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a  b  s  t  r  a c  t

Sugar  cane is a crop which  generates  large amounts  of biomass and  a juice rich  in high­value natural

molecules.  After  extracting  sugar  from the  juice,  the  recovering  of various  compounds  such  as organic

acids  contained in molasses could  contribute to increase  the competivity of the  sugar industry. Therefore,

according to the  biorefinery approach,  we  propose to  study the  chemical conversion  of one  of these acids,

the aconitic  acid, by esterification  reactions.  A new  series of  aconitate  esters  have been synthesized  by

combining  aconitic  acid and alcohols  from natural  origin. The effects of experimental  conditions  have

been  investigated  and  have shown that  the  type of catalysis  has a significant  effect  on the  selectivity.

Kinectics  have thus been  performed  to determine  the best conditions  to synthetize enriched composi­

tions  in  esters. Homogeneous  catalysis  generates the  highest yield  in triester.  Heterogeneous  catalysis

(macroporous  resins) is prefered for the  production  of monoesters  while catalysis assisted  by  ionic  liquid

is  adapted  to prepare mainly  diesters. Green  indicators  have been discussed  according  to the calcula­

tions  performed. The resulting  polyfunctional  esters are  totally  biosourced  molecules  and have a great

potential as  bioproducts  for different  applications.

1. Introduction

There is an ever­increasing interest for the use of renewable

resources for the production of bioproducts based on natural

ingredients. The rising crude oil price due to its rarefaction incites

to diversify the feedstocks towards renewable raw materials.

There are different purposes to replace a petroleum based product

by a biobased compound, according to the specifications of the

products:

­ a clean process of production which generates a lower environ­

mental impact such as a gain in VOC emission,

­ a low toxicity which makes them adapted to benign and green

formulations,

­ a high biodegradability which is necessary in case of contact with

the environment at their end of life,
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­ innovative properties which make them attractive for users.

So, we intended to investigate the potential of aconitic acid

(1,2,3­propentricarboxylic acid) as a raw material for the prepara­

tion of bioproducts. Aconitic acid is a  tricarboxylic acid industrially

produced by dehydration of citric acid. Aconitic acid can also be

extracted from co­products generated by sugar industry.

The up­grading of the natural aconitic acid represents an

opportunity to use an available feedstock and to increase the

competiviness of sugar industry. This approach corresponds to the

biorefinery concept which is being developed in numerous agroin­

dustry chains in order to minimise the waste and diversify the

outlets.

We propose to study the esterification of aconitic acid with nat­

ural alcohols such as isoamyl alcohol and lauryl alcohol. Isoamyl

alcohol is one of the short alcohols present in fusel oils obtained in

the pot residue after distillation of ethanol from fermented sugar.

This C5 alcohol represents between 60 and 75% of fusel oils,

according to the origin of bioethanol (beet, wheat, etc.).

Lauryl alcohol (dodecanol) is obtained from lauric acid which

is the main fatty acid present in coconut oil. It is used for the

     



          

Fig.  1. The  two  isomers  of aconitic  acid.

preparation of surface active agents for cosmetic and health care

industry.

The first objective consists in preparing esters which could have

interesting properties to replace petroleum based products which

are banned by regulations. Esters from natural organic acids are

mentioned to be potential candidates. For example, citrate esters

are used as plasticizers in formulation for plural component latex­

foam (Olang et al., 2010) or for liquid coating compositions (Jonn

et al., 2008). Glycerol esters are used as lubricant or surfactant in

formulation for cleaning applications (Gross et al., 2008) and for

engine lubricants (Patil et al., 2010; Seemeyer et al., 2008).

The second objective is to select a  synthetic route which is com­

patible with the principles of green chemistry. The improvement of

esterification methods to take into account the environmental and

sanitary aspects is still a challenge in industry.

Moreover, the study of new experimental conditions is the

opportunity to orientate the reaction towards a specific ester cate­

gory.

Aconitic acid has two forms, cis and trans (Fig. 1). In the sugar­

cane, the trans isomer which is the most stable, is the dominant

one.

Acid aconitic has thus three non­equivalent acid functions that

is to say doted of a different reactivity. In particular, two acid

functions take part to the delocalisation of the electron. Thus, the

carbonyl site which is not conjugated should be the most reactive.

Esterification reactions from aconitic acid (AA) lead to three suc­

cessive reactions to prepare monoesters, diesters and one triester

(Fig. 2).

