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Two-way automata and regular languages of overlapping tiles

We consider classes of languages of overlapping tiles, i.e., subsets of the McAlister monoid: the class REG of languages definable by Kleene's regular expressions, the class MSO of languages definable by formulas of monadic second-order logic, and the class REC of languages definable by morphisms into finite monoids. By extending the semantics of finite-state two-way automata (possibly with pebbles) from languages of words to languages of tiles, we obtain a complete characterization of the classes REG and MSO.

In particular, we show that adding pebbles strictly increases the expressive power of twoway automata recognizing languages of tiles, but the hierarchy induced by the number of allowed pebbles collapses to level one.

Introduction

Background

One-dimensional overlapping tiles already appear in the 70's in inverse semigroup theory [START_REF] Mcalister | Inverse semigroups which are separated over a subsemigroups[END_REF]. As elements of particular quotients of free inverse monoids [START_REF] Petrich | Inverse semigroups[END_REF][START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF], known as monoids of McAlister [START_REF] Lawson | McAlister semigroups[END_REF][START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF], the tiles came to the forefront again in the late 90's in mathematical physics, associated with tilings of the Euclidian space [START_REF] Kellendonk | The local structure of tilings and their integer group of coinvariants[END_REF][START_REF] Kellendonk | Tiling semigroups[END_REF][START_REF] Kellendonk | Universal groups for point-sets and tilings[END_REF][START_REF] Almeida | Algebraic Aspects of Tiling Semigroups[END_REF]. Although implicitly, overlapping tiles also appear in theoretical computer science in the studies of zigzag codes and the underlying zigzag covers of finite, infinite or bi-infinite words [START_REF] Anselmo | Automates et code zigzag[END_REF][START_REF] Van | On coding morphisms for zigzag codes[END_REF][START_REF] Lesaëc | A more efficient notion of zigzag stability[END_REF][START_REF] Almeida | Algebraic Aspects of Tiling Semigroups[END_REF]. Oddly enough, our interest in languages of positive tiles came from application perspectives in computational music theory [START_REF] Janin | Vers une modélisation combinatoire des structures rythmiques simples de la musique[END_REF]. In particular, tiles and continuous variants may be used to describe advanced synchronization mechanisms between musical patterns [START_REF] Berthaut | Advanced synchronization of audio or symbolic musical patterns: an algebraic approach[END_REF][START_REF] Janin | Multi-scale design of interactive music systems : the libTuiles experiment[END_REF]; an approach that leads to new programming features for music system design [START_REF] Janin | The T-calculus : towards a structured programming of (musical) time and space[END_REF][START_REF] Hudak | Tiled polymorphic temporal media[END_REF].

In software engineering, overlapping tiles may be seen as the possible concrete values of string objects extended with history-preserving memory capacities. This point of view turns out to provide a simple presentation of many properties satisfied by one-dimensional overlapping tiles; it also conveys most of the intuition that underlies the work presented here.

Let us thus assume that we are software developers trying to enrich the class of string objects with some history-preserving capacity.

More precisely, for every string object s, let s • a denote the result of adding some character a to the right of the string s, and let s • ā denote the result of removing a from the right of s. With a standard string, s • a • ā = s, and thus s • a • ā • b = s • b for any character b. A history-preserving mechanism is a way to prevent a character to appear in s if a different character has previously occurred in the same position. Thus our extended strings should satisfy the property

s • a • ā • b = s • b if a = b undefined otherwise
as if adding and removing the character a to the right of the string s create some footprint of that character in such a way that no other character can ever be put later on that position. One-dimensional overlapping tiles describe the effects of the possible sequences of actions (additions or removals of characters) on these extended string objects; and thus the possible values of the objects themselves (as the effects of sequences of actions on the empty string). For instance, the effect of the sequence āabcbaā b is described by the tile a bc ba where bc is the string to be added, while the left part a and the right part ba of the tile model the footprints left by the other actions. The composition of actions yields a monoid structure of tiles that turns out to be the inverse monoid of McAlister [START_REF] Mcalister | Inverse semigroups which are separated over a subsemigroups[END_REF][START_REF] Lawson | McAlister semigroups[END_REF].

These examples show that the model of one-dimensional overlapping tiles is a versatile model that can be used in many fields. However, the associated language theory can still be further developed. Indeed, the classical tools of formal language theory somehow fail to apply to inverse monoids [START_REF] Margolis | Languages and inverse semigroups[END_REF][START_REF] Silva | On free inverse monoid languages[END_REF]. To be more precise, the expressive power induced by the usual formal language theoretic tools, namely, the automata induced by morphisms into finite monoids, collapses when applied to inverse monoids.

In this paper, we aim at developing a computer science-flavored formal language theory for overlapping tiles. Since adding or removing characters of extended string objects can be interpreted as movements of the reading head of a two-way automaton [START_REF] Rabin | Finite automata and their decision problems[END_REF] on a classical string (adding a character corresponds to reading it from left to right, whereas removing it corresponds to reading it from right to left), finite-state two-way automata appear as natural and expressive candidates to define and study classes of tile languages.

Incidentally, following a habit quite developed in formal language theory, strings will be called words and characters will be called letters throughout the remainder of the text.

Outline

The monoid of one-dimensional overlapping tiles is presented in Section 2 (Theorem 2.8). A special emphasis is put on the way non-zero tiles are generated from linear walks (Theorem 2.31), thus rephrasing, in the context of one-dimensional tiles, the notion of free inverse monoid captured by the Wagner congruence (Lemma 2.28). The link with Pécuchet's notion of bisection [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF] is specified at the end of the section (Remark 2.32).

To a specialist of inverse semigroups, most of the material presented in this section is quite straightforward. In particular, our presentation of the monoid of McAlister could be significantly simplified by defining it as a Rees' quotient of the free inverse monoid, following the classical Scheiblich-Munn presentation of free inverse monoids [START_REF] Scheiblich | Free inverse semigroups[END_REF][START_REF] Munn | Free inverse semigroups[END_REF]. We prefer a direct, standalone presentation to address a more general public, providing an alternative to Lawson's presentation [START_REF] Lawson | McAlister semigroups[END_REF] (see also [START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF], chap. 9, for a relationship with various other classes of semigroups).

From Section 3 we study languages of tiles, starting with the class REG of languages definable by regular expressions.

The class REC of languages of tiles recognizable by finite monoids is shown to be strictly included in the class REG (Theorem 3.11 and Corollary 3.14). Still, a nontrivial example of a language in REC is given (Example 3.16), illustrating the complete characterization of the class REC given in [START_REF] Janin | Walking automata in the free inverse monoid[END_REF]. Further details on languages recognized by inverse monoids can be found in [START_REF] Margolis | Languages and inverse semigroups[END_REF][START_REF] Silva | On free inverse monoid languages[END_REF].

Then we define the class 2WA of languages accepted by two-way tile automata. Quite closely related with Pécuchet's study [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF], two-way tile automata are standard two-way automata over words with a semantics expressed in terms of tiles. Tiles are simply seen as the results of partial runs: runs that may start and stop anywhere on the input words. We show that the class REG of regular languages of tiles (definable by Kleene expressions) corresponds to the class 2WA of languages of tiles recognized by finite-state two-way tile automata (Theorem 3.21).

Beyond regular languages, the class MSO of languages definable in Monadic Second-Order Logic is studied in Section 4. This class is shown to be both robust (Theorem 4.3) and simple (Theorem 4.7). It is strictly larger than REG (see Corollary 4.4).

As a consequence of robustness, it is shown that MSO contains the class k-REG of k-regular languages, i.e., tile languages that can be defined by Kleene expressions extended with the idempotent projection operator, with a nesting depth at most k. As a consequence of simplicity, it is shown (Theorem 4.12) that the class MSO equals the class 1-REG (extended regular expressions with no nested projection operators).

We also prove that MSO is the class of languages recognized by finite-state two-way manypebble automata. A simple correspondence between k-regular languages (k-REG) and k-pebble automata (k-P2WA) is shown to hold (Theorem 4.18). Thus one-pebble automata capture the whole class of many-pebble automata (Theorems 4.12 and 4.18). Indeed, the equality 1 -P2WA = MSO was first proved in Theorem 3.3 of [START_REF] Engelfriet | Trips on trees[END_REF], where a tile language is called a trip, and an MSOdefinable tile language is called a regular trip.

Shepherdson's theorem and analogous known results for pebble automata are obtained as immediate corollaries (Corollaries 4.9 and 4.21).

To summarize, we prove that for every integer k ≥ 1:

REC REG = 2WA 1-REG = 1 -P2WA = k-REG = k-P2WA = MSO
All these results support the long-standing intuition [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF][START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF][START_REF] Kunc | Describing periodicity in two-way deterministic finite automata using transformation semigroups[END_REF] that the theory of inverse monoids is a powerful tool in the study of two-way automata. Indeed, all proofs presented here are quite simple.

Although the expressiveness hierarchy induced by k-regular expressions (resp. k-pebble automata) collapses to its first level, the notion of k-regular expressions (resp. k-pebble automata) is still worth being studied since, following [START_REF] Globerman | Complexity results for two-way and multi-pebble automata and their logics[END_REF], it is conjectured that k-regular expressions induces a succinctness hierarchy (Conjecture 4.13).

Related works

Two-way automata have been the subject of many studies. This can be explained by their intriguing combinatorial complexity.

For instance, Rabin-Scott-Shepherdson's result [START_REF] Rabin | Finite automata and their decision problems[END_REF][START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF] that two-way automata are as expressive on words as one-way automata was long considered difficult [START_REF] Vardi | A note on the reduction of two-way automata to one-way automata[END_REF]. More precisely, the capacity of two-way automata to read each letter an unbounded number of times makes the structure of two-way automata runs difficult to analyze. This is particularly clear in Pécuchet and Birget's algebraic studies of two-way automata [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF][START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF], in which two-way runs give rise to a rich combinatorial structure. A similar complexity is illustrated by Globerman and Harel's result [START_REF] Globerman | Complexity results for two-way and multi-pebble automata and their logics[END_REF] that the number of allowed pebbles in two-way automata induces a "succinctness" hierarchy: each additional pebble provides inherent exponential power.

Still, gaining a full understanding of two-way automata, with or without pebbles, remains a challenging topic (see, e.g., [START_REF] Geffert | Translation from classical two-way automata to pebble two-way automata[END_REF]). The classical theory of (one-way) finite-state automata has benefited from a rich algebraic language theory that led, and still leads, to many decision algorithms [START_REF] Pin | Syntactic semigroups[END_REF]. But, as already observed by Birget [START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF], there is no similar algebraic characterization of two-way automata that does not amount to reducing two-way automata to one-way automata.

Further studies on languages of overlapping tiles [START_REF] Janin | Quasi-recognizable vs MSO definable languages of one-dimensional overlapping tiles[END_REF][START_REF] Janin | Overlaping tile automata[END_REF], infinite tiles [START_REF] Dicky | Embedding finite and infinite words into overlapping tiles[END_REF], or on languages of birooted trees [START_REF] Janin | Walking automata in the free inverse monoid[END_REF][START_REF] Janin | Algebras, automata and logic for languages of labeled birooted trees[END_REF][START_REF] Janin | On languages of labeled birooted trees: Algebras, automata and logic[END_REF], show that some progress can be done along Birget's long-standing open question [START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF].

Overlapping tiles

Here we give a description of monoids of one-dimensional overlapping tiles, and show that they are isomorphic to monoids of McAlister [START_REF] Lawson | McAlister semigroups[END_REF]. The link between tiles and two-way linear walks on words is formalized by an onto morphism from walks to tiles whose kernel is indeed the Wagner congruence.

Preliminaries

Given a finite alphabet A, let A * be the free monoid generated by A and let 1 be the neutral element. The concatenation of two words u and v is denoted by uv. The length of a word u is denoted by |u|.

