second condition. ut

Theorem 2. Consider terms and automata over a tree signature Σ. For every
term M of type 0 there is a CPDA A such that BT (M) = CTree(A) The order
of A is the same as the maximal order of a variable appearing in M .

Proof. Using Lemma 1 we consider KTree(M) instead of BT (M). The tree
KTree(M) starts with the execution of a Krivine machine from (M, ∅, ε). By
Lemma 9, we can as well look at the execution of the stackless Krivine machine
from (M, ∅, 0). We take automaton A(M) as defined above. It is m CPDA by
definition.

The CTree(A(M)) starts from the configuration consisting of the state (M, 0)
and stack ⊥. It is clear that ρ[⊥] = ∅ and ⊥ satisfies (∗) condition. Repeated
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applications of Lemma 11 give us that either both trees consist of the root labeled
with ω, or on the KTree side we reach a configuration (b, ρ, k) and on the CTree
side a configuration ((b, k), S) with ρ = ρ[S] and S satisfying (∗). By definitions
of both trees, they will have b in the root and this root will have k subtrees.
The i-th subtree on the one side will be KTree(Ni, ρi, 0) where (Ni, ρi) = ρ(γi).
On the other side it will be CTree((Ni, 0), Si) where (Ni, Si) = find(γi, S). We
have by definition of ρ[S] that ρ[Si] = ρi. Since Si is a initial part of the stack S
it satisfies (∗) condition too. Repeating this argument ad infinimum we obtain
that the trees KTree(M) and CTree(A(M)) are identical. ut

3.3 Lowering the order

If we start from a recursive scheme of order m, the translation from Lemma 2 will
give us a term with complexity m+1 (cf. Definition 1). So the construction from
Theorem 4 will produce a CPDA working with stack of order m+1. Nevertheless,
it is possible to produce an m-CPDA. For this, we recall that a term obtained
from a translation of a recursive scheme is in a canonical form (Definition 4). As
we did when we introduced terms in canonical form, we assume that variables
are partitioned between λ-variables and Y -variables and we write the latter in
boldface font. As we show below, this form allows to store only λ-variables in the
environment. Since by Lemma 4 they have smaller order than the Y -variables,
we get the desired optimization.

We assume that the is bound variable in the term have are pairwise distinct.
Recall also that we use term(x) to denote the sub-term starting with the binder
of x. We add two new rules to the stackless Krivine machine to cater for recursive
variables:

(Y x.P ), ρ, k)→(P, ρ, k)

(x, ρ, k)→(term(x), ρ, k) x is a Y -variable

The first rule replaces the original fixpoint rule: the difference is that the value
of the Y -variable x is not stored on the stack. The second rule tells what to
do when we encounter Y -variable; this is needed since x will not appear on
the environment. It is not difficult to see that on terms in canonical form the
two rules faithfully simulate the original Krivine machine: we simply store only
λ-variables in the environment.

It is easy to adapt the construction of a CPDA from a term (Definition 8) to
the new rules. The first rule is simulated by the change of state from (Y x.P, k) to
(P, k) without any change to the stack. Similarly, the second new rule is simulated
by the change of state from (x, k) to (term(x), k). It is straightforward to check
that for the modified Krivine machine and the modified CPDA Lemma 11 still
holds.

As M is in the canonical form and has complexity m+1, by Lemma 4 the only
variables that are of order m + 1 are recursive. Thanks to modified translation
CPDA stores on its stack only λ-variables, and these have order at most m.
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Hence in the Definition 8 we can take m0 = m. We obtain m-CPDA equivalent
to M .

In conclusion, if one is only interested in translating recursive schemes to
CPDA then the translation from the previous section can be taken as it is with
the exception that nonterminals are never stored in the environment, as their
value is just given by the scheme.

Theorem 3. Consider terms and automata over a tree signature Σ. For every
term M of type 0 there is a CPDA A such that BT (M) = CTree(A). If M is
in the canonical form then the order of A is the same as the maximal order of
a λ-variable appearing in M . In particular, if M is obtained by the translation
(cf. Theorem 1) of a recursive scheme of order m then CPDA is also of order
m.