The synthesis of aconitate esters has been previously performed

in batch or continuous stirred reactor with a  homogeneous cata­

lyst. For example, Bruins and Canapary (1956) have used sulfuric

acid to synthesize tributyl aconitate with a  high molar ratio alco­

hol:acid 12:1 at 175 ◦C. Roberts et al. (1954) have synthetised esters

of aconitic acid using p­toluenesulfonic acid with a  molar ratio 3.3:1

for 3.5 h by codistillating water with toluene with a yield of tri­

isoamyl aconitate of 85.6%. Guthrie et al. (1976) have used acid

halide to prepare methyl aconitate with a molar ratio of 65:1 for

3.5 h.

The equilibrium is usually shift continuously by adsorption on

drying agents or by codistillation with “entrainers” such as benzene

or toluene (Cockrem et al., 1993; Cox and Carruthers, 1936; Frappier

et al., 2002; Weiberg and Stimpson, 1942).

The major drawbacks of homogeneous catalyst are the final

neutralization of the homogeneous catalyst, and the extraction of

reaction products by a volatile solvent. Moreover, these conditions

require high temperatures, a heavy treatment and a large excess of

alcohol.

Therefore, heterogeneous catalysis becomes more and more

attractive for the chemical industry. For instance, zeolites and metal

oxides, acid treated clays or cation­exchange resins (Choudhary

et al., 2001; Ma et al., 1996) are used to perform clean esterifica­

tions.

Macroporous resins are mentioned as a performing catalyst for

esterification. Thus, they constitute an alternative to homogeneous

catalysts since they are non­corrosive. They can be easily removed

from the reaction mixture and can be reused after the reaction.

Petrini et al. (1988) have synthetised monomethyl aconitate

using Amberlyst 15 with a  molar ratio of 100:1 for reagents, at room

temperature for 10 h with a  yield of 80% and a  total selectivity. AG

50W­X4 resins were used by Gil et al. (2006) to prepare tributyl

aconitate with an excess of 50% of alcohol at 140 ◦C for 1.5 h, to

provide a final composition of 83% in triester.

A kinetic study was performed for the esterification of citric acid

with ethanol catalyzed by Amberlyst 15 (Kolah et al., 2006) with a

yield above 90%. Similar conditions were applied to the esterifica­

tion of succinic acid with ethanol (Kolah et al., 2008).

Room temperature ionic liquids (RTILs) called “designer sol­

vent” do not contribute to volatile organic compound emissions

thanks to their low vapor pressure. They represent an alternative

media which could be interesting for the esterification of a solid

compound, since it acts both as solvent­catalyst and can intervene

in the shift of equilibrium.

Cole et al. (2002) have reported the use of Bronsted acidic ionic

liquid as a dual solvent­catalyst in esterification reaction. Another

work by Zhu et al. (2003) has shown that the Bronsted ionic liq­

uid 1­methylimidazolium tetrafluoroborate [hmim][BF4] is also a

suitable catalyst for the esterification of carboxylic acids (C2–C11)

with a primary alcohol. Joseph et al. (2005) have shown that

[bmim][PTSA] can catalyse the synthesis of benzyl acetate in good

yield (100%). Fraga­Dubreuil et al. (2002) synthesize benzyl acetate

using [bmim][HSO4] with a yield of 95%. [mimps]3[PW12O40] was

used by Leng et al. (2009) to prepare tri­n­butyl citrate with an

excess of alcohol (1:5) at 130 ◦C  during 3 h to obtain a yield of 98%

and a selectivity of 98%.

For an esterification, the choice of RTILs must take into account

the separation between the esters and water formed during the

reaction.

According to the state of the art, few studies on the esterifica­

tion of aconitic acid were carried out and few data about yields and

selectivity are available. Most of them deal with the syntheses of

triesters at high temperature (above 140 ◦C) or in presence of sol­

Fig. 2. Esterification  of aconitic  acid.



          

vent to get an azeotropic mixture. Exchanger ion resins are cited

to be more adequate for the preparation of monoesters at room

temperature with a high excess of alcohol.

We propose to carry out the synthesis of aconitate esters with a

better control of selectivity by developing new experimental con­

ditions for cleaner processes. The emphasis was placed to compare

performances of a conventional homogeneous catalysis with two

other catalyses: heterogeneous and ionic liquid.

