
HAL Id: hal-00717572
https://hal.science/hal-00717572v1

Submitted on 13 Jul 2012 (v1), last revised 12 Aug 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-way automata and regular languages of overlapping
tiles

Anne Dicky, David Janin

To cite this version:
Anne Dicky, David Janin. Two-way automata and regular languages of overlapping tiles. 2012. �hal-
00717572v1�

https://hal.science/hal-00717572v1
https://hal.archives-ouvertes.fr


LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-14XX-12

Two-way automata and regular languages of overlapping tiles

July 13, 2012

Anne Dicky, David Janin,
LaBRI, Université de Bordeaux



Abstract

In this paper, we show how the study of two-way automata on words may
relevantly be extended to the study of two-way automata on one-dimensional
overlapping tiles that generalize finite words. Indeed, over tiles, languages
recognizable by finite two-way automata (resp. multi-pebble automata) coin-
cide with languages definable by Kleene’s (resp. Kleene’s extended) regular
expressions.

As an immediate corollary, if we restrict our observations to words, we
obtain a new proof of Shepherdson’s theorem which posits that every finite
state two-way automaton is equivalent to a finite state one-way automaton.
We also obtain a new proof that this is still true for two-way automata with
pebbles.

Concerning tiles, we show that adding pebbles strictly increases the ex-
pressive power of two way automata. The hierarchy induced by the number
of allowed pebbles is however shown to collapse to level one. A single pebble
is enough to reach maximal expressive power: the class of languages definable
in monadic second order logic.

1 Introduction

1.1 Background

In a seminal paper [12], Rabin and Scott defined finite state two-way automata
on words. Then Shepherdson proved that the two-way automata have the same
expressive power as one-way automata [13]. A few years later, two-way automata
were extended with pebbles. Again, these automata have been proved to be no
more expressive than one-way automata (see [3] for a state of the art and many
more observations).

Despite the negative results, two-way automata have been the subject of many
studies. This can be partly explained by their intriguing combinatorial complexity.
For instance, the underlying Shepherdson’s result has been considered difficult for
many years [14]. More precisely, the capacity of two-way automata to read each
letter an unbounded number of times makes the structure of two-way automata runs
difficult to analyse. This is especially clear in Pécuchet and Birget’s algebraic studies
of two way-automata [10, 1], in which two-way runs give rise to a rich combinatorial
structure. A similar complexity is illustrated by Globerman and Harel’s result [3]
that the number of allowed pebbles in two-way automata induces a “succintness”
hierarchy: each additional pebble provides inherent exponential power.

2



Still, gaining a full understanding of two-way automata, with or without pebbles,
remains a challenging topic, especially if we consider tree-walking automata: the
extension of two-way automata to languages of trees. It has recently been shown
in a number of studies (see [2] for an overview of these results) that, in the case of
trees, each additional pebble provides extra expressive power. Yet, the decidability
of this “Pebble” hierarchy is an open problem.

The classical (one-way) finite automata theory have benefited from a rich alge-
braic language theory that led, and still leads, to many decision algorithms [11].
But there is no algebraic characterization of two-way automata, neither for trees,
nor even for finite words [1]. This suggests that the mathematical properties of
two-wayness and of (more difficult) pebble-handling have not yet been completely
understood even in the simplest case.

1.2 Outline

In this paper, we focus on two-way automata over words, but we define their se-
mantics in terms of overlapping tiles [4] instead of words. Tiles that can be seen
as domains of partial runs: runs that may start and stop anywhere on the input
words. Then we show that the combination of successive partial runs corresponds to
a sequential product of tiles, yielding a structure isomorphic to McAlister’s inverse
monoid [8].

Embedding words into overlapping tiles enables us to apply the most classical
techniques used over subsets of the free monoid in a straightforward way. As a
result, we show that the regular languages of tiles (definable by Kleene expressions)
are exactly the languages of tiles recognizable by finite-state two-way automata. We
also prove that the - strictly larger - class of MSO-definable languages of tiles is the
class of languages recognizable by finite-state many-pebble automata. Further even,
one-pebble automata are shown to capture the whole class. Then, Shepherdson’s
theorem and analogous results for pebble automata, are obtained as immediate
corollaries.

All these results support the long-standing intuition [10, 1, 6] that the theory of
inverse monoids [7] is a powerful conceptual tool in the study of two-way automata.
This is especially illustrated by the fact that all proofs presented here are simple.

1.3 Preliminaries

The free monoid. Given a finite alphabet A, A∗ denotes the free monoid generated
by A, 1 denotes the neutral element. The concatenation of two words u and v is

3



denoted by uv.
Prefix and suffix lattices. ≤p stands for the prefix order over A∗, ≤s for the

suffix order. ∨p (resp. ∨s) denotes the joint operator for the prefix (resp. suffix)
order: thus for all words u and v, u ∨p v (resp. u ∨s v) is the least word whose both
u and v are prefixes (resp. suffixes).