Let ≤ p stand for the (partial) prefix order over A * , let ≤ s stand for the suffix order, and let ∨ p (resp. ∨ s ) denote the join operator for the prefix (resp. suffix) order. For all words u and v, the word u ∨ p v (resp. u ∨ s v) is the least word of which both u and v are prefixes (resp. suffixes) when it exists. The extended monoid A * ∪ {0} with 00 = 0 and 0u = u0 = 0 for every word u, with the prefix order extended to 0 by 0 ≤ p 0 and u ≤ p 0 for every word u, is a lattice; in particular, u ∨ p v = 0 whenever neither u is a prefix of v, nor v is a prefix of u. Symmetric properties hold in the suffix lattice.

Given a disjoint copy Ā = {ā : a ∈ A} of the alphabet A, let u → u be the mapping from (A ∪ Ā) * to itself inductively defined by 1 = 1, au = u ā and āu = u a for every letter a ∈ A and every word u ∈ (A ∪ Ā) * . The mapping u → u is involutive, i.e., for every word u ∈ (A ∪ Ā) * we have u = u. It is also an antimorphism of the free monoid (A ∪ Ā) * , i.e., for all words u and v ∈ (A ∪ Ā) * we have uv = v u. For all u ∈ (A ∪ Ā) * , the word u is called the syntactic inverse of u.

The free group F G(A) generated by A is the quotient of (A ∪ Ā) * by the least congruence such that, for every letter a ∈ A, aā 1 and āa 1. Let → denote the rewriting relation induced by the rules aā → 1 and āa → 1 for every a ∈ A. It is well known that every congruence class [u] ∈ F G(A) contains a unique element red(u) (the reduced form of u) irreducible with respect to →, i.e., containing no subword of either form a ā and ā a. It follows that the elements of F G(A) may be defined as words of the form red(u) with u ∈ (A ∪ Ā) * , with the group product defined by u • v = red(uv) for all u, v ∈ F G(A). Since we have u • ū = 1 = ū • u, in the free group F G(A), the syntactic inverses are the group inverses. By extension, for all words u and v in (A ∪ Ā) * , let also u • v denote the reduced form of uv. The following are well-known properties of reduction: for all u, v, w

∈ (A ∪ Ā) * , if u, v ∈ A * or u, v ∈ Ā * then u • v = uv, u • v = v • ū, (u • v) • w = u • (v • w).
We will also use the properties stated in the following lemma. Lemma 2.1. Let u, v ∈ A * and w ∈ (A ∪ Ā) * . The following properties hold:

1. u ∨ p v = 0 if and only if ū • v ∈ A * ∪ Ā * , and u ∨ s v = 0 if and only if u • v ∈ A * ∪ Ā * , 2. if u ∨ p v = 0 and w • u ∈ A * then w • (u ∨ p v) ∈ A * , and if u ∨ s v = 0 and u • w ∈ A * then (u ∨ s v) • w ∈ A * , 3. if w ∈ A * then w • (u ∨ p v) = w • u ∨ p w • v and (u ∨ s v) • w = u • w ∨ s v • w, 4. if w ∈ A * then u ∨ p v = w • (w • u ∨ p w • v) and u ∨ s v = (u • w ∨ s v • w) • w.
Proof.

1. u is a prefix of v if and only if ū • v ∈ A * ; v is a prefix of u if and only if v • u ∈ A * , or equivalently ū • v = v • u ∈ Ā * . The proof for ∨ s is symmetrical. 2. The property is trivial if u ∨ p v = u. Otherwise, v = uv for some v ∈ A * . Then w • (u ∨ p v) = w • (u • v ) = (w • u) • v ∈ A * .
The proof for ∨ s is symmetrical. 3. Well known properties of prefix, suffix and concatenation in A * . 4. Immediate consequence of the previous property.

2

For a monoid M and x, y ∈ M , we say that y is an inverse of x if xyx = x and yxy = y. A monoid M is an inverse monoid if every element of M has a unique inverse in M . The following lemma is well-known (see [START_REF] Petrich | Inverse semigroups[END_REF][START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF] 

Conversely, it can be shown that the idempotents of an inverse monoid commute. By Wagner's theorem, the free inverse monoid FIM (A) generated by A can be defined (see [START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF]) as the quotient of (A ∪ Ā) * by the Wagner congruence W , i.e., the least congruence such that uuu W u and uuvv W vvuu for all u, v ∈ (A ∪ Ā) * . We refer the interested reader to the books [START_REF] Petrich | Inverse semigroups[END_REF][START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF] for details of the inverse semigroup theory.

The inverse monoid of tiles

We define here the notion of tile and the related notion of product. The resulting structure is shown to be an inverse monoid.

Definition 2.3 (Tile). A tile over the alphabet

A is a triple of words u = (u 1 , u 2 , u 3 ) ∈ A * × (A * ∪ Ā * ) × A * such that u 1 • u 2 and u 2 • u 3 are both in A * ; i.e., if u 2 ∈ Ā * ,
then its syntactic inverse u 2 is a suffix of u 1 and a prefix of u 3 . The word u 2 is called the root path of the tile. When u 2 ∈ A * we say that u is a positive tile. When u 2 ∈ Ā * we say that u is a negative tile. Observe that a negative tile is of the form (v

1 v 2 , v 2 , v 2 v 3 ) with v 1 , v 2 , v 3 ∈ A * .
A positive tile u = (u 1 , u 2 , u 3 ) is conveniently drawn as a (linear, unidirectional and left-toright) Munn's birooted word tree [START_REF] Munn | Free inverse semigroups[END_REF] as depicted in Figure 1 where the dangling input arrow, marking the beginning of the root path and called the input root of the tile, appears to the left of the dangling output arrow, marking the end of the root path and called the output root of the tile.

• • • • u1 u2 u3 (u)
Fig. 1. A positive tile (u1, u2, u3).

• • • • v1 v2 v3 (v) Fig. 2. A negative tile (v1v2, v2, v2v3). A negative tile of the form v = (v 1 v 2 , v 2 , v 2 v 3 ) ∈ A * × Ā * × A * is
also drawn as a birooted word tree as depicted in Figure 2 where the input root now appears to the right of the output root.

The

domain of a tile u = (u 1 , u 2 , u 3 ) is u 1 • u 2 • u 3 , the reduced form of u 1 u 2 u 3 (if u is a negative tile (v 1 v 2 , v 2 , v 2 v 3 ), its domain is v 1 v 2 v 3 ).
The set of positive tiles (resp. negative tiles) is denoted by

T + (A) (resp. T -(A)).
The set of tiles is denoted by T (A). Let T 0 (A) = T (A) ∪ {0} denote the set of tiles extended with a zero tile 0.

Definition 2.4 (Product of tiles).

The product of two non-zero tiles u

= (u 1 , u 2 , u 3 ), v = (v 1 , v 2 , v 3 ) ∈ T (A) is defined as u • v = (((u 1 • u 2 ) ∨ s v 1 ) • u 2 , u 2 • v 2 , v 2 • (u 3 ∨ p (v 2 • v 3 )))
when both pattern-matching conditions (u 1 • u 2 ) ∨ s v 1 = 0 and u 3 ∨ p (v 2 • v 3 ) = 0 are satisfied, and 0 otherwise. The product is extended to the zero tile by u • 0 = 0 • u = 0 for every u ∈ T 0 (A).

Remark 2.5. When A is a single-letter alphabet, the product of two non-zero tiles is always a non-zero tile. The set T (A) of non-zero tiles is known to be the free inverse monoid of one generator. Unless explicitly stated, we assume in this paper that A contains at least two distinct letters. 

= (u 1 , u 2 , u 3 ) andv = (v 1 , v 2 , v 3 ) is depicted in Figure 3. The product u•v of a positive tile u = (u 1 , u 2 , u 3 ) and a matching negative tile v = (v 1 v 2 , v 2 , v 2 v 3 ) is depicted in Figure 4.
These figures show that, in terms of birooted words, the product u•v is obtained intuitively by identifying the output root of u with the input root of v. Taking into account this identification, the domain of u • v is the smallest word that contains the domains of u and v (which exists if only if u and v match), the input root of u • v is the input root of u, and the output root of u • v is the output root of v. These are key features to ensure that the product is associative.

Theorem 2.8. The set T 0 (A) of tiles over the alphabet A, equipped with the product of tiles, is a monoid with neutral element 1 = (1, 1, 1).

(u) • • • • u1 u2 u3 (v) • • • • v1 v2 v3 (u • v) • • • • (u1u2 ∨s v1) • u2 u2v2 v2 • (u3 ∨p v2v3) Fig. 3. The product of two positive tiles. (u) • • • • u1 u2 u3 (v) • • • • v1 v2 v3 (u • v) • • • • (u1u2 ∨s v1v2) • u2 u2 • v2 v2(u3 ∨p v3) Fig. 4.
The product of a positive tile and a negative tile.

Proof. We have to prove that the product of tiles is a sound (well-defined) associative operation.

Soundness. Let u = (u 1 , u 2 , u 3 ) and v = (v 1 , v 2 , v 3 ) be tiles such that u•v = 0. Since u 1 •u 2 , v 1 and (u 1 •u 2 )•ū 2 = u 1 are in A * , item 2 of Lemma 2.1 implies that the first component ((u 1 •u 2 )∨ s v 1 )•u 2 of the product tile u • v is in A * . Similarly, its third component v 2 • (u 3 ∨ p (v 2 • v 3 )) is also in A * .
We now prove that the second component

u 2 • v 2 is in A * ∪ Ā * .
It is obvious if the tiles u and v are both positive or both negative. Suppose

u 2 ∈ A * and v 2 ∈ Ā * . Since u 2 ≤ s u 1 u 2 and v 2 ≤ s v 1 , we have u 2 ∨ s v 2 ≤ s u 1 u 2 ∨ s v 1 = 0, hence u 2 ∨ s v 2 = 0 and thus u 2 • v 2 ∈ A * ∪ Ā * by item 1 of Lemma 2.1. The proof for u 2 ∈ Ā * and v 2 ∈ A * is similar, using u 2 ≤ p u 3 and u 3 ∨ p v 2 v 3 = 0.
Finally we prove that u • v is a tile. The reduced concatenation of its first two components, ((

u 1 • u 2 ) ∨ s v 1 ) • u 2 • u 2 • v 2 = (v 1 ∨ s (u 1 • u 2 )) • v 2 , is in A * by item 2 of Lemma 2.1 since v 1 • v 2 ∈ A * . Similarly, since u 2 • u 3 ∈ A * , the reduced concatenation of the last two components u 2 • v 2 • v 2 • (u 3 ∨ p (v 2 • v 3 )) = u 2 • (u 3 ∨ p (v 2 • v 3 )) is also in A * . Associativity. Let u = (u 1 , u 2 , u 3 ), v = (v 1 , v 2 , v 3 ) and w = (w 1 , w 2 , w 3 ) be non-zero tiles. Then (u • v) • w = (x 1 , x 2 , x 3 ) with x 1 = ((u 1 • u 2 ∨ s v 1 ) • v 2 ∨ s w 1 ) • v 2 • u 2 x 2 = u 2 • v 2 • w 2 x 3 = w 2 • (v 2 • (u 3 ∨ p v 2 • v 3 ) ∨ p w 2 • w 3 )
provided that the corresponding pattern-matching conditions are satisfied. Similarly, u • (v • w) = (y 1 , y 2 , y 3 ) with

y 1 = (u 1 • u 2 ∨ s (v 1 • v 2 ∨ s w 1 ) • v 2 ) • u 2 y 2 = u 2 • v 2 • w 2 = x 2 y 3 = w 2 • v 2 • (u 3 ∨ p v 2 • (v 3 ∨ p w 2 • w 3 ))
again provided that the pattern-matching expressions are non-zero.