2. Materials and methods

2.1. Materials

Trans­aconitic acid (98%), isoamyl alcohol (98%), sulfuric acid

(95–98%), ionic liquid: 1­methylimidazolium hydrogensulfate

[mim] [HSO4] (Basionics® AC 39, BASF, ≥95%) were purchased from

Sigma–Aldrich. Amberlyst® 15 (Fluka) was used in H+ form without

modification.

2.2. Esterification procedure

Esterification reactions were performed in a batch reactor

(50 mL). For the conditions corresponding to homogeneous (H2SO4)

and heterogenous catalyses (resins), a device to remove water by

distillation was connected to the reactor. Mass percentages of cat­

alyst are expressed relative to isoamyl alcohol weight.

2.2.1. Homogeneous catalysis (method 1)

Isoamyl alcohol (172.2 mmol) and aconitic acid (28.7 mmol)

were mixed and heated under stirring until the solubilization of

the solid aconitic acid, before 2.7 wt.% of sulfuric acid was added.

The reaction was stirred at 100 ◦C during 540 min. At the end of the

reaction, 20 mL of ethyl acetate was added to the reaction medium

and the organic phase was washed four times with 10 mL of water.

The organic phase was dried with 9 g of sodium sulphate. Ethyl

acetate and isoamyl alcohol were removed in the same time by

evaporation.

2.2.2. Heterogeneous catalysis (method 2)

Isoamyl alcohol (172.2 mmol) and aconitic acid (28.7 mmol)

were mixed and heated under stirring until the solubilization of

the solid aconitic acid, before 3 wt.% of cation exchange resin H+

Amberlyst® 15 (or enzyme) was added. The reaction was stirred at

85 ◦C during 90 min. At the end of the reaction, the catalyst was

separated through filtration and washed two times with 20 mL

of ethyl acetate. Organic phase was then concentrated by solvent

evaporation.

2.2.3. Catalysis by ionic liquid (method 3)

Isoamyl alcohol (86.1 mmol) and ionic liquid (9.50 g) were

mixed and heated under stirring. When the mixture reached 100 ◦C,

aconitic acid (28.7 mmol) was added and the medium was stirred

during 540 min. At the end of the reaction, the medium was cooled

at room temperature until the formation of two distinct phases.

10 mL of ethyl acetate was added and the organic phase was sep­

arated by settling. Ionic phase was washed with 20 mL of ethyl

acetate. The organic phase was dried on sodium sulphate (6 g) and

ethyl acetate was evaporated.

2.3. Characterization

2.3.1. High­performance liquid chromatography (HPLC)

Aconitic acid and the aconitate esters were identified with

Dionex HPLC using a  reversed phase C18 column (Omnisphere,

4.6 mm × 250 mm). The mobile phase is composed of water with

0.1% H3PO4 and CH3CN (1.0 mL/min) according to the following

gradient: 50% CH3CN (t = 0–5 min) to 100% CH3CN (t = 15–20 min)

to 50% CH3CN (t =  25–30 min).

The UV detection (Hewelett­Packard 1100) was performed at

a wavelength of 210 nm. Aconitic acid and tri­isoamyl aconitate

were identified and quantified by comparing HPLC retention time

and peak area with their respective calibration standards. Mono

and diesters were identified by HPLC–MS.

The relative percentages of compounds (aconitic acid and esters)

were determined by the ratio between product peak area and the

sum of compounds peak area. Aconitic acid was quantified through

a calibration performed with a commercial standard (98%).

2.3.2. Nuclear magnetic resonance (NMR)
1H and 13C NMR spectra were collected on a Bruker Avance

300 spectrometer with a  5 mm BBFO ATMA probe. All spectra were

acquired at 298.0 K using CDCl3 or DMSO­d6 as solvent. Chemical

shifts are reported as parts per million from tetramethylsilane with

an absolute frequency 300.13 MHz.
1H and 13C NMR of trans­aconitic acid (AA) (DMSO­d6). 1H NMR:

ı 6.92 (s, 1H, C CH), and 3.95 ppm (s, 2H, CH2). 13C NMR: ı 171.76

(s, C O), 167.84 (s, C O), 167.84 (s, C O), 140.60 (s, C CH), 129.32

(s, C CH), and 33.17 ppm (s, CH2).
1H and 13C NMR of mono­isoamyl aconitate (MIA) (CDCl3).