The extended monoid A∗ + {0} (with 0u = u0 = 0 for every word u), ordered by
≤p (extended with u ≤p 0 for every word u), is a lattice; in particular, u ∨p v = 0
whenever neither u is a prefix of v, nor v is a prefix of u. Symmetric properties hold
in the suffix lattice.

Syntactic inverses. Given A a disjoint copy of A, u 7→ u denotes the mapping
from (A + A)∗ to itself inductively defined by 1 = 1, for every letter a ∈ A, a is
the copy of a in A and a = a, and, for every word u ∈ (A + A)∗, au = u.a. The
mapping u 7→ u is involutive (u = u for every word u); it is an antimorphism of the
free monoid (A + A)∗, i.e. for all words u and v ∈ (A + A)∗, uv = v.u.

Free group. The free group FG(A) generated by A is the quotient of (A + A)∗

by the least congruence ≃ such that, for every letter a ∈ A, aa ≃ 1 and aa ≃ 1. Let
� be the rewriting relation induced by the rules 1 � aa and 1 � aa for every a ∈ A.
It is well-known that every class [u] ∈ FG(A) contains a unique element red(u) (the
reduced form of u) irreducible with respect to �, i.e. containing no factor of the
form a.a or a.a.

Free inverse monoid. The free inverse monoid FIM(A) generated by A is the
quotient of (A + A)∗ by the Wagner congruence ≃W , i.e. the least congruence such
that uuu ≃W u and uuvv ≃W vvuu for all u, v ∈ (A + A)∗.

2 The monoid of overlapping tiles

Here we give a description of the monoid of overlapping tiles. It is shown to be
isomorphic to McAlister’s monoid [8]. The tight link between (two-way linear)
walks on words and tiles is formalized by means of an onto morphism which kernel
over walks is proved to be Wagner congruence.

2.1 Positive, negative and context tiles

A tile over the alphabet A is a triple of words u = (u1, u2, u3) ∈ A∗ × (A∗ +A
∗
)×A∗

such that, if u2 ∈ A
∗
, its inverse u2 is a suffix of u1 and a prefix of u3.

When u2 ∈ A∗ we say that u is a positive tile. When u2 ∈ A
∗

we say that u is a
negative tile. When u2 = 1, i.e. when u is both positive and negative, we say that

4



u is a context tile. Sets TA, T +
A , T −

A and CA will respectively denote the set of tiles,
the set of positive tiles, the set of negative tiles and the set of context tiles over A.

The domain of a tile u = (u1, u2, u3) is the reduced form of u1u2u3 (always a
word of A∗); its root is the word u2.

A positive tile u = (u1, u2, u3) is conveniently drawn as a (linear, unidirectional
and left to right) Munn’s birooted word tree [9]:

u1 u3u2

where the dangling input arrow (marking the beginning of the root) appears on the
left of the dangling output arrow (marking the end of the root). A negative tile of
the form u = (u1u2, u2, u2u3) ∈ A∗ × A

∗
× A∗ is also drawn as a birooted word tree

u1 u3u2

where the dangling input arrow appears on the right of the dangling output arrow.
A context tile of the form u = (u1, 1, u3) ∈ A∗ × 1 × A∗ is then drawn as follows:

u1 u3

2.2 The inverse monoid of tiles

In this part, we abusively denote a word u of A∗ +A
∗

by any word of (A+A)∗ whose
reduced form is u.

Intuitively, the sequential product of two tiles is their superposition in such a
way that the end of the root of the first tile coincides with the beginning of the root
of the second tile; the superposition requires pattern-matching conditions to the left
and to the right of the synchronization point. When both tiles are positive, this can
be drawn as follows:

u1 u3u2

v1 v3v2

sync

The product can be extended to arbitrary tiles, as illustrated by the following figure
(positive u and negative v):

u1 u3u2

v1 v3v2

sync

5



Formally, we extend the set TA with a zero tile to obtain T 0
A = TA + {0}. The

sequential product of two non-zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) is defined
as

u.v = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both u1u2 ∨s v1 6= 0 and u3 ∨p v2v3 6= 0, and u.v = 0 otherwise. We let
u.0 = 0.u = 0 for every u ∈ T 0

A.

Remark. Let a, b, c and d ∈ A be distinct letters. Then (a, b, c).(b, c, d) = (a, bc, d)
whereas (a, b, c).(a, c, d) = 0. In the latter case, the left matching constraint is
violated because a 6= b.

Theorem 1 Set T 0
A equipped with the sequential product of two tiles is an inverse

monoid with neutral element 1 = (1, 1, 1) and (pseudo) inverses given by 0−1 = 0
and for every non zero tile u = (u1, u2, u3) ∈ TA, u−1 = (u1u2, u2, u2u3).

Proof. Since 1 is obviously the neutral element and 0 the absorbant element, we
have to prove that the sequential product is well-defined (or sound) and associative.

