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Introduction

Finding the mean of the median or more generaly the p-mean e p of a probability measure in a manifold (the point which minimizes integral with respect to this measure of distance at power p) has numerous applications. There is not much to say for the mean in R d , almost the only case where there is a closed formula, and the most important case as the most useful estimator in statistics when the measure is uniform law on a sample. For medians in R d the situation is more complicated. Uniqueness holds as soon as the support of the probability measure is not carried by a line. The first algorithm for computing e 1 is due to Weisfeld in [START_REF] Weiszfeld | Sur le point pour lequel la somme des distances de n points donnés est minimum[END_REF]. As for the computation of e ∞ (the center of the smallest ball containing the support of the measure), Badȏiu and Clarkson gave a fast and simple algorithm in [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF]. For many applications in biology, signal processing, information geometry, extension to other spaces is necessary. The median in Hilbert space is computed in [START_REF] Cardot | Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm[END_REF]. In nonlinear spaces with convexity assumptions, uniqueness has been established in [START_REF] Kendall | Probability, convexity and harmonic maps with small image I: uniqueness and fine existence[END_REF] for the mean, [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] for the p-mean. Many algorithms of computation now exist. As far as deterministic algorithms are concerned, one can cite [START_REF] Le | Estimation of Riemannian barycentres[END_REF], [START_REF] Groisser | Newton's method, zeroes of vector fields, and the Riemannian center of mass[END_REF], [START_REF] Groisser | On the convergence of some Procrustean averaging algorithms[END_REF], [START_REF] Afsari | On the convergence of gradient descent for finding the Riemannian center of mass[END_REF] for the mean in Riemannian manifolds, [START_REF] Arnaudon | Medians and means in Finsler geometry[END_REF] for the mean in Finsler manifolds, [START_REF] Fletcher | The geometric median on Riemannian manifolds with application to robust atlas estimation[END_REF] and more generally [START_REF] Yang | Riemannian median and its estimation[END_REF] for the median, [START_REF] Arnaudon | On computing the Riemannian 1-Center[END_REF] for e ∞ . Stochastic algorithms avoid to compute the gradient of the functional to minimize. They can be found in [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces[END_REF], [START_REF] Arnaudon | Stochastic algorithms for computing means of probability measures Stoch[END_REF]. For other functionals to minimize, see [START_REF] Bonnabel | Convergence des méthodes de gradient stochastique sur les varits riemanniennes In GRETSI[END_REF].

In this paper we investigate the case of non necessarily convex, complete Riemannian manifolds. Our first result (Theorem 2.1) concerns uniqueness of the p-mean of the uniform measure on a finite set {x 1 , . . . , x n } of points, almost everywhere on x = (x 1 , . . . , x n ) for the Lebesgue measure. This generalizes Bhattacharya and Patangreanu result on the circle ( [START_REF] Bhattacharya | Large sample theory of intrinsic and extrinsic sample means on manifolds (i)[END_REF], case p = 2). See also [START_REF] Charlier | Necessary and sufficient condition for the existence of a Fréchet mean on the circle[END_REF] for more general uniqueness criterions on the circle.

For computation of the p-mean, usual deterministic algorithms are not possible any more, due to the fact that the functional to minimize may have many local minima. So restricting to symmetric spaces we use a simulated annealing method with a continuous stochastic process, together with an estimation of the gradient to minimize via a drift moving faster and faster. With this method we are able to define a process which converges in distribution to the p-mean for p ∈ [1, ∞) (Theorem 4.3, and Theorem 3.2 for more general but smooth functionals).

The main applications are in signal processing with polarimetric signal, but also for the group of rotations of R n , so as to determine averages on rotations. Also this solves many problems of optimization which may arise in economy, decision support, operation research. Notice that on the circle, fast computation of the mean has been performed in [START_REF] Hotz | Intrinsic mean on the circle: Uniqueness, Locus and Asymptotics[END_REF]. In fact this is a case where a closed formula can be found. For general case the situation is much more complicated and the convergence of our processes is slower and weaker. Jump processes and algorithms related to the continuous processes presented here will be investigated in a forthcoming paper.

Uniqueness of p-means for uniform measures with finite support

Let M be a d-dimensional complete Riemannian manifold with Riemannian distance denoted by ρ. For ν a probability measure on M and p ≥ 1, we define

H p,ν : M → R + ∪ {+∞}, y → M ρ p (y, z) ν(dz). (2.1)
Either H p,ν ≡ ∞ or for all y ∈ M , H p,ν (y) < ∞. In the latter case we denote by Q p,ν the set of minimizers of H p,ν . When Q p,ν has only one element we denote it by e p,ν and call it the p-mean of ν. When there is no possible confusion we let e p = e p,ν . For x = (x 1 , . . . , x N ) ∈ M N , we let

(2.2) µ(x) = 1 N N k=1 δ x k .
Clearly H p,µ(x) is finite.

Theorem 2.1. Assume p > 1 or {d > 1 and N > 2}. For almost all x ∈ M N , Q p,µ(x) has a unique element e p,µ ( x)

Remark 2.2. This theorem extends Theorem 4.15 in [START_REF] Yang | Some properties of Frechet medians in Riemannian manifolds[END_REF] where the same result has been established for p = 1 and M compact.

Proof. We begin with the case p > 1.

Since µ(x) has a finite support, we can assume that M is a compact Riemannian manifold. For this a smooth modification outside a large ball is sufficient. For instance we can choose a radius so that the boundary is smooth, double the ball and finally smoothen the metric locally around the place where the pasting has been performed.

