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Abstract

We consider classes of languages of overlapping tiles, i.e. subsets
of the McAlister monoid: the class REG of languages definable by
Kleene’s regular expressions, the class MSO of languages definable by
formulas of monadic second-order logic, and the class REC of lan-
guages definable by morphisms into finite monoids. By extending the
semantics of finite-state two-way automata (possibly with pebbles)
from languages of words to languages of tiles, we obtain a complete
characterization of these classes.

We show that adding pebbles strictly increases the expressive power
of two-way automata recognizing languages of tiles, but the hierarchy
induced by the number of allowed pebbles collapses to level one.

Our study yields, as an immediate corollary, Shepherdson’s result
(and its extension to pebble automata) that, for languages of words,
every finite-state two-way automaton is equivalent to a finite-state
one-way automaton.

1 Introduction

1.1 Background

One-dimensional overlapping tiles already appear in the 70’s in inverse semi-
group theory [26]. As elements of particular quotients of free inverse monoids
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[29, 22], known as monoids of McAlister [23, 22], the tiles came to the fore-
front again in the late 90’s in mathematical physics, associated with tilings
of the Euclidian space [18, 19, 20, 1]. Although implicitly, overlapping tiles
also appear in theoretical computer science in the studies of zigzag codes and
the underlying zigzag covers of finite, infinite or bi-infinite words [2, 6, 24, 1].
Oddly enough, our interest in languages of positive tiles came from appli-
cation perspectives in computational music theory [11]. In particular, tiles
and continuous variants may be used to describe advanced synchronization
mechanisms between musical patterns [4, 3, 17]; an approach that leads to
new programming features for music system design [16].

In software engineering, overlapping tiles may be seen as the possible
concrete values of string objects extended with history-preserving memory
capacities. This point of view turns out to provide a simple presentation of
many properties satisfied by one-dimensional overlapping tiles; it also conveys
most of the intuition that underlies the work presented here.

Let us thus assume that we are software developers trying to enrich the
class of string objects with some history-preserving capacity.

More precisely, for every string object s, let s · a denote the result of
adding some letter a to the right of the string s, and let s ·a denote the result
of removing a from the right of s. With a standard string, s · a · a = s, and
thus s · a · a · b = s · b for any letter b. A history-preserving mechanism is
a way to prevent a letter to appear in s if a different letter has previously
occurred in the same position. Thus our extended strings should satisfy the
property

s · a · a · b =

{

s · b if a = b
undefined otherwise

as if adding and removing the letter a to the right of the string s created
some footprint of that letter in such a way that no other letter could ever be
put on that position.

One-dimensional overlapping tiles faithfully describe the possible sequences
of actions (additions or removals of letters) on these extended string objects;
and thus the possible values of the objects themselves (as sequences of ac-
tions on the empty string). For instance, the sequence aabcbaab is described
by the tile

a bc ba

where bc is the string to be added, while the left part a and the right part ba
of the tile model the footprints left by the other actions. The composition of
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actions yields a monoid structure that turns out to be the inverse monoid of
McAlister [26, 23].

These examples show that the model of one dimensional overlapping tiles
is a versatile model that can be used in many fields. However, the associated
language theory can still be developed. Indeed, it occurs the classical tools
of formal language theory somehow fail to apply to inverse monoids [25,
34]. To be more precise, the expressive power induced by the usual tools,
e.g. automata or algebraic recognizability, collapses when applied to inverse
monoids.

In this paper, we aim at developing a computer science-flavored language
theory for overlapping tiles. Since adding or removing letters of extended
string objects can be interpreted as movements of the head of a two-way
automaton [31] on a classical string, finite-state two-way automata appear
as natural and expressive candidates to define and study classes of tile lan-
guages.

1.2 Outline

The monoid of one-dimensional overlapping tiles is presented in Section 2.
A special emphasis is put on the way non-zero tiles are generated from linear
walks, thus rephrasing, in the context of one-dimensional tiles, the notion of
free inverse monoid captured by the Wagner congruence (Lemma 5). The
link with Pécuchet’s notion of bisections [28] is specified at the end of the
section.

To a specialist of inverse semigroups, most of the material presented in
this section is quite straightforward. In particular, our presentation of the
monoid of McAlister could be significantly simplified by defining it as a Reese
quotient of the free inverse monoid, following the classical Scheiblich-Munn
presentation of free inverse monoids [32, 27]. We preferred a direct, stan-
dalone presentation to address a more general public, providing an alterna-
tive to Lawson’s presentation [23] (see also [22], chap. 9, for a relationship
with various other classes of semigroups).

From Section 3 we study languages of tiles. The class MSO of languages
definable in Monadic Second-Order Logic, a typical yardstick of expressive-
ness, is first defined and shown both robust (Theorem 9) and simple (The-
orem 12). As a consequence of robustness, it is shown that the class REG
(resp. k-REG) of languages of tiles definable by Kleene expressions (resp.
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Kleene expressions extended with projection on idempotents with a nesting
depth at most k) is included into the class MSO. As a consequence of sim-
plicity, it is shown (Theorem 14) that the class MSO is captured by the
class 1-REG: extended regular expressions with no nested projection oper-
ator. The class REC of languages recognizable by finite monoids is also
studied and related with the other classes. An example of a language in
REC is given, illustrating the complete characterization of the class REC
given in [15].

Languages definable by means of two-way tile automata are then pre-
sented in Section 4. Quite closely related with Pécuchet study [28], two-way
tile automata are classical two-way automata over words with a semantics
expressed in terms of tiles. Tiles are simply seen as domains of partial runs:
runs that may start and stop anywhere on the input words. As a result, we
show that the regular languages of tiles (definable by Kleene expressions) are
exactly the languages of tiles recognizable by finite-state two-way automata
(Theorem 22). We also prove that the (strictly larger, see Theorem 23) class
of MSO-definable languages of tiles is the class of languages recognizable by
finite-state many-pebble automata . Furthermore, one-pebble automata are
shown to capture the whole class of many-pebble automata (Theorem 27).
Shepherdson’s theorem and analogous results for pebble automata are ob-
tained as immediate corollaries (Corollaries 26 and 30).

To summarize, we prove that for every k ∈ N

REC ⊂ REG = 0-REG ⊂ (k+1)-REG = Bool(REG) = MSO

with strict inclusions. All these results support the long-standing intuition
[28, 5, 21] that the theory of inverse monoids is a powerful tool in the study
of two-way automata. Indeed, all proofs presented here are quite simple.

1.3 Related works

Two-way automata have been the subject of many studies. This can be
explained by their intriguing combinatorial complexity.

For instance, Rabin-Scott-Shepherdson’s result [33] that two-way au-
tomata are as expressive on words as one way automata was long considered
difficult [36]. More precisely, the capacity of two-way automata to read each
letter an unbounded number of times makes the structure of two-way au-
tomata runs difficult to analyze. This is particularly clear in Pécuchet and
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Birget’s algebraic studies of two-way automata [28, 5], in which two-way runs
give rise to a rich combinatorial structure. A similar complexity is illustrated
by Globerman and Harel’s result [9] that the number of allowed pebbles in
two-way automata induces a “succintness” hierarchy: each additional pebble
provides inherent exponential power.

Still, gaining a full understanding of two-way automata, with or without
pebbles, remains a challenging topic. The classical theory of (one-way) finite
automata has benefited from a rich algebraic language theory that led, and
still leads, to many decision algorithms [30]. But, as already observed by
Birget [5], there is no similar algebraic characterization of two-way automata
that does not amount to essentially reduce two-way automata to one-way
automata. Further studies, be them on languages of overlapping tiles [10, 14]
or on languages of birooted trees [15, 12], show that some progress can be
done along Birget’s long-standing open question [5].