1H NMR: ı 7.07 (m, 1H, C CH), 4.13–4.18 (m, 2H, O–CH2),

3.95 (m, 2H, CH2), 1.71–1.62 (m, 1H, CH2–CH–), 1.57–1.46 (m,

2H, CH2–CH–), and 0.95–0.90 ppm (m, 6H, CH3). 13C  NMR: ı

170.87–170.38 (d, C O), 169.80–169.58 (d, C O), 165.19 (d,

C O), 141.99–140.95–138.93 (t, C CH), 131.04–130.07 (t, C CH),

64.08–63.96 (d, CH2–O), 37.11 (s, O C–CH2), 33.07–32.86 (m, CH2),

24.95–24.65 (m, CH) and 22.55–22.37 ppm (m, CH3).
1H and 13C  NMR of di­isoamyl aconitate (DIA) (CDCl3). 1H NMR:

ı 7.04–6.96 (d, 1H, C  CH), 4.28–4.10 (m, 4H, O–CH2), 3.95–3.94

(d, 2H, CH2), 1.71–1.69 (m, 2H, CH2–CH–), 1.60–1.50 (m, 4H,

CH2–CH–), and 0.95–0.90 ppm (t, 12H, CH3). 13C NMR: ı 170.82

(s, C O), 169.92 (d, C  O), 165.17 (d, C O), 141.99–138.95 (d,

C CH), 130.97–128.22 (d, C CH), 64.80–63.91 (d, CH2–O), 37.14

(s, O C–CH2), 33.34–32.85 (d, CH2), 25.02 (s, CH) and 22.39 ppm

(d, CH3).
1H and 13C  NMR of tri­isoamyl aconitate (TIA) (CDCl3). 1H NMR:

ı 6.92 (s, 1H, C  CH), 4.28–4.10 (m, 6H, O–CH2), 3.96 (s, 2H, CH2),

1.72–1.62 (m, 3H, CH2–CH–), 1.60–1.50 (m, 6H, CH2–CH–), and

0.95–0.90 ppm (t, 18H, CH3). 13C NMR: ı  169.89 (s, C O), 166.06

(s, C O), 165.43 (s, C O), 139.98 (s, C CH), 129.06 (s, C CH),

64.55–63.71 (d, CH2–O), 37.15 (s, O C–CH2), 33.15 (s, CH2), 25.02

(d, CH) and 22.40 ppm (d, CH3).

3. Results and discussion

Three catalyses conditions have been selected: homogeneous

catalyse (H2SO4) as the standard conditions, Amberlyst 15 as a

cation exchanger and 1­methylimidazolium hydrogensulfate as an

ionic liquid (Fig. 3).

With macroporous resins, the minimum alcohol/aconitic acid

ratio which was possible to use is equal to 6. The liquid phase

constituted by the alcohol must cover the solid phase (resin).

The amount of ionic liquid was determined as the minimum

volume to ensure the solubilization of the aconitic acid. With ionic

liquid, the starting medium was homogeneous and became bipha­

sic during the formation of esters.

Fig. 3. 1­Methylimidazolium  hydrogensulfate.



          

Fig.  4. Charges  on  the  atoms (NBO population  analysis).  A: aconitic  acid;  B:  isoamyl

alcohol.

The effects of several experimental parameters have been stud­

ied in order to optimize the conversion of aconitic acid and to enrich

the medium with one of the esters.

3.1. Quantum calculations

We have performed quantum calculations to investigate the

reactivity of aconitic acid and isoamyl alcohol. We have first looked

for the most stable conformations of both cis and trans isomers. The

structures were optimised at the B3LYP/pVTZ and MP2/pVTZ level

of theory using the Gaussian03 package (Frisch et al., 2004).

The trans isomer is more stable of 2.6 kcal/mol (MP2/pVTZ) than

the cis isomer and is thus thermodynamically favoured. This is

in agreement with the isomerisation of the cis to the trans iso­

mer observed experimentally. The bond lengths are similar for

the two cis and trans isomers. We estimated a molar volume of

120.5 cm3/mol for the trans isomer, with an average radius of 4.49 Å

and a molar volume of 106.0 cm3/mol for the cis isomer, with an

average radius of 4.33 Å.

In order to calculate the charges on the atoms for the aconitic

acid and the isoamyl alcohol, we performed a NBO and Mulliken

population analysis. The results are presented in Fig. 4.

