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Objective: This poster presents a new version of thenpde library [1] for R [2]. We propose methods to handle data below the limit of quantification (BQL) [3] and new diagnostic graphs [4].

Introduction

• Model diagnostics

– diagnostic graphs used for model evaluation and to guide model
building

– prediction discrepancies (pd) and normalised prediction distribution
errors (npde) developed for nonlinear mixed effect models [5, 6]

– implemented in thenpde library for R [1] as well as software like
Monolix [7] and NONMEM [8]

– based on simulations from the models, used to assess model pre-
dictability (family of predictive checks)

• Limit of quantification present in analytical methods

– data below the limit of quantification (BQL) frequently encountered
in PK/PD studies

– example : viral load counts in HIV often become BQL soon after
the beginning of treatment

• BQL data often omitted from diagnostic graphs, inducing bias [9]

– alternative solution proposed here: impute pd/npde for BQLdata
– evaluated using a simulation study, extending work presented in

PAGE 2011 [3]

Methods

Statistical models
Model for observationyi j

yi j = f (θi,xi j)+g(θi,γ,xi j)εi j

where:

• subjecti (i = 1, ...N), with ni observationsyi = {yi1, ...,yini} at timesti j

• f : structural model, common to all subjects

• g: residual error model, egg(θi,xi j) = a+b fc(θi,xi j)

• individual parametersθi

– often modelled parametrically as a functionh of fixed effectsµ and
random effectsηi:

θi = h(µ,ηi) whereη ∼N (0,Ω)

– in PK/PD,h is frequently a log-normal transformation, such that for
the pth component:

θi(p) = µ(p) eηi(p)

Prediction discrepancies and prediction distribution errors

• Fi j : cumulative distribution function (cdf) of the predictivedistribution
of Yi j under model MB

– Fi j obtained using Monte-Carlo simulations
– K datasets Vsim(k) simulated under model MB using the design of the

validation dataset V (ysim(k)
i : vector of simulated observations for the

ith subject in thekth simulation)
– same simulations used to obtain Visual Predictive Check (VPC)

• prediction discrepancy for observationyi j

pdi j = Fi j (yi j)≈
1
K

K

∑
k=1

δi jk

– whereδi jk = 1 if ysim(k)
i j < yi j and 0 otherwise

– pd expected to followU(0,1) under the model
– within-subject correlations introduced when multiple observations

are available for each subject [5]
– option to jitter pd to avoid ties (optionties=FALSE) by adding a

random sample fromU(0,1/K) to each value

• prediction distribution errors

– decorrelation using empirical meanEempi and empirical variance-
covariance matrix var(yi) over theK simulations for simulated and
observed data:

ysim(k)∗
i = V−1/2

empi(y
sim(k)
i −Eempi)

y∗i = V−1/2
empi(yi −Eempi)

– pde obtained using decorrelated values and transformed to anormal
distribution using the inverse of the normal cdf

pdei j = F∗
i j (y

∗
i j)≈

1
K

K

∑
k=1

δ∗i jk

npdei j = Φ−1(pdei j) ∼N (0,1) underH0

Handling data below the limit of quantification

Computation of pd [3]:

• for a censored observationycens
i j , compute probability of being under

LOQ, Pr(ycens
i j ≤ LOQ), from the predictive distribution

• setpdcens
i j to a value randomly sampled fromU[0,Pr(ycens

i j ≤ LOQ)]

Computation of npde:

• impute pd for the all cen-
sored values in the dataset

• use the predictive distribu-
tion to impute censored ob-
servations to the value in
the simulated distributionFi j

corresponding to that quan-
tile (see figure 1)
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Figure 1: Imputing censored obser-
vation usingpd.

• apply the same procedure to the simulated datasets

• decorrelate using the imputed datasets

Simulation study

Data

• Real data from the COPHAR 3-ANRS 134 multicenter clinical
trial [10]

– 35 näıve HIV-infected patients treated once daily with atazanavir,
ritonavir and tenofovir/emtricitabine during 24 weeks

– measurements of viral loads 0, 24, 56, 84, 112, 168 days afteriniti-
ation of treatment

– limit of quantification of the assay: 40 or 50 copies/mL
– HIV viral load decrease during treatment described by a bi-

exponential modelf (θi,xi j) = log10(P1ie−λ1ixi j +P2ie−λ2ixi j )

• Simulation settings: extension of work presented in [3]

– protocol and model based on real data, with N=50 subjects
– simulations under H0 (same modelVt used to simulate data and com-

pute pd and npde)
∗ parameters shown in table 1 based on (rounded) parameter esti-

mates from the real data, obtained using the SAEM algorithm in
MONOLIX 3.2 [7]

∗ correlation betweenP1 andP2: ρ(ηP1,ηP2)
= 0.8

∗ additive error:σinter = 0.14

P1 P2 λ1 λ2

(copie/mL) (copie/mL) (day-1) (day-1)
True modelVt, Shigh 25000 (2.1) 250 (1.4) 0.2 (0.3) 0.02 (0.3)

Slow 25000 (0.3) 250 (0.3) 0.2 (0.3) 0.02 (0.3)

Table 1: Population mean and (% IIV) used as parameter values in the
simulation study, for the true models in two settings with high and low
variability.