To prove that (u

• v) • w = u • (v • w) we distinguish two cases.
First assume that v 2 ∈ A * . From item 3 of Lemma 2.1, it follows that

x 1 = (u 1 • u 2 • v 2 ∨ s v 1 • v 2 ∨ s w 1 ) • v 2 • u 2
with the equivalent pattern-matching condition

u 1 • u 2 • v 2 ∨ s v 1 • v 2 ∨ s w 1 = 0. From item 2 of Lemma 2.1, when v 1 •v 2 ∨ s w 1 = 0 we have (v 1 •v 2 ∨ s w 1 )•v 2 ∈ A * . Applying item 4 of Lemma 2.1 to u := u 1 •u 2 , v := (v 1 •v 2 ∨ s w 1 )•v 2 and w := v 2 , we obtain u 1 •u 2 ∨ s (v 1 •v 2 ∨ s w 1 )•v 2 = (u 1 • u 2 • v 2 ∨ s (v 1 • v 2 ∨ s w 1 ) • v 2 • v 2 ) • v 2 = (u 1 • u 2 • v 2 ∨ s v 1 • v 2 ∨ s w 1 ) • v 2 and thus y 1 = x 1 .
Similarly, it can be shown that

x 3 = y 3 = w 2 • v 2 • (u 3 ∨ p v 2 • v 3 ∨ p v 2 • w 2 • w 3 ). Assume now that v 2 ∈ Ā * .
From item 3 of Lemma 2.1 with w := v 2 , we obtain

x 1 = y 1 = (u 1 • u 2 ∨ s v 1 ∨ s w 1 • v 2 ) • u 2 x 3 = y 3 = w 2 • (v 2 • u 3 ∨ p v 3 ∨ p w 2 • w 3 )
which conclude the proof of associativity.

Neutral element. We conclude by observing that clearly (1, 1, 1) is a neutral element. 2

Observe that the set T + 0 (A) of positive tiles (resp. the set T - 0 (A) of negative tiles) extended with 0 is a submonoid of T 0 (A).

Obviously, a non-zero tile u = (u 1 , u 2 , u 3 ) is idempotent for the product, that is, it satisfies u • u = u, if and only if u 2 = 1, i.e., if and only if u is both positive and negative. Let E(A) denote the set of non-zero idempotent tiles and let E 0 (A) = E(A) ∪ {0} denote the set of all idempotent tiles. We have

E(A) = T + (A) ∩ T -(A) and E 0 (A) = T + 0 (A) ∩ T - 0 (A). Lemma 2.9. The set E 0 (A) of all idempotent tiles is a commutative submonoid of T 0 (A). Proof. Let u = (u 1 , 1, u 3 ) and v = (v 1 , 1, v 3 ) be non-zero idempotent tiles. Then u • v = 0 if and only if u 1 ∨ s v 1 = 0 and u 3 ∨ p v 3 = 0 (thus if and only if v • u = 0), in which case u • v = (u 1 ∨ s v 1 , 1, u 3 ∨ p v 3 ) = v • u. 2
Definition 2.10 (Inverse). The inverse u -1 of a non-zero tile u = (u 1 , u 2 , u 3 ) is the tile obtained by swapping its input root and its output root: thus

u -1 = (u 1 • u 2 , u 2 , u 2 • u 3 )
This definition is extended to zero by letting 0 -1 = 0.

The notion of inverse is depicted in Figure 5. The following properties are straightforward. Lemma 2.11. For all tiles u, v ∈ T 0 (A):

• • • • u1 u2 u3 (u) • • • • u1 u2 u3 (u -1 ) • • • u1 u2u3 (u • u -1 ) • • • u1u2 u3 (u -1 • u)
(u -1 ) -1 = u (u • v) -1 = v -1 • u -1 u -1 = u if and only if u is idempotent u • u -1 and u -1 • u are idempotents.
Note that the last item of this lemma is an immediate consequence of the first three items.

The next theorem shows that the monoid T 0 (A), equipped with the inverse operation, is indeed an inverse monoid.

Theorem 2.12. The monoid of tiles T 0 (A) is an inverse monoid.

Proof. It is straightforward to check that if u is a non-zero tile (u 1 , u 2 , u 3 ), then u • u -1 = (u 1 , 1, u 2 • u 3 ) and u -1 • u = (u 1 • u 2 , 1, u 3 ) (see Figure 5). It follows that u • u -1 • u = u and u -1 •u•u -1 = u -1 .
Thus every element of T 0 (A) has an inverse. By Lemma 2.11, the idempotents of T 0 (A) commute. By Lemma 2.2, T 0 (A) is an inverse monoid. 2

Words and tiles

We define here the notion of canonical morphism from (A ∪ Ā) * into T 0 (A). This leads to the study of linear walks and to the proof that the monoid of tiles is the monoid of McAlister [START_REF] Lawson | McAlister semigroups[END_REF].

Definition 2.13 (Canonical morphism). Let θ : (

A ∪ Ā) * → T 0 (A) be the monoid morphism defined by θ(a) = (1, a, 1) and θ(ā) = (a, ā, a)
for every a ∈ A.

The next lemmas, given with standalone proofs, are well-known consequences of the fact that T 0 (A) is an inverse monoid (Theorem 2.12) and that θ(a) = θ(a) -1 for every a ∈ A. Lemma 2.14. For every w ∈ (A ∪ Ā) * , we have θ(w) = θ(w) -1 .

Proof. By induction on the length of w, since for every a ∈ A ∪ Ā we have θ(a) = θ(a) -1 , and if

θ(w) = θ(w) -1 then θ(aw) = θ(w) • θ(a) = θ(w) -1 • θ(a) -1 hence θ(aw) = θ(aw) -1 . 2 
Lemma 2.15. The canonical morphism preserves the Wagner congruence, i.e., for every

w 1 , w 2 ∈ (A ∪ Ā) * , if w 1 W w 2 then θ(w 1 ) = θ(w 2 ).
Proof. This amounts to proving that θ(uuu) = θ(u) and θ(uuvv

) = θ(vvuu) for all u, v ∈ (A∪ Ā) * . Let u ∈ (A ∪ Ā) * . We have θ(uūu) = θ(u) • θ(ū) • θ(u). By Lemma 2.14 we have θ(ū) = θ(u) -1 , hence θ(uūu) = θ(u) since T 0 (A) is an inverse monoid. Let u, v ∈ (A ∪ Ā) * . By the same argument, we have θ(uū) = θ(u) • θ(u) -1 and θ(vv) = θ(v) • θ(v) -1
, hence both θ(uū) and θ(vv) are idempotents by Lemma 2.11, and thus commute. 2 Remark 2.16. For every w ∈ A * , we have θ(w) = (1, w, 1) (by induction on the length of w) and θ( w) = (1, w, 1) -1 = (w, w, w) (by Lemma 2.14). Thus θ(A * ) is a submonoid of T 0 (A) isomorphic to A * , and the monoid of tiles T 0 (A) can be seen as an extension of the free monoid A * . Similarly T 0 (A) can also be seen as an extension of the free monoid Ā * .

The following notion of left and right projections, central in inverse semigroup theory since they characterize Green's left and right classes (see [START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF], Chap. 3.2), yields a simple proof that θ is surjective. Definition 2.17 (Left and right projections). For every u ∈ T 0 (A), let u L = u -1 • u be the left projection of the tile u, and u R = u • u -1 be its right projection.

As observed in the proof of Theorem 2.12, if u = (u 1 , u 2 , u 3 ) is a non-zero tile, then we have

u L = (u 1 • u 2 , 1, u 3 ) and u R = (u 1 , 1, u 2 • u 3 ).
Examples of left and right projections have already been depicted in Figure 5. The next lemma shows how tiles are related to words via left and right projections. 

= (u 1 , u 2 , u 3 ) we have u = θ(u 1 ) L • θ(u 2 ) • θ(u 3 ) R and for every negative tile v = (u 1 u 2 , u 2 , u 2 u 3 ) we have v = θ(u 3 ) R • θ(u 2 ) • θ(u 1 ) L .
Proof. By the first sentence of Remark 2.16, for every word w ∈ A * we have θ(w) L = (w, 1, 1) and θ(w

) R = (1, 1, w). It is easy to check that if u = (u 1 , u 2 , u 3 ) is a positive tile, then (u 1 , 1, 1) • (1, u 2 , 1) • (1, 1, u 3 ) = (u 1 , u 2 , u 3 ), hence u = θ(u 1 ) L • θ(u 2 ) • θ(u 3 ) R and, taking the inverses, u -1 = θ(u 3 ) R • θ(u 2 ) • θ(u 1 ) L .
2

It follows that:

Lemma 2.19. The canonical morphism θ : (A ∪ Ā) * → T 0 (A) is surjective.
Proof. By Lemma 2.14, θ(w) L = θ( ww) and θ(w) R = θ(w w) for every w ∈ (A ∪ Ā) * . Hence, by Lemma 2.18, every non-zero tile is a finite product of elements of θ((A ∪ Ā) * ), hence an element of θ((A ∪ Ā) * ). Since 0 may be obtained as θ(a b) where a and b are distinct letters of A, we conclude that the morphism θ is surjective. 2

As an immediate consequence:

Lemma 2.20. The monoid T 0 (A) is finitely generated from θ(A ∪ Ā).

Observe that the submonoid T + 0 (A) of positive tiles is not finitely generated by products. However, we have: Remark 2.22. Projections are a corner stone of the notion of quasi-recognizability [START_REF] Janin | Quasi-recognizable vs MSO definable languages of one-dimensional overlapping tiles[END_REF][START_REF] Janin | Quasi-inverse monoids (and premorphisms)[END_REF] or the notion of non-deterministic tile automata [START_REF] Janin | Overlaping tile automata[END_REF] and their closure properties [START_REF] Dubourg | Algebraic tools for the overlapping tile product[END_REF], and they play a major role in the language theory of infinite tiles [START_REF] Dicky | Embedding finite and infinite words into overlapping tiles[END_REF]. In recent developments of inverse semigroup theory, the projections are used to define "almost inverse" for more general classes of semigroups such as ample monoids (see, e.g., [START_REF] Fountain | The free ample monoid[END_REF]).

Linear walks

The notion of linear walks, that is, words inducing non-zero tiles, and, conversely, words induced by traversals of non-zero tiles, conveys a relevant intuition of the link between tiles and two-way automata studied in the next section.

Definition 2.23 (Linear walk).

A word w ∈ (A ∪ Ā) * is a linear walk, or simply walk when θ(w) = 0. The set of walks is denoted by W (A). 

= a 1 • • • a n in W (A)
, with a i ∈ A ∪ Ā, can be viewed intuitively as a walk as follows. Consider the sequence of non-zero tiles u 0 , u 1 , . . . , u n corresponding to the prefixes of w, i.e.,

u i = θ(a 1 • • • a i ).
This can be viewed as a walk that constructs the tile u n = θ(w) ∈ T (A), starting from the unit tile u 0 = (1, 1, 1). The "steps" in the walk are the transitions from the tile u i to the tile u i+1 , for every 0 ≤ i ≤ n -1. Note that u i+1 = u i • θ(a i+1 ). Thus, if a i+1 = a ∈ A, then u i+1 is obtained from u i by moving the output root one letter to the right, after first adding a to the right of the output root, when there are no letters there. Similarly, if a i+1 = a ∈ A, then the output root is moved one letter to the left but first a is added to its left, if necessary.

In this way, θ(w) is obtained from (1, 1, 1) by moving the output root in a stepwise fashion. Since the input root does not change, w can be viewed as a walk that moves back and forth on the domain of θ(w), starting at the input root of θ(w) and ending at its output root. Note that the root path of u i (i.e., its second component) equals red(a 1 • • • a i ) (easy proof by induction). In particular, the root path of θ(w) is red(w).

As an example, the walk āabcbaā b corresponds to the following sequence of tiles: (1, 1, 1), (a, ā, a), (a, 1, 1), (a, b, 1), (a, bc, 1), (a, bcb, 1), (a, bcba, 1), (a, bcb, a), (a, bc, ba).