4 Another translation

We now present another translation from λY -calculus to CPDAs. This transla-
tion is different in the way it handles the stack of the Krivine machine. Instead
of incorporating the stack in its environment, it makes the stack structure sim-
pler by keeping it either empty or a singleton. The translation also differs in the
way closures are represented in the CPDA and the way the closures associated
to variables on the higher-order stack of the CPDA are retrieved. This transla-
tion is a bit more technical to define but it is then slightly easier to prove its
correctness.

4.1 Uncurrification of λ-terms and Krivine machines with product

For this translation, we need to start with a term in η-long form and in the
canonical form (see Section 2.1 and Definition 4). We assume that variables are
partitioned between λ-variables and Y -variables and as we did before, we shall
note the latter in boldface font. We then apply a syntactic transformation to the
term called uncurryfication. With this transformation, we group every sequence
of arguments of a term into a tuple. A consequence is that every term has at
most one argument. To do this, we enrich simple types with a finitary product :
given types α1, . . . , αn, we write α1 × · · · × αn for their product. The counter-
part of product types in the syntax of the λ-calculus is given by the possibility of
constructing tuples of terms and to apply projections to terms. Formally, given
terms M1, . . . , Mn respectively of type α1, . . . , αn, the term 〈M1, . . . ,Mn〉 is of
type α1 × · · · × αn. Moreover, given a term M of type α1 × · · · × αn and given
i in [1;n], the term πi(M) is of type αi. Finally, we extend β-reduction by the

rule: πi(〈M1, . . . ,Mn〉) →β Mi. As a short hand we may write
−→
Np instead of

〈N1, . . . , Np〉. To reduce the number of cases in definitions and proofs, we also
consider terms of type α as one-dimensional tuples when α is not a type of the
form α1 × · · · × αn. Thus for a term N that has such a type α, the notations
π1(N), 〈N〉 and π1(〈N〉) simply denote N .
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The notion of order of a type is adapted to types with products as follows:
order(0) = 1 and order(γ → α) = max(order(γ) + 1, α) and order(α1 × · · · ×
αn) = maxi∈[1;n](order(αi)). The order of a term is the order of its type.

We now define an operation unc that transforms types into uncurrified types
and η-long terms in canonical form into uncurrified terms:

1. unc(0) = 0

2. unc(α1 → · · · → αn → 0) = (unc(α1)× · · · × unc(αn))→ 0,

3. unc((Y xα.P )N1 . . . Nm) = (Y xunc(α).unc(P [xunc(α)/xα]))T in case when
T = 〈unc(N1), . . . , unc(Nm)〉,

4. unc(λxα1
1 . . . xαnn .P ) = λzγ .unc(P [π1(zγ)/xα1

1 , . . . πn(zγ)/xαnn ]) where P has
an atomic type and γ = unc(α1)× · · · × unc(αn),

5. unc(πi(z
γ)N1 . . . Nm) = πi(z

γ)〈unc(N1), . . . , unc(Nm)〉,
6. unc(xαN1 . . . Nm) = xα〈unc(N1), . . . , unc(Nm)〉,
7. unc(aN1 . . . Nm) = a unc(N1) . . . unc(Nm).

Notice that for an uncurrified type, γ → 0, we have order(γ → 0) = order(γ)+1.
As we have already mentioned, the role of the uncurrification is to make the
stack of the Krivine machine simple. Indeed with an uncurrified term, the stack
contains at most one element. In the translation into CPDA, this makes it easier
for the CPDA to retrieve the closure bound by a variable. In a certain sense the
role played by the stack variables γi in the previous translation is now fulfilled
by the projections πi. Observe that the Böhm tree of the uncurrified form of a
term is the same as the Böhm tree of the original term.

Notice that as we have started with an η-long term in canonical form, the
term M we have obtained after uncurrification has the property that every sub-
term of the form Y x.P has as free variables only Y -variables. Recall that we use
term(x) to denote the subterm starting with the binder of x.