Beyond two-way automata, there are two-way transducers. Though this
is not the subject of our study, it is not implausible that our approach can
be generalized to such transducers.

2 The monoid of overlapping tiles

Here we give a description of monoids of one-dimensional overlapping tiles.
They are shown to be isomorphic to monoids of McAlister monoid [23]. The
tight link between (two-way linear) walks on words and tiles is formalized
by an onto morphism from walks to tiles whose kernel is indeed the Wagner
congruence.

2.1 Preliminaries

Given a finite alphabet A, let A∗ be the free monoid generated by A and let
1 be the neutral element. The concatenation of two words u and v is denoted
by uv.

Let ≤p stands for the prefix order over A∗, let ≤s for the suffix order
and let ∨p (resp. ∨s) denotes the join operator for the prefix (resp. suffix)
order. For all words u and v, we have that u ∨p v (resp. u ∨s v) is the least
word whose both u and v are prefixes (resp. suffixes). The extended monoid
A∗ + {0} (with 0u = u0 = 0 for every word u), ordered by ≤p (extended
with u ≤p 0 for every word u), is a lattice; in particular, u∨p v = 0 whenever
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neither u is a prefix of v, nor v is a prefix of u. Symmetric properties hold
in the suffix lattice.

Given A a disjoint copy of A, let u 7→ u be the mapping from (A + A)∗

to itself inductively defined by 1 = 1, au = u a and au = u a for every letter
a ∈ A and every word u ∈ (A + A)∗. The mapping u 7→ u is involutive, i.e.
for all words u ∈ (A+A)∗ we have u = u. It is also an antimorphism of the
free monoid (A+A)∗, i.e. for all words u and v ∈ (A+A)∗ we have uv = vu.
For all u ∈ (A+ A)∗, the word u is called the syntactic inverse of u.

The free group FG(A) generated by A is the quotient of (A+A)∗ by the
least congruence ≃ such that, for every letter a ∈ A, aa ≃ 1 and aa ≃ 1.
Let � be the rewriting relation induced by the rules 1 � aa and 1 � aa
for every a ∈ A. It is well-known that every class [u] ∈ FG(A) contains a
unique element red(u) (the reduced form of u) irreducible with respect to �,
i.e. containing no factor of the form a a nor a a.

The free inverse monoid FIM(A) generated by A is the quotient of (A+
A)∗ by the Wagner congruence ≃W , i.e. the least congruence such that
uuu ≃W u and uuvv ≃W vvuu for all u, v ∈ (A+ A)∗.

2.2 Positive and negative tiles

A tile over the alphabet A is a triple of words u = (u1, u2, u3) ∈ A∗ × (A∗ +
A

∗
) ×A∗ such that, if u2 ∈ A

∗
, its inverse u2 is a suffix of u1 and a prefix of

u3.
When u2 ∈ A∗ we say that u is a positive tile. When u2 ∈ A

∗
we say that

u is a negative tile.
From now on, let TA, T+

A and T−
A respectively denote the set of tiles, the

set of positive tiles and the set of negative tiles over the alphabet A.
The domain of a tile u = (u1, u2, u3) is the reduced form of u1u2u3 (always

a word of A∗). Its root path is the word u2. When u2 ∈ A∗, the words u1 and
u3 are the contexts of the tile u.

A positive tile u = (u1, u2, u3) is conveniently drawn as a (linear, unidi-
rectional and left-to-right) Munn’s birooted word tree [27]:

• • • •
u1 u2 u3

(u)

where the dangling input arrow, marking the beginning of the root path and
called the input root of the tile, appears on the left of the dangling output
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arrow, marking the end of the root path and called the output root of the
tile. A negative tile of the form v = (v1v2, v2, v2v3) ∈ A∗ × A

∗
× A∗ is also

drawn as a birooted word tree

• • • •
v1 v2 v3

(v)

where the input root now appears on the right of the output root. A tile
that is both positive and negative, that is a tile of the form w = (w1, 1, w3) ∈
A∗ × 1 × A∗ is then drawn as follows:

• • •
w1 w3

(w)

2.3 The inverse monoid of tiles

In this part, we abusively denote a tile (u1, u2, u3) by any triple (u′
1, u

′
2, u

′
3) ∈

((A + A)∗)3 such that u1 (resp. u2, u3) is the reduced form of u′
1 (resp. u′

2,
u′

3).

The sequential product of two tiles u = (u1, u2, u3) and v = (v1, v2, v3) is
defined as

u · v = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both pattern-matching conditions u1u2 ∨s v1 6= 0 and u3 ∨p v2v3 6= 0.
Otherwise, the product u · v is defined to be 0 for some new tile 0. The set
TA is thus extended with the zero tile, sometimes called the undefined tile,
and we let u ·0 = 0 ·u = 0 for every u ∈ TA. In order to keep notation simple,
we keep the notation TA for the set TA extended with 0. The fact we restrict
to non zero tiles shall always be clear from the context.

Remark. Let a, b, c and d be distinct letters of A. Then (a, b, c) · (b, c, d) =
(a, bc, d) whereas (a, b, c) · (a, c, d) = 0. In the latter case, the left matching
constraint is violated since neither of ab and a is a suffix of the other.

Graphically, the product of two tiles is obtained by their superposition
(or synchronization) in such a way that the end of the root of the first tile
coincides with the beginning of the root of the second tile then by their fusion,
which requires pattern-matching conditions to the left and to the right of the
synchronization point. With a positive tile u = (u1, u2, u3) and a positive
tile v = (v1, v2, v3), the product u · v can be depicted as follows:
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(u) • • • •
u1 u2 u3

(v) • • • •
v1 v2 v3

(u · v) • • • •
(u1u2 ∨s v1)u2 u2v2 v2(u3 ∨p v2v3)

With a positive tile u = (u1, u2, u3) and a negative tile v = (v1v2, v2, v2v3),
the product u · v can be depicted, after simplification, as follows:

(u) • • • •
u1 u2 u3

(v) • • • •
v1 v2 v3

(u · v) • • • •
(u1u2 ∨s v1v2)u2 u2v2 v2(u3 ∨p v3)

Observe that, in all cases, the domain of a non-zero product u · v contains
both the domain of u and the domain of v. This is a key feature to ensure
that the product is associative, as stated and proved in the next Theorem.

Remark. It is straightforward to check that any tile u of the form
u = (u1, 1, u3) satisfies u · u = u. Conversely, if a tile u = (u1, u2, u3)
satisfies u · u = u, then u2u2 = u2 and thus u2 = 1. Thus the tiles that are
both positive and negative are indeed the non-zero tiles idempotent for the
product. In the sequel, the undefined tile 0 is thus considered to be both
positive and negative. Then, tiles that are both positive and negative are
just referred to as idempotent tiles.

Theorem 1 TA equipped with the sequential product of tiles is an inverse
monoid with neutral element 1 = (1, 1, 1) and inverses given by 0−1 = 0 and
for every non-zero tile u = (u1, u2, u3) ∈ TA, we have u−1 = (u1u2, u2, u2u3).

Proof. We first prove that the sequential product is a sound (well-defined)
associative operation.

Soundness. Let u = (u1, u2, u3) and v = (v1, v2, v3) be tiles such that u.v 6= 0.
Since u1 and v3 are in A∗, the reduced forms of (u1u2∨sv1)u2 and v2(u3∨sv2v3)
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are also in A∗. Thus if red(u2v2) ∈ A∗ we have that u.v is a tile.
Suppose red(u2v2) ∈ A

∗
. If both tiles u and v are negative, v2 u2 is a suffix of

v1u2 (since v2 is a suffix of v1) and a prefix of v2u3 (since u2 is a prefix of u3).
If u is negative and v positive then v2 is a prefix of u2 and thus red(v2 u2) is a
suffix of u1 and a prefix of red(v2 u3); similarly, if u is positive and v negative
then u2 is a suffix of v2 and thus red(v2 u2) is a suffix of red(v1u2) and a prefix
of v3. In all cases, red(u2v2) is a suffix of red((u1u2 ∨s v1)u2) and a prefix of
red(v2(u3 ∨p v2v3)), hence u.v is a tile.