Soundness. We first prove that the sequential product of two tiles is a tile. Let
u = (u1, u2, u3) and v = (v1, v2, v3) be tiles such that u.v 6= 0. In all case, with u or
v positive or negative, one can check that (u1u2 ∨s v1).u2 ∈ A∗, v2(u3 ∨s v2v3) ∈ A∗.
Moreover, when u2v2 ∈ A

∗
(with elements of the free group FG(A) always reduced),

we also have u2v2 = v2.u2 ≤s (u1u2 ∨s v1).u2 and u2v2 = v2.u2 ≤p v2(u3 ∨s v2v3). We
conclude thus that u.v = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3)) is indeed a tile.

Associativity. We observe first that the pattern-matching conditions are asso-
ciative: if u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) are non-zero tiles, the
products (u.v).w and u.(v.w) are non-zero tiles if and only if u1u2v2 ∨s v1v2 ∨s w1 6=
0 and u3 ∨s v2v3 ∨s v2w2w3 6= 0. In that case, (u.v).w = ((u1u2v2 ∨s v1v2 ∨s

w1)v2 u2, u2v2w2, w2 v2(u3 ∨s v2v3 ∨s v2w2w3)) which just equals u.(v.w).

To prove that T 0
A is an inverse monoid (proving that every element as a unique

pseudo inverse), it suffices to prove [7] that every element of TA has a (pseudo)
inverse and that idempotents commutes.

Since 0 is obviously a pseudo inverse to itself and commutes with every elements
we only consider the case of non zero tiles.

Existence of pseudo inverses. For every u = (u1, u2, u3) ∈ TA, given u−1 =
(u1u2, u2, u2u3), we do have u.u−1.u = u and u−1.u.u−1 = u. Indeed, by symmetry,
since (u−1)−1 = u it suffices to prove that u.u−1.u = u. But one can easily check

6



that u.u−1 = (u1, 1, u2u3) (equivalently u−1u = (u1u2, 1, u3)) and thus uu−1u =
(u1, u2, u3).

Commutation of idempotents. Since context tiles CA form a commutative
submonoid of TA (this immediately follows from the commutativity of ∨s and ∨p)
it suffices to prove that the idempotents in TA are the context tiles.

Let u ∈ CA. By definition u = (u1, 1, u3) hence u.u = ((u1.1∨s u1).1, 1.1, 1.(u3 ∨p

1.u3)) and thus u.u = u. Conversely, let u = (u1, u2, u3) ∈ TA. Assume that u.u = u.
By product definition, this means in particular u2u2 = u2 hence u2 = 1 and thus
u ∈ CA. ✷

An immediate property worth being mentioned:

Lemma 2 The mapping u 7→ (1, u, 1) from A∗ to TA is a one-to-one morphism.

In other words, the free monoid A∗ can be seen as a submonoid of T 0
A. In the

remainder of the text we may use the same notation for words of A∗ and their
images in T 0

A.

Remark. In [8], Lawson already provides a description of overlapping tiles. Non
zero tiles are modeled as triples of the form (u1, u2, u3) ∈ A∗ ×A∗ ×A∗ with u1 ≤p u2

and u3 ≤s u2. One can show that the mapping (u1, u2, u3) 7→ (u1, red(u1.u2.u3), u3)
that maps Lawson’s models to the model presented here is, extended to 0, a monoid
isomorphism. In other words, from a mathematical point of view, this hardly makes
any differences. However, one may think, as the present authors do, that the model
proposed in this paper induces a simpler product definition.

2.3 Linear walks and the McAslister monoid

We provide here a proof that TA is isomorphic to McAlister monoid. Again, this
follows from Lawson’s characterization of McAlister monoid [8] that can be shown
isomorphic to ours. However, the proof given here, via the monoid W 0

A of linear
walks, conveys most of the intuition about the link with two-way automata.

Informally, a walk over a word u ∈ A∗ is a word of (A + A)∗ corresponding to
a back and forth reading of u (left to right reading is modeled by letters of A, and
right to left reading by letters of A). Not all words of (A+A)∗ are walks. Obviously,
no factor ab or ab with distinct letters a and b can occur in a walk. But things are
a little more complex. A word like baac with distinct a, b and c is still not a walk.
It occurs that walks are easily defined by contraposition.

Formally, let ⊥ be the set of all words v ∈ (A+A)∗ such that there exists a word
u � v and some distinct letters a and b such that either ab or ab is a factor of u.

7



A (linear) walk is any word u ∈ (A + A)∗ such that u /∈ ⊥. Clearly, ⊥ is closed by
product with arbitrary elements of (A + A)∗. It is thus an ideal of (A + A)∗.

We define the monoid of walks W 0
A as the Rees quotient (A + A)∗/⊥. It is

the monoid obtained from (A + A)∗ by merging all elements of ⊥ into a zero, the
undefined walk. The set of non zero walks is denoted by WA. By definition, WA =
(A + A)∗ − ⊥. It shall be clear that ⊥ (henceforth WA) is closed under Wagner
congruence.

Walks and tiles are related by the following Lemma:

Lemma 3 For every non zero walk w ∈ WA, there is a unique tile θ(w) = (u1, u2, u3) ∈
TA such that u1u1u2u3u3 ≃W w. In particular, for every walks w1 and w2, w1 ≃W w2

if and only if θ(w1) = θ(w2).
Moreover, extending θ to a mapping from W 0

A to T 0
A by taking θ(⊥) = 0, θ is an

onto monoid morphism, i.e. in particular, for every defined walks w and w′ ∈ WA

such that w.w′ ∈ WA, θ(w).θ(w′) = θ(w.w′).