We finally note that the same sequence of tiles can be constructed when w is not in W (A), but then u i = 0 for some i ≥ 1, and so u j = 0 for all j ≥ i. Lemma 2.26. If A is not a singleton, the set of walks over A is not a context-free subset of (A ∪ Ā) * .

Proof. Let a and b be distinct letters of A, and let L be the intersection of the set of walks with the regular language ba * b bā * b ba * b. For all m, n, p ≥ 0, the tile product

θ(ba m b) • θ( bā n b) • θ(ba p b) = (1, ba m b, 1) • (ba n b, bā n b, ba n b) • (1, ba p b, 1) is (1, ba n b, 1) if m = n = p,
and 0 otherwise; thus L = {ba n b bā nb ba n b : n ≥ 0}. Since L is not a context-free language, the set of walks is not context-free.
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More generally, we shall prove that walks exactly correspond to back-and-forth reading of words over A, thus relating walks with runs of a two-way automaton.

Definition 2.27 (The monoid of linear walks).

Let ⊥ = θ -1 (0) be the set of words that are not walks. Clearly, ⊥ is an ideal, i.e., u⊥v ⊆ ⊥ for all u, v ∈ (A ∪ Ā) * .

The monoid of walks W 0 (A) is the Rees' quotient W 0 (A) = (A ∪ Ā) * /⊥, that is, the monoid of walks W 0 (A) is defined by collapsing the set ⊥ of non-walks into a single zero. In other words, W 0 (A) = W (A) ∪ {0} with the product of two elements u, v ∈ W 0 (A) defined as uv when u, v and uv are in W (A), and 0 otherwise. Lemma 2.28. Let w ∈ (A ∪ Ā) * be a walk and let u = (u 1 , u 2 , u 3 ) ∈ T + (A) be a positive tile. If

θ(w) = u then w W ū1 u 1 u 2 u 3 ū3 , and if θ(w) = u -1 then w W u 3 ū3 ū2 ū1 u 1 .
Proof. By induction on the length of w. If w = 1 then θ(w) = (1, 1, 1), and indeed we have w W 1. Assume now that the property is true for some w ∈ (A ∪ Ā) * , and let a ∈ A.

Observe

that if u = u -1 , i.e., u 2 = 1, then ū1 u 1 u 2 u 3 ū3 = ū1 u 1 u 3 ū3 W u 3 ū3 ū1 u 1 = u 3 ū3 ū2 ū1 u 1 .
In other words, when u 2 = 1, it suffices to prove one of the two statements of the lemma.

If wa is a walk, then so is w. We consider three different possible forms of θ(w), such that

θ(w) • (1, a, 1) = 0. Case 1: θ(w) = (u 1 , u 2 , 1) ∈ T + (A) and w W ū1 u 1 u 2 . Then θ(wa) = θ(w) • θ(a) = (u 1 , u 2 a, 1)
and, since W is a congruence, we have wa W ū1 u 1 u 2 a.

Case 2: θ(w) = (u 1 , u 2 , au 3 ) ∈ T + (A) and w W ū1 u 1 u 2 au 3 ū3 ā. Then θ(wa) = (u 1 , u 2 a, u 3 ) and wa W ū1 u 1 u 2 au 3 ū3 āa. By commutation of u 3 ū3 and āa, this implies that wa W ū1 u 1 u 2 aāau 3 ū3 . Simplifying aāa into a, we obtain wa W ū1 u 1 u 2 au 3 ū3 . Case 3: θ(w) = (u 1 , au 2 , u 3 ) -1 with (u 1 , au 2 , u 3 ) ∈ T + (A) and w W u 3 ū3 ū2 āū 1 u 1 . Then θ(wa) = (u 1 a, u 2 , u 3 ) -1 and thus we have wa W u 3 ū3 ū2 āū 1 u 1 a.

If wā is a walk, so is w and the proof is similar, again with three cases. Case 1: θ(w) = (u 1 , u 2 a, u 3 ) and w W ū1 u 1 u 2 au 3 ū3 . Then θ(wā) = (u 1 , u 2 , au 3 ) and wā W ū1 u 1 u 2 au 3 ū3 ā. Case 2: θ(w) = (1, u 2 , u 3 ) -1 and w W u 3 ū3 ū2 . Then θ(wā) = (1, au 2 , u 3 ) -1 andwā W u 3 ū3 ū2 ā. Case 3: θ(w) = (u 1 a, u 2 , u 3 ) -1 and w W u 3 ū3 ū2 āū 1 u 1 a. Then θ(wā) = (u 1 , au 2 , u 3 ) -1 and we have wā W u 3 ū3 ū2 āū 1 u 1 aā. By commutation of ū1 u 1 and aā we havewā W u 3 ū3 ū2 āaāū 1 u 1 . Simplifying āaā into ā we obtain wā W u 3 ū3 ū2 āū 

) = θ(w 2 ) is a negative tile (u 1 , u 2 , u 3 ) -1 , then we have w 1 W u 3 ū3 ū2 ū1 u 1 W w 2 . 2 
In other words, the previous results show that the diagram depicted in Figure 6 commutes. Proof. If : by Lemma 2.15. Only if : assume that θ(w) = 0. Let then w 1 be the longest prefix of w such that θ(w 1 ) = 0. We first consider the case when w = w 1 bw 2 with b ∈ A. Since θ(w 1 b) = 0, there are two subcases with u 1 , u 2 , u 3 ∈ A * and a ∈ A. Case 1: θ(w 1 ) = (u 1 , u 2 , au 3 ) with b = a. By Lemma 2.28, we have w 1 W ū1 u 1 u 2 au 3 ū3 ā hence, since w = w 1 bw 2 , we have w W ū1 u 1 u 2 au 3 ū3 ābw 2 which has the factor āb. Case 2: θ(w 1 ) = (u 1 , au 2 , u 3 ) -1 with b = a. By Lemma 2.28, we have w 1 W u 3 ū3 ū2 āū 1 u 1 hence w W u 3 ū3 ū2 āū 1 u 1 bw 2 hence, by expanding ā into āaā, w W u 3 ū3 ū2 āaāū 1 u 1 bw 2 , and thus, by commutation of aā and ū1 u 1 , we have w W u 3 ū3 ū2 āū 1 u 1 aābw 2 which has the factor āb.

(A ∪ Ā) * W0(A) = (A ∪ Ā) * /⊥ T0(A) ∼ W0(A)/ W /⊥ / W θ
Similarly we consider the case when w = w 1 bw 2 with b ∈ A. Again there are two subcases. Case 1: θ(w 1 ) = (u 1 , u 2 a, u 3 ) with b = a. By Lemma 2.28, we have w 1 W ū1 u 1 u 2 au 3 ū3 hence w W ū1 u 1 u 2 au 3 ū3 bw 2 . It follows that w W ū1 u 1 u 2 aāau 3 ū3 bw 2 by expanding a into aāa. Then, by commutation of āa with u 3 ū3 we have w W ū1 u 1 u 2 au 3 ū3 āa bw 2 which has the factor a b. Case 2: θ(w 1 ) = (u 1 a, u 2 , u 3 ) -1 with b = a. By Lemma 2.28, we have w 1 W u 3 ū3 ū2 āū 1 u 1 a hence w W u 3 ū3 ū2 āū 1 u 1 a bw 2 which has the factor a b.

2

We conclude our study of the monoid of tiles by proving that the monoid T 0 (A) is isomorphic to the monoid of McAlister [START_REF] Mcalister | Inverse semigroups which are separated over a subsemigroups[END_REF][START_REF] Lawson | McAlister semigroups[END_REF], that is, some Rees' quotient of the free inverse monoid FIM (A) generated by A.

Let M be the McAlister congruence, defined as the least congruence in the extended monoid Remark 2.32. In some sense, Lemma 2.28 captures most of the combinatorial analysis of twoway automata runs made in [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF][START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF]. More precisely, according to Pécuchet's definition [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF], a word bisection is any quadruple of words

(A ∪ Ā) * ∪ {0} such that W ⊆ M
((u 1 , u 2 ), (v 1 , v 2 )) ∈ (A * × A * ) × (A * × A * ) such that u 1 u 2 = v 1 v 2 .
Then, one can check that the mapping that maps every non-zero tile (u 1 , u 2 , u 3 ) ∈ T 0 (A) to the quadruple

((u 1 , u 2 • u 3 ), (u 1 • u 2 , u 3 )) ∈ (A * × A * ) × (A * × A * )
is a well-defined bijection from non-zero tiles to word bisections. In other words, Pécuchet's approach somehow provides a fourth definition of McAlister monoid. Note that this link with McAlister's monoid, defined in [START_REF] Mcalister | Inverse semigroups which are separated over a subsemigroups[END_REF] but emphasized in [START_REF] Lawson | McAlister semigroups[END_REF], was, at best, left implicit in Pécuchet's and Birget's works [START_REF] Pécuchet | Automates boustrophedon, semi-groupe de Birget et monoide inversif libre[END_REF][START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF], even though some connections with the theory of inverse semigroups are made. It must be noticed, however, that in this paper, we are more interested in what twoway automata read than in how they perform readings, which was Pécuchet's and Birget's main interest. A similar observation can be made about the study of zig-zag codes [START_REF] Anselmo | Automates et code zigzag[END_REF][START_REF] Van | On coding morphisms for zigzag codes[END_REF][START_REF] Lesaëc | A more efficient notion of zigzag stability[END_REF] where no connection with McAlister monoid is mentioned.

Regular languages of tiles and two-way automata

Given an alphabet A assumed to have at least two letters, a language of tiles on the alphabet A is any subset L ⊆ T (A) of non-zero tiles. The consequences of such a restriction, essentially harmless, are discussed in some remarks below.

In this section, we study the class REC of recognizable tile languages, that is, languages definable by means of monoid morphisms into finite monoids, and the class REG of regular languages, that is, languages definable by means of regular expressions.

The class REC is characterized and shown to be strictly included in the class REG. The class REG is shown to correspond to the class of tile languages definable by means of finite state two-way automata which semantics is simply extended to tiles.

Regular languages of tiles

We define in this section the class REG of regular languages of tiles. It follows the classical definition induced by the monoid structure of T 0 (A) up to the fact that we restrict to languages of non-zero tiles. In particular, the product of languages is restricted to non-zero products of tiles. The intended meaning of this restriction is the following: when two languages of tiles model the possible behaviors of two processes, the product of these languages models their sequential composition. The processes implicitly communicate by agreeing on compatible behaviors, that is, by restricting to non-zero products.

Formally, we define the following operations on languages of non-zero tiles: addition as union:

M + N = M ∪ N multiplication: M • N = {u • v ∈ T (A) : u ∈ M, v ∈ N } star: M * = n≥0 M n with M 0 = {(1, 1, 1)} and M k+1 = M • M k for every k ∈ N
The next lemma states that these operations satisfy the usual properties of the operations on word languages (the same proofs apply).

Lemma 3.1. For all M , N and P ⊆ T (A):

M • (N + P ) = M • N + M • P and (M + N ) • P = M • P + N • P M * • N is the least solution (with respect to inclusion) of the equation X = M • X + N .
Regular languages of tiles are defined by the usual notion of regular expression.

Definition 3.2 (Regular language of tiles).

A language M ⊆ T (A) of tiles is regular if it can be defined as the result of finitely many additions, multiplications and star operations over finite languages of (non-zero) tiles. The class of regular languages of tiles is denoted by REG.

Example 3.3. The set of non-zero tiles is regular since T (A) = (θ(A ∪ Ā)) * . We prove later (Lemma 3.8) that the set E(A) of non-zero idempotent tiles is not regular.