So in the sequel we will assume that M is compact, with diameter L. For y ∈ M we denote by S y M ⊂ T y M the set of unit tangent vectors above y. Let

(2.3) Ṽ = {(y, n), y ∈ M, n = (n 1 , . . . , n N ), n j ∈ S y M, j = 1, . . . N } × [0, 2L] N .
Note Ṽ is a compact smooth (N + 1)d-dimensional manifold with boundary. Let us prove that the set (2.10)

C 2 := (x 1 , . . . , x N ) ∈ M N , {x 1 , . . . , x N } ∩ Q p,µ(x1,...,xN ) = ∅
has Lebesgue-measure 0: we can assume that for i = j, x i = x j since we exclude 0-measure sets. So the elements we consider are images by φp of

(2.11) Ŵp = (y, n, r) ∈ Wp , r 1 = 0, ∀k ≥ 2 r k > 0 .
The set Ŵp is a submanifold of codimension 1 of Wp . Now dim Wp = N d = dim M N so dim Ŵp = dim M N -1 and its image by φp is of measure 0 in M N . As a conclusion, C 2 has measure 0. Define (2.12) 

C 3 := (x 1 , . . . , x N ) ∈ M N , ∃i = j s.t. x i = x j and C = C 1 ∪ C 2 ∪ C 3 .
) -1 (x ′ ) = (y i (x ′ ), n i 1 (x ′ ), . . . n i d (x ′ ), r i 1 (x ′ ), . . . , r i d (x ′ )). Let i, j ∈ {1 . . . m x } satisfy i = j. If y i (x ′ ), y j (x ′ ) ∈ Q p,µ(x ′ ) then we have (2.15) H p,µ(x ′ ) • y i (x ′ ) = H p,µ(x ′ ) • y j (x ′ ).
We can assume with the same argument as for (2.5) and (2.6) that the maps

(2.16) γ i,k,x ′ : s → exp yi(x ′ ) (sn i k (x ′ )) and γ j,k,x ′ : s → exp yj (x ′ ) (sn j k (x ′ )) are minimal geodesics respectively on [0, r i k (x ′ )] and [0, r j k (x ′ )]. So letting h p : W p → R, (y, n, r) → N k=1 r p k , we have 1 N h p • (φ p | Ui,x ) -1 (x ′ ) = H p,µ(x ′ ) • y i (x ′ ), 1 N h p • (φ p | Uj,x ) -1 (x ′ ) = H p,µ(x ′ ) • y j (x ′ ).
It is sufficient to prove that for all x ′ ∈ V x , (2.17)

h p • (φ p | Ui,x ) -1 (x ′ ) = h p • (φ p | Uj,x ) -1 (x ′ ) implies (2.18) grad x ′ h p • (φ p | Ui,x ) -1 = grad x ′ h p • (φ p | Uj,x ) -1 .
Indeed with (2.18) we will be able to deduce that the set

(2.19) (x ′ ∈ V x , h p • (φ p | Ui,x ) -1 = h p • (φ p | Uj,x ) -1
has codimension ≥ 1 in V x and this will imply that

(2.20) (x ′ ∈ V x , H p,µ(x ′ ) • y i (x ′ ) = H p,µ(x ′ ) • y j (x ′ ) has codimension ≥ 1 in V x .
Let us prove (2.18). For k = 1, . . . , N let

m i k (x ′ ) = -γi,k,x ′ (r i k (x ′ )) and m j k (x ′ ) = -γj,k,x ′ (r j k (x ′ )). These unit vectors satisfy exp x ′ k (r i k (x ′ )m i k (x ′ )) = y i (x ′ ) and exp x ′ k (r j k (x ′ )m j k (x ′ )) = y j (x ′ ). Then noting that h p • (φ p | Ui,x ) -1 (x ′ ) = N k=1 (r i k ) p (x ′ k ) we get d x ′ h p • (φ p | Ui,x ) -1 (•) = -p N k=1 (r i k ) p-1 (x ′ )n i k (x ′ ), T x ′ y i (•) T y i (x ′ ) M -p (r i 1 (x ′ )) p-1 m i 1 (x ′ ), . . . , (r i N (x ′ )) p-1 m i N (x ′ ) , • T x ′ M N .
Due to the fact that (y i (x ′ ), n i (x ′ ), r i (x ′ )) ∈ W p , the first term in the right vanishes. So (2.21)

grad x ′ h p • (φ p | Ui,x ) -1 = -p (r i 1 (x ′ )) p-1 m i 1 (x ′ ), . . . , (r i N (x ′ )) p-1 m i N (x ′ ) and similarly (2.22) grad x ′ h p • (φ p | Uj,x ) -1 = -p (r j 1 (x ′ )) p-1 m j 1 (x ′ ), . . . , (r j N (x ′ )) p-1 m j N (x ′ ) . Since y i (x ′ ) = y j (x ′ ) we have (r i 1 (x ′ ), m i 1 (x ′ )) = (r j 1 (x ′ ), m j 1 (x ′ )), so (r i 1 (x ′ )) p-1 m i 1 (x ′ ) = (r j 1 (x ′ )) p-1 m j 1 (x ′ ), from which we conclude that grad x ′ h p • (φ p | Ui,x ) -1 = grad x ′ h p • (φ p | Uj,x ) -1 .
This achieves the proof for the case p > 1.