Proof. Existence. Let w ∈ WA. The existence of some θ(w) as above is proved
by induction over the number n(w) of turns (or alternation of positive and negative
letters) in w. Observe that as soon as we prove the existence of θ(w) we can take
θ(w) = (θ(w))−1. It follows that we only need to prove the existence of either some
θ(w) or some θ(w).

When n(w) = 0, if w ∈ A∗ we take θ(w) = (1, w, 1). By symmetry, if w ∈ A
∗

we
take θ(w) = (w, w, w).

Assume n(w) > 0. We have w = xw′ for some x ∈ A∗ + A
∗

and w′ ∈ WA and
n(w′) = n(w)−1. By induction hypothesis, θ(w′) exists with θ(w′) = (u1, u2, u3) and
w′ ≃W u1u1u2u3u3 and thus, since Wagner is a congruence, w ≃ xu1u1u2u3u3. Now,
since WA is closed under Wagner congruence, this means that xu1u1u2u3u3 ∈ WA

hence, in particular, xu1 ∈ WA.
By symmetry, possibly taking w instead of w, we may assume that x ∈ A∗.

Since xu1 ∈ WA this means that x ∨s u1 6= 0. It follows that (1, x, 1).θ(w′) =
((x ∨s u1)x, xu2, u3) 6= 0 and, in both cases u1 ≤s x or x ≤s u1, we take θ(w) =
(1, x, 1).θ(w′).

Indeed, in the first case, u1 = u′
1x for some u′

1 ∈ A∗. We have (1, x, 1).θ(w′) =
(u′

1, xu2, u3) and we know that w ≃W x(u′
1x)(u′

1x)u2u3u3 hence w ≃W xxu′
1u

′
1xu2u3u3

hence w ≃W u′
1u

′
1xxxu2u3u3 hence w ≃W u′

1u
′
1xu2u3).

In the second case, x = x′u1 for some x′ ∈ A∗. We have (1, x, 1).θ(w′) =
(1, xu2, u3) and w ≃W (x′u1)u1u1u2u3u3 hence w ≃W x′u1u2u3u3 hence w ≃W

xu2u3u3.

8



The fact that, in both case, θ(w) is a well-defined tiles (which can also be proved
following a tedious case studies) just follows from the soundness of our tile product.

Unicity. Let w ∈ WA and two decomposition w ≃W u = u1u1u2u3u3 and
w ≃W u′ = u′

1u
′
1u

′
2u

′
3u

′
3. Since Wagner congruence is compatible with the free group

reduction this implied that red(u) = red(u′) hence u2 = u′
2.

Let then a be an arbitrary letter in A. On the left side of w, since au1u ∈ WA, we
also have au1u

′ ∈ WA. Hence au1 ∨s u′
1 6= 0. But since this holds for arbitrary a ∈ A

(assumed to have two distinct letters) this implies that u′
1 ≤s u1. By symmetry we

also have u1 ≤s u′
1 hence u1 = u′

1. An analogous argument holds for the right side
proving thus that u3 = u′

3.
Compositionality. The fact that θ extended to 0 is a monoid morphism im-

mediately follows from the proof of its existence. Moreover, for every non zero tile
(u1, u2, u3) ∈ TA one has θ(u1u1u2u3u3) = (u1, u2, u3) hence θ is onto. ✷

Remark. In some sense, this Lemma captures most of the combinatorial analy-
sis of two-way automata runs made in [10, 1]. However, being only concerned by
what do read two-way automata rather than how do they perform readings, Wagner
equivalence appears as the appropriate simplification concept.

Previous lemma says that, in WA, Wagner congruence is the kernel of θ. Now,
since ⊥ is closed under the Wagner congruence, it can also be seen as an ideal of the
free inverse monoid FIM(A) and then FIM(A)/⊥ just corresponds to McAlister
original definition of his monoid.

Corollary 4 The monoid of tiles T 0
A, isomorphic to the quotient of walks W 0

A/ ≃W

by Wagner congruence, is also isomorphic to McAlister monoid FIM(A)/⊥.

The relationship between walks, tiles and elements of the free inverse monoid is
summarized by the following commuting diagram.

(A + A)∗ FIM(A)

W 0
A T 0

A

[ ]≃W

/⊥/⊥

θ

9



3 Classes of definable languages of tiles

We define here various notions of regular languages of tiles (or walks). Following a
classical habit in formal language theory, for any s some monoid M , we denote by
s, depending on the context of use, both the element s or the singleton {s}.

3.1 Regular and k-regular languages

As for languages of words, the following operators are defined over languages of tiles.
For all M, N ⊆ TA, let

• Sum: M + N = {u ∈ TA : u ∈ M ∨ u ∈ N}

• Product: M.N = {u.v ∈ TA : u ∈ M, v ∈ N}

• Star: M∗ =
∑

n∈N Mn with M0 = {(1, 1, 1)} and Mk+1 = M.Mk for every
k ∈ N.

