Dealing with BQL data in normalised prediction distribution errors: a new version of the npde library for R Emmanuelle Comets, Thi Huyen Tram Nguyen, France Mentré INSERM, UMR 738, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France **Objective:** This poster presents a new version of the npde library [1] for R [2]. We propose methods to handle data below the limit of quantification (BQL) [3] and new diagnostic graphs [4]. #### Introduction #### Model diagnostics - -diagnostic graphs used for model evaluation and to guide model building - prediction discrepancies (pd) and normalised prediction distribution errors (npde) developed for nonlinear mixed effect models [5, 6] - implemented in the npde library for R [1] as well as software like Monolix [7] and NONMEM [8] - based on simulations from the models, used to assess model predictability (family of predictive checks) - Limit of quantification present in analytical methods - data below the limit of quantification (BQL) frequently encountered in PK/PD studies - example : viral load counts in HIV often become BQL soon after the beginning of treatment - BQL data often omitted from diagnostic graphs, inducing bias [9] - alternative solution proposed here: impute pd/npde for BQL data - -evaluated using a simulation study, extending work presented in PAGE 2011 [3] #### Methods #### **Statistical models** Model for observation y_{ij} $$y_{ij} = f(\theta_i, x_{ij}) + g(\theta_i, \gamma, x_{ij}) \varepsilon_{ij}$$ where: **Data** trial [10] ation of treatment pute pd and npde) MONOLIX 3.2 [7] * additive error: $\sigma_{inter} = 0.14$ • subject i (i = 1,...N), with n_i observations $\mathbf{y}_i = \{y_{i1},...,y_{in_i}\}$ at times t_{ij} **Simulation study** • Real data from the COPHAR 3-ANRS 134 multicenter clinical -35 naïve HIV-infected patients treated once daily with atazanavir, - measurements of viral loads 0, 24, 56, 84, 112, 168 days after initi- -HIV viral load decrease during treatment described by a bi- - simulations under H_0 (same model V_t used to simulate data and com- * parameters shown in table 1 based on (rounded) parameter esti- True model V_t , S_{high} 25000 (2.1) 250 (1.4) 0.2 (0.3) 0.02 (0.3) Table 1: Population mean and (% IIV) used as parameter values in the simulation study, for the true models in two settings with high and low - simulations under different model misspecifications, with two levels * changes in the fixed effect λ_2 : V_{fix_1} (λ_2 =0.04), V_{fix_2} (λ_2 =0.01) - two levels of interindividual variability investigated: S_{high} and S_{low} – global test comparing the distribution of npde to N(0,1) by combin- ing a test of mean, a test of variance, and a test of normality with a * changes in the variability of λ_2 : V_{var_1} ($\omega(\lambda_2)=0.9$), V_{var_2} * simulations under H₀ used to compute npde for each dataset sim- mates from the real data, obtained using the SAEM algorithm in (copie/mL) (copie/mL) (day⁻¹) S_{low} 25000 (0.3) 250 (0.3) 0.2 (0.3) 0.02 (0.3) ritonavir and tenofovir/emtricitabine during 24 weeks - limit of quantification of the assay: 40 or 50 copies/mL • Simulation settings: extension of work presented in [3] * correlation between P_1 and P_2 : $\rho_{(\eta_{P_1},\eta_{P_2})} = 0.8$ exponential model $f(\theta_i, x_{ij}) = \log_{10}(P_{1i}e^{-\lambda_{1i}x_{ij}} + P_{2i}e^{-\lambda_{2i}x_{ij}})$ – protocol and model based on real data, with N=50 subjects #### • f: structural model, common to all subjects - g: residual error model, eg $g(\theta_i, x_{ij}) = a + b f^c(\theta_i, x_{ij})$ - individual parameters θ_i - often modelled parametrically as a function h of fixed effects μ and random effects η_i : $$\theta_i = h(\mu, \eta_i)$$ where $\eta \sim \mathcal{N}(0, \Omega)$ - in PK/PD, *h* is frequently a log-normal transformation, such that for the pth component: $$\theta_{i(p)} = \mu_{(p)} e^{\eta_{i(p)}}$$ #### Prediction discrepancies and prediction distribution errors - F_{ij} : cumulative distribution