Let us now consider the case p = 1. The result is due to Yang in [START_REF] Yang | Some properties of Frechet medians in Riemannian manifolds[END_REF], we give the proof here for completeness.

The main difference is that the subset of M N of points x = (x 1 , . . . , x N ) so that

x i ∈ Q 1,µ(x)
for some i has positive measure.

First consider the open subset U of M N of points x such that for all i = 1, . . . , N ,

x i ∈ Q 1,µ(x) .
Consider the closed subset C 0 of M N of points (x 1 , . . . , x N ) = φ(y, n, r), with (y, n, r) ∈ Ṽ such that for all j, k = 1, . . . N , n j = ±n k . Since d > 1 and N > 2 this subset has Lebesgue measure 0.

Replacing M N by U and C by C 0 ∪ C, the argument is similar until (2.17). But now we will be able to prove that (2.17) implies (2.18) only in some neighbourhoods V x,x ′ to be precised later, of x ′ ∈ V x such that the geodesics

s → exp yi(x ′ ) (sn i k (x ′ )) and s → exp yj (x ′ ) (sn j k (x ′ ))
are minimal respectively on [0, r i k (x ′ )] and [0, r j k (x ′ )]. But this will be sufficient since every compact subset of V x can be covered by a finite number of these neighbourhoods V x,x ′ .

Making the above assumption on x ′ , the proof is similar until (2.21) and (2.22). Then we have

(2.23) grad x ′ h 1 • (φ 1 | Ui,x ) -1 = -m i 1 (x ′ ), . . . , m i N (x ′ ) and (2.24) grad x ′ h 1 • (φ 1 | Uj,x ) -1 = -m j 1 (x ′ ), . . . , m j N (x ′ ) . Assume grad x ′ h 1 • (φ 1 | Ui,x ) -1 = grad x ′ h 1 • (φ 1 | Uj,x ) -1 .
Then for all k = 1, . . . , N ,

m i k (x ′ ) = m j k (x ′ ).
In particular for k = 1 this implies (possibly by exchanging i and j) that y i (x ′ ) lies in the minimizing geodesic from x ′ 1 to y j (x ′ ). Now since

x ′ ∈ C 0 there exists k ∈ {1, . . . N } such that x ′ k ∈ {exp yi(x ′ ) (sn i 1 (x ′ )), s ∈ [-2L, 2L]}. On the other hand since m i k (x ′ ) = m j k (x ′ ), y j (x ′ ) (or y i (x ′
)) lies on the minimizing geodesic from x ′ k to y i (x ′ ) (or y j (x ′ )). As a consequence there are two minimizing geodesics from y i (x ′ ) to y j (x ′ ). But this is impossible since the geodesic from x ′ 1 to y j (x ′ ) is minimizing, contains

y i (x ′ ) and x ′ 1 = y i (x ′
) by the fact that we have supposed that

x ′ 1 ∈ Q 1,µ(x ′ ) and y i (x ′ ) ∈ Q 1,µ(x ′ ) . So grad x ′ h 1 • (φ 1 | Ui,x ) -1 = grad x ′ h 1 • (φ 1 | Uj,x ) -1 ,
and by continuity this is true in a neighbourhood V x,x ′ of x ′ . Now we consider the case where

x ′ 1 ∈ Q 1,µ(x ′ ) and x ′ 2 ∈ Q 1,µ(x ′ )
. We follow the same lines as in the previous part with the difference that now y i (x ′ ) = x ′ 1 and for the definition of U i,x W 1 is replaced by

W i 1 = {(y, n, r) ∈ V, r 1 = 0}. The definition of U j,x remains unchanged. By [25] Theorem 1 1 N N k=2 n i k (x ′ ) ≤ µ N (x ′ )({x ′ 1 }) which gives (2.25) N k=2 n i k (x ′ ) ≤ 1. Since d > 1 and N > 2, the submanifolds of V x images of (y, n, r) ∈ U i,x , N k=2 n k = 1 and (y, n, r) ∈ U i,x , N k=2 n k = 0
by φ 1 have measure 0, so we can exclude them. On the subset

(y, n, r) ∈ U i,x , 0 < N k=2 n k < 1 ,
the function h 1 is smooth and on its image by φ 1 ,

(2.26)

grad x ′ h 1 • (φ 1 | Ui,x ) -1 = -0, m i 2 (x ′ ), . . . , m i N (x ′ ) . Again (2.27) grad x ′ h 1 • (φ 1 | Uj,x ) -1 = -m j 1 (x ′ ), . . . , m j N (x ′
) . They are not equal, and this achieves the proof for this case by the same argument as before.

Finally we consider the case where

x ′ 1 , x ′ 2 ∈ Q 1,µ(x ′ ) with x ′ 1 = y i (x ′
) and x ′ 2 = y j (x ′ ). We follow the same line as in the previous case, but now for the definition of U j,x , W 1 is replaced by

W j 1 = {(y, n, r) ∈ V, r 2 = 0}. Again we can exclude the submanifolds of V x images of    (y, n, r) ∈ U j,x , k∈{1,...,N },k =2 n k = 1    and    (y, n, r) ∈ U j,x , k∈{1,...,N },k =2 n k = 0    by φ 1 and work on φ 1      (y, n, r) ∈ U j,x , 0 < k∈{1,...,N },k =2 n k < 1      ∩ φ 1 (y, n, r) ∈ U i,x , 0 < N k=2 n k < 1 . On this set h 1 • (φ 1 | Ui,x ) -1 and h 1 • (φ 1 | Uj,x ) -1 are smooth and
(2.28)

grad x ′ h 1 • (φ 1 | Ui,x ) -1 = -0, m i 2 (x ′ ), . . . , m i N (x ′ ) .
(2.29)

grad x ′ h 1 • (φ 1 | Uj,x ) -1 = -m j 1 (x ′ ), 0, m j 3 (x ′ ), . . . , m j N (x ′ ) .
They are not equal, and this achieves the proof. is well-defined.