We now give an adaptation of the Krivine machine that computes the Böhm
tree of a term like M . For this, we slightly change the notion of environment.
In the definition of the Krivine machine in section 2.4, we considered that envi-
ronments were functions from variables to closures. Here, so as to emphasize the
way we make CPDA retrieve the closure associated to variable, we structure the
environment of the Krivine machine as an association lists realizing the map-
ping of a variable to its closure. The Krivine machine finds the closure associated
to a variable by scanning the list representing the environment. The mutually
recursive definition of closures and environments is thus now:

C ::= (M,ρ) ρ ::= ∅ | [x 7→ C] :: ρ .

where :: denotes the operation of appending an element on top of a list. As a
short hand, we may write ρ(x) to denote the first closure bound by x in the
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environment ρ. The rules of the Krivine machine are now:

(M
−→
Np, ρ, ε) → (M,ρ, (

−→
Np, ρ))

(λx.M, σ, (
−→
Np, ρ

′)) → (M, (x,
−→
Np, ρ

′) :: ρ, ε)

(πi(x), (x,
−→
Np, ρ

′) :: ρ, σ) → (Ni, ρ
′, σ)

(πi(x), (y,
−→
Np, ρ

′) :: ρ, σ) → (πi(x), ρ, σ) when x 6= y
(x, ρ, σ) → (term(x), ρ, σ)

((Y x.P ), ρ, σ) → (P, ρ, σ)

So as to make precise the relationship between this version of the Krivine machine
computing the Böhm tree of uncurrified terms, and the Krivine machine we have
defined section 2.4, we define the notion of KPTree(M,ρ, σ) of the Böhm tree
computed by the Krivine machine on uncurrified terms from the configuration
(M,ρ, σ). If from the configuration (M,ρ, σ) the machine reaches a configuration

(b
−→
Nl, ρ, ε) then KPTree(M,ρ, σ) is the tree whose root is labeled b, and whose

daughters are (in that order) KPTree(N1, ρ, ε), . . . , KPTree(Nl, ρ, ε). Otherwise
KPTree(M,ρ, σ) is ω. Given a closed η-long term M of type 0 in canonical form,
we write KPTree(M) for KPTree(unc(M), ∅, ε). We do not enter into the details
of the proof of the following lemma which are rather tedious and uninteresting,
while its statement is as expected.

Lemma 12. Given a closed η-long term M of type 0 in canonical form, we have
that KTree(M) = KPTree(M).

4.2 Simulation

We let m + 1 be the complexity of M , and we construct an m-CPDA A =
(Σ,Γ,Q, F, δ) generating BT (M). The main part of the construction of A is how
to represent the environment of the Krivine machine directly in the higher-order
stack. The top-most 1-stack represents the sequence of variables that the envi-
ronment is binding and the closure associated to those variables can be accessed
using the collapse operation. In turn, a closure is represented by a higher-order
stack whose top-element is the term of the closure while the environment of the
closure is obtained simply by poping this top-element. Non-recursive variables
with the highest type order (that is m) have a special treatment: the closure
they are bound to is represented in the same 1-stack, and this closure can be
retrieved simply using the pop1 operation as well as the collapse operation.

The stack alphabet Γ of A is the set of non-recursive variables of M together
with tuples of terms that are arguments of some subterm of M . While the set
Q of states of A is the set of subterms of M (excluding the arguments of the Y
combinator). Before we give the transition rules of A, we explain the way the
environment of the Krivine machine is represented as a higher-order stack. We
are going to define the function value as in the first translation. Here, instead of
being applied to a variable and a higher-order stack it is applied to a variable
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being projected and a higher-order stack:

value(πi(z), S) =


(Ni, pop1(S′)) if top(S) = z, S′ = collapse(S)

and top(S′) =
−→
Nl, Ni = πi(

−→
Nl),

value(πi(z), pop1(S)) otherwise

Therefore to find the value associated to πi(z), it suffices to search in the topmost
first order stack the first occurrence of z with the pop1 operation, then use the
collapse operation, and, using the index of the projection, for the new state
select the appropriate term in the tuple on top of the stack we have obtained,
and finally erase that tuple from the stack using a pop1 operation to restore the
environment of the closure.