Associativity. The pattern-matching conditions are associative: let u =
(u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) non-zero tiles such that
each of the products (u.v).w and u.(v.w) is a non-zero tile. This is equiva-
lent to the fact that u1u2v2 ∨s v1v2 ∨s w1 6= 0 and u3 ∨s v2v3 ∨s v2w2w3 6= 0.
In that case we have

(u.v).w = ((u1u2v2 ∨s v1v2 ∨s w1)v2 u2, u2v2w2, w2 v2(u3 ∨s v2v3 ∨s v2w2w3))

hence we also have (u.v).w = u.(v.w) by symmetry.

Obviously, the element 1 = (1, 1, 1) is the neutral element and 0 an ab-
sorbing element.

To prove that TA is an inverse monoid, it suffices to prove [29, 22] that
all elements have inverses, i.e. for every x ∈ TA there exists y ∈ TA such that
xyx = x and yxy = y, and that idempotents commute. Since 0 is obviously
the unique inverse of itself and commutes with every element, we restrict to
non-zero tiles.

Existence of inverses.
For every tile u = (u1, u2, u3) ∈ TA, let u−1 = (u1u2, u2, u2u3). Observe

that we indeed have (u−1)−1 = u. Moreover, it is straightforward to check
that u.u−1 = (u1, 1, u2u3) and u−1.u = (u1u2, 1, u3). Hence u.u−1.u = u and
u−1.u.u−1 = u.

Commutation of idempotents. Let u = (u1, 1, u3) ∈ TA be an idempotent tile:
u.u = u implies u2u2 = u2, hence u2 = 1, i.e. u is an idempotent tile. The
commutativity of ∨s and ∨p implies the commutation of idempotents hence
the set EA of idempotent tiles is indeed a commutative submonoid of TA. 2

Remark. In the case A is a singleton then the product of two tiles is
always well defined. There is thus no need of the undefined tile 0. The
resulting monoid (without zero) is known to be the free inverse monoid of
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one generator. Unless explicitly stated, we assume in this paper that A
contains at least two distinct letters.

The following is immediate:

Proposition 2 The mapping u 7→ (1, u, 1) from A∗ to TA is an injective
morphism.

In other words, the free monoid A∗ can be seen as a submonoid of TA. In
the remainder of the text we may use the same notation for words of A∗ and
their images in TA.

From the identities u−1.u = (u, 1, 1) and u.u−1 = (1, 1, u) for every word
u ∈ A∗, we easily deduce that:

Proposition 3 The monoid TA is finitely generated from (the tile images
of) letters of A, product and inverses.

On the contrary, the set T+
A of positive tiles (and, similarly, the set T−

A

of negative tiles) is obviously a submonoid of TA. But this submonoid is not
finitely generated.

This observation leads us to the following definition. For every
u = (u1, u2, u3) ∈ TA, let uL = u−1.u = (u1u2, 1, u3) be the left projec-
tion associated with the tile u, and let uR = u.u−1 = (u1, 1, u2u3) be its right
projection. Let also 0L = 0R = 0. By construction, we have uR.u = u.uL = u
for every u ∈ TA.

Proposition 4 The submonoid T+
A is finitely generated from (the tile images

of) letters of A and the left and right idempotent operators.

Proof. Follows from the identity (u1, u2, u3) = (1, u1, 1)L ·(1, u2, 1) ·(1, u3, 1)R

for every u = (u1, u2, u3) ∈ T+
A . 2

2.4 Linear walks and the monoid of McAlister

We provide here an alternative proof that TA is an inverse monoid by showing
that it is isomorphic to the McAlister monoid [23]. Of course, this could be
done by showing that Lawson’s presentation of McAlister monoid is equiv-
alent to ours. However, we believe that our proof, using the monoid WA of
linear walks, conveys a relevant intuition of the link with two-way automata.

Informally, a (non zero) walk over a word u ∈ A∗ is a word w of (A+A)∗

that corresponds to a back-and-forth reading of u (left-to-right reading is
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modeled by letters of A, and right-to-left reading by letters of A). Not all
words of (A + A)∗ are walks. Obviously, no factor ab or ab with distinct
letters a and b can occur in a walk. But a word like baac with distinct a, b
and c, is still not a walk. Indeed, walks may be defined by contraposition.

Formally, let ⊥ be the set of all words v ∈ (A+A)∗ such that there exists
a word u � v, and some distinct letters a and b, such that either ab or ab is
a factor of u. A (linear) walk is any word u ∈ (A + A)∗ such that u /∈ ⊥.
Clearly, the set ⊥ is closed by product with arbitrary elements of (A+ A)∗.
It is thus an ideal of (A+ A)∗.

We define the monoid of walks WA as the Rees quotient (A + A)∗/⊥. It
is the monoid obtained from (A + A)∗ by merging all elements of ⊥ into a
zero, the undefined walk. Clearly, the set ⊥ (hence the set WA − ⊥) is closed
under the Wagner congruence.

Walks and tiles are related by the following lemma:

Lemma 5 For every non-zero walk w ∈ WA, there is a unique tile θ(w) of
the form θ(w) = (u1, u2, u3) ∈ TA such that u1u1u2u3u3 ≃W w. Moreover,
extending θ to a mapping from WA to TA by θ(⊥) = 0, then θ is an onto
monoid morphism.

Proof. Unicity. Let w ∈ WA have two decompositions w ≃W u = u1u1u2u3u3

and w ≃W v = v1v1v2v3v3, where (u1, u2, u3) and (v1, v2, v3) are tiles. Since
the Wagner congruence is compatible with the free group reduction, we have
red(u) = red(v), hence u2 = v2; and the walks u1u ≃ u1u2u3u3 and u1v
also satisfy red(v1u) = red(v1v), i.e. red(u1u2) = red(v1u2), hence u1 = v1.
Symmetrically, u3 = v3.

Inversibility. If θ(w) is defined, then (θ(w))−1 = θ(w): indeed, if θ(w) =
(u1, u2, u3), then

(u1u2)(u1u2)u2(u2u3)(u2u3) ≃W (u1u2)u1u2u3u3 u2

≃W u3u3 (u1u2)u1u2u2

= u3u3 u2 u1u1u2u2

≃W u3u3 u2u2u2 u1u1

≃W u3u3 u2 u1u1

≃W w

Existence. Let w ∈ WA. The existence of θ(w), or equivalently θ(w), is
proved by induction over the number n(w) of turns (alternations of positive
and negative letters) in w.
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When n(w) = 0, either w ∈ A∗ and obviously (1, w, 1) = θ(w), or w ∈ A
∗

and (w,w,w) = θ(w).
Assume n(w) > 0. We have w = xw′ for some x ∈ A∗ + A

∗
and w′ ∈

WA such that n(w′) = n(w) − 1. By the induction hypothesis, there exists
a tile θ(w′) = (u1, u2, u3) such that w′ ≃W u1u1u2u3u3 and thus w ≃W

xu1u1u2u3u3. By symmetry (possibly taking w instead of w) we may assume
that u2 ∈ A∗. We prove that θ(w) = θ(x).θ(w′):

⊲ if x ∈ A∗, since xu1 is a walk, we have x ∨s u1 6= 0. It follows that
(1, x, 1).θ(w′) = ((x ∨s u1)x, xu2, u3) is a non-zero tile, and

– either u1 = v1x for some v1 ∈ A∗: then (1, x, 1).θ(w′) = (v1, xu2, u3)
and w ≃W x(v1x)(v1x)u2u3u3 = xx v1v1xu2u3u3; thus (by commu-
tation of idempotents) w ≃W v1v1xxxu2u3u3 ≃W v1v1xu2u3u3;

– or x = yu1 for some y ∈ A∗: then (1, x, 1).θ(w′) = (1, xu2, u3) and
w ≃W (yu1)u1u1u2u3u3 ≃W yu1u2u3u3 = xu2u3u3.