Corollary 2.3. Let p ∈ [1, ∞) and X = (X 1 , . . . ,
Remark 2.5. For p = 2 and M a circle, it has been proved in [START_REF] Bhattacharya | Large sample theory of intrinsic and extrinsic sample means on manifolds (i)[END_REF] that the assumption can be weakened: the same result holds if the law has no atom.

We believe that it would be interesting to study the behaviour of the process (e p,n ) n≥1 in many situations. For instance when the law of X 1 is uniform on a compact symmetric space (even the case of the circle is highly non trivial) one would observe a recurrent but irregular and slower and slower process. Again on a compact symmetric space, when the law ν of X 1 has a finite number of pmeans due to a finite group of symmetries, one would observe an almost stationary behaviour, and at increasingly spaced times jumps between smaller and smaller neighbourhoods of the p-means of ν.

Finding the minimizers of some integrated functionals with simulated annealing

Let M be a compact Riemannian manifold. For simplicity and without loss of generality we assume that M has Lebesgue volume 1. On M consider a probability law ν with a density with respect to Lebesgue measure, also denoted by ν. Assume we are given a continuous function κ : M × M → R + , where κ(θ, y) is interpreted as some kind of cost for going from θ to y. Assume furthermore that for all y ∈ M the function θ → κ(θ, y) is smooth and that its first and second derivative in θ are uniformly bounded in (θ, y). Consider on M the functional

U : M → R + θ → M κ(θ, y)ν(dy) (3.1)
Denote by M the set of minimizers of U . The aim of this section is to find a continuous semimartingale which converges in law to M. Also we try to avoid using the gradient of U , which in many cases is difficult or impossible to compute.

For this we will use a sequence (P k ) k≥0 of independent random variables with law ν, a Poisson process N t on N with intensity γ -1 t where (3.2)

γ t = (1 + t) -1 . Define (3.3) c(U ) = 2 sup θ,y∈M inf φ∈C θ,y e(φ) ,
C θ,y denoting the set of continuous paths [0, 1] → M and for φ ∈ C θ,y , the elevation e(φ) being defined as

(3.4) e(φ) = sup 0≤t≤1 U (φ(t)) -U (θ) -U (y) + inf z∈M U (z). Let (3.5) β t = 1 k ln(1 + t), the constant k satisfying k > c(U ).
We assume that (N t ) t≥0 is independent of the sequence (P k ) k≥0 . We let (B t ) t≥0 be a Brownian motion with values in R r for some r ∈ N, independent of (N t ) t≥0 and (P k ) k≥0 , and σ a smooth section of T M ⊗ (R r ) * : for all θ ∈ M , σ(θ) is a linear map R r → T θ M . We assume that for all θ ∈ M , we have σ(θ)σ(θ) * = id T θ M . We fix θ 0 ∈ M and let Θ t be the solution started at θ 0 of the Itô equation

(3.6) dΘ t = σ(Θ t ) dB t -β t grad Θt κ(•, Y t ) dt with Y t = P Nt .
Recall that if P (Θ t ) : T θ0 M → T Θt M is the parallel transport map along (Θ t ), then (3.7)

dΘ t = P (Θ t )d • 0 P (Θ s ) -1 • dΘ s t .
Also define Θ 0 t the solution started at θ 0 of the Itô equation

(3.8) dΘ 0 t = σ(Θ 0 t ) dB t -β t M grad Θ 0 t κ(•, y) ν(y)dy dt.
Note (3.8) rewrites as (3.9) dΘ 0 t = σ(Θ 0 t ) dB tβ t grad Θ 0 t U dt, so that the same equation with fixed β instead of β t has an invariant law with density

(3.10) µ β (θ) = 1 Z β e -2βU(θ) , with Z β = M e -2βU(θ ′ ) dθ ′ .
The process Θ 0 t is an inhomogeneous diffusion with generator

(3.11) L 0 t (θ) = 1 2 ∆(θ) -β t grad θ U.
Denote by m t (θ) the density of Θ t . The process (Θ t , Y t ) is Markovian with generator L t given by

L t f (θ, y) = 1 2 ∆(θ) -β t grad θ κ(•, y) f (•, y) + γ -1 t M (f (θ, z) -f (θ, y)) ν(dz) = L 1,t f (•, y)(θ) + L 2,t f (θ, •)(y).
(3.12)

We know that for all neighbourhood N of M, N µ β (θ) dθ converges to 1 as β → ∞. So to prove that N m t (θ) dθ converges to 1 it is sufficient to prove the following proposition: Proposition 3.1. The entropy

(3.13) J t := M ln m t (θ) µ βt (θ) m t (θ) dθ converges to 0 as t → ∞.
Proof. Let us compute

dJ t dt = M dm t (θ) dt dθ - M d ln µ βt (θ) dt m t (θ) dθ + M ln m t (θ) µ βt (θ) dm t (θ) dt dθ. (3.14) 
Since for all t m t (θ) is a probability density, the first term in the right vanishes. So we get