On purpose, we restrict to non zero tiles. Still one can check that most classical
properties are satisfied. Sum and product of languages are associative and product
distributes over sum, i.e. for every language L, M and N ⊆ TA, L.(M + N) =
L.M + L.N and (M + N).L = M.L + N.L. Moreover, for all languages M and N ⊆
TA, M∗.N is the least solution with respect to inclusion of the language equation
X = M.X + L.

Definition. A language of tiles M ⊆ TA is regular when it can be defined as
the result of finitely many additions, multiplications and star operations of finite
languages of non-zero tiles. The class of regular languages of tiles is denoted by
REG.

Are there other operators on languages worth being defined ? An obvious one is
the inverse operator. For every M ⊆ TA let M−1 = {u−1 ∈ TA : u ∈ M}. However,
the fallowing fact is well-known in the theory of inverse monoids:

Lemma 5 The class REG of regular tile languages is closed under the inverse op-
eration.

Proof. Just observe that for all L, M ⊆ TA, we have (L + M)−1 = L−1 + M−1,
(L.M)−1 = M−1.L−1 and (L∗)−1 = (L−1)∗. ✷

This suggests that we need more. Classical and inverse operators on languages
are completed by the following unary operator. For every M ⊆ TA, the context
projection MC of M is defined by MC = M ∩ CA.

10



Definition. For every k ∈ N, a language M ⊆ TA is called k-regular when
either k = 0 and M is regular or k = k′ + 1 and M can be defined as the result
of finitely many additions, multiplications, star and inverse operations of k′-regular
languages N and context projection NC of k′-regular languages. The class of k-
regular languages is denoted by k-REG.

As an immediate consequence of the definition:

Corollary 6 REG ⊆ 1-REG ⊆ 2-REG ⊆ 3-REG ⊆ k-REG ⊆ · · ·

3.2 Languages definable in MSO

Last, the bi-rooted presentation of every non zero tile can also be seen as a FO-
structure. It follows that one also define the class MSO of languages definable by
means of Monadic Second Order formula. The following two Theorems are proved
in [4].

Theorem 7 (Robustness [4]) For all M and N ⊆ TA, if both M and N are
MSO-definable then so are M + N , M.N , M∗, M−1 and MC.

Corollary 8 For every k ∈ N, k-REG ⊆ MSO.

Theorem 9 (Simplicity [4]) A language M ⊆ TA is MSO-definable if and only
there are finitely many triples of regular languages of words (Li, Ci, Ri)i∈I∪J ⊆
P(A∗) × P(A∗) × P(A∗) such that M = Σi∈I(Li × Ci × Ri)

ei with either ei = 1
or ei = −1.

Corollary 10 The class 1-REG and MSO are equal.

Proof. For every triples of languages of words L, C and R ⊆ A∗, embedding them
in TA, one has (L × C × R) = (L−1.L)C .C.(R.R−1)C . It follows that, provided L, C
and R are regular, their embeddings in TA are also regular (or 0-regular) and thus
both (L×C ×R) and (L×C ×R)−1 are 1-regular. Then, by Theorem 9, this proves
that MSO ⊆ 1-REG. ✷

Remark. To complete the picture, the class REC of languages of tiles recognizable
by means of finite monoid can also be defined. This class is studied in [4]. It is shown
to be strongly related with bi-infinite periodic words. As a consequence, it can be
shown that REC is strictly included REG.

11



4 Two-way automata and regular languages

We prove here that regular languages of tiles are just the languages recognizable by
finite two-way automata.

4.1 Two-way automata

A finite-state two-way automaton (or 2WA for short) on an alphabet A is a quadruple
A = 〈Q, I, F, ∆〉 with a finite set of states Q, a set of initial states I ⊆ Q, a set of
final states F ⊆ Q, and a transition table ∆ : (A + A) → P(Q × Q).

A run of A over a string (of (A + A)∗ is a finite sequence ρ = q0a1q1 . . . qn−1anqn

where n ≥ 0, q0, . . . , qn ∈ Q and a1, . . . , an ∈ A + A, such that for every 1 ≤ i ≤ n,
(qi−1, qi) ∈ ∆(ai).

The (string) run ρ is accepting if q0 ∈ I and qn ∈ F . In that case, we say that the
associated string sρ = a1 · · · an ∈ A∗ is accepted by the automaton A. The string
language of strings accepted by A is written S(A). In that case, automaton A is
just seen as a classical one-way automaton on the (uninterpreted) alphabet A + A.

We say that run ρ is a run over a walk when, moreover, sρ is a walk. In that
case, we write wρ for the string sρ. The set of walks accepted by A is written W (A).
In other words: W (A) = S(A) ∩ WA.

Remark. Two-way automata may be defined with the possibility to stand still at
the same position while changing state. Clearly, these “silent” transitions are just
syntactic sugar that can be replaced with extra non-silent transitions (by the same
techniques used to eliminate classical silent transitions in one-way automata). Our
definition follows [3].