The first step of the reaction of esterification is a  protonation of

the oxygen atom of the carbonyl function of the aconitic acid. It is

followed by a nucleophilic addition of the alcohol on the carbon of

the carbonyl function. The calculated charges on the three oxygen

atoms of the aconitic acid molecule are similar and should exhibit

a similar reactivity.

The calculated charges on the C atoms (Fig. 5) of the carbonyl

functions show that C6 has a slightly more positive charge. This

difference may explain the preferential reactivity of this site for the

addition of the alcohol molecule. This data is in agreement with the

experimental part since we have observed that the chemical shift

Fig. 5. Trans­aconitic  acid.

of C6 on aconitic acid (172 ppm) has moved after esterification. The

mono­isoamyl aconitate thus presents a chemical shift at 170 ppm.

The calculated charges on ethylenic carbon, C2 and C3 atoms

show that C2 has a  higher electronic density, meaning that in 13C

NMR, C3 is more unshielded than C2. It is thus possible to determine

the following chemical shifts: ıC2 = 129 ppm and ıC3 = 140 ppm.

3.2. Effect of temperature

The effect of temperature from 85 to 120 ◦C on the esterifica­

tion of aconitic acid with isoamyl alcohol was studied. Results are

presented in Table 1. An increasing temperature does not improve

the conversion of aconitic acid but acts positively on the yield of

triester.

Whatever the catalyst, the proportion of triester in the medium

is thus increased with temperature. We can note that heteroge­

neous catalysis is very sensitive to temperature since an increase

from 85 ◦C to 100 ◦C, is enough to enhance the percentage of triester

from 6 to 46%.

The diesters contents depend on the relative conversion rates of

monoester into diesters and of diesters into the triester.

The temperature conditions which lead to the highest contents

of triester (66%), diesters (59%) and monoesters (54%) will be kept

for the following studies.

3.3. Effect of catalyst loading

The effects of the catalyst loading are presented in Table 2. For

homogeneous catalysis, the catalyst loading varies from 1.7 to 3.7%

wt and for heterogeneous catalysis between 3 and 7 wt.%.

It appears that catalyst loading has few effects on the conversion

of aconitic acid. But, the yield of triester increases with catalyst

loading for homogeneous catalysis leading to an enriched medium

in triester. Moreover, it is not useful to increase the loading above

3% in heterogeneous catalyst to prepare monoesters.

We observe that the yields of diesters and triester are better

when the ionic liquid is used as a  cosolvent. In the latter case,

the ionic liquid brings 12.5 times more milli­equivalents H+ than

Table  1

Influence of  temperature.

Catalysis  T (◦C)  Acid  conversion (%)  Yield  of triester  (%)* Relative  percentage  of  esters  (%)

Monoesters  Diesters Triester

85  88.4  34.0  10  50  40

Homogeneousa 100  91.2  59.1  4  30  66

120 87.3  65.2  3  26  71

85  86.1  6.9  54  40  6

Heterogeneousb 100  86.6  43.3  8  46  46

120  86.3  56.5  5  41  54

85  88.1  7.4  38  52  10

Ionic  liquidc 100 87.6  19.7  15  59  26

120 89.3  34.1  5  51  44

Reaction  conditions:  5  h, amolar  ratio  isoamyl alcohol/aconitic  acid,  6:1, catalyst loading,  2.7  wt.%; bmolar  ratio  isoamyl  alcohol/aconitic acid,  6:1,  catalyst loading,  5  wt.%;
cmolar  ratio  isoamyl alcohol/aconitic  acid,  3:1, ionic  liquid  as co­solvent.

* Yield  of  triester  has  been determined  by HPLC calibration.



          

Table  2

Influence  of catalyst  loading.

Catalysis  Catalyst  loading  (wt.%) Acid  conversion  (%)  Yield of  triester  (%) Relative  percentage  of esters (%)

Monoesters  Diesters  Triester

1.7  90.3  47.1  6  41  53

Homogeneousa 2.7  91.2  59.1  4  30 66

3.7  89.5  64.5  3  27  70

3 87.0  3.7  59 36  5

Heterogeneousb 5  86.1  6.9  54  40 6

7  88.5  5.3  53  40 7

Ionic  liquidc 5  84.6  11.1  35  51  14
d Cosolvent  87.6  19.7  15  59  26

Reaction  conditions:  5  h, amolar  ratio  isoamyl alcohol/aconitic  acid 6:1,  100 ◦C; bmolar  ratio  6:1,  85 ◦C; cmolar  ratio  6:1, 100 ◦C; dmolar  ratio  3:1, 100 ◦C.

it does in catalytic conditions, which enhances the conversion of

monoesters into diesters and into triester.