(3.15) dJ t dt = 2β ′ t M U (θ)(m t (θ) -µ βt (θ)) dθ + M L t ln m t (θ) µ βt (θ) m t (θ) dθ
where the last term comes from Dynkin formula. For the first term in the right we have using (3.5)

2β ′ t M U (θ)(m t (θ) -µ βt (θ)) dθ ≤ 4 U ∞ |β ′ t | ≤ 4 κ ∞ k(1 + t) . (3.16)
Now we split the second term in the right of (3.15) into

M L t ln m t (θ) µ βt (θ) m t (θ) dθ = M L 0 t ln m t (θ) µ βt (θ) m t (θ) dθ + M R t (θ, y) ln m t (θ) µ βt (θ) m t (θ) dθ.
(3.17)

We have

M L 0 t ln m t (θ) µ βt (θ) m t (θ) dθ = M L 0 t m t (θ) µ βt (θ) µ βt (θ) dθ - 1 2 M ∇ ln m t (θ) µ βt (θ) µ βt (θ) dθ = -2 M ∇ m t (θ) µ βt (θ) 2 µ βt (θ) dθ ≤ -2c 2 (β t ∨ 1) -p exp (-c(U )β t ) J t (3.18)
for some c 2 > 0 and integer p > 0 by logarithmic Sobolev inequality ( [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] and [START_REF] Holley | Annealing via Sobolev inequalities[END_REF], for more details see [START_REF] Miclo | Recuit simulé sans potentiel sur une variété compacte[END_REF]). Note we used again Dynkin formula to prove the vanishing of the first term in the right of the second line.

As for the second term we have 

µ βt (θ) dθ 1/2 M R t (θ) 2 m t (θ) dθ 1/2 ≤ β 2 t M R t (θ) 2 m t (θ) dθ + M ∇ m t µ βt (θ) 2 µ βt (θ) dθ.
let us now bound M R t (θ) 2 m t (θ) dθ = M M grad θ κ(•, y)(m t (y|θ) -ν(y)) dy 2 m t (θ) dθ ≤ M K M |m t (y|θ) -ν(y)| dy 2 m t (θ) dθ ≤ 32K 2 M M ln m t (y|θ) ν(y) m t (y|θ) dy m t (θ) dθ = 32K 2 I t
where we have defined (3.20)

I t = M×M ln m t (y|θ) ν(y) m t (y, θ) dy.
We also used classical bound of total variation by entropy ( [START_REF] Holley | Annealing via Sobolev inequalities[END_REF]):

M |m t (y|θ) -ν(y)| dy ≤ 4 √ 2 M ln m t (y|θ) ν(y) m t (y|θ) dy 1/2
At this stage we proved that

(3.21) dJ t dt ≤ 4 κ ∞ k(1 + t) -c 2 (β t ∨ 1) -p exp (-c(U )β t ) J t + β 2 t 32K 2 I t .
The We also have to bound the last term in (3.24):

-L 1,t ln(m t (θ)) = -L 1,t ln m t (θ) µ βt (θ) -L 1,t ln(µ βt (θ)). (3.28) We already know that

(3.29) - M L 1,t ln m t (θ) µ βt (θ) m t (θ) dθ ≤ - dJ t dt + 4 κ ∞ β ′ t .
For the second term we have

-L 1,t ln(µ βt (θ)) = 2L 1,t U (θ) = β t ∆U (θ) + β 2 t dU, grad θ κ(•, y) ≤ K ′ (β t ∨ 1)β t (3.30) with (3.31) K ′ = sup θ,y∈M |∆ θ κ(•, y)| + K 2 .
Finally we obtain

(3.32) dI t dt ≤ 4 κ ∞ β ′ t + K ′ (β t ∨ 1)β t - dJ t dt -γ -1 t I t
together with (3.21):

(3.33) dJ t dt ≤ 4 κ ∞ k(1 + t) -c 2 (β t ∨ 1) -p exp (-c(U )β t ) J t + 2β 2 t 32K 2 I t .
At this stage we can use the end of the proof of theorem 1 in [START_REF] Miclo | Recuit simulé partiel[END_REF] to obtain that under assumptions (3.5) 

γ t = (1 + t) -1 ,
where k > c(U ), (c(U ) defined in (3.3)). Then for any neighbourhood N of M,

(3.36) lim t→∞ P [Θ t ∈ N ] = 1.
Proof. We use Proposition 3.1 together with the fact that

m t -µ βt ≤ 4 2J t and lim t→∞ µ βt (N ) = 1.

Application to location of p-means in symmetric spaces

In this section we assume that M is a compact symmetric space endowed with the canonical Riemannian metric of volume 1. Denote by ρ the Riemannian distance in M , D its diameter. We fix p ≥ 1 and consider a probability measure ν on M . We aim to find at least one element of Q p,ν by using the result of the previous section. In particular if ν has a unique p-mean e p , then we will be able to construct a process which converges in probability to e p as t → ∞.