The inverse monoid structure of T 0 (A) induces three more operations on languages of tiles:

inverse: M -1 = {u -1 ∈ T (A) : u ∈ M }, right projection: M R = {u • u -1 ∈ T (A) : u ∈ M }, left projection: M L = {u -1 • u ∈ T (A) : u ∈ M }.
The following identities are straightforward.

Lemma 3.4. For all M, N ⊆ T (A):

(M + N ) -1 = M -1 + N -1 (M • N ) -1 = N -1 • M -1 (M * ) -1 = (M -1 ) *
As a consequence, the class REG is closed under inverse. On the contrary, we shall see (Lemma 3.7) that the class REG is not closed under left and right projections.

The following characterization is a variation of a well-known result for rational subsets of monoids (see, e.g., Proposition III.2.2 of [START_REF] Berstel | Transductions and Context-Free Languages[END_REF]).

Theorem 3.5. A language of tiles X ⊆ T (A) is regular if, and only if, there exists a regular language of words L

⊆ (A ∪ Ā) * such that X = θ(L ∩ W (A)).
Proof. We first observe that, for every language L ⊆ (A ∪ Ā) * we have θ(L ∩ W (A)) = θ(L) -{0}. Then, the proof goes by induction on the structure of regular expressions, using that θ is a monoid morphism.

If. Let L ⊆ (A ∪ Ā) * be a regular language of words. If L is finite, then θ(L) -{0} is a finite tile language. It follows that any regular expression for L, thanks to our definition of sum, product and star of tile languages, can be reinterpreted over languages of tiles as a regular expression for θ(L) -{0}. Note in particular that, for all tile languages M and N , we have

M • N = {u • v ∈ T 0 (A) : u ∈ M, v ∈ N } -{0}.
Only if. Let X ⊆ T (A) be a regular language of tiles. If X is finite, then X = θ(F ) -{0} where F = {u 1 u 1 u 2 u 3 u 3 : (u 1 , u 2 , u 3 ) ∈ X} is a finite language. Then, any regular expression for X can be interpreted over languages of words of (A ∪ Ā) * denoting then a language L such that X = θ(L) -{0}.
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Remark 3.6. Following the definitions of [START_REF] Berstel | Transductions and Context-Free Languages[END_REF], a subset of a monoid M is rational if it can be defined as the result of finitely many additions, multiplications and star operations over finite subsets of M . By Proposition III.2.2 of [START_REF] Berstel | Transductions and Context-Free Languages[END_REF], a set Y of tiles is a rational subset of T 0 (A) if and only if there exists a regular language of words L ⊆ (A ∪ Ā) * such that Y = θ(L). In that case, L ∪ {āb} is also regular, and Y ∪ {0} = θ(L ∪ {āb}) (where a, b ∈ A, a = b). Thus, by Theorem 3.5, a language of tiles X ⊆ T (A) is regular if and only if X ∪ {0} is a rational subset of the monoid T 0 (A). Note also that, by Theorem 3.5 again, every rational language of tiles

X ⊆ T (A) is regular because if X = θ(L), since 0 / ∈ X then L ⊆ W (A).
The following lemma gives a first example of a simple non-regular language of tiles.

Lemma 3.7. The right projection M R of the regular tile language M = θ(A * ) is not regular. As a consequence, the class of regular languages of tiles is not closed under right (or left) projection.

Proof. Let M and M R be the languages defined as above, that is,

M R = {(1, 1, y) ∈ T (A) : y ∈ A * }.
Moreover, let a ∈ A. We first observe that since every tile in M R is idempotent, i.e., M R ⊆ E(A), any word w ∈ (A ∪ Ā) * such that θ(w) ∈ M R must have the same number of a's and of ā's, which we denote by |w| a = |w| ā (this is because red(w) = 1, see also Remark 2.25 that gives some more intuition on the notion of walks).

Assume now that M R is regular. By Theorem 3.5, there exists a regular language L ⊆ (A∪ Ā) * such that M R = θ(L ∩ W (A)). Let A be a deterministic finite-state automaton recognizing L. Let N denote the number of states of A, and let n > N . Then there exists a word u ∈ L ∩ W (A) such that θ(u) = (1, 1, a n ) ∈ M R . Clearly, u ∈ {a, ā} * (see Remark 2.25).

We easily prove by induction (see again Remark 2.25) that for every k such that 0 ≤ k ≤ n, there exists a prefix v k of u such that θ(v k ) = (1, a k , 1). Moreover, taking the least prefix that satisfies this property, the sequence of prefixes v 0 , v 1 , . . . , v n of u is totally ordered by the prefix order.

But since n > N , there necessarily exist two prefixes v k1 and v k2 , with k 1 < k 2 , such that the runs of the automaton A starting in the initial state and reading v k1 and v k2 reach the same state. Since v k1 is a prefix of v k2 and v k2 is a prefix of u, there are words w 1 , w 2 ∈ {a, ā} * such that v k2 = v k1 w 1 and u = v k2 w 2 . It follows that A accepts the word u = v k1 w 2 . Since u ∈ {a, ā} * ⊆ W (A) (see Remark 2.5), we have that u ∈ L ∩ W (A) and so θ(u

) ∈ M R and |u | a = |u | ā. Now, the equality v k2 = v k1 w 1 implies that |w 1 | a -|w 1 | ā = k 2 -k 1 (see again Remark 2.25
). However, by construction, for every x ∈ {a, ā}, we have

|u| x = |u | x + |w 1 | x . Since |u| a = |u| ā, we thus have |u | ā -|u | a = |w 1 | a -|w 1 | ā = k 2 -k 1 > 0: a contradiction.
A similar proof shows that M L is not regular. 2

The next lemma gives a second example of a simple non-regular tile language.

Lemma 3.8. The set E(A) of non-zero idempotent tiles is not regular.

Proof. The proof is exactly the same as that of the previous lemma, with M R replaced by E(A). 2

Last, we give an example of a regular tile language that is not rational (see Remark 3.6).

Lemma 3.9. The regular tile language T (A) of non zero tiles is not rational.

Proof. The proof is very similar to the one of Lemma 3.7. Assume that T (A) is rational. By Remark 3.6, there exists a regular language L ⊆ (A ∪ Ā) * such that T (A) = θ(L). Let A be a deterministic finite-state automaton recognizing L, and let n be larger than the number of states of A. Let a, b ∈ A with a = b. Then there exists a word u ∈ L such that θ(u) = (1, 1, ba n ) ∈ T (A). As in the proof of Lemma 3.7, there exist words v k1 , v k2 , with k 1 < k 2 , such that θ(v k1 ) = (1, ba k1 , 1), θ(v k2 ) = (1, ba k2 , 1) and the runs of A on v k1 and v k2 reach the same state. Moreover, there exist words w 1 , w 2 such that v k2 = v k1 w 1 and u = v k2 w 2 . It follows that A accepts the word u = v k1 w 2 , and so u ∈ L and θ(u ) ∈ T (A). Now, the equality u = v k2 w 2 implies that red(w 2 ) = āk2b (see Remark 2.25). However, that implies that red(u ) = red(red(v k1 )red(w 2 )) = red(ba k1 āk2b ) = bā k2-k1b , which is not in A * ∪ Ā * , contradicting the fact that θ(u ) is a non-zero tile. 2

Recognizable vs regular languages of tiles

For the sake of completeness, we briefly review here the notion of algebraic recognizability when applied to languages of tiles and relate it to the notion of regular languages of words.

Definition 3.10 (Recognizable languages).

A language of tiles L ⊆ T (A) is recognizable when there exist a monoid M , a monoid morphism ϕ : T 0 (A) → M , and a finite subset F of M , such that L = ϕ -1 (F ); or, equivalently, when the syntactic congruence defined by u

∼ L v ⇐⇒ ∀x, y ∈ T 0 (A) (x • u • y ∈ L ⇔ x • v • y ∈ L) is of finite index.
The class of recognizable languages of tiles is denoted by REC.

The following characterization is analogous to the equivalent result over the free inverse monoid (Lemma 3.1 of [START_REF] Silva | On free inverse monoid languages[END_REF]). It follows from classical arguments concerning recognizable languages.

Theorem 3.11. A language L ⊆ T (A) of tiles is recognizable if and only if θ -1 (L) is a regular language of words.

Proof.If : let K = θ -1 (L), and let

∼ K denote the syntactic congruence of K in (A ∪ Ā) * . For all u, v ∈ (A ∪ Ā) * , we have u ∼ K v ⇒ θ(u) ∼ L θ(v): indeed, since θ is onto, for all x, y ∈ T 0 (A) there exist α, β ∈ (A ∪ Ā) * such that θ(α) = x and θ(β) = y; if u ∼ K v we have x • θ(u) • y ∈ L ⇒ θ(αuβ) ∈ L ⇒ αuβ ∈ K ⇒ αvβ ∈ K ⇒ x • θ(v) • y ∈ L and by symmetry, we have x • θ(v) • y ∈ L ⇒ x • θ(u) • y ∈ L. Thus [u] ∼ K → [θ(u)] ∼ L is a well-defined mapping of (A ∪ Ā) * / ∼ K onto T 0 (A)/ ∼ L . If K is a regular language of words then (A ∪ Ā) * / ∼ K is finite and thus ∼ L is of finite index.
Only if : let ϕ : T 0 (A) → M be a monoid morphism, let F be a finite subset of M and let L = ϕ -1 (F ). Then ψ = ϕ • θ is a monoid morphism from (A ∪ Ā) * to M , and θ -1 (L) = ψ -1 (F ) is recognized (as a language of words) by the monoid M and the morphism ψ.

2

Corollary 3.12. Every recognizable tile language is regular.

Proof. Let L ⊆ T (A) be a recognizable tile language. Then M = θ -1 (L) is a regular language of words by Theorem 3.11. Since θ is surjective,

L = θ(M ). So, since M ⊆ W (A), θ(M ) is regular by Theorem 3.5. 2 
Note that, by the proof of this corollary, every recognizable tile language is even rational (see Remark 3.6). But not all regular languages are recognizable:

Lemma 3.13. The regular tile language L = θ(ā * b ba * ) is not recognizable.

Proof. Since ā * b ba * ⊆ W (A), by Theorem 3.5, the language L is regular. We show that the syntactic congruence Remark 3.15. We have already seen that T (A) is regular while W (A) = θ -1 (T (A)) is not even context-free (Lemma 2.26). It follows that T (A) is also a regular language that is not recognizable. Note that, as proved in Lemma 3.9, T (A) is not even rational. Thus, since the language L of Lemma 3.13 is rational, the class of rational tile languages (see Remark 3.6) lies properly between the classes of recognizable and regular tile languages.

∼ L is of infinite index. For all m, k ∈ N let u m = θ(ā mb ba m ) = (ba m , 1, 1) ∈ L and let v k = (a k , 1, 1). Then u m • v k = u m if k ≤ m, and u m • v k = 0 if k > m. Hence u m • v k ∈ L if
Though some simple regular languages are not recognizable, the class REC does contain non-trivial languages of tiles. In [START_REF] Janin | On languages of one-dimensional overlapping tiles[END_REF], it is shown that recognizable languages are strongly related with bi-infinite periodic words. We refer the reader to this presentation for a combinatorial characterization of these languages. In this paper, we just give an example of a non-trivial recognizable language, that derives from the bi-infinite word ω (ab)(ab) ω . 

(z, t) = 0 if y = z (x, t) if y = z
with 1 neutral and 0 absorbing. We first observe that (M, ) is a monoid. It is well known that partial bijections over a given set form a monoid with composition as product. Then it suffices to check that (M, ) corresponds to the submonoid of partial bijections over the set {a, b} generated by the partial bijection Incidentally, we also observe that (M, ) is even an inverse monoid. Indeed, it is also wellknow in inverse semigroup theory (see Wagner Theorem in [START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF]) that the monoid of partial bijections over a set is an inverse monoid with function inverses as monoid inverses, and the two generators of M are inverses of each other. Now, let ϕ : T 0 ({a, b}) → M be the mapping defined as follows. Let u ∈ T 0 ({a, b}). If u ∈ {0, 1} then ϕ(u) = u. Otherwise, if the domain of u is not a factor of the infinite word (ab) ω , then ϕ(u) = 0. Otherwise, ϕ(u) = (x, y) where x (resp. y) is the letter directly to the right of the input (resp. the output root) of u embedded in (ab) ω : the pair (x, y) can be seen as the partial bijection m x,y induced by (the embedded) tile u that maps x (right after its input root) to y (right after its output root).