⊲ if x ∈ A
∗
, since xu1u1u2u3 is a walk, we have x ∨p u2u3 6= 0. It follows

that (x, x, x).θ(w′) = (u1x, red(xu2), red(u2(x ∨p u2u3))) is a non-zero
tile, and

– either u2 = xv2 for some v2 ∈ A∗: then (x, x, x).θ(w′) = (u1x, v2, u3)
and w ≃W u1xu1xv2u3u3;

– or x = u2y and u3 = yv3 for some y, v3 ∈ A∗: then (x, x, x).θ(w′) =
(u1x, y, v3) and w ≃W x u1u1u2yv3u3; replacing y with yyy we get
w ≃W (u1x)(u1x)yu3u3;

– or x = u2u3y for some y ∈ A∗: then (x, x, x).θ(w′) = (u1x, z, z)
with z = u3y, and w ≃W (u2z)u1u1u2u3u3; replacing z with zzz
and commuting zz and (u1u2)u1u2, we get

w ≃W z u2 u1u1u2zy u3u3u3 ≃W u1x(u1x)z

and finally w ≃W u1x(u1x)zzz.

Compositionality. By the argument above, for any non-zero walk w, we have
θ(w) = θ(x0).θ(x1). . . . .θ(xn(w)) where x0x1 . . . xn(w) is the decomposition of

w into words of A∗+A
∗
. Obviously, when x and x′ = are both in A∗ or both in

A
∗
, θ(xx′) = θ(x).θ(x′). Since the product of tiles is associative, the identity
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θ(ww′) = θ(w).θ(w′) (extending θ to 0) holds for all walks w,w′ ∈ WA. Thus
θ is a monoid morphism (onto since for every non-zero tile (u1, u2, u3) ∈ TA

we have (u1, u2, u3) = θ(u1u1u2u3u3)). 2

By the previous lemma, for all walks w1 and w2, we have w1 ≃W w2 if and
only if θ(w1) = θ(w2). Thus the Wagner congruence is the kernel of θ; since
⊥ is closed under the Wagner congruence, it can also be seen as an ideal of
the free inverse monoid FIM(A), and thus FIM(A)/⊥ just corresponds to
McAlister’s original definition.

Corollary 6 The monoid of tiles TA, isomorphic to the quotient of walks
WA/ ≃W by the Wagner congruence, is also isomorphic to the McAlister
monoid FIM(A)/⊥.

The relationship between walks, tiles and elements of the free inverse monoid
is summarized by the following commuting diagram:

(A+ A)∗ FIM(A)

WA TA

[ ]≃W

/⊥/⊥

θ

Remark. In some sense, Lemma 5 captures most of the combinatorial
analysis of two-way automata runs made in [28, 5]. More precisely, according
to Pécuchet’s definition [28], a word bisection is any quadruple of words
((u1, u2), (v1, v2)) ∈ (A∗ × A∗) × (A∗ × A∗) such that u1u2 = v1v2. One can
check that the mapping that maps every non-zero tile (u1, u2, u3) ∈ TA to the
quadruple ((u1, u2u3), (u1u2, u3)) ∈ (A∗ × A∗) × (A∗ × A∗) is a well-defined
bijection from non-zero tiles to word bisections.

Note that although some connections with inverse semigroup theory were
observed, the link with McAlister’s monoids, defined in [26] but emphasized
in [23], was left implicit in Pécuchet’s or Birget’s works. Here we are more
interested in what two-way automata read than in how they perform readings,
which was Pécuchet’s and Birget’s main interest. A similar observation could
be made about the study of zig-zag codes [2, 6, 24].
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3 Classes of definable languages of tiles

We define here various classes of definable languages of tiles (or walks), from
the class REC of languages recognizable by finite monoids to the class MSO
of languages definable by means of Monadic Second Order sentences, via the
class k-REG of k-regular languages defined by an extended notion of Kleene’s
expressions.

3.1 Operations on languages of tiles

The monoid structure of TA induces the following operations on languages of
non zero tiles. For every subsets M and N of TA − 0:

⊲ sum: M +N = {u ∈ TA : u ∈ M ∨ u ∈ N}

⊲ product: M.N = {u.v ∈ TA − 0 : u ∈ M, v ∈ N}

⊲ star: M∗ =
∑

n≥0 M
n with M = {(1, 1, 1)} and Mk+1 = M.Mk for

every k ∈ N.

The inverse monoid structure of TA induces three more operations on lan-
guages of tiles:

⊲ inverse: M−1 = {u ∈ TA : u−1 ∈ M}

⊲ idempotent projection: ME = M ∩ EA

⊲ left and right projections: ML = {uL ∈ TA : u ∈ M} and MR = {uR ∈
TA : u ∈ M}

On purpose, we restrict to non-zero tiles. Still, the operations satisfy
many usual properties of the operations on word languages (the same proofs
apply). In particular:

Proposition 7 For all M , N and P ⊆ TA − 0:

⊲ M · (N + P ) = M ·N +M · P and (M +N) · P = M · P +N · P

⊲ M∗ · N is the least solution (with respect to inclusion) of the equation
X = M ·X +N .

The following identities, more specifically related to languages of tiles,
are straightforward:
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Proposition 8 For all M,N ⊆ TA − 0:

⊲ (M +N)−1 = M−1 +N−1

⊲ (M ·N)−1 = N−1 ·M−1

⊲ (M∗)−1 = (M−1)∗

⊲ (ME)−1 = (M−1)E = ME

⊲ (ML)−1 = (M−1)R and (MR)−1 = (M−1)L

3.2 MSO-definable languages

In formal language theory, definability in Monadic Second-Order Logic is a
typical yardstick of expressiveness that can be defined independently of the
underlying algebraic structures [35]. In this part, we quickly review how
languages of tiles can be defined by means of MSO formulas and then we
characterize these languages via the classical notion of regular languages of
words.

Any tile u ∈ TA can be seen as a FO-structure on the signature {Ra}a∈A

of binary relation symbols, extended with two constants in and out for the
entry and exit points. For instance, the triple u = (ba, aa, bb) depicted in the
following picture

0 1 2 3 4 5 6
b a a a b b

can be seen as the FO-structure tu with domain dom(tu) = {0, 1, 2, 3, 4, 5, 6},
relations Ra = {(1, 2), (2, 3), (3, 4)} and Rb = {(0, 1), (4, 5), (5, 6)}, and con-
stants in(tu) = 2 and out(tu) = 4.

Then, a language L ⊆ TA is MSO-definable when there is a MSO formula
of the form ϕ(U, x, y) where U is a set variable and x and y are two FO-
variables such that, for every u ∈ TA, we have u ∈ L if and only if tu |=
ϕL(dom(tu), in(tu), out(tu)).
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3.3 Closure properties

We prove here several closure properties of the class MSO of MSO-definable
languages of tiles.

Theorem 9 (Robustness) For all languages of non-zero tiles M and N ⊆
TA, if M and N are MSO-definable then M +N , M.N , M∗, M−1, ME, ML

and MR are also MSO-definable.