Denote by p(s, x, y) the heat kernel on M , and for s > 0 let ν s be the probability measure with density (4.1) ν s (y) = M p(s, y, z)ν(dz), and let

κ s : M × M → R + (θ, y) → M p(s, θ, z)ρ p (z, y) dz, (4.2) 
and

U s1,s2 : M → R + θ → M κ s1 (θ, y)ν s2 (y) dy. (4.3)
Also let U = H p,ν . Clearly ν s1 and κ s2 satisfy the assumption of the previous section. Moreover, denoting by M s1,s2 the set of minimizers of U s1,s2 then as s 1 , s 2 → 0 we have M s1,s2 → Q p,ν is the sense that for any neighbourhood N of Q p,ν , we have M s1,s2 ⊂ N for all s 1 , s 2 sufficiently small. This is due to the fact that as s 1 , s 2 → 0, U s1,s2 (θ) → U (θ) uniformly in θ. Lemma 4.1. For all s 1 , s 2 > 0 we have

(4.4) U s1,s2 (θ) = U 0,s1+s2 (θ) = M ρ(θ, y)ν s1+s2 (y) dy.
Proof. Fix θ, y ∈ M , let m be the middle point of a minimal geodesic from θ to y and i m the symmetry centered at m. We have

M p(s 1 , θ, z)ρ p (z, y) dz = M p(s 1 , i m (θ), i m (z))ρ p (i m (z), i m (y)) dz = M p(s 1 , i m (θ), z ′ )ρ p (z ′ , i m (y)) dz ′ = M p(s 1 , y, z ′ )ρ p (z ′ , θ) dz ′ = M ρ p (θ, z ′ )p(s 1 , z ′ , y) dz ′
where we first used the invariance by isometry of the heat kernel and then did the change of variable z ′ = i m (z) in the integral and finally used the symmetry of the heat kernel. To finish the proof we are left to use the convolution property of the heat semigroup.

Corollary

K ′′ = sup θ,y∈M grad θ ρ(•, y) , 4.2. Defining (4.5) 
we have for all

s 1 , s 2 > 0, θ, y ∈ M , (4.6) 
grad θ κ s1 (•, y) ≤ pD p-1 K ′′ =: K and grad θ U s1,s2 ≤ K.
With all these properties we would like to find s 1 (t) ց 0 and s 2 (t) ց 0 such that the process Θ t started at θ 0 and solution to (4.7)

dΘ t = σ(Θ t ) dB t -β t grad Θt κ s1(t) (•, Y s2(t) t
) dt converges in law to e p , (N t , Y s2(t) t

) being a Poisson point process in [0, ∞) × M with intensity γ(t) -1 ν s2(t) (y) dt dy, independent of (B t ). This is the object of the next theorem in which we will take

s 1 (t) = s 2 (t) = s t = (ln(1 + t)) -1 .
So define Θ 0 t the solution started at θ 0 of the Itô equation (4.8)

dΘ 0 t = σ(Θ 0 t ) dB t -β t M
grad Θ 0 t κ st (•, y) ν st (y)dy dt. Notice that using Lemma 4.1, (4.8) rewrites as (4.9)

dΘ 0 t = σ(Θ 0 t ) dB t -β t grad Θ 0 t U 2st dt
, where U 2st := U 0,2st , so that the same equation with fixed (β, s) instead of (β t , s t ) has an invariant law with density (4.10)

µ β,s (θ) = 1 Z β,s e -2βU2s(θ) , with Z β,s = M e -2βU2s(θ ′ ) dθ ′ .
The process Θ 0 t is an inhomogeneous diffusion with generator (4.11)

L 0 t (θ) = 1 2 ∆(θ) -β t grad θ U 2st .
Denote by m t (θ) the density of Θ t . Let Y t := Y st t . The process (Θ t , Y t ) is Markovian with generator L t given by

L t f (θ, y) = 1 2 ∆(θ) -β t grad θ κ st (•, y) f (•, y) + γ -1 t M (f (θ, z) -f (θ, y)) ν st (dz) = L 1,t f (•, y)(θ) + L 2,t f (θ, •)(y).
(4.12)

We know that for all neighbourhood N of Q p,ν , N µ β,s (θ) dθ converges to 1 as β → ∞, uniformly in s sufficiently small. Again define (4.13)

J t := M ln m t (θ) µ βt,st (θ) m t (θ) dθ.
Theorem 4.3. Assume (4.14)

β t = 1 k ln(1 + t), γ t = (1 + t) -1 , s 1 (t) = s 2 (t) = s(t) = (ln(1 + t)) -1 .
where k > c(U ), (c(U ) defined in (3. For the first term in the right we have using (4.10) 

∂ t ln(µ βt,st (θ)) = -2β ′ t U 2st -
We have as for (3.18)

M L 0 t ln m t (θ) µ βt,st (θ) m t (θ) dθ = -2 M ∇ m t (θ) µ βt,st (θ) 2 µ βt,st (θ) dθ ≤ -2c 2 (β t ∨ 1) -p exp (-c(U 2st )β t ) J t (4.25)
for some c 2 > 0 and integer p > 0 by logarithmic Sobolev inequality ( [START_REF] Miclo | Recuit simulé sans potentiel sur une variété compacte[END_REF]).