For example, ϕ((a, ab, 1)) = 0 because aab is not a factor of (ab) ω , ϕ((b, aba, 1)) = (a, b) because any factor baba of (ab) ω is followed by b, and ϕ((b, 1, 1)) = (a, a). Since the above partial maps compose well, it should be clear that ϕ is a monoid morphism, i.e., ϕ(u • v) = ϕ(u) ϕ(v) (see also the discussion before Theorem 2.8).

Then, given L 1 = (ab) * + b(ab) * , L 2 = (ab) * , and L 3 = (ab) * + (ab) * a, we observe that the tile language L 1 × L 2 × L 3 is recognizable since it is precisely the inverse image of the set {1, (a, a)} ⊆ M under ϕ.

Two-way automata

We prove here that the regular languages of tiles are the languages recognized by finite-state two-way automata. Our proposed definition, especially when extended with pebbles as in the next section, is inspired by the notion of stack automata studied in [START_REF] Fratani | Iterated pushdown automata and sequences of rational numbers[END_REF].

Definition 3.17 (Two-way automaton). A finite-state two-way automaton over an alphabet

A is defined as a standard finite-state automaton over A ∪ Ā, i.e., a quadruple A = Q, I, F, ∆ with a finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, and a transition table

∆ : (A ∪ Ā) → P(Q × Q).
A run of A over a word of (A ∪ Ā) * is a finite sequence ρ = q 0 a 1 q 1 • • • q n-1 a n q n where n ≥ 0, q 0 , . . . , q n ∈ Q and a 1 , . . . , a n ∈ A ∪ Ā, such that for every 1 ≤ i ≤ n, we have (q i-1 , q i ) ∈ ∆(a i ).

The run ρ is accepting if q 0 ∈ I and q n ∈ F . In that case, we say that the associated word

a 1 • • • a n ∈ (A ∪ Ā) * is accepted by the automaton A.
Let L(A) denote the set of words over the alphabet A ∪ Ā that are accepted by A, and let L W (A) = L(A) ∩ W (A) denote the language of walks recognized by A. Remark 3.18. Observe that L W (A) may not be regular, since the trivial automaton A such that L(A) = (A ∪ Ā) * recognizes the language of walks L W (A) = W (A), which by Lemma 2.26 is not even context-free.

The language of tiles recognized by A is defined as the set L T (A) = θ(L(A) ∩ W (A)).

Remark 3.19.

A more classical definition of L T (A) can be obtained by viewing the elements of Q × T 0 (A) as configurations of A, and by defining a binary computation relation ⇒ A on Q × T 0 (A) as follows: (q, u) ⇒ A (q , u ) if there exists a ∈ A ∪ Ā such that (q, q ) ∈ ∆(a) and u = u • θ(a). It is straightforward to prove that L T (A) is the set of non-zero tiles u such that (q, 1) ⇒ * A (q , u) for some q ∈ I and q ∈ F . As suggested in Remark 2.25, a computation (q 0 , 1) ⇒ A (q 1 , u 1 ) ⇒ A • • • ⇒ A (q n , u n ) of the automaton A can then be viewed as a walk back and forth on the domain of u n . For every i, 0 ≤ i ≤ n, the output root of u i can be viewed as the position of the reading head of A (between letters of the domain), wheras the input root of u i is the original position of the reading head at the start of the computation. For every a ∈ A, if (in the above computation step) u = u • θ(a), then A reads the letter a from left to right, whereas if u = u • θ(ā), then it reads a from right to left.

The language of words L S (A) ⊆ A * recognized by the two-way automaton A is then defined by L S (A) = {u ∈ A * : (1, u, 1) ∈ L T (A)}. It corresponds to the usual notion of language of words recognized by a two-way automaton. Remark 3.20. Our definitions of tile languages and tile languages product provide a fairly simple relationship between the word language and the tile language recognized by two-way automata. Indeed, given an additional letter # such that # / ∈ A, we easily check that

θ(#) • L T (A) • θ(#) = θ(#) • θ(L S (A)) • θ(#) = {1} × #L S (A)# × {1}
for every two-way automaton A. In other words, the product by θ(#) both on the left and on the right of the tile language L T (A) recognized by A acts as a filter that selects the word language L S (A) recognized by A. This observation is used below to recover a proof of Shepherdson's theorem (Corollary 4.9). Proof. If: Let X ⊆ T (A) be a regular language of tiles. By Theorem 3.5, there is a regular language of words L ⊆ (A ∪ Ā) * such that X = θ(L ∩ W (A)). By Kleene's theorem, there exists a finite-state automaton A such that L(A) = L henceforth L T (A) = X.

Only if: Conversely, let A be a finite-state two-way automaton. By Kleene's theorem L(A) is regular, hence, by Theorem 3.5, the language L T (A) = θ(L(A) ∩ W (A)) is regular. 2

Beyond regular languages

In Formal Language Theory, definability in Monadic Second-Order Logic is a typical yardstick of expressiveness which can be defined independently of the underlying algebraic structures [START_REF] Thomas | Chap. 7. Languages, automata, and logic[END_REF].

We quickly review how languages of tiles can be defined by MSO formulas, and we characterize MSO-definable languages of tiles by expressions involving regular languages of words. We extend the notion of regular expression using a projection operator onto languages of idempotent tiles: The nesting depth of idempotent projection operators induces a hierarchy of k-regular expressions that is shown equivalent to the hierarchy of k-pebble automata. We show that all k-regular languages are MSO-definable, and that MSO-definable languages correspond to 1-regular languages, thus proving that the hierarchy collapses at level k = 1.

MSO-definable languages

Any positive non-zero tile u ∈ T (A) can be seen as an FO-structure on the signature {R a } a∈A of binary relation symbols, extended with two constants in and out for the input and output roots. For instance, the triple u = (ba, aa, bb) depicted in the following picture Then, a language L ⊆ T (A) is MSO-definable when there is an MSO formula of the form ϕ(U, x, y) where U is a set variable and x and y are two FO-variables such that, for every u ∈ T (A), we have u ∈ L if and only if t u |= ϕ(dom(t u ), in(t u ), out(t u )). Remark 4.2. Without loss of generality, we assume that all quantifications in such a formula ϕ(U, x, y) are relativized with respect to U , that is, in every sub-formula of the form ∀z ψ (resp. ∃z ψ), we assume that ψ is of the form z ∈ U ⇒ ψ (resp. z ∈ U ∧ ψ ) and similarly for quantified set variables Z ⊆ U . This standard technique, called relativization, allows us to talk about submodels of a given model. Moreover, to ensure that these submodels are well defined, we assume that the formula ϕ(U, x, y) checks that the set U is connected (viewing t u as a graph) and that both x and y belong to U .

Under these assumptions, for all X ⊆ dom(t u ) and x 1 , x 2 ∈ dom(t u ), we havet u |= ϕ(X, x 1 , x 2 ) if, and only if, there exists a (unique) tile v in the tile language L defined by ϕ(U, x, y) such that t v is (up to isomorphism) the FO-structure (on the same signature) consisting of the subgraph of t u induced by X ⊆ dom(t u ), with x 1 and x 2 as the values of in and out, respectively. We will say that v (determined by X, x 1 and x 2 ) is a "local" tile of u belonging to L and connecting x 1 to x 2 .

We now prove several closure properties of the class MSO of MSO-definable languages of tiles with an associated corollary. MSO-definable. Proof. Let ϕ M (U, x, y) and ϕ N (U, x, y) be two MSO formulas respectively defining M and N . Union: take ϕ M ∪N (U, x, y) ≡ ϕ M (U, x, y) ∨ ϕ N (U, x, y). Inverse: take ϕ M -1 (U, x, y) ≡ ϕ M (U, y, x). Right projection: take ϕ M R (U, x, y) ≡ (x = y) ∧ ∃z ϕ M (U, x, z). Left projection: take ϕ M L (U, x, y) ≡ (x = y) ∧ ∃z ϕ M (U, z, y). Idempotent projection: take ϕ M E (U, x, y) ≡ (x = y) ∧ ϕ M (U, x, y). Product: take ϕ M •N (U, x, y) ≡ ∃X ∃Y ∃z (U = X ∪ Y ∧ ϕ M (X, x, z) ∧ ϕ N (Y, z, y)), i.e., this formula checks the existence of an element z and two "local" tiles, one belonging to M and connecting x to z, and the other belonging to N and connecting z to y. Morover, it checks that all elements of U belong to at least one of the two tiles.

Theorem 4.3 (Robustness). For all MSO-definable languages of tiles M, N ⊆ T (A), the languages

M ∪ N , M • N , M * , M -1 , M L , M R and M E are also
Star: let ϕ M (U, x, y) be a formula defining a language M ⊆ T (A). We want to define a formula ϕ M * (U, x, y) whose models are the tiles of M * . This amounts to saying that there is a (possibly empty) sequence of "local" tiles belonging to M , connecting x to y and "covering" U .

This can be done as follows. Let R(x 1 , x 2 ) be the binary relation defined by

R(x 1 , x 2 ) ≡ ∃X ϕ M (X, x 1 , x 2 )
stating that there exists a "local" tile connecting x 1 to x 2 , and let R * denote its reflexive and transitive closure, known to be definable in MSO. The formula R * (x 1 , x 2 ) checks that there is a (possibly empty) finite connected sequence of "local" tiles of M connecting x 1 to x 2 . Observe that this is not enough to define the expected formula ϕ M * (U, x, y) since we must also check that all elements of U belong to at least one of these "local" tiles. Equivalently, we have to check that the leftmost element lf (U ) and the rightmost element rg(U ) of U belong to at least one of the "local" tiles. To this purpose, let ψ(U, x 1 , x 2 ) be the formula defined by

ψ(U, x 1 , x 2 ) ≡ ϕ M (U, x 1 , x 2 ) ∨ ∃X 1 ∃X 2 ∃z 1 ∃z 2 (ϕ M (X 1 , x 1 , z 1 ) ∧ R * (z 1 , z 2 ) ∧ ϕ M (X 2 , z 2 , x 2 ) ∧ ((lf (U ) ∈ X 1 ∧ rg(U ) ∈ X 2 ) ∨ (lf (U ) ∈ X 2 ∧ rg(U ) ∈ X 1 ))).
This formula checks that there is a nonempty sequence of "local" tiles of M connecting x 1 to x 2 , such that lf (U ) and rg(U ) are in the first and last tile, or vice versa. Finally, the formula ϕ M * (U, x, y) is defined by:

ϕ M * (U, x, y) ≡ ∃x 1 ∃x 2 (R * (x, x 1 ) ∧ ψ(U, x 1 , x 2 ) ∧ R * (x 2 , y)) ∨ (U = {x} ∧ x = y)
where the second part of the disjunction corresponds to the unit tile ( A simple characterization of MSO-definable languages of tiles may be obtained via a notion of word congruence induced by a language L of tiles: two words are congruent when in any tile, they can replace each other without altering the membership to L. Definition 4.5 (Induced word congruence). Let L ⊆ T (A) be a language of tiles. For all u 0 , v 0 ∈ A * , we say that the word u 0 is equivalent to the word v 0 with respect to the language L, which is denoted by u 0 L v 0 , when for all w 1 , w 2 , w 3 and w

4 ∈ A * , if u = (w 1 u 0 w 2 , w 3 , w 4 ) and v = (w 1 v 0 w 2 , w 3 , w 4 ), or if u = (w 1 , w 2 u 0 w 3 , w 4 ) and v = (w 1 , w 2 v 0 w 3 , w 4 ), or if u = (w 1 , w 2 , w 3 u 0 w 4 ) andv = (w 1 , w 2 , w 3 v 0 w 4 ), then u ∈ L ⇔ v ∈ L and u -1 ∈ L ⇔ v -1 ∈ L.
By definition, the relation L is indeed a congruence in the free monoid A * . The congruence class of a word u ∈ A * is then denoted by [u] L . Theorem 4.6 (Finite word congruence property). For every language L ⊆ T (A) of tiles:

L = (u1,u2,u3)∈L∩T + (A) [u 1 ] L × [u 2 ] L × [u 3 ] L ∪ (u1,u2,u3) -1 ∈L∩T -(A) ([u 1 ] L × [u 2 ] L × [u 3 ] L ) -1 . Moreover, L is MSO-definable if and only if L is of finite index.
Proof. The expression of L is an immediate consequence of the definition of L .