In the absence of device to remove water, the use of a hydrophilic

ionic liquid seems efficient to trap water and to shift the equilib­

rium. Furthermore, as the solubilization of aconitic acid is ensured

by ionic liquid, it is possible to reduce the excess of alcohol to the

ratio 3:1.

Eventually, for homogeneous catalysis, the conditions allowing

to minimise the amount of acidic effluents and to get an enriched

media in triester corresponds to a  catalyst loading equal to 2.7%.

For heterogeneous catalysis, we observed that 3% of catalyst

loading is enough to get an enriched medium in monoesters.

3.4. Kinetic studies

3.4.1. Free catalytic esterification

The reaction of aconitic acid with isoamyl alcohol was tested

under free catalyst under the standard, 100 ◦C and a molar ratio

“isoamyl alcohol:aconitic acid” of 6:1.

Fig. 6 represents the relative percentage of compounds dur­

ing the reaction, corresponding to the self­catalysis capacity of the

reaction.

Spontaneously, the reaction of esterification generates the for­

mation of monoesters which are converted progressively into

diesters and in more limited proportions into triester.

This experiment confirms that monoesters and then diesters are

intermediates for the synthesis of the final triester.

Finally, the contribution of self­catalysis must be considered

especially for low catalyst loadings under high temperatures.

Fig. 6. Self­catalyzed  esterification  of  aconitic acid:  molar  ratio  isoamyl  alco­

hol/aconitic  acid,  6:1,  100 ◦C  (�: AA;  N: MIA; �: DIA;  ×:  TIA;  ©: conversion).

3.4.2. Kinetic profiles according to catalyst

The preliminary tests allowed to define the experimental con­

ditions summarized in Table 3 to perform the kinetic studies.

Figs. 7–9 show the plots of the conversion of aconitic acid as

limiting reactant. The relative percentages in the reaction media

(aconitic acid, monoester MIA, diester DIA and triester TIA) are also

represented.

It was found that the use of sulphuric acid leads to the maximum

conversion close to 100% before 2 h.

The cation­exchange resin also provides a  high conversion but

with a slower kinetic: almost 100% of aconitic acid is converted

after 4 h.

With the ionic liquid, a lower conversion close to 70% is

observed, that is still acceptable.

We can note that the type of catalyst has an influence on the

selectivity of reaction since the compositions of esters are differ­

ent according to the conditions. Table 4 indicates the major esters

present in the final reaction media; homogeneous catalyst mainly

provides the triester whereas heterogeneous catalyst orientates the

reaction towards the production of monoesters and diesters. The

ionic liquid rather favours the formation of diesters.

As it is not possible to get a total selectivity for the monoesters

and the diesters, we thought that it could be interesting to pre­

pare compositions enriched with the desired ester. We have thus

selected specific times of reaction corresponding to the highest con­

tent in esters (Table 4). Unreacted aconitic acid of conditions 2* and

3, was removed by extraction with water.

It is thus possible to prepare five enriched compositions with

one of the esters. Methods 1 and 2 improved performances that

were mentioned in  previous works as we got almost complete

conversion of acid and higher ester contents.

Moreover, the production of these mixtures avoids an expen­

sive step to separate esters and their resulting properties may be

adapted to some applications.

3.4.3. Effect of the hydrocarbon chain length

The previous conditions have been adapted to the synthesis of

aconitate esters from dodecyl alcohol. Experimental conditions and

results are presented in Table 5.

Dodecyl alcohol presents a good reactivity towards aconitic acid,

leading to a high conversion of the acid into triester, under homo­

geneous catalyst (method 1′).

Table  3

Conditions  for  kinetic  reaction.

Methods  Catalysis T  (◦C)  Catalyst

loading (wt.%)

Molar  ratio  isoamyl

alcohol:aconitic  acid

1 Homogeneous 100 2.7 6:1

2  Heterogeneous  85  3  6:1

3 Ionic  liquid 100 Cosolvent 3:1



          

Table  4

Composition of  esters  in selected  media.

Methods  Catalysis Selected  time (min) Percentage  of the major  ester  (%) Acid  conversion  (%)

1a

Homogeneous
40 Diesters  (57)  98

1 540 Triester  (79) 99

2a

Heterogeneous
90 Monoesters  (67) 73

2  540 Diesters  (59)  98

3 Ionic  liquid 540 Diesters  (69)  64

a Derived  from  methods  1  or 2  by  modifying  the reaction time.