The following lemma emphasizes the difference between two-way automata (in-
terpreted on walks) and ordinary finite-state automata (interpreted on strings):

Lemma 11 There exists a two-way automaton A such that W (A) is not a regular
language.

Proof. Assume A = {a, b} with two distinct letters, let Q = {q0, q1, q2, q3} be a four-
state set, and let A = {Q, {q0}, {q3}, ∆} with ∆(a) = {(q0, q1)}, ∆(b) = {(q1, q1)},
∆(b) = {(q1, q2), (q2, q2)} and ∆(a) = {q2, q3}.

S(A) = ab+b
+

a. It follows that W (A) = {abnb
n
a : n > 0}, hence W (A) is non

regular. ✷

12



4.2 Word and tile languages recognized by 2WA

The language of words L(A) recognized by a two-way automaton A on alphabet A
(completed by A) is the set of words u ∈ A∗ such that there is an accepting run
of A corresponding to a back-and-forth reading of u, i.e. a walk w ∈ A such that
w ≃W u. In other words: L(A) = {u ∈ A∗ : (1, u, 1) ∈ T (A)}.

In a similar way, we define the language of tiles T (A) recognized by a two-
way automaton A as the set of tiles u = (u1, u2, u3) ∈ TA such that there exists
a walk w ∈ W (A) such that w ≃W u1u1u2u3u3, i.e. w is a walk over u1u2u3,
starting at the entry point of the tile u and ending at its exit point. In other words:
T (A) = θ(W (A)).

We now prove a Kleene theorem for tile languages.

Theorem 12 The regular tile languages are exactly the tile languages recognizable
by finite-state two-way automata.

Proof. This follows from Lemmas 15 and 13 below. ✷

Lemma 13 Every regular language of tiles M ⊆ TA is recognizable by a finite state
two-way automaton on the alphabet A.

Proof. For any finite tile language M ⊆ TA, any one-way automaton recognizing the
finite word language {u1u1u2u3u3 : (u1, u2, u3) ∈ M} can be viewed as a two-way
automaton recognizing M . Thus all finite languages of non-zero tiles are recogniz-
able.

More generally, any finite-state one-way automaton A over the alphabet A + A,
recognizing a word language L ⊆ (A + A)∗, can be viewed as a 2WA recognizing the
tile language θ(L ∩ WA).

For all word languages L, M ⊆ (A + A)∗ we have

• θ((L + M) ∩ WA) = θ(L ∩ WA) + θ(M ∩ WA) (obvious)

• θ(LM ∩ WA) = θ(L ∩ WA).θ(M ∩ WA) (from Lemma 3)

• θ(L∗ ∩ WA) = (θ(L ∩ WA))∗ (consequence of definition and both cases above).

We conclude the proof by induction on the structure of regular expressions, using
the classical one-way automata theory. ✷

Let A = 〈Q, I, F, ∆〉 be a two-way automaton on the alphabet A. For every
pair of states (p, q) ∈ Q × Q, let Tp,q denote the language of tiles recognized by the
two-way automaton Ap,q = 〈Q, {q}, {p}, ∆〉.

13



Lemma 14 The sets Tp,q with p and q ∈ Q are the least solution (w.r.t. inclusion
order) of the system of equations

Tp,q = δp,q +
∑

a∈A+A

∑

(p,r)∈∆(a)

θ(a).Tr,q (Ep,q)

where δp,q = {1} if p = q and ∅ otherwise.

Proof. For every state p and q, and every integer k ≥ 0, let W k
p,q denote the set of

walks of length at most k accepted by Ap,q. The identities W 0
p,q = δp,q and

W k+1
p,q = W k

p,q +
∑

a∈A+A

∑

(p,r)∈∆(a)

(a.W k
r,q ∩ WA)

immediately follow from the definition of the walk acceptance. Then, with Wp,q =∑
k∈N W k

p,q, by Tarski’s fixpoint theorem, the sets Wp,q form the least fixed point of
the system of equations:

Wp,q = δp,q +
∑

a∈A+A

∑

(p,r)∈∆(a)

(a.Wr,q ∩ WA) (E ′
p,q)

We conclude the proof by taking the images by θ of all equations. ✷

Lemma 15 T (A) is a regular tile language.

Proof. The least solution of the system of equations Ep,q can be computed by
a Gaussian elimination of variables, applying the fact that the least solution of an
equation of the form X = U.X +V in P(TA) is U∗.V . This gives a regular expression
of every Tp,q and thus for T (A) as well since T (A) = Σ(p,q)∈I×F Tp,q. ✷

Corollary 16 (Shepherdson) Every language of words recognizable by a two-way
automata is regular.