Assume that L is of finite index. By Myhill-Nerode's theorem, for every w ∈ A * , the word language [w] L ⊆ A * is regular and hence MSO-definable by Büchi-Elgot-Trakhtenbrot's theorem. Then, clearly, for every u 1 , u 2 and u 3 ∈ A * , the three languages

L 1 = [u 1 ] L × {1} × {1}, L 2 = {1} × [u 2 ] L × {1} and L 3 = {1} × {1} × [u 3
] L are also MSO-definable; and by the closure properties of MSO (Theorem 4.3), the language

L 1 • L 2 • L 3 = [u 1 ] L × [u 2 ] L × [u 3
] L and its inverse image are MSO-definable. If L is of finite index, then L is a finite union of such MSO-definable languages, thus by Theorem 4.3, the language L itself is MSO-definable.

Conversely, assume that L is MSO-definable. A positive tile (u, v, w) ∈ T + (A) can be encoded as the word c(u, v, w) := u v c w r ∈ A * A * c A * r , where A , A c and A r are three disjoint copies of the alphabet A, and for every word y ∈ A * , the words y , y c and y r are the copies of y in these alphabets. It is a straightforward exercise to show that if a tile language K ⊆ T + (A) is MSOdefinable, then so is the language of words c(K). In fact, it is easy to see that this decoding c -1 is an MSO-definable transduction, and it is well known that inverse MSO transductions preserve MSO-definability (see Corollary 7.12 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]). Now let L + = L ∩ T + (A) and L -= L ∩ T -(A). Then L + and (L -) -1 are languages of positive tiles, and can be encoded as the language of words M + = c(L + ) and the language of words M -= c((L -) -1 ). Since L is MSO-definable, so are L + and (L -) -1 , and thus, by the above, their encodings M + and M -are also MSO-definable. By Büchi-Elgot-Trakhtenbrot's theorem both languages M + and M -are regular, and thus their syntactic congruences M + and M -are of finite index. This implies that L is also of finite index. Indeed, for all words u, v ∈ A * , we have u L v if and only if u x M + v x and u x M -v x for every x ∈ { , c, r}.
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Then, the finite congruence property allows us to prove:

Theorem 4.7 (Simplicity). A language L ⊆ T (A) of tiles is MSO-definable if and only if L is a finite union of languages of the form

M × C × N or (M × C × N ) -1
, where M , C and N are regular languages of words over A.

Proof. Let L ⊆ T (A) be a language of tiles. Let L be the word congruence associated with L (Definition 4.5). Assume that L is MSO-definable. By Theorem 4.6, we have

L = (u1,u2,u3)∈L∩T + (A) [u 1 ] L × [u 2 ] L × [u 3 ] L ∪ (u1,u2,u3) -1 ∈L∩T -(A) ([u 1 ] L × [u 2 ] L × [u 3 ] L ) -1
and the congruence L is of finite index. By Myhill-Nerode's theorem, every [u i ] L is a regular language of words, which implies that L is a finite union of tile languages of the form M × C × N or (M × C × N ) -1 , where M , C and N are regular languages of words.

Conversely, assume that L is such a finite union. To prove that L is MSO-definable, it suffices to prove that every tile language of the form θ(K) = {1} × K × {1} for some regular language K is MSO-definable.

Indeed, for all word languages M , C and N ⊆ A * , we have by Lemma 2.18 that

M × C × N = θ(M ) L • θ(C) • θ(N ) R
and, by Theorem 4.3, the class of MSO-definable languages is closed under left and right projections, finite unions, finite products and inverses. Now, for every regular language K ⊆ A * , the language θ(K) is regular (by Theorem 3.5 and because K ⊆ W (A)) hence it is MSO-definable (by Corollary 4.4).

2

In terms of projection, the previous theorem and its proof arguments ensure that:

with C -1 p ,r = ∅ and δ p,q = {1} when p = q and ∅ otherwise. Indeed, we just mimic in these equations all the possible cases to build a run. Either some letter a ∈ A∪ Ā is read, or a pebble is used. Observe that T k p,q only depends on tile languages of the form T k p ,q with k ≤ k or of the form C k p ,q = (T k p ,q ) E with k < k. Thus no circular dependency involves idempotent projections. It follows that this system can be solved by induction on k ∈ N, using Gaussian elimination, by Lemma 3.1. The tile language of tiles k-recognized by A is (p,q)∈I×F T k p,q , and thus k-regular. 2

Lemma 4.20. Every k-regular language of tiles is k-recognized by a finite-state pebble two-way automaton.

Proof. For k = 0 the result follows from Theorem 3.21. For k ≥ 1 the proof is by induction on the syntactic complexity of k-regular expressions, combining pebble automata. We start with the construction for the idempotent projection. Given a pebble automaton A = Q, I, F, ∆ and its k-recognized tile language L, we define the automaton A = Q , I , F , ∆ by Q = Q∪{q 0 , q f } with q 0 and q f two new states, I = {q 0 }, F = {q f }, and, for every a ∈ A ∪ Ā, ∆ (a) = ∆(a), ∆ (1 + ) = ∆(1 + ) ∪ ({q 0 } × I) and ∆ (1 -) = ∆(1 -) ∪ (F × {q f }). It is straightforward to check that the tile language L E is (k + 1)-recognized by the automaton A . Now let A 1 = Q 1 , I 1 , F 1 , ∆ 1 and A 2 = Q 2 , I 2 , F 2 , ∆ 2 be two pebble automata,k-recognizing the tile languages L and M . We assume that Q 1 and Q 2 are disjoint. Clearly, L+M is k-recognized by the automaton Q 1 ∪ Q 2 , I 1 ∪ I 2 , F 1 ∪ F 2 , ∆ where ∆(a) = ∆ 1 (a) ∪ ∆ 2 (a) for every a ∈ A ∪ Ā.

Since, in general, (L + {1}) • (M + {1}) = L • M + L + M + {1} and (L + {1}) * = L * , we may assume in the remaining cases that I 1 = {q 0,1 } and F 1 = {q f,1 } with q 0,1 = q f,1 , and similarly for A 2 . Moreover, we may assume that if (q, q ) ∈ ∆ 1 (a) for a ∈ A ∪ Ā, then q = q f,1 and q = q 0,1 , and similarly for A 2 . Finally, since the number of pebbles used is finite, we may assume that A 1 keeps track of the number of dropped pebbles in its finite state, and so,if (q 0,1 , 0) • • • (q f,1 , p) is a run of A 1 , then p ∈ Z, and similarly for A 2 .

Under these assumptions, a pebble automaton for L * is obtained from A 1 by identifying the states q 0,1 and q f,1 . Moreover, a pebble automaton for L • M is obtained from the automaton Q 1 ∪ Q 2 , {q 0,1 }, {q f,2 }, ∆ , where ∆ is defined as above, by identifying the states q f,1 and q 0,2 . 2

It is well known that the language of words k-recognized by a finite-state pebble two-way automaton is regular [START_REF] Engelfriet | Tree-walking pebble automata[END_REF][START_REF] Engelfriet | Automata with nested pebbles capture first-order logic with transitive closure[END_REF][START_REF] Engelfriet | XML transformation by tree-walking transducers with invisible pebbles[END_REF]. The next corollary states this for our pebble automata. We define the language of words k-recognized by pebble automaton A to consist of all words u ∈ A * such that the tile (1, u, 1) is k-recognized by A. Corollary 4.21. Every language of words k-recognized by a finite-state pebble two-way automaton is regular.

Proof. By Lemma 4.19 and Theorem 4.12 the tile language k-recognized by a finite-state pebble two-way automaton is MSO-definable. The remainder of the proof is the same as in the proof of Corollary 4.9. 2

Conclusion

Studying languages of overlapping tiles, equivalently subsets of McAlister monoids, we have considered several classes of languages: recognizable languages, regular languages, k-regular languages and MSO-definable languages, obtaining a strict though finite hierarchy REC REG = 0-REG 1-REG = k-REG = MSO for every k ≥ 1, with a clear connection between k-regular expressions and languages k-recognized by pebble automata. Concerning further works, we have already mentioned the question of the succinctness hierarchy possibly induced by the maximum number of pebbles or, equivalently, the nesting depth of idempotent projections. The limit case of runs of pebble automata with no bound on the number of allowed pebbles could also be studied.

The tight connection already provided between (invisible) pebbles in two-way pebble automata and idempotent projection within inverse semigroup theory reenforces the idea that the latter, a robust mathematical theory, can be used to strengthen the former, a somehow quite adhoc theory arising from application perspectives.

An intriguing related class of languages of tiles is the class BOOL(REG) of finite boolean combinations of regular languages. It is obviously included in the class of MSO-definable languages, but it is by no means clear whether the inclusion is strict. Another further work would be to relate the hierarchy with classes of algebraically recognizable languages of tiles, as defined in [START_REF] Janin | Quasi-recognizable vs MSO definable languages of one-dimensional overlapping tiles[END_REF][START_REF] Janin | Overlaping tile automata[END_REF][START_REF] Janin | On languages of labeled birooted trees: Algebras, automata and logic[END_REF].

Pebble automata can be seen as a restricted class of pushdown automata. This suggests that context-free grammars over languages of tiles could also be studied. The presence of overlaps together with compatibility constraints in the tile product clearly shows that the underlying word languages would no longer be context-free. Still, studying these languages could lead to alternative characterizations of weaker classes of context-sensitive languages such as, for instance, the class of mildly context-sensitive grammars [START_REF] Weir | Characterizing mildly context-sensitive grammar formalisms[END_REF] much studied in computational linguistics.

Last, the inverse monoid approach proposed here for studying the behavior of two-way automata could perhaps be extended to two-way transducers.
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 2627 Let a, b, c and d be distinct letters of A. Then (a, b, c) • (b, c, d) = (a, bc, d), but (a, b, c) • (a, c, d) = 0 (the left-matching constraint is violated since neither ab is a suffix of a, nor a is a suffix of ab). The product u•v of two matching positive tiles u
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 5 Fig. 5. Inverses and associated idempotents.
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 218 For every positive tile u

Lemma 2 . 21 .

 221 The monoid T + 0 (A) of positive tiles is finitely generated from θ(A) by products and left and right projections. Proof. Immediate from Lemma 2.18 observing that 0 = θ(a) • θ(b) L for a = b. 2

Example 2 . 24 .

 224 Since θ(āabcbaā b) = (a, bc, ba) (cf. the Introduction), the word āabcbaā b is a walk. The word aāb is not a walk when a = b. Remark 2.25. A word w
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 6230 Fig. 6. The walks and tiles diagram
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 2317 Fig. 7. The walks, tiles and birooted trees diagram
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 2 and only if k ≤ m. Assume now that u m ∼ L u n for some m, n ∈ N. Then for every k ∈ N, we have k ≤ m if and only if k ≤ n, hence we necessarily have m = n. Corollary 3.12 and Lemma 3.13 we have Corollary 3.14. REC REG.