Fig.  7. Esterification  of aconitic acid catalyzed  by  sulfuric  acid,  according  to  method

1  (�:  AA;  N:  MIA; �: DIA;  ×:  TIA; ©:  conversion).

Fig.  8. Esterification  of  aconitic acid catalyzed  by  ion­exchange  resin, according  to

method  2  (�:  AA;  N: MIA;  �:  DIA; ×:  TIA;  ©: conversion).

For heterogeneous conditions, the conversion of aconitic acid is

lower with dodecyl alcohol compared to isoamyl alcohol (methods

2 and 2′). This result can be explained by the limiting effect due to

the more restricted accessibility of the catalytic sites by the long

chain alcohol and to a lower alcohol:acid ratio.

Fig.  9. Esterification  of aconitic  acid  with  ionic  liquid, according  to  method 3  (�: AA;

N:  MIA;  �: DIA;  ×:  TIA;  ©:  conversion).

Therefore, the chain length effect is mainly observed in the pres­

ence of macroporous catalysis.

Moreover, the results confirm that macroporous catalytic sites

also limit the conversion of monoesters and diesters into triester. In

fact, macroporous resins represent efficient conditions to prepare

preferentially monoesters and diesters with both alcohols.

The compositions in monoesters/diesters obtained with meth­

ods 2 and 2′ show that the temperature is a significant parameter to

enhance the conversion of monoester into diester, as it was noted

with Table 1.

Finally, heterogeneous catalysis offers performing conditions to

reach a good selectivity towards mono/diesters but also let the

possibility to obtain composition rich in triester by acting on the

temperature.

3.5. Environmental factors

A convenient tool is proposed by Eissen and Metzger to compare

alternative chemical syntheses regarding their potential environ­

mental impact. The EATOS (Environmental Assessment Tool for

Organic Synthesis) procedure (Eissen and Hungerbühler, 2003;

Eissen and Metzger, 2002) allows to calculate environmental per­

formances metrics when the systematic design of more sustainable

processes is undertaken on a laboratory scale. Metrics which are

considered are the following ones:

Table  5

Comparison between  the  reactivity  of isoamyl alcohol  and dodecyl  alcohol (for  5  h).

Methods  Catalysis  Percentage  of the major  ester (%) Aconitic

conversion  (%)

Temperature  (◦C)  Catalyst

loading (%)

Molar ratio

alcohol:acid

1
Homogenous

Tri­isoamyl  aconitate (66)  91 100 2.7  6:1

1′ Tridodecyl  aconitate  (75) 96 100 2.7  3:1

2
Heterogeneous

Mono­/di­isoamyl  aconitate  (59/36) 87 85 3  6:1

2′ Mono­/di­dodecyl  aconitate  (36/56)  49 100 3  2:1



          

Fig.  10.  Preparation  of tri­isoamyl  aconitate.

­ The mass index, S−1, which is the mass of all raw materials [kg]

used for the synthesis, per mass unit of the purified product (raw

materials, solvents, catalysts, auxiliaries, etc.).

­ The environmental factor, E, which represents the mass of wastes

[kg] per mass unit of the product.

For the determination of E and S−1,  the following materials have

been integrated for the calculation of the amount of wastes:

­ The non­reactant alcohol and acid according to the yield;

­ The co­products such as water and other esters;

­ The homogeneous catalyst (H2SO4);

­ The amount of water necessary to remove the homogeneous cat­

alyst;

­ The amount of sodium sulphate to dry organic layer;

­ A quarter of the macroporous resin and ionic liquid weight, since

the tests have shown that they could be used four times without

significant loss of performances;

­ The extraction solvent.

These hypotheses allowed to compare the different routes to

obtain the targeted product.

Calculations were carried out with two different purposes:

­ Comparison of different syntheses of the triester;

­ Comparison of syntheses for three different enriched media.

3.5.1. Calculation of E­factor and S−1 for syntheses of triester

The calculations deal with the synthesis of tri­isoamyl aconitate

according to the methods I,  II and III which have been adapted from

methods 1, 2 and 3 (Fig. 10 and Table 6).

Fig. 11 shows a quantitative assessment of methods I,  II and III.

