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The plan

I I am working on a R package called mpp that will provide
tools for Bayesian inference for certain kinds of point process
models.

I These models are actually very general but because I promised
eye movement data that's what you'll get

I It is hard to introduce both the high-level concepts and their
implementation, so I'll focus on why these models are
interesting.

I I'll still try to give some idea of mpp's interface.
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The saliency map hypothesis

I Main theoretical idea in the bottom-up camp: the visual
system determines where to look according to a saliency map
that is mainly a function of local image properties (Koch &
Ulmann, 1985).



The saliency map hypothesis

I Main theoretical idea in the bottom-up camp: the visual
system determines where to look according to a saliency map
that is mainly a function of local image properties (Koch &
Ulmann, 1985).



The saliency map hypothesis

I Main theoretical idea in the bottom-up camp: the visual
system determines where to look according to a saliency map
that is mainly a function of local image properties (Koch &
Ulmann, 1985).



Saliency models

I Itti & Koch model (here ): extract simple local properties of
the image (1), see where they change (2), combine (3).

Parkhurst et al. 2001



Objective

I Models of low-level saliency are extremely popular

I Google scholar citation count for the three most-cited papers
by Itti&Koch ~ 10,000 (Google scholar)

I Very strong demand from engineering (compression,
steganography, computer vision) and marketing.

I How well do these models really predict the data? Can we
improve on them?

I We need a proper statistical framework.
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The data

I �Free-viewing� experiments: sit people down in front of a
computer screen, show them natural images, record their eye
movements. No task, just �explore the image�.

I We use data from Kienzle et al. (2009).
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Figure by Jochen Laubrock



The data



Spatial point processes

I Point processes are the core tool of spatial statistics (Illian

et al., 2008).

I They are now used quite often in other branches of biology
(ecology), but have yet to be applied to neuroscience and
psychology.

I I'll try to argue that they provide a very good way to think
about some aspects of eye movement data, esp. the analysis
of �xation locations.
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Why are point processes useful in that context?

I Take the idea that �my model of saliency maps will help me
predict where people �xate�

I How exactly?
I We need a quantitative version of that statement
I Plenty of confusion in the literature as to how we make this

quantitative, exactly.

I I'll argue that point processes are a good framework when
thinking about similar questions

I for example, it's quite clear what we mean when we use a
point process for prediction

I Importantly, point processes let us bring many ideas and
insights from regression analysis over to spatial data
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Point processes

I Given a spatial domain Ω (e.g. the monitor), a point process is
a distribution over �nite subsets of Ω.

I In other words, it generates random point clouds over Ω.
Fixations are exactly that.
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Point processes

I Given a spatial domain Ω (e.g. the monitor), a point process is
a distribution over �nite subsets of Ω.

I In other words, it generates random point clouds over Ω.
Fixations are exactly that.
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Inhomogeneous Poisson processes

I Poisson processes are the simplest kind of point processes: let
S be a realisation from a PP. For all (measurable) A ⊆ Ω, the
number of points of S in A follows a Poisson distribution with
intensity λA.

I Such a process can be completely described via its intensity

function λ(x , y):

λA = E (|S ∩ A|) =

ˆ
A
λ (x , y) dxdy

I The intensity function is the part we are going to model
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Two intensity functions



Spatial covariates

I In the applications we are interested in, the question is how
the spatial intensity function relates to spatial covariates

I The obvious spatial covariate here is the saliency map given by
the Itti-Koch model.

I We use the MATLAB Saliency Toolbox (Walther and Koch,
2006).
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A naive model

log λi (x , y) = βi ×mi (x , y) + αi

I mi (x , y) is the I&K saliency map.

I βi coe�cient governs the relationship between I&K saliency
and intensity.

I i indexes the image
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Fitting the model in R

I One line in R

res <- mppm(ppdat[1:100],~ image:salmap + image,

covar.ind=list(salmap=salmap))

I Estimates the β's from data using approximate Bayesian
inference (INLA, Rue et al., 2009), for the �rst 100 images in
the set.



Fitting the model in R

I One line in R

res <- mppm(ppdat[1:100],~ image:salmap + image,

covar.ind=list(salmap=salmap))

I Estimates the β's from data using approximate Bayesian
inference (INLA, Rue et al., 2009), for the �rst 100 images in
the set.



Estimated coe�cients
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Less obvious failures

I Some problems become visible when checking marginal
statistics against model �t.

data simulations
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A better model

I Among other problems, we have an instance of the �centrality
bias� (Tatler, 2007): people like to �xate around the center
regardless of what's there.

I Fortunately, there's a fairly easy �x:

log λi (x , y) = g(x , y) + βi ×mi (x , y) + αi

I g(x , y) will capture spatial biases.

I We put a Gauss-Markov process prior on g(x , y) to enforce
spatial smoothness (Rue and Held, 2005).
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The new code

res <- mppm(ppdat,~ s(x,y) + image:salmap + image,

covar.ind=list(salmap=salmap))



Estimated spatial bias



The prediction problem

I For engineering applications you need to be able to do
predictions on new images.

I Problem: the covariate given by the Itti&Koch model is very
helpful on some images and not at all in others

log λi (x , y) = g(x , y) + βi ×mi (x , y) + αi

I For the �rst 100 images β̂i varies between -2 and 6.

I When this uncertainty is taken into account predictions
become really, really vague...
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Some simulations
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I We started out with two questions.
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I Answer: has some predictive value on average, but variance
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2. Can we improve on it?

I Yes, one possibility is to include terms capturing spatial biases.
There are naturally many other things one could do.
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Neural data

I Models with very similar structure arise in neural data analysis.

I DiLorenzo & Victor (2003):
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Traditional spatial statistics data
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Extensions

I Eye movements shown strong temporal dependencies: on
average the eye do not move very much.
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Results



The IPP likelihood and its approximation

log p(S |λ (·)) =

|S|∑
i=1

log λ (si )−
ˆ

Ω
λ (x) dx

I The problem is with the integral over the domain: rarely closed
form.

I Many similar solutions appeared independently, I think Berman
and Turner (1992) were the �rst

I Use a grid of values x1, . . . , xk :

I
´

Ω
λ (x)dx can be approximated by quadrature

I log λ (si ) can be approximated by interpolation (many
variants)