Proof. Let A be a finite two-way automata. The language L(A) ⊆ A∗ of words
recognized by A is defined to be L(A) = {u ∈ A∗ : (1, u, 1) ∈ T (A) : u1 = u3 = 1}.
Now let # be a new letter. By Lemma 15, language #.T (A).# is regular. Moreover,
since # /∈ A we also have #.T (A).# ⊆ {1} × #A∗# × {1} and thus #.T (A).# =
#.L(A).#. Then we conclude by applying Theorem 9. ✷

14



5 Pebble automata and k-regular languages

In this section, we prove that k-regular languages are captured by pebble automata.
The number of pebbles is not explicitly encoded into our definition of pebble au-
tomata (like invisible pebbles in [2]). It follows that k-pebble automata are (equiv-
alently) defined, in our approach, as (invisible) pebble automata restricted to runs
using at most k pebbles.

5.1 Multi-pebble automata

A finite-state pebble automaton (or PWA for short) on an alphabet A is a quadruple
A = 〈Q, I, F, ∆〉 with a finite set of states Q, a set of initial states I ⊆ Q, a set of
final states F ⊆ Q, and a transition table ∆ : (A + A + {1+, 1−}) → P(Q × Q).
For every a ∈ A + A, ∆(a) tells how a can be read as in a two-way automaton.
Newly, ∆(1+) tells how a pebble can be left on the current position and ∆(1−) tells
how a pebble can be removed. In other words, a pebble automaton is a two-way
automaton that has the capacity, from time to time, to leave and remove pebbles
placed between letters of the underlying word.

Of course, a pebble cannot be removed if it has not been left before. Moreover,
the behaviour of pebble automata must be restricted so that only the last pebble
put on a word may be removed (in a LIFO style). Otherwise, pebble automata can
define languages of accepting runs of Turing machines.

These two restrictions are conveniently captured by the following definition of
pebble automata runs.

A position configuration is a non-empty finite sequence of (positive or negative)
integers p = n0. · · · .nk ∈ Z

+. The intended meaning of position configuration p is
that ni records the relative number of letters (positive or negative) read from the
ith pebble left on the input word, with the initial starting point modeled as a sort
of a 0th pebble.

Moreover, since any non-zero pebble is eventually removed in a run, we only
record the position relative to the last pebble left. Pushing a pebble on the stack
freezes the previous recorded relative positions. It follows that, at any time, ni +
ni+1 + · · · + nk will denote the number of positive (or negative) letters that separate
the automaton head from the position of the ith pebble. In particular, when nk = 0,
the kth pebble can be removed.

Formally, a run of the pebble automaton A is a finite word ρ ∈ ((Q × Z
+).(A +

A + 1))∗.(Q × Z
+) such that, for every factor of ρ of the form (q, p).a.(q′, p′), with

15



a ∈ A + A + 1, one of the following conditions is satisfied:

• (q, q′) ∈ ∆(a), a ∈ A + A and p′ = p.δa, with δa = 1 if a ∈ A and δa = −1 if
a ∈ A,

• (q, q′) ∈ ∆(1+), a = 1 and p′ = p.0,

• (q, q′) ∈ ∆(1−), a = 1 and p = p′.0,

As before, we also assume that the projection wρ of ρ to (A+A)∗ is a non-zero walk.
We observe that the position configurations are handled as a (left to right) stack.

Leaving a pebble amounts to pushing 0, the new relative position of the head from
that pebble. Reading a ∈ A + A, the relative position from the last left pebble is
changed by δa. Removing a pebble amounts to popping the last relative position of
the head from that pebble. This relative position is forced to 0. This way, we model
the fact that the head must have moved back on the position where the pebble has
been left.

The number of pebbles used in a run ρ ∈ ((Q×Z
+).(A+A))∗.(Q×Z

+) is defined
to be the least integer k ∈ N such that ρ ∈ ((Q × Z

≤k+1).(A + A))∗.(Q × Z
≤k+1)

where Z
≤k stands for the non sequences of integers of length at most k.

Still writing wq for the projection of run ρ on the alphabet A + A, we say that
a triple u = (u1, u2, u3) is accepted by automaton A with at most k-pebble when
there exists run ρ using at most k pebbles such that wρ ≃W u1u1u2u3u3 with start
state of the form (q, 0) with q ∈ I and end state of the form (q′, i) with q′ ∈ F . A
simple check of our definition shows that, in that case i = |u2| when u2 ∈ A∗ and
i = −|u2| when u2 ∈ A

∗
.

5.2 Pebbles vs tiles context operators

From now on, a k-pebbles automaton is defined as a many-pebble automaton which
runs are only allowed to use at most k pebbles.

Theorem 17 For every k ∈ N, the k-regular tile languages are exactly the tile
languages recognizable by finite-state k-pebbles automata.

Proof. Follows from the Lemmas 18 and 19 bellow. ✷

Lemma 18 Every language of tiles definable by a finite k-pebbles automaton is k-
regular.