We are representing the environment of the Krivine machine as a sequence
of variables bound to closures. Let us see how to retrieve this sequence from a
higher-order stack. So given a higher order stack S the environment associated
to S, ρ[S] is:

1. if top(S) = xα then ρ[S] = (xα,
−→
Nl, ρ2) :: ρ1 where:

(a) ρ1 =

{
ρ[pop1(pop1(S))] when order(α) = m
ρ[pop1(S)] otherwise

(b)
−→
Nl = top(collapse(S))

(c) ρ2 = ρ[pop1(collapse(S))].
2. ρ = ∅ otherwise.

Notice that, unsurprisingly, the way closures are constructed in ρ[S] is similar
to the definition of value(πi(x), S). Notice also that non-recursive variables of
maximal order, that is of order m, receive a particular treatment. We shall
comment on this with more details later on.

As in the previous translation, it is worth noticing that the operation ρ[S] is
insensitive to the operation of copyd when d > 1, so we have ρ[S] = ρ[copyd(S)].

Definition 9. Let M0 be a closed term of type 0. We suppose that M0 is in the
canonical and uncurrified forms. Let m0 be the highest order of non-recursive
variable appearing in M0. We define a m0-CPDA B(M0) whose states and stack
alphabet are subterms of M0. To describe the transition function of B(M0) we
describe the actions it performs while having a stack S depending on the state it
is in.

1. In a state πi(z), there are two possibilities:
(a) in case top(S) = z, then the automaton goes to state (Ni, S

′′) where

S′′ = pop1(S′), S′ = collapse(S),
−→
Nl = top(S′) and Ni = πi(

−→
Nl).

(b) in case top(S) = y with y 6= z and then the automaton goes to the new
configuration (πi(z), S

′), where S′ = pop1(S) when order(y) < m0 and
S′ = pop1(pop1(S)) when order(y) = m0.

2. In a state λx.M , the automaton goes to the configuration (M,S′) where
S′ = pushx,p(S) and p = m− order(x) + 1.
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3. In a state M
−→
Nl, the automaton goes in the configuration (M,S′′′) where

S′′′ = pop1(S′′), S′′ = copyp(S
′) and S′ = push

−→
Nl,1(S) (where p = m −

order(
−→
Nl) + 1).

4. In state x, x being a Y -variable, the automaton goes in the configuration
(term(x), S).

5. In state Y x.P , the automaton goes to the configuration (P, S).
6. In state b where b is a tree constant of arity l, the automaton goes to

(b, fq1, . . . fql). From a state qfi and stack S it goes to (Ni, pop1(S)) where
−→
Nl = top(S). This move implements outputting the constant an going to its
arguments.

Let us briefly explain these rules.
The first case is about looking up the value of the variable: it implements

operation value. If the value is on the top of the stack we just recover this value,
as we have explained when describing encoding of the environment in the stack.
If the value is not on the top of S then we must go deeper into the stack. The
difference in treatment depending on the order of y comes from the fact that
when y has order m, then the term of the closure y is bound to is the next stack
symbol on the stack; and so as to advance to the next variable the automaton
needs to get rid of the variable y and of the term y is bound to by using two
pop1 operations.

In a state λx.M the automaton implements the binding of a closure by the
variable x. The fact that we use the operation pushx,p requires that the closure
has been prepared beforehand and is represented in the stack popp(S).

In a state M
−→
Nl, we need to prepare the closure containing

−→
Nl with the current

environment that is going to be bound to the variable abstracted in the term

to which M is going to be evaluated. For this, it suffices to push
−→
Nl on top

of S, and, so as to be consistent with the rule of the automaton dealing with

λ-abstraction, use the operation copyp where p = m−order(
−→
Nl) + 1 and remove

with pop1 the topmost occurrence of
−→
Nl created by the copy.

We can now say what it means for a configuration of the CPDA to represent
a configuration of a Krivine machine:

Definition 10. We say that a configuration (P, S) of the CPDA represents a
configuration (P, ρ, σ) of the Krivine machine if the following three conditions
hold:

1. ρ = ρ[S].