function (cdf) of the predictive distribution of Y_{ij} under model \mathbf{M}^B - $-F_{ij}$ obtained using Monte-Carlo simulations - -K datasets $V^{sim(k)}$ simulated under model M^B using the design of the validation dataset $V(\mathbf{y}_i^{sim(k)})$: vector of simulated observations for the i^{th} subject in the k^{th} simulation) - same simulations used to obtain Visual Predictive Check (VPC) - prediction discrepancy for observation y_{ij} $$\mathrm{pd}_{ij} = F_{ij}(y_{ij}) \approx \frac{1}{K} \sum_{k=1}^{K} \delta_{ijk}$$ - where $\delta_{ijk} = 1$ if $y_{ij}^{sim(k)} < y_{ij}$ and 0 otherwise - pd expected to follow $\mathcal{U}(0,1)$ under the model - within-subject correlations introduced when multiple observations are available for each subject [5] - -option to jitter pd to avoid ties (option ties=FALSE) by adding a random sample from $\mathcal{U}(0,1/K)$ to each value - prediction distribution errors - 1000 simulations in each scenario - * for each dataset, 3 analyses, with data censored assuming LOQ=0 (no censoring), 20 or 50 cp/mL respectively #### New diagnostic graphs with BQL data **Figure 2:** Diagnostic plots for one simulated dataset under H_0 , censored at LOQ=20 cp/mL, omitting BQL data (left); imputing using the cdf method (right). Top: VPC; Middle: scatterplot of npde versus time; Bottom: empirical cdf for npde, with prediction bands - Strong trend in all plots when omitting BQL - imputation of BQL corrects this pattern - Prediction bands very useful to assess model adequacy # Results of the simulation study - Results shown in table 2 (1000 datasets for each scenario) - Simulation under H₀: in bold, results different from 5% - comparison between imputing BQL data (new method) and omitting BQL from the observed data - -large increase in type I error for the global test [6] when omitting BQL from the data in the presence of censored data - only slight inflation when accounting for BQL data by imputation – decorrelation using empirical mean $E_{\text{emp}\,i}$ and empirical variance-covariance matrix $\text{var}(\mathbf{y}_i)$ over the K simulations for simulated and observed data: $$\mathbf{y}_{i}^{sim(k)*} = \mathbf{V}_{\mathrm{emp}\,i}^{-1/2} (\mathbf{y}_{i}^{sim(k)} - E_{\mathrm{emp}\,i})$$ $\mathbf{y}_{i}^{*} = \mathbf{V}_{\mathrm{emp}\,i}^{-1/2} (\mathbf{y}_{i} - E_{\mathrm{emp}\,i})$ pde obtained using decorrelated values and transformed to a normal distribution using the inverse of the normal cdf $$pde_{ij} = F_{ij}^*(y_{ij}^*) \approx \frac{1}{K} \sum_{k=1}^K \delta_{ijk}^*$$ $$npde_{ij} = \Phi^{-1}(pde_{ij}) \sim \mathcal{N}(0,1) \text{ under } H_0$$ #### Handling data below the limit of quantification Computation of pd [3]: - for a censored observation y_{ij}^{cens} , compute probability of being under LOQ, $\Pr(y_{ij}^{cens} \leq \text{LOQ})$, from the predictive distribution - set pd_{ij}^{cens} to a value randomly sampled from $\mathcal{U}[0, \Pr(y_{ij}^{cens} \leq \text{LOQ})]$ Computation of npde: - impute pd for the all censored values in the dataset - use the predictive distribution to impute censored observations to the value in the simulated distribution F_{ij} corresponding to that quantile (see figure 1) Figure 1: Imputing censored observation using pd. - apply the same procedure to the simulated datasets - decorrelate using the imputed datasets | | | D_{rich}, S_{high} | | | D_{rich}, S_{low} | | | |----------------------------|-------------|----------------------|------------|-------------|---------------------|------|------| | | | LOQ (cp/mL) | | LOQ (cp/mL) | | mL) | | | | Data | 0 | 20 | 50 | 0 | 20 | 50 | | Type I error, omitting BQL | V_{true} | 5.4 | 25.8 | 46.9 | 5.6 | 23.9 | 64.3 | | imputing BQL | | 5.4 | 6.5 | 7.0 | 5.1 | 4.8 | 5.4 | | Power, imputing BQL | V_{fix_1} | 100 | 100 | 98.8 | 100 | 100 | 99.9 | | | V_{fix_2} | 100 | 100 | 99.7 | 100 | 100 | 100 | | | V_{var_1} | 100 | 78.7 | 53.6 | 100 | 100 | 99.4 | | | V_{var_2} | 14.2 | 11.2 | 8.2 | 30.5 | 30.7 | 17.8 | | | | | | | | | | **Table 2:** Type I error under H_0 and power under alternative assumptions, for the global test on npde. Evaluation performed on 1000 simulated datasets, depending on censoring (LOQ=0, 20, 50 cp/mL) - Simulations with model misspecification - high power to detect model misspecification on the value of the second slope - much lower power for model misspecification on variability on this parameter, especially with high proportions of BQL - decrease in power as IIV increases - Further simulations presented in [11] ### New features of the npde library - Extensive overhaul of the first version - switching to the S4 class system - generic methods (print, plot, summary) now apply - Major changes for the user - the function no longer returns a list, but an object - using the method summary creates a list from which the same elements as previously can be returned (retro-compatibility) - pd are now computed by default - new options for main functions (with default arguments) and plots - New plots: VPC, empirical cumulative distribution functions, prediction intervals added to all the plots, plots split by covariates - Methods to handle BQL data evaluated by a simulation study - increased power to detect model misspecification, compared to simply omitting BQL data from the dataset (full results in [11]) - correction for biases in diagnostic plots - -as expected, decrease in power when the proportion of BQL increases, since the imputation is based on the model New version available on the CRAN shortly (installation as any other R package through the GUI or in command line). ## REFERENCES variability. of variability $(\omega(\lambda_2)=0.1)$ Bonferroni correction [6] ulated under a misspecified model • Evaluation of the proposed method to handle BQL data: - simulation under H_0 : assessment of type I error [1] E Comets, K Brendel, and F Mentré. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. *Comput Meth Prog Biomed*, 90:154–66, 2008. [2] R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria, 2004. - assessment of power to detect a given model misspecification [3] THT Nguyen, E Comets, and F Mentré. Prediction discrepancies (pd) for evaluation of models with data under limit of quantification. 20th meeting of the Population Approach Group in Europe, Athens, Greece, page Abstr 2182, 2011. quantification. 20th meeting of the Population Approach Group in Europe, Athens, Greece, page Abstr 2182, 2011. [4] E Comets, K Brendel, and F Mentré. Model evaluation in nonlinear mixed effect models, with applications to pharmacokinetics. *J Soc Fran Stat*, 151:106–28, 2010. [5] F Mentré and S Escolano. Prediction discrepancies for the evaluation of nonlinear mixed-effects models. *J Pharma-cokinet Biopharm*, 33:345–67, 2006. [6] K Brendel, E Comets, C Laffont, Christian Laveille, and F Mentré. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharm Res*, 23:2036–49, 2006. [7] M Lavielle. *MONOLIX (MOdèles NOn LInéaires à effets miXtes)*. MONOLIX group, Orsay, France, 2005. [8] A Boeckmann, L Sheiner, and S Beal. *NONMEM Version 5.1*. University of California, NONMEM Project Group, San Francisco, 1998. [9] MO Karlsson and RM Savic. Diagnosing model diagnostics. *Clin Pharmacol Ther*, 82:17–20, 2007. [10] C. Goujard, A. Barrail-Tran, X. Duval, G. Nembot, X. Panhard, R. Savic, D. Descamps, B. Vrijens, A.M. Taburet, and F. Mentré. Virological response to atazanavir, ritonavir and tenofovir/emtricitabine: relation to individual pharma- cokinetic parameters and adherence measured by medication events monitoring system (MEMS) in naïve HIV-infected patients (ANRS134 trial). *International AIDS Society 2010*, page Abstr WEPE0094, 2010. [11] THT Nguyen, E Comets, and F Mentré. Prediction discrepancies (pd) for evaluation of models with data quantification. J Pharmacokinet Pharmacodyn, in review, 2012. Inserm Presenting author email: emmanuelle comets@inserm fr Drug Disease Model Resources email: emmanuelle.comets@inserm.fr