Proof. Let ϕL(U, x, y) and ϕM(U, x, y) be two MSO formulas respectively
defining L and M . Without loss of generality, we may assume that these
formulas check that both x and y belong to U , and that, moreover, the set
U is connected.

Sum: take ϕL+M(U, x, y) = ϕL(U, x, y) ∨ ϕM(U, x, y).

Product: take ϕL.M(U, x, y) = ∃X∃Y ∃z(U = X∪Y )∧ϕL(X, x, z)∧ϕM(Y, z, y).

Inverse: take ϕL−1(U, x, y) = ϕL(U, y, x).

Idempotent projection: take ϕLE (U, x, y) = (x = y) ∧ ϕL(U, x, y).

Left and right projections: by application of Proposition 8 combining the
formulas above for the product, inverse and idempotent projection.

Star: this case is the most delicate. To define L∗, the main idea is to con-
sider the (MSO definable) reflexive and transitive closure R∗(x, y) of the
binary relation R(x1, x2) defined by ∃X,X ⊆ U ∧ϕL(X, x1, x2). The formula
ϕL∗(U, x, y) must also check that the set U is completely covered by the do-
main of the subtiles that are defined when checking that R∗(x, y) is true.
As all these subdomains necessarily overlap via their connecting roots, it is
sufficient to check that both extremities of the domain U , i.e. the leftmost
vertex left(U) and the rightmost vertex right(U), belong to at least one of
these sets X. But this is easily encoded by a disjunction of the three possible
cases: extremities are reached in a single intermediate tile, the left extremity
is reached first or the right extremity is reached first.

More precisely, we can define an MSO formula ψL(U,X, x1, x2) checking
that there is a non-empty finite sequence of k connected subtiles of the form
{ti}i∈[1,k] such that ti |= ϕL(dom(ti), in(ti), out(ti)) for every 1 ≤ i ≤ k, with
the connection property defined by dom(tk) = X and, for every 1 ≤ i < k,
we have x1 = in(t1), x2 = ou(tk), out(ti) = in(ti+1) and dom(ti) ⊆ U .

Then the expected formula ϕL∗(U, x, y) is built as a disjunction: either U
is a singleton, with x = y (the unit tile belongs to L∗) or there exist three sets
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X1, X2 (the domains of the considered tiles) and X (the domain of the last
tile) with x1 ∈ X1 and x2 ∈ X2 (the intermediate output roots) such that the
property ψL(U,X1, x, x1) ∧ ψL(U,X2, x1, x2) ∧ ψL(U,Xx2, y) is satisfied with
either left(U) ∈ X1 and right(U) ∈ X2 (the leftmost vertex is encountered
first) or left(U) ∈ X2 and right(U) ∈ X1 (the rightmost vertex is encountered
first). 2

Corollary 10 For all regular languages of words L,C,R ⊆ A∗, the language
of tiles L× C ×R is MSO-definable.

Proof. By Büchi-Elgot-Trakhtenbrot’s theorem [35], any regular language of
words is MSO-definable. A MSO formula ϕ(U) defining a language of words
X can be seen as a formula defining the language of tiles {1}×X×{1}. Thus
X embedded in TA is a MSO-definable language of tiles, and by the closure
properties of MSO, so are XL = X × {1} × {1} and XR = {1} × {1} ×X.
More generally, if L, C and R are regular languages of words, then their
product L× C ×R = LL · C ·RR is MSO-definable. 2

3.4 A word congruence for languages of tiles

We aim at providing a simple characterization of MSO-definable languages
of tiles. As tiles are essentially words additionally equipped with input and
output roots, this is achieved via the following notion of word congruence
induced by a language of tiles.

Given a language L ⊆ TA of non-zero tiles, we define the word congruence
≃L induced by L as the property that in any tile, two words can replace each
other without altering the membership to L.

Formally:

Definition. [Induced word congruence] Let L ⊆ TA be a language of tiles.
For all u0, v0 ∈ A∗, we say that the word u0 is equivalent to the word v0

w.r.t. the tile language L, which is denoted by u0 ≃L v0, when for all w1,
w2, w3 and w4 ∈ A∗, if u = (w1u0w2, w3, w4) and v = (w1v0w2, w3, w4), or
if u = (w1, w2u0w3, w4) and v = (w1, w2v0w3, w4), or if u = (w1, w2, w3u3w4)
and v = (w0, w2, w3v3w4) then u ∈ L ⇔ v ∈ L and u−1 ∈ L ⇔ v−1 ∈ L.

By construction, the relation ≃L is indeed a congruence in the free monoid
A∗. Let then [u]L denote the congruence class of a word u ∈ A∗.
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Theorem 11 (Word congruence property) For every language L ⊆ TA

of non-zero tiles:

L = Σ(u1,u2,u3)∈L∩T +

A

[u1]L × [u2]L × [u3]L

+Σ(u1,u2,u3)−1∈L∩T −

A

([u1]L × [u2]L × [u3]L)−1

Moreover, we have that L is definable in MSO if and only if ≃L is of finite
index.

Proof. The expression of L is an immediate consequence of the definition of
≃L.

By Myhill-Nerode’s theorem, the word language [w]L ⊆ A∗ is regular
for every w ∈ A∗. By Corollary 10, for every u1, u2 and u3 ∈ A∗, the
three languages L1 = [u1]L × {1} × {1}, L2 = {1} × [u2]L × {1} and
L3 = {1} × {1} × [u3]L are also MSO-definable; and by the closure prop-
erties of MSO (Theorem 9), the language L1 ·L2 ·L3 = [u1]L × [u2]L × [u3]L
and its inverse image are MSO-definable. If ≃L is of finite index, then L
is a finite sum of MSO-definable languages, thus by Theorem 9 L itself is
MSO-definable.

Conversely, assume that L is MSO-definable. Given L+ = L ∩ T+
A and

L− = L ∩ T−
A , we observe that both L+ and (L−)−1 ⊆ A∗ × A∗ × A∗ can

be encoded into languages of words M+ and M− ⊆ A∗
LA

∗
CA

∗
R where AL, AC

and AR are three disjoint copies of the alphabet A used to encode the left,
center and right elements of a tile.

Now, since L is definable in MSO, so are L+ and L− and thus, their encod-
ings M+ and M− are also definable in MSO. By Büchi-Elgot-Trakhtenbrot’s
theorem, both languages M+ and M− are regular, and thus their syntactic
congruences ≃M+ and ≃M− are of finite index. This implies that ≃L is also
of finite index. Indeed, for all words u, v ∈ A∗, we have u ≃L v if and only
if uX ≃M+ vX and uX ≃M− vX where X denotes either of L, C and R, and
the word wX ∈ A∗

X is the re-encoding of any word w ∈ A∗ in the alphabet
AX . 2

As an immediate corollary:

Theorem 12 (Simplicity) A language L ⊆ TA of non-zero tiles is MSO-
definable if and only if L is a finite sum of languages of the form L×C ×R
or (L× C ×R)−1, where L, C and R are regular languages of words.
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3.5 Regular and k-regular languages

Definition. [k-regular languages of tiles] A language M ⊆ TA of non zero
tiles is regular if it can be defined as the result of finitely many additions,
multiplications and star operations of finite languages of non-zero tiles. The
class of regular languages of tiles is denoted by REG.

For every k ∈ N, a language M ⊆ TA is k-regular if either k = 0 and
M is regular, or k = k′ + 1 and M can be defined as the result of finitely
many additions, multiplications, star and inverse operations over k′-regular
languages and idempotent projections of k′-regular languages. The class of
k-regular languages is denoted by k-REG.