– simulations under different model misspecifications, withtwo levels
of variability
∗ changes in the fixed effectλ2: Vf ix1 (λ2=0.04),Vf ix2 (λ2=0.01)
∗ changes in the variability ofλ2: Vvar1 (ω(λ2)=0.9), Vvar2

(ω(λ2)=0.1)
∗ simulations under H0 used to compute npde for each dataset sim-

ulated under a misspecified model
– two levels of interindividual variability investigated:Shigh andSlow

• Evaluation of the proposed method to handle BQL data:

– global test comparing the distribution of npde to N(0,1) by combin-
ing a test of mean, a test of variance, and a test of normality with a
Bonferroni correction [6]

– simulation under H0: assessment of type I error
– assessment of power to detect a given model misspecification

– 1000 simulations in each scenario
∗ for each dataset, 3 analyses, with data censored assuming LOQ=0

(no censoring), 20 or 50 cp/mL respectively

New diagnostic graphs with BQL data
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Figure 2: Diagnostic plots for one simulated dataset under H0, censored at
LOQ=20 cp/mL, omitting BQL data (left); imputing using the cdf method
(right). Top: VPC; Middle: scatterplot ofnpdeversus time; Bottom: em-
pirical cdf for npde, with prediction bands
• Strong trend in all plots when omitting BQL

– imputation of BQL corrects this pattern

• Prediction bands very useful to assess model adequacy

Results of the simulation study

• Results shown in table 2 (1000 datasets for each scenario)

• Simulation under H0: in bold, results different from 5%

– comparison between imputing BQL data (new method) and omitting
BQL from the observed data

– large increase in type I error for the global test [6] when omitting
BQL from the data in the presence of censored data

– only slight inflation when accounting for BQL data by imputation

Drich, Shigh Drich, Slow

LOQ (cp/mL) LOQ (cp/mL)

Data 0 20 50 0 20 50

Type I error, omitting BQL Vtrue 5.4 25.8 46.95.6 23.9 64.3
imputing BQL 5.4 6.5 7.0 5.1 4.8 5.4

Power, imputing BQL Vf ix1 100 100 98.8 100 100 99.9
Vf ix2 100 100 99.7 100 100 100
Vvar1 100 78.7 53.6 100 100 99.4
Vvar2 14.2 11.2 8.2 30.5 30.7 17.8

Table 2: Type I error under H0 and power under alternative assump-
tions, for the global test on npde. Evaluation performed on 1000 simulated
datasets, depending on censoring (LOQ=0, 20, 50 cp/mL)

• Simulations with model misspecification

– high power to detect model misspecification on the value of the sec-
ond slope

– much lower power for model misspecification on variability on this
parameter, especially with high proportions of BQL

– decrease in power as IIV increases

• Further simulations presented in [11]

New features of thenpde library

• Extensive overhaul of the first version

– switching to the S4 class system
– generic methods (print, plot, summary) now apply

• Major changes for the user

– the function no longer returns a list, but an object
– using the methodsummary creates a list from which the same ele-

ments as previously can be returned (retro-compatibility)
– pd are now computed by default
– new options for main functions (with default arguments) andplots

• New plots: VPC, empirical cumulative distribution functions, predic-
tion intervals added to all the plots, plots split by covariates

• Methods to handle BQL data evaluated by a simulation study

– increased power to detect model misspecification, comparedto sim-
ply omitting BQL data from the dataset (full results in [11])

– correction for biases in diagnostic plots
– as expected, decrease in power when the proportion of BQL in-

creases, since the imputation is based on the model

New version available on the CRAN shortly (installation as any otherR
package through the GUI or in command line).
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[4] E Comets, K Brendel, and F Mentré. Model evaluation in nonlinear mixed effect models, with applications to pharma-
cokinetics.J Soc Fran Stat, 151:106–28, 2010.
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application to the population pharmacokinetics of gliclazide. Pharm Res, 23:2036–49, 2006.
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