The computation for the second term is similar to the one after (3.18) and we get

M R t (θ, y) ln m t (θ) µ βt,st (θ) m t (θ, y) dθdy = 2β t M µ βt,st m t (θ) d m t µ βt,st (θ), R t (θ) m t (θ) dθ with R t (θ) = - M grad θ κ st (•, y)(m t (y|θ) -ν st (y)) dy,
and again At this stage we proved that Then we bound the last term in (4.32):

M R t (θ, y) ln m t (θ) µ βt,st (θ) m t (θ) dθ ≤ β 2 t M R t (θ) 2 m t (θ) dθ + M ∇ m t µ βt,st (θ 
dJ t dt ≤ C (1 + t)k (1 + ln(1 + t)) -c 2 (β t ∨ 1) -p exp (-c(U 2st )β t ) J t + β 2 t 32K 2 I t . ( 4 
-

L 1,t ln(m t (θ)) = -L 1,t ln m t (θ) µ βt,st (θ) -L 1,t ln(µ βt,st (θ)). (4.36)
We already know by (4.17) and (4.23) that (4.37)

- M L 1,t ln m t (θ) µ βt,st (θ) m t (θ) dθ ≤ - dJ t dt + C (1 + t)k (1 + ln(1 + t)) .
For the second term we have

L 1,t ln(µ βt,st (θ)) = -2β t L 1,t U 2st (θ) = -β t ∆U 2st (θ) + 2β 2 t dU 2st , grad θ κ st (•, y) ≤ K ′ (β t ∨ 1)β t s -2 t (4.38)
for some K ′ > 0, where we used ∆U 2s = M ∆ θ ln p(2s, θ, y) + ∇ θ ln p(2s, θ, y) 2 p(2s, θ, y)ρ p (y, z) ν(dz) and standard bound for the first and second derivatives of the heat kernel ( [START_REF] Hsu | Estimates of derivatives of the heat kernel on a compact Riemannian manifold[END_REF] and [START_REF] Sheu | Some estimates of the transition density function of a nondegenerate diffusion Markov process[END_REF]).

Finally we obtain for some constants c 1 , k 1 > 0, as soon as t ≥ 2. At this stage we can use a similar computation to the end of the proof of theorem 1 in [START_REF] Miclo | Recuit simulé partiel[END_REF] to obtain that under assumptions (4.14) and (3.3) then (4.43) lim t→∞ J t = 0.

dI t dt ≤ C 0 (1 + t) + K ′ k 2 (
However we will do the calculation for completeness, and because there are some small differences. Recall U s → U uniformly as s → 0. Moreover 2s t → 0 as t → ∞, so we get lim sup t→∞ c(U 2st ) ≤ c(U ).

As a consequence, for t sufficiently large we have where ε > 0 is defined in (4.44). It is easily checked that for t sufficiently large ℓ t is positive and decreasing, and that it converges to 0 as t → ∞. Define (4.46) K t = J t + ℓ t I t .

We will prove that K t → 0 as t → ∞ and from this we will get ( (1ℓ t )c 2 (ln(1 + t)) -p (1 + t) -(1-ε) → 0 and also ℓ t k 1 (ln(1 + t)) 4 (1ℓ t )c 2 (ln(1 + t)) -p (1 + t) -(1-ε) → 0 from the fact that ℓ t ≤ c(ln(1 + t)) 2 1 + t for some c > 0.

  Defineφ : Ṽ → M N (y, n, r) → exp y (n 1 r 1 ), . . . , exp y (n N r N . (2.4)The map φ is onto. If x = (x 1 , . . . , x N ) ∈ M N , consider y ∈ M minimizing H p,µ(x) . Then among all (n, r) such that(2.5) φ(y, n, r) = x we can choose one so that for all k = 1, . . . , N the map s → exp y (sn k ) is a minimal geodesic for s ∈ [0, r k ]. For this choice we have (2.6) H p,µ(x) Now since y minimizes H p,µ(x) , from equation (2.6) at y and variation of arc length formula, we have for all u ∈ T y M φ| Wp the restriction of φ to Wp , φp is onto, on M N by (2.5) and (2.8). By Sard's theorem, the set C 1 ⊂ M N of singular values of φp has measure 0. It is closed since Wp is compact.

Replacing 2c 2

 2 by c 2 in (3.18) we can after summing get rid of the second term in the right. Defining (3.19) K = sup θ,y∈M grad θ κ(•, y) ,

( 4 .

 4 44) c(U 2st ) k ≤ 1ε for some ε > 0. Let (4.45) ℓ t = c 1 (ln(1 + t)) 2 1 + t + c 1 (ln(1 + t)) 2c 2 (ln(1 + t)) -p (1 + t) -(1-ε)

  Wp is onto on M N \C. Denote φ p = φp | Wp . Since W p has same dimension as M N and Wp is compact, every point x of M N \C has a neighbourhood

	we proved that φp | V x such that φ -1 p (V x ) = U 1,x ∪ • • • ∪ U mx,x where the U j,x are disjoint open subsets of W p and
	(2.14) is a diffeomorphism. Now since M N \C is second countable we can cover it by a φ p | Uj,x : U j,x → φ p (U j,x ) countable number of such sets V x . So to prove that the p-mean is almost everywhere
	unique it is sufficient to prove it on V x . For x ′ ∈ V x denote x ′ = (x ′ 1 , . . . , x ′ N ), and for i ∈ {1 . . . m x }, write
		(φ| Ui,x
		The set C is closed in M N and has measure 0. Letting
	(2.13)	W p = (y, n, r) ∈ Wp , ∀k = 1, . . . N, r k ∈ (0, 2L) ,

  3)). Then for any neighbourhood N of Q p,ν , the process Θ t defined in equation (4.7) satisfies

	(4.15)					lim t→∞	P [Θ t ∈ N ] = 1.
	Proof. We use Proposition 4.4 below together with the fact that
	and					m t -µ βt,st ≤ 4 2J t
						lim t→∞	µ βt,st (N ) = 1.
	Proposition 4.4. The entropy			
	(4.16)				J t =	M	ln		m t (θ) µ βt,st (θ)	m t (θ) dθ
	converges to 0 as t → ∞.				
	Proof. Let us compute as before			
	(4.17)	dJ t dt	= -	M	∂ t ln(µ βt,st (θ))m t (θ)) dθ +	M	L t ln	m t (θ) µ βt (θ)	m t (θ) dθ.