Remark. The set of positive tiles is regular: T+
A = (A−1.A+A+A.A−1)∗

(where A is embedded in TA). Thus the set of negative tiles T−
A = (T+

A )−1 is
regular, and the set EA = (T+

A + T−
A )E of idempotent tiles is 1-regular. We

prove later (Proposition 23) that EA is not regular.
The following fact is well-known in the theory of inverse monoids:

Proposition 13 For every k ∈ N, the class k-REG of k-regular tile lan-
guages is closed under the inverse operation.

Proof. This follows from Proposition 8: the inverse operation commutes with
the sum, product, star and idempotent projection. 2

Theorem 14 For every k > 0, we have k-REG = MSO = 1-REG.

Proof. By construction 1-REG ⊆ 2-REG ⊆ · · · ⊆ k-REG ⊆ · · · and by the
Robustness Theorem 9, we have k-REG ⊆ MSO for every k ∈ N.

Every regular language of wordsX, embedded in TA, is a regular language
of tiles (defined by the same regular expression), and satisfies the properties
XL = (X−1 · X)E and XR = (X · X−1)E. It follows that if L, C and R are
regular languages of words, then (L × C × R) = (L−1 · L)E · C · (R · R−1)E

and its inverse (L× C ×R)−1 are 1-regular. By the Simplicity Theorem 12,
every MSO-definable language is a finite sum of such 1-regular languages,
thus MSO ⊆ 1-REG. 2

3.6 Recognizable languages of tiles

Here we consider the algebraic notion of recognizability. The usual notions
on words may be transposed to tiles: say that a language of non-zero tiles
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L ⊆ TA is recognizable if there exists a monoid M , a monoid morphism
ϕ : TA → M , and a finite subset F of M , such that L = ϕ−1(F ); or,
equivalently, if the syntactic congruence defined by u ∼L v ⇐⇒ ∀x, y ∈
TA (x.u.y ∈ L ⇔ x.v.y ∈ L) is of finite index. The class of recognizable
languages of tiles is denoted by REC.

The following characterization is well-known (see [34]):

Theorem 15 A language L of non-zero tiles is recognizable if and only if
θ−1(L) is a regular language of words.

Proof.If : let W = θ−1(L), and let ∼W denote the syntactic congruence of W
in (A+ A)∗, extended to WA by w ∼W ⊥ ⇔ w = ⊥.
For all u, v ∈ WA, we have u ∼W v ⇒ θ(u) ∼L θ(v): indeed, since θ is
onto, we have θ(W ) = L and for all x, y ∈ TA there exist α, β ∈ WA such
that θ(α) = x and θ(β) = y; if u ∼W v we have x.θ(u).y ∈ L ⇒ θ(αuβ) ∈
L ⇒ αuβ ∈ W ⇒ αvβ ∈ W ⇒ x.θ(v).y ∈ L and by symmetry, we have
x.θ(v).y ∈ L ⇒ x.θ(u).y ∈ L.
Thus [u]∼w

7→ [θ(u)]∼L
is a well-defined mapping of WA/ ∼W onto TA/ ∼L.

If W is a regular language of words then WA/ ∼W is finite and thus ∼L is of
finite index.
Only if : let ϕ : TA → M be a monoid morphism, let F a finite subset
of M and let L = ϕ−1(F ). Then ψ = ϕ ◦ θ is a monoid morphism, and
θ−1(L) = ψ−1(F ) is recognized (as a language of words) by the monoid M
and the morphism ψ since the following diagram commutes.

(A+ A)∗ TA

M

θ

ψ
ϕ

2

Corollary 16 REC ⊆ REG.

Proof. Since θ is an onto monoid morphism, any regular expression of θ−1(L)
yields a regular expression of L. 2

But not all regular languages are recognizable as proved in the following
proposition.
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Proposition 17 The regular tile language L = (b · a∗)−1 · b · a∗ is not recog-
nizable.

Proof. L is the set of tiles of the form (bam, an−m, amax(m−n,0)) with m,n ∈ N,
i.e. L = ba∗ × a∗ × {1}. We show that the syntactic congruence ∼L is of
infinite index: for all m,n ∈ N, let um = (bam, 1, 1) and vk = (ak, 1, 1). Then
um.vk ∈ L if and only if k ≤ m. If um ∼L un for some m,n ∈ N, then for
every k ∈ N, k ≤ m if and only if k ≤ n, hence m = n. 2

Though some simple regular languages are not recognizable, the class
REC does contain non-trivial languages of tiles. In [13], it is shown that
recognizable languages are strongly related with bi-infinite periodic words.
We just give an example, defined from the bi-infinite word ω(ab)(ab)ω.

Let M = {0, 1, (a, 1, b), (b, 1, a), (b, a, b), (a, b, a)}, let ⊙ be the product
defined over M by the following table (with 1 neutral and 0 absorbing):

⊙ (a, 1, b) (b, 1, a) (b, a, b) (a, b, a)

(a, 1, b) (a, 1, b) 0 0 (a, b, a)
(b, 1, a) 0 (b, 1, a) (b, a, b) 0
(b, a, b) (b, a, b) 0 0 (b, 1, a)
(a, b, a) 0 (a, b, a) (a, 1, b) 0

Proposition 18 (M,⊙) is an inverse monoid.

Proof. One can check that the product ⊙ is associative, hence M is a monoid.
In the set E(M) = {0, 1, (a, 1, b), (b, 1, a)} of idempotents, the commuta-
tion follows from the unique non-trivial case (a, 1, b) ⊙ (b, 1, a) = (b, 1, a) ⊙
(a, 1, b) = 0. Finally, we check that (a, b, a)⊙ (b, a, b)⊙ (a, b, a) = (a, b, a) and
(b, a, b)⊙ (a, b, a)⊙ (b, a, b) = (b, a, b). It follows that (a, b, a)−1 = (b, a, b) and
(b, a, b)−1 = (a, b, a). Any other element is idempotent and thus self-inverse.
2

Let ϕ : TA → M be defined by ϕ(0) = 0, by ϕ(1) = 1, and for every
(u, v, w) ∈ TA such that uvw 6= 1, by ϕ(u, v, w) = 0 if uvw is not a factor of
(ab)ω and, otherwise, when u is a positive tile by:

1. ϕ(u, v, w) = (a, 1, b) when |v| is even with a ≤s u,b ≤p v, a ≤s v or
b ≤p w,

2. ϕ(u, v, w) = (b, 1, a) when |v| is even with b ≤s u,a ≤p v, b ≤s v or
a ≤p w,
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3. ϕ(u, v, w) = (b, a, b) when |v| is odd with a ≤p v,

4. ϕ(u, v, w) = (a, b, a) when |v| is odd with b ≤p v,

and ϕ(u, v, w) = (ϕ(uv, v, vw))−1 when (u, v, w) is a negative tile.

Proposition 19 The mapping ϕ : TA → M is an onto morphism.

Proof. Indeed, for all u and v ∈ TA, we have ϕ(u) ⊙ ϕ(v) = ϕ(u.v) =
ϕ(ϕ(u).ϕ(v)). 2

Let LS = (ab)∗ + b(ab)∗, LC = (ab)∗, and LP = (ab)∗ + (ab)∗a. By
the previous proposition, the non-trivial tile language LS × LC × LP − 1 is
recognizable, since it is precisely ϕ−1((b, 1, a)).

4 Two-way automata and languages of tiles

We prove here that regular languages of tiles are just the languages recog-
nizable by finite two-way automata.

4.1 Two-way automata

A finite-state two-way automaton (or 2WA for short) on an alphabet A is a
quadruple A = 〈Q, I, F,∆〉 with a finite set of states Q, a set of initial states
I ⊆ Q, a set of final states F ⊆ Q, and a transition table ∆ : (A + A) →
P(Q×Q).

A run of A over a string of (A+ A)∗ is a finite sequence:

ρ = q0a1q1 . . . qn−1anqn

where n ≥ 0, q0, . . . , qn ∈ Q and a1, . . . , an ∈ A + A, such that for every
1 ≤ i ≤ n, we have (qi−1, qi) ∈ ∆(ai).