Example 3 . 16 .

 316 Let M = {0, 1, (a, a), (a, b), (b, a), (b, b)}, and let be the product defined over M by ∀x, y, z, t ∈ {a, b}, (x, y)

  m a,b that maps a to b (encoded by (a, b)) and the partial bijection m b,a that maps b to a (encoded by (b, a)). Indeed, the additional partial bijections obtained from the generators are m a,a = m a,b • m b,a (encoded by (a, a)) and m b,b = m b,a • m a,b (encoded by (b, b)). The empty bijection 0 is given, for instance, by 0 = m a,a • m b,b .

Kleene's theorem

  extends to languages of tiles. Let 2WA denote the class of tile languages recognized by finite-state two-way automata: Theorem 3.21. REG = 2WA.

Definition 4 . 1 (

 41 Idempotent projection).For every language M ⊆ T (A) of tiles, let M E = M ∩ E(A) denote the idempotent projection of M .

  as the FO-structure t u over dom(t u ) = {0, 1, 2, 3, 4, 5, 6}, with relations R a and R b given by R a = {(1, 2), (2, 3),[START_REF] Berstel | Transductions and Context-Free Languages[END_REF][START_REF] Berthaut | Advanced synchronization of audio or symbolic musical patterns: an algebraic approach[END_REF]} and R b = {(0, 1), (4, 5), (5, 6)}, and constants in(t u ) = 2 and out(t u ) = 4. Any negative non-zero tile of the form u = (u 1 u 2 , u 2 , u 2 u 3 ) can also be seen, as depicted in all examples so far, as the FO-structure obtained from the one of the tile (u 1 , u 2 , u 3 ) just by interchanging the constants in and out.

). Lemma 2.2. Let

  M be a monoid such that (i) every element of M has an inverse, and (ii) all idempotent elements commute (i.e., if xx = x and yy = y then xy = yx). Then M is an inverse monoid. Proof. Let x be an element of M . For any inverse y of x, (xyx)y = xy and y(xyx) = yx, thus xy and yx are idempotent. Let y 1 and y 2 be inverses of x. Since xy 1 and xy 2 are idempotent, they commute, and we have xy 2 = (xy 1 x)y 2 = (xy 1 )(xy 2 ) = (xy 2 )(xy 1 ) = (xy 2 x)y 1 = xy 1 thus xy 2 = xy 1 . Symmetrically it can be shown that y 2 x = y 1 x. It follows that y 2 = y 2 xy 2 = y 2 xy 1 = y 1 xy 1 = y 1 , and thus the inverse of x is unique.

  1 u 1 . 2 Corollary 2.29. Let w 1 , w 2 ∈ W (A) be two walks. Then θ(w 1 ) = θ(w 2 ) if, and only if, w 1 W w 2 . Proof. If : by Lemma 2.15. Only if : follows from Lemma 2.28. Indeed, if θ(w 1 ) = θ(w 2 ) is a positive tile (u 1 , u 2 , u 3 ), then we have w 1 W ū1 u 1 u 2 u 3 ū3 W w 2 , and if θ(w 1
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Corollary 4.8. A language of tiles is MSO-definable if and only if it is a finite union of languages of tiles of the form

where M 1 , M 2 and M 3 are images by θ of regular languages of words.

As an additional corollary, we retrieve Shepherdson's well-known result [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF]:

Corollary 4.9 (Shepherdson's theorem). Every language of words recognized by a finitestate two-way automaton is regular.

Proof. Let A be a finite-state two-way automaton. By definition, the word language recognized by A is L S (A) = {u ∈ A * : (1, u, 1) ∈ L T (A)}. Following Remark 3.20, let # be a new letter not in A. Since 0 is removed from the product of languages of tiles, we have:

By Theorem 3.21, the tile language L T (A) is regular, thus the language θ(#) • L T (A) • θ(#) is also regular. Hence, by Corollary 4.4, it is MSO-definable and thus, by Theorem 4.7 above, it is of the form {1} × L × {1} for some regular language L ⊆ #A * #. It follows that L S (A) = {w ∈ A * : #w# ∈ L}, or, using left and right residual notations (see [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]), L S (A) = # -1 ((L)# -1 ). Since regular languages are closed under left or right residuals, we conclude that L S (A) is a regular language over the alphabet A. 2

k-regular languages

We define in this section the notion of k-regular languages of tiles that are defined measuring the nesting depth of the idempotent projection operator in some extended notion of regular expressions.

Definition 4.10 (k-regular languages of tiles).

For every k ∈ N, a tile language M ⊆ T (A) is k-regular if either k = 0 and M is regular, or k > 0 and M can be defined as the result of finitely many additions, multiplications and star operations over both (k -1)-regular tile languages and idempotent projections of (k -1)-regular tile languages. But we observe that for every regular language of words M , we have that θ(M ) ∈ REG and

By definition, this means that both θ(M ) L and θ(M ) R are 1-REG hence, by Corollary 4.8 and Lemma 3.4, every MSO-definable languages of tiles is in 1-REG. It follows that MSO ⊆ 1-REG. 2

Theorem 4.12 ensures that 1-REG = k-REG for every k ≥ 1. This suggests that there is no point in defining and studying k-regular tile languages by themselves. However, the tight correspondence obtained in the next section (Theorem 4.18) between k-regular expressions and k-pebble automata suggests that, in a way analogous to Globerman and Harel's result [START_REF] Globerman | Complexity results for two-way and multi-pebble automata and their logics[END_REF], a succinctness hierarchy is induced by the number of allowed pebbles. More precisely: Conjecture 4.13. k-REG expressions are k-fold exponentially more succinct than 1-REG expressions.

Two-way pebble automata

In this section, we define the notion of k-pebble two-way automata on tiles. Then, we show that k-pebble automata capture k-regular tile languages. Informally, a pebble automaton is a twoway automaton that has the capacity, from time to time, to drop and lift pebbles placed between letters of the input word.

Here we consider invisible pebbles in the sense of [START_REF] Engelfriet | XML transformation by tree-walking transducers with invisible pebbles[END_REF]: at any time, only the last pebble dropped may be seen by the automaton, and only by lifting this pebble. Also, as we will consider automata with a bounded number of pebbles, the pebbles we use are unmarked.

The k-(invisible, unmarked)-pebble automata are particular cases of the k-(visible, marked)pebble automata of [START_REF] Globerman | Complexity results for two-way and multi-pebble automata and their logics[END_REF][START_REF] Engelfriet | Tree-walking pebble automata[END_REF], whose transitions may be governed by the presence or absence of pebbles on the current position. The more general case of infinitely many invisible (marked) pebbles is considered in [START_REF] Janin | Walking automata in the free inverse monoid[END_REF] when studying walking automata on birooted trees or graphs.

Our proposed definition is inspired by stack of stack automata as studied in [START_REF] Fratani | Iterated pushdown automata and sequences of rational numbers[END_REF]. Indeed, each pebble dropped (resp. lifted) during a run can be modeled as pushing (resp. popping) a new stack on (resp. the top stack from) the main stack, kept in the run configuration. In this case, as opposed to the case of trees or graphs [START_REF] Janin | Walking automata in the free inverse monoid[END_REF], these secondary stacks are rather simple. They are integers since it suffices to remember at every step the distance between the reading head and the last pebble that has been dropped (or the starting position).

Definition 4.14 (Pebble automata).

A finite-state pebble two-way automaton over an alphabet A is a quadruple A = Q, I, F, ∆ with a finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, and a transition table

Informally, for every a ∈ A, the set of transitions ∆(a) tells how the letter a can be read from left to right, and the set of transitions ∆(ā) tells how that letter can be read from right to left. The set of transitions ∆(1 + ) tells how a pebble can be dropped, and the set of transitions ∆(1 -) tells how a pebble can be lifted.

Runs are then defined via position configurations: non-empty finite sequences of (positive or negative) integers p = z 0 z 1 • • • z k for some integer k ≥ 0 and z i ∈ Z for every 0 ≤ i ≤ k. The intended meaning of such a position configuration p is that k pebbles are dropped on the input tile, and z i is the distance between the positions of the ith dropped pebble and the (i + 1)th dropped pebble, with the initial position of the reading head modeled as a sort of 0th pebble and its current position as a sort of (k + 1)th pebble. This intention is made more precise in the next two definitions and in the remark afterward.

Definition 4.15 (Runs of pebble automata). A run of the pebble automaton

where n ≥ 0, q 0 , . . . , q n ∈ Q, p 0 , . . . , p n ∈ Z + and a 1 , . . . , a n ∈ A ∪ Ā ∪ {1}, such that a 1 • • • a n ∈ W (A) and for every 1 ≤ i ≤ n one of the following conditions is satisfied:

(1) (q i-1 , q i ) ∈ ∆(a i ), a i = 1, p i-1 = pz for some p ∈ Z * and z ∈ Z, and

Then we put: Definition 4.16 (k-pebble recognizability). A run ρ of A, as in Equation ( 1), uses at most k pebbles when, for every 0 ≤ i ≤ n, the length of the sequence p i is at most k + 1.

For k ∈ N, a tile u is k-recognized by A when there exists a run ρ of A, as in Equation [START_REF] Almeida | Algebraic Aspects of Tiling Semigroups[END_REF], that uses at most k pebbles, such that u = θ(a 1 • • • a n ), with (q 0 , p 0 ) ∈ I × {0} and (q n , p n ) ∈ F × Z.

The tile language L ⊆ T (A) is k-recognized by A if L is the set of tiles that are k-recognized by A.

Let k-P2WA denote the class of tile languages k-recognized by finite-state pebble two-way automata.

Remark 4.17. A simple check shows that, in the definition above, if u = (u 1 , u 2 , u 3 ), then p n = |u 2 | when u 2 ∈ A * and p n = -|u 2 | when u 2 ∈ Ā * , i.e., p n is the relative position of the output root of u compared to the input root of u.

More generally, when interpreting a run as a back and forth traversal of the tile u = θ(a 1 a 2 • • • a n ) from its input root to its output root (as in Remark 3.19), one can show that if p 0 = 0 then every other position configuration p i is of the form p i = z 0 z 1 • • • z m with the integers z 0 , z 1 , . . . , z m interpreted as follows. The integer z 0 gives the relative position of the first dropped pebble (or the reading head when m = 0) compared to the start of the run (i.e., the input root of u). For every 0 < j < m, the integer z j gives the relative position of the (j + 1)th pebble compared to the position of the jth pebble. Last, the integer z m gives the relative position of the reading head compared to the position of the (m -1)th pebble (or its initial position when m = 0). The pebble automaton A keeps track of such relative positions by counting the "number" of letters it reads in a 1 • • • a n , counted positive when in A (i.e., when moving to the right on θ(a 1 • • • a n )) and negative when in Ā (i.e., when moving to the left).

Indeed, dropping a pebble amounts to pushing 0, the new position of the reading head compared to that pebble. Reading a ∈ A ∪ Ā, the position of the head compared to the last dropped pebble (which is on top of the stack) is changed by δ(a). Lifting a pebble amounts to popping the position of the head compared to the position of that pebble. That position must be 0; that ensures that the head has moved back to the position it had when the pebble was dropped. Proof. Let A = Q, I, F, ∆ be a finite-state pebble two-way automaton. For every pair of states (p, q) ∈ Q × Q and every integer k ≥ 0, let T k p,q ⊆ T (A) denote the language of tiles k-recognized by the automaton Q, {p}, {q}, ∆ . Let C k p,q denote the associated set of idempotent tiles C k p,q = (T k p,q ) E . It is easy to show that the languages T k p,q form the least solution of the set of equations defined, for every p, q ∈ Q and every k ≥ 0, by: T k p,q = δ p,q + a∈A∪ Ā (p,r)∈∆