  ∂ s ln p(2s t , θ ′ , z)p(2s t , θ ′ , z)ρ p (z, y) dzν(dy) µ βt,st (θ ′ ) dθ ′ .

	see e.g. [14] and [22] where bounds of the type |∇ θ ln p(s, θ, z)| ≤ C 2 s 2 are given. Here we use	C 1 s	and |∇ 2 θ ln p(s, θ, z)| ≤
	|∂ s ln p(s, θ, z)| =	1 2	∆ θ p(s, θ, z) p(s, θ, z)	≤	dimM 2	|∇ 2 θ ln p(s, θ, z)| + |∇ θ ln p(s, θ, z)| 2 .
	So (4.18) and (4.19) yield		
	(4.20)				|∂ t ln(µ βt,st (θ))| ≤ D p 4β ′ t +	C 0 β t |s ′ t | t s 2	.
	which implies					
	(4.21)					|∂ t ln(µ βt,st (θ))| ≤ C β ′ t +	β t |s ′ t | t s 2	.
	with								
	(4.22)						C = D p (4 + C 0 ).
	Evaluating with (4.14) and integrating on M we get
	(4.23)		-	M	∂ t ln(µ βt,st (θ))m t (θ) dθ ≤	C (1 + t)k	(1 + ln(1 + t)) .
	Now we split the second term in the right of (4.17) into
	M	L t ln	m t (θ) µ βt,st (θ)	m t (θ, y) dθdy
	=	M	L 0 t ln	m t (θ) µ βt,st (θ)	m t (θ) dθ +	M	R t (θ, y) ln	m t (θ) µ βt,st (θ)	m t (θ, y) dθdy.
	2β t U 2st (θ ′ )µ βt,st (θ ′ ) dθ ′ M×M 2s ′ t ∂ s ln p(2s t , θ, z)p(2s t , θ, z)ρ p (z, y) ν(dy)dz M×M 2s ′ t (4.18) + 2β ′ t M + 2β t M
	It is known that there exists C 0 > 0 such that ∀s ∈ (0, 1] (4.19) |∂ s ln p(s, θ, z)| ≤ C 0 s 2 ,

  )

						2
						µ βt,st (θ) dθ.
	Replacing 2c 2 by c 2 in (4.25) we can after summing get rid of the second term in
	the right.					
	Here again					
		M	R t (θ) 2 m t (θ) dθ ≤ 32K 2 I t
	where we have defined					
	(4.26)	I t =	M×M	ln	m t (y|θ) ν st (y)	m

t (y, θ) dy.

  ln(1 + t) ∨ k)(ln(1 + t)) 3 -c 2 (β t ∨ 1) -p exp (-c(U 2st )β t ) J t + 2β 2 t 32K 2 I t

	(4.39)					dJ t dt	-(1 + t)I t
	together with (4.27):	
	(4.40)				
	dJ t dt (1 + ln(1 + t)) which rewrites as ≤ C (1 + t)k
	(4.41)			dI t dt	≤ k 1 (ln(1 + t)) 4 -	dJ t dt	(1 + t)I t
	and				
	(4.42)	dJ t dt	≤ c 1	ln(1 + t) 1 + t

+ (ln(1 + t)) 2 I tc 2 (ln(1 + t)) -p (1 + t) - c(U 2s t ) k J t

  (ln(1 + t)) 2 I t ℓ t c 1 (ln(1 + t)) 2 I t -(1ℓ t )c 2 (ln(1 + t)) -p (1 + t) - + ℓ t k 1 (ln(1 + t)) 4 -(1 + t)ℓ t I t .Replacing c 1 (ln(1 + t)) 2 at the end of the first line byℓ t 1 + t + c 1 (ln(1 + t)) 2c 2 (ln(1 + t)) -p (1 + t) -(1-ε) c 2 ℓ t (ln(1 + t)) -p (1 + t) -

	and this yields with (4.41) and (4.42)
	dK t dt	≤ (1 -ℓ t )c 1	ln(1 + t) 1 + t	+ c 1 c(U 2s t k	)	J t
	by the help of (4.45) we obtain		
	dK t dt	≤ c 1	ln(1 + t) 1 + t			c(U 2s t k	)	I t
					∞
						B t dt = +∞
				•		
	and					
	(4.52)				lim t→∞	A t B t	= 0.
	Condition (4.51) clearly is realized. As for condition (4.52) we easily see that
				c 1	ln(1+t) 1+t
							4.43).
	for t sufficiently large,			
	(4.47)			dK t dt	≤	dJ t dt	+ ℓ t	dI t dt

-(1ℓ t )c 2 (ln(1 + t)) -p (1 + t) - c(U 2s t ) k J t + ℓ t k 1 (ln(1 + t)) 4

and this yields using

-(1 + t) - c(U 2s t ) k ≤ -(1 + t) -(1-ε) : (4.48) dK t dt ≤ A t -B t K t with (4.49) A t = c 1 ln(1 + t) 1 + t + ℓ t k 1 ln(1 + t)) 4

and (4.50)

B t = (1ℓ t )c 2 (ln(1 + t)) -p (1 + t) -(1-ε) .

A sufficient condition for K t to converge to 0 as t → ∞ is (4.51)
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