The run ρ is accepting if q0 ∈ I and qn ∈ F . In that case, we say that the
associated string sρ = a1 · · · an ∈ A∗ is accepted by the automaton A (seeing
A as a standard one-way automaton on the alphabet A+A). The language
of strings accepted by A is written S(A).

We say that ρ is a run over a walk when, additionally, the string sρ is a
walk. In that case, we write wρ for the string sρ. The set of walks accepted
by A is written W (A). In other words, W (A) = S(A) ∩WA.
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Remark. Two-way automata may be defined with the possibility to stand
still at the same position while changing state. Clearly, these “silent” tran-
sitions are just syntactic sugar that can be replaced with extra non-silent
transitions (by the same techniques used to eliminate classical silent transi-
tions in one-way automata). Our definition follows [9].

The following lemma emphasizes the difference between two-way au-
tomata (interpreted on walks) and ordinary finite-state automata (inter-
preted on strings):

Proposition 20 There exists a two-way automaton A such that W (A) is
not a regular language.

Proof. Assume A = {a, b} with two distinct letters, let Q = {q0, q1, q2, q3} be
a four-state set, and let A = {Q, {q0}, {q3},∆} with transition function ∆
defined by ∆(a) = {(q0, q1)}, ∆(b) = {(q1, q1)}, by ∆(b) = {(q1, q2), (q2, q2)}
and by ∆(a) = {q2, q3}.

We have S(A) = ab+b
+
a and thus W (A) = {abnb

n
a : n > 0} that is not

regular. 2

4.2 Word and tile languages recognized by 2WA

The language of words L(A) recognized by a two-way automaton A on the
alphabet A (completed by A) is the set of words u ∈ A∗ such that there is
an accepting run of A corresponding to a back-and-forth reading of u, i.e. a
walk w ∈ A such that w ≃W u.

In a similar way, we define the language of tiles T (A) recognized by a
two-way automaton A as the set of tiles u = (u1, u2, u3) ∈ TA such that
there is an accepting run of A corresponding to a back-and-forth reading of
u1u1u2u3u3: in other words, we have T (A) = θ(W (A)).

Remark. The characterization of algebraically recognizable languages
of tiles given in Theorem15 may be interpreted in terms of automata: a
language L of tiles is algebraically recognizable if and only if there is a two-
way automaton A such that S(A) = θ−1(L), i.e. the accepting runs of A are
all possible back-and-forth readings over the domain of a tile of L, starting
at the entry point of u and ending at its exit point.

We now prove a Kleene theorem for tile languages.
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Theorem 21 The regular tile languages are exactly the tile languages recog-
nizable by finite-state two-way automata.

Proof. This follows from Lemmas 22 and 25 below. 2

Lemma 22 Every regular language of tiles is recognized by some finite-state
two-way automaton.

Proof. For any finite tile language M ⊆ TA, any one-way automaton over A+
A recognizing the finite word language {u1u1u2u3u3 : (u1, u2, u3) ∈ M} can
be viewed as a two-way automaton recognizing M . Thus all finite languages
of non-zero tiles are recognizable.

More generally, any finite-state one-way automaton A over the alphabet
A+A, recognizing a word language L ⊆ (A+A)∗, can be viewed as a 2WA
recognizing the tile language θ(L ∩WA).

For all word languages L,M ⊆ (A+ A)∗ we have

⊲ θ((L+M) ∩WA) = θ(L ∩WA) + θ(M ∩WA) (obvious)

⊲ θ(LM ∩WA) = θ(L ∩WA).θ(M ∩WA) (from Lemma 5)

⊲ θ(L∗ ∩WA) = (θ(L ∩WA))∗ (from Lemma 5).

We conclude the proof by induction on the structure of regular expressions.
2

Lemma 22 yields a pumping argument to prove the following:

Proposition 23 The set EA of idempotent tiles is not regular.

Proof. Let A be a finite-state 2WA such that EA ⊆ T (A), and let a ∈ A.
For any n ∈ N, since (an, 1, 1) ∈ EA, there is in A an accepting run over a
word u ≃W anan; this run may be split into ρnρ

′
n where the run ρn (resp.

ρ′
n) is over a prefix vn (resp. a suffix v′

n) of u such that red(vn) = an and
red(v′

n) = an. Since A has a finite number of states, there are m,n ∈ N such
that m < n and that the runs ρm and ρn end in the same state. Then ρmρ

′
n

is an accepting run over vmv
′
n, thus θ(vmv

′
n) ∈ T (A), but θ(vmv

′
n) is not an

idempotent tile since red(vmv
′
n) = an−m. It follows that no finite-state 2WA

recognizes EA. 2

Let A = 〈Q, I, F,∆〉 be a two-way automaton on the alphabet A. For
every pair of states (p, q) ∈ Q × Q, let Tp,q denote the language of tiles
recognized by the two-way automaton Ap,q = 〈Q, {q}, {p},∆〉.
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Proposition 24 The sets Tp,q with p and q ∈ Q are the least solution (w.r.t.
inclusion order) of the system of equations

Tp,q = δp,q +
∑

a∈A+A

∑

(p,r)∈∆(a)

θ(a).Tr,q (Ep,q)

where δp,q = {1} if p = q and ∅ otherwise.

Proof. For all states p and q, and every integer k ≥ 0, let W k
p,q denote the set

of walks of length at most k accepted by Ap,q. The identities Wp,q = δp,q and

W k+1
p,q = W k

p,q +
∑

a∈A+A

∑

(p,r)∈∆(a)

(aW k
r,q ∩WA)

immediately follow from the definition of the walk acceptance. Then, with
Wp,q =

∑

k∈NW
k
p,q, by Tarski’s fixpoint theorem, the sets Wp,q form the least

fixed point of the system of equations:

Wp,q = δp,q +
∑

a∈A+A

∑

(p,r)∈∆(a)

(aWr,q ∩WA) (E ′
p,q)

We conclude the proof by applying θ to the equations. 2

Lemma 25 T (A) is a regular tile language.

Proof. The least solution of the system of equations Ep,q can be computed
by a Gaussian elimination of variables, since the least solution of an equation
X = U.X+V in P(TA) is U∗.V . This gives a regular expression of every Tp,q

and thus for T (A) as well since T (A) = Σ(p,q)∈I×FTp,q. 2

Corollary 26 (Shepherdson’s theorem) Every language of words recog-
nizable by a two-way automaton is regular.

Proof. Let A be a finite two-way automaton. The word language recognized
by A is L(A) = {u ∈ A∗ : (1, u, 1) ∈ T (A)}. Now let # be a new letter. By
Lemma 25, the tile language #.T (A).# is regular, thus MSO-definable by
Theorem 14. However, since # /∈ A, any tile in #.T (A).# must have empty
contexts, i.e. #.T (A).# ⊆ {1} × #A∗# × {1}. It follows that #.T (A).# =
{1} × #L(A)# × {1}. By Theorem 12, we know that #L(A)# is a regular
language of words, thus the language L(A) is also regular. 2

26



4.3 Many-invisible pebble automata

Finite-state two-way automata may be extended with a pebble-handling
mechanism. Here we consider invisible pebbles in the sense of [7]: at any
moment, only the last pebble left may be observed by the automaton, and
this observation can only be done by removing the pebble. Also, as we will
not allow automata with an unbounded number of pebbles, the pebble we
use are unmarked.

This makes our k-(invisible, unmarked)-pebble automata presumably less
expressive than the classical k-(visible,marked)-pebble automata [9, 8], whose
transitions are also governed by the presence (or absence) of pebbles on the
current node. The more general case of infinitely many invisible (marked)
pebbles is considered in [15] when studying walking automata on birooted
trees.