16



Proof. Let A = 〈Q, I, F, δ〉 be a finite many-pebble automaton. For every pair of
states (p, q) ∈ Q × Q, every integer k ≥ 0, let T k

p,q ⊆ TA be the language of tiles
recognized by automaton A with at most k-pebbles from state p to state q. Let also
Ck

p,q be the associated set of context tiles defined by Ck
p,q = T k

p,q ∩ CA = (T k
p,q)

C .
First, one can prove as in the previous section that sets of triples T k

p,q form the
least solution of the set of equations defined, for every p and q ∈ Q, by T k

p,q = T 0
p,q

as before and, for every k ≥ 0, by:

T k+1
p,q = δp,q +

∑

a∈A+A

∑

(p,r)∈∆(a)

θ(a).T k+1
r,q

+
∑

(p,p′)∈δ(1+)

∑

(r′,r)∈δ(1−)

Ck
p′,r′ .T k+1

r,q (A)

Indeed, we just mimic in these equation all the possible cases to build a run. Either
somme letter a ∈ A+A is red, or a pebble is used. Of course, we check that T k

p,q only

depends on languages of the form T k′

p′,q′ with k′ ≤ k, or Ck′

p′,q′ = (T k′

p,q)
C with k′ < k.

That later case shows in particular that no circular dependency involves projections
on context tiles. It follows that this system can be solved by induction on k ∈ N

by Gaussian elimination of variables. Then, for every k ∈ N, given the k-regular
expressions defining languages T k

p,qs we conclude by taking T k(A) =
∑

(p,q)∈I×F T k
p,q.

✷

Lemma 19 Every k-regular language of tiles is definable by a finite k-pebble au-
tomaton.

Proof. As for regular languages of tiles, we proceed by induction on the syntactic
complexity of k-regular expressions building and combining Multi-pebbles automata.
We just detail the construction for the context operators. Given a finite automaton
A = 〈Q, I, F, ∆〉 k-recognizing language T = T k(A) we define automaton A′ =
〈Q′, I ′, F ′, ∆′〉 by taking Q′ = Q ∪ {q0, qf} with q0 and qf two new states, I ′ = {q0},
F ′ = {qf} and, for every a ∈ A+A, ∆′(a) = ∆(a), ∆′(1+) = ∆(1+)∪ ({q0}× I) and
∆′(1−) = ∆(1−) ∪ (F × {qf}). One can easily check that automaton A′ recognizes
with at most k+1 pebbles language T C = T k(A)∩CA, i.e. T k+1(A′) = T C . The fact
k-regular languages only need k-pebbles immediately follows from that construction.
✷

Corollary 20 Every language of words recognizable by a k-pebble automata is reg-
ular.

17



Proof. The proof goes just has for the above proof of Shepherdson theorem. Given
a finite k-pebble automata A. The language L(A) ⊆ A∗ of words recognized by A
is defined to be L(A) = {u ∈ A∗ : (1, u, 1) ∈ T k(A) : u1 = u3 = 1}. Again, given
# /∈ A, by Lemma 18, language #.L(A).# = #.T k(A).# ⊆ {1} × #A∗# × {1} is
regular and we conclude by applying Theorem 9. ✷

Conclusion

We have shown how McAlister monoid is the adequate domain of interpretation of
two-way or many pebble automata on words. As trees can also be embedded in
FIM(A), this strongly suggests that some adequate Ree’s quotient (by the ideal
on non tree-shaped bi-rooted trees) of the free inverse monoid could play the same
rôle for tree-walking automata. Such a study is currently under development in
connection with the notion of quasi-recognizability defined by the second author [5].

References

[1] Jean-Camille Birget. Concatenation of inputs in a two-way automation. Theo-
retical Computer Science, 63(2):141 – 156, 1989.

[2] Mikolaj Bojanczyk. Tree-walking automata. In LATA, volume 5196 of Lecture
Notes in Computer Science. Springer, 2008.

[3] Noa Globerman and David Harel. Complexity results for two-way and multi-
pebble automata and their logics. Theor. Comput. Sci., 169(2):161–184, 1996.

[4] D. Janin. On languages of one-dimensional overlapping tiles. Technical Report
RR-1457-12, LaBRI, Université de Bordeaux, 2012.

[5] D. Janin. Quasi-recognizable vs MSO definable languages of one-dimentionnal
overlaping tiles. In 37th International Symposium on Mathematical Foundations
of Computer Science (MFCS), 2012 (to appear).

[6] Michal Kunc and Alexander Okhotin. Describing periodicity in two-way deter-
ministic finite automata using transformation semigroups. In Developments in
Language Theory, volume 6795 of Lecture Notes in Computer Science, pages
324–336. Springer, 2011.

18



[7] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World
Scientific, 1998.

[8] Mark V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 – 294,
1998.

[9] W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathematical
Society, 29(3):385–404, 1974.

[10] Jean-Pierre Pécuchet. Automates boustrophedon, semi-groupe de birget et
monoide inversif libre. ITA, 19(1):71–100, 1985.

[11] Jean-Eric Pin. Mathematical foundations of automata theory. Lecture notes,
2011.

[12] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114 –125, april 1959.

[13] J. C. Shepherdson. The reduction of two-way automata to one-way automata.
IBM J. Res. Dev., 3:198–200, April 1959.

[14] Moshe Y. Vardi. A note on the reduction of two-way automata to one-way
automata. Information Processing Letters, 30:261–264, 1989.

19