2. When σ is nonempty then σ = (
−→
Nl, ρ[S′′]) where S′′ = pop1(S′),

−→
N l =

top(S′) and:

S′ =

{
popm−order(P )+2(S) when order(P ) < m+ 1

S when order(P ) = m+ 1

3. For every variable x in S, the collapse pointer at x is of order m−order(x)+
1.
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Let’s now comment a bit on this definition that relates configurations of
CPDA to configurations of the Krivine machine. When P has order one, then,
because of typing, the stack of the Krivine machine needs to be empty. In case
P is higher-order, because we only evaluate terms of atomic types, the stack of
the Krivine machine has to contain a closure. We have seen in the rules of the
CPDA that, when P is of higher-order type α→ 0, we have prepared the closure
so that we can bind some variable xα by applying a pushx

α,p operation with p =
m−order(α)+1. But order(α) = order(P )−1 so that p = m−order(P )+2. Thus
we shall be able to retrieve the closure, simply by applying a popm−order(P )+2

operation. Nevertheless, this only works when order(P ) < m + 1; indeed if

order(P ) = m+1 then p = 1 and the binding is made with a pushx
α,1 operation,

meaning that the closure is on top of the topmost 1-stack of the automaton. This
explains why the case where order(P ) = m+ 1 is treated differently.

Along this observation we can make a further remark on the case where
the state is πi(z) and top(S) = z. In this case, the automaton uses a collapse
operation, nevertheless, as, because of typing again, the variable z has to have
been pushed on the stack with a pushz,p operation where p = m− order(z) + 1,
the collapse operation is a sequence of popp operations. But the closure that
has been prepared so as to be bound to the variable λ-abstracted in the term
substituted for πi(z) is of an order d strictly smaller than that of z and so, the
closure is accessible with a popm−d operation. But, since m − d > m − p, we
have the guaranty that the closure is not erased by the collapse operation and
that it remains accessible with a popm−d after the collapse operation has been
performed.

We can now prove that A simulates the Krivine machine in a similar manner
as it was done in the previous translation and obtain the following Lemma:

Lemma 13. Given a well-typed configuration (P, S) of A representing (P, ρ, σ),
if from (P, S), A reaches (P1, S1) in one step, then (P1, S1) is well-typed, it
represents (P1, ρ1, σ1) and (P, ρ, σ)→ (P1, ρ1, σ1).

Proof. This Lemma is proved by case analysis on the shape of P . It does not
present any difficulty, the fact that (P, S) is well-typed implies easily that (P1, S1)
is also well-typed. Moreover well-typedness guaranties, that the use of collapse
for retrieving the closure associated to a variable does not destroy in the higher-
order stack of the closure representing the stack of the Krivine machine.

Theorem 4. Consider terms and automata over a tree signature Σ. For every
term M of type 0 in the canonical form: if M has the complexity m + 1 then
m-CPDA B(unc(M)) is such that BT (B(unc(M))) = CTree(A).

Proof. Using Lemma 8 we consider KTree(M) instead of BT (M). But with
Lemma 12 we may use KPTree(M) instead. The tree KPTree(M) starts with
the execution of a Krivine machine from (unc(M), ∅, ε). On the other side
CTree(B(unc(M))) starts from configuration consisting of the state unc(M)
and stack ⊥. It is clear that (unc(M),⊥) is well-typed and that it represents
(unc(M), ∅, ε). Repeated applications of Lemma 11 give us that either both trees
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consist of the root labeled with ω, or on KPTree side we reach a configuration

(b
−→
Nl, ρ, ε) and on the CTree side a well-typed configuration (b

−→
Nl, S) representing

(b
−→
Nl, ρ, ε). Then on the side of KPTree the machine produces a tree whose root is

b is produced and whose daughters are KPTree(N1, ρ, ε), . . . , KPTree(Nl, ρ, ε).
On the CTree side the automaton produces a tree whose root is b is produced and

whose daughters are CTree(N1, S), . . . , CTree(Nl, S). But since (b
−→
Nl, S) repre-

senting (b
−→
Nl, ρ, ε), we get that for every i in [1; l], (Ni, S) represents (Ni, ρ, ε).

Repeating this argument ad infinimum we obtain that the trees KTree(M) and
CTree(B(unc(M))) are identical. ut
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