Formally, a finite-state pebble 2-way automaton (or P2A for short) on
an alphabet A is a quadruple A = 〈Q, I, F,∆〉 with a finite set of states Q,
a set of initial states I ⊆ Q, a set of final states F ⊆ Q, and a transition
table ∆ : (A + A + {1+, 1−}) → P(Q × Q). For every a ∈ A + A, the
set of transitions ∆(a) tells how the letter a can be read as in a two-way
automaton. Newly, the set of transitions ∆(1+) tells how a pebble can be
left on the current position and the set transitions ∆(1−) tells how a pebble
can be removed. In other words, a pebble automaton is a two-way automaton
that has the capacity, from time to time, to leave and remove pebbles placed
between letters of the underlying word.

The run of such a P2A automaton is then defined as follows. A position
configuration is a non-empty finite sequence of (positive or negative) integers
p = n0. · · · .nk ∈ Z+. The intended meaning of position configuration p is
that ni records the relative number of letters (positive or negative) read from
the ith pebble left on the input word, with the initial starting point modeled
as a sort of a 0th pebble.

Moreover, since any non-zero pebble is eventually removed in a run, we
only record the position relative to the last pebble left. Pushing a pebble on
the stack freezes the previous recorded relative positions. It follows that, at
any time, we have ni +ni+1 + · · · +nk will denote the number of positive (or
negative) letters that separate the automaton head from the position of the
ith pebble. In particular, when nk = 0, the kth pebble can be removed.

Formally, a run of the pebble automaton A is a finite word ρ ∈ ((Q ×
Z+).(A + A + 1))∗.(Q × Z+) such that, for every factor of ρ of the form
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(q, p).a.(q′, p′), with a ∈ A+A+1, one of the following conditions is satisfied:

⊲ (q, q′) ∈ ∆(a), a ∈ A + A, p = p′′.x for some possibly empty sequence
of integers p′′ and some x ∈ Z and p′ = p′′.(x+ δa) with δa = 1 if a ∈ A
and δa = −1 if a ∈ A,

⊲ (q, q′) ∈ ∆(1+), a = 1 and p′ = p.0,

⊲ (q, q′) ∈ ∆(1−), a = 1 and p = p′.0,

As before, we also assume that the projection wρ of ρ to (A+A)∗ is a non-zero
walk.

We observe that the position configurations are handled as a (left to right)
stack. Leaving a pebble amounts to pushing 0, the new relative position of
the head from that pebble. Reading a ∈ A + A, the relative position from
the last left pebble is changed by δa. Removing a pebble amounts to popping
the last relative position of the head from that pebble. This relative position
is forced to 0. This way, we model the fact that the head must have moved
back to the position where the pebble has been left.

The number of pebbles used in a run ρ ∈ ((Q×Z+).(A+A))∗.(Q×Z+) is
defined as the least integer k ∈ N such that ρ ∈ ((Q×Z≤k+1).(A+A))∗.(Q×
Z≤k+1) where Z≤k stands for the sequences of integers of length at most k.

Still writing wq for the projection of run ρ on the alphabet A + A, we
say that a triple u = (u1, u2, u3) is accepted by automaton A with at most
k-pebble when there exists run ρ using at most k pebbles such that wρ ≃W

u1u1u2u3u3 with start state of the form (q, 0) with q ∈ I and end state of the
form (q′, i) with q′ ∈ F . A simple check of our definition shows that, in that
case i = |u2| when u2 ∈ A∗ and i = −|u2| when u2 ∈ A

∗
.

4.4 Pebbles vs. tile idempotent operators

From now on, a k-pebble automaton is defined as a many-invisible pebble
automaton whose runs are allowed to use at most k pebbles.

Theorem 27 For every k ∈ N, the k-regular tile languages are exactly the
tile languages recognizable by finite-state k-pebble automata.

Proof. Follows from the Lemmas 28 and 29 below. 2
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Lemma 28 Every language of tiles recognized by a finite k-pebble automaton
is k-regular.

Proof. Let A = 〈Q, I, F, δ〉 be a finite many-pebble automaton. For every
pair of states (p, q) ∈ Q × Q, every integer k ≥ 0, let T k

p,q ⊆ TA be the
language of tiles recognized by A with at most k-pebbles from state p to
state q. Let also Ck

p,q be the associated set of idempotent tiles defined by
Ck

p,q = T k
p,q ∩ EA = (T k

p,q)
E.

First, one can prove as in the previous section that sets of triples T k
p,q

form the least solution of the set of equations defined, for every p and q ∈ Q,
by T k

p,q = Tp,q as before and, for every k ≥ 0, by:

T k+1
p,q = δp,q +

∑

a∈A+A

∑

(p,r)∈∆(a)

θ(a).T k+1
r,q

+
∑

(p,p′)∈δ(1+)

∑

(r′,r)∈δ(1−)

Ck
p′,r′ .T k+1

r,q (A)

Indeed, we just mimic in these equations all the possible cases to build a
run. Either some letter a ∈ A + A is red, or a pebble is used. Of course,
we check that T k

p,q only depends on languages of the form T k′

p′,q′ with k′ ≤ k,

or Ck′

p′,q′ = (T k′

p,q)
E with k′ < k. That later case shows in particular that no

circular dependency involves projections on idempotent tiles. It follows that
this system can be solved by induction on k ∈ N by Gaussian elimination
of variables. Then, for every k ∈ N, given the k-regular expressions defining
languages T k

p,qs we conclude by taking T k(A) =
∑

(p,q)∈I×F T
k
p,q. 2

Lemma 29 Every k-regular language of tiles is recognized by some finite
k-pebble automaton.

Proof. As for regular languages of tiles (proof of Lemma 22), we proceed
by induction on the syntactic complexity of k-regular expressions, combining
many-pebble automata. We just detail the construction for the idempo-
tent projection. Given a finite automaton A = 〈Q, I, F,∆〉 k-recognizing a
language T = T k(A), we define A′ = 〈Q′, I ′, F ′,∆′〉 by Q′ = Q ∪ {q0, qf}
with q0 and qf two new states with I ′ = {q0}, F ′ = {qf} and, for every
a ∈ A + A, ∆′(a) = ∆(a), ∆′(1+) = ∆(1+) ∪ ({q0} × I) and ∆′(1−) =
∆(1−) ∪ (F × {qf}). It is straightforward to check that A′ recognizes the
language TE = T k(A) ∩EA, i.e. T k+1(A′) = TE with at most k+ 1 pebbles.
2
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Corollary 30 Every language of words recognized by a k-pebble automaton
is regular.

Proof. Like the proof of Corollary 26 (Shepherdson’s theorem). Let A be
a finite k-pebble automaton. The language of words recognized by A is
L(A) = {u ∈ A∗ : (1, u, 1) ∈ T k(A)}. Given # /∈ A, the language #.T k(A).#
is k-regular, and since #.T k(A).# = {1} × #L(A)# × {1}, we conclude that
L(A) is regular. 2

Conclusion and further works

Studying languages of overlapping tiles, equivalently subsets of McAlister
monoids, we have considered several classes of languages: recognizable lan-
guages, regular languages, k-regular languages and MSO-definable languages,
obtaining a strict though finite hierarchy

REC ( REG = 0-REG ( 1-REG = (k+1)-REG = MSO

for every k ∈ N. An intriguing related class of languages of tiles is the
class BOOL(REG) of finite boolean combinations of regular languages. It
is obviously included in the class of MSO-definable languages, but it is by no
means clear whether the inclusion is strict. Another further work would be
to relate the hierarchy with classes of algebraically recognizable languages of
tiles, as defined in [10, 14].
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