The protocol II is the most effective procedure with regard to its

mass efficiency (S−1 = 10.3 kg kg−1), and to its environmental factor

(E = 9.3 kg kg−1). The effectiveness of method II is due to an easy

treatment step (recovering of catalyst, low amount of auxillaries,

no sewage). Moreover, we know that the yield of triester can still

be improved by rising the temperature.

We can confirm that the weak point of the method I is the pro­

duction of sewage. Method III is penalized by several factors: the

lower conversion in triester, the use of an extraction solvent and

the amount of ionic liquid.

Table  6

Data  used  for  the  calculation  of green  units  for the syntheses  of  tri­isoamyl  aconitate

for  a reaction  time  of 300 min.

Conditions  Methods

I II  III

Temperature  100 120 120

Catalyst  loading  (%) 3.7 5  Cosolvent

Acid  conversion  (%)  89.5  86.3  89.3

Yield  of  triester  (%) 64.5 56.5  34.1

Fig. 11. Calculation  of mass index  S−1 and environmental factor  E (software EATOS)

for  the tri­isoamyl  aconitate  synthesis  –  methods  I  (H2SO4), II  (Amberlyst  15)  and

III  (Ionic  liquid).

3.5.2. Calculation of E and S−1 for synthesis of enriched media

The calculations concern the syntheses of the three enriched

media, with the conditions presented in Table 7.

Fig. 12 shows the comparison of mass index S−1 and E­factor for

the methods 1, 2 and 3.

The production of monoester with method 2 leads to the lowest

mass efficiency (S−1 = 18.5 kg kg−1) and the lowest environmental

factor (E = 17.5 kg kg−1) due to the advantages described for hetero­

geneous catalyst.

For method 3, we can thus identify two limiting factors, the yield

and the amount of auxiliaries. By modifying the characteristics of

ionic liquid, we might affect positively the mass efficiency and the

environmental factor. The present results show the use of an ionic

liquid can be justified when a specific selectivity is targeted.

Table  7

Data  used  for the calculation  of green  units  for  the synthesis  of enriched  media

according  to the  described  protocols.

Conditions Methods

1  2  3

Temperature  (◦C)  100 85  100

Catalyst  loading  (%) 2.7  3  Cosolvent

Reaction  time  (min) 540  90 540

Acid  conversion  (%)  99  73  64

Yield  of major ester  (%) Triester  (78)  Monoesters  (49)  Diesters  (44)



          

Fig.  12.  Calculations  of mass  index  S−1 and  environmental factor  E  (software  EATOS)

for  the  preparation  of  enriched  compositions  –  methods 1  (H2SO4), 2  (Amberlyst  15)

and  3  (Ionic  liquid).

These data should be taken into consideration when a scale­up

is planed.

4. Conclusion

This study shows the potentialities of a co­product of the sug­

arcane industry as raw material to prepare several esters.

New conditions have been studied to synthesize aconitic esters

in a stirred batch reactor and to orientate the reaction towards an

ester category (monoesters, diesters or triester).

Quantum calculations have given insight in the reactivity of

the three sites and have confirmed the site which is preferentially

esterified.

In the experimental part, the effects of parameters have been

studied to prepare enriched compositions avoiding a further step

of purification and leading to improved yields for specific esters.

Moreover, the preparation of esters with different hydrocarbon

chains allows to modulate the physico­chemical properties of the

molecules to meet several specifications.

For the production of triesters with long or short chains, homo­

geneous catalysis leads to the best selectivity, but heterogeneous

catalyst represents the best conditions to meet green chemistry

criteria.

For the production of enriched media, high conversions are

obtained to produce compositions with major esters contents

above 65%. These enriched compositions have variable hydrophilic

properties according to the number of esterified sites, which mod­

ifies the polar head.

Among the three enriched compositions, the calculated green

indicators (mass index and environmental factor) were the best

for the heterogeneous conditions. Despite the lack of benefits con­

cerning green indicators, conditions assisted by an ionic liquid are

performing to shift the equilibrium without the cost of a distillation.

The features of resin macroporous sites foster the production

of monoesters and diesters, by limiting the conversion of diesters

into triester. In this case, we have shown that an increasing triester

proportion can be reached by acting on temperature.

Finally, macroporous resins still remain the best way to improve

conventional methods into more ecofriendly routes. Moreover,

such conditions offer the opportunity to act on the selectivity and

thus to prepare new bioproducts of great interest.
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