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Univariate mixture example 1: Old Faithful wait times

Time between Old Faithful eruptions (minutes)
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from www.nps.gov/yell

Obvious bimodality
Normal-looking
components ?
Classification of
individuals?
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Univariate mixture example 2: lifetime data

mixture of exponentials

lifetime
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No obvious multimodality
but 2 failure sources suspected ?

True components and mixture
densities for these simulated data

differences in the tails only!
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Finite mixture model and missing data setup

A complete i th observation Yi = (Xi ,Zi) consists of:

The missing 0/1 latent variable Zi = (Zi1, . . . ,Zim),

Zij =

{
1 if Xi comes from component j
0 otherwise

, P(Zij = 1) = λj

The observed, incomplete data of interest Xi
with j th component density (Xi |Zij = 1) ∼ fj

Most models in mixtools share in common a finite mixture pdf

gθ(x) =
m∑

j=1

λj fj(x)

with the model parameters: θ = (λ, f) = (λ1, . . . , λm, f1, . . . , fm)
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Some mixture estimation problems in mixtools

Goal: Estimate the parameter θ given an iid sample x from

Univariate Cases: x ∈ R
• some parametric families

gθ(x) =
m∑

j=1

λj f (x |φj)

• semi-parametric
location-shift mixture

gθ(x) =
m∑

j=1

λj f (x − µj)

• mixture of regressions,. . .

Multivariate cases: x ∈ Rr

• parametric (Gaussian,. . . )

gθ(x) =
m∑

j=1

λj f (x|φj)

• Fully nonparametric, e.g.

gθ(x) =
m∑

j=1

λj

r∏
k=1

fjk (xk )

Conditional independence of
x1, . . . , xr given z
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Multivariate example: Water-level data

Example from psychometrics Thomas Lohaus Brainerd (1993).

Subjects are shown r = 8
vessels orientations, presented
in this order
They draw the water surface for
each
Measure = signed angle formed
by surface with horizontal

Assume that opposite clock-face
orientations lead to same behavior
= conditionally iid responses
(1 & 7), (2 & 8), (4 & 10), (5 & 11),

11:00 4:00 2:00

7:00 10:00 5:00

1:00 8:00
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Water-level data: histograms by blocks of iid coord.

Opposite clock-face = conditionally iid responses
1:00 and 7:00 orientations

0.
00
0

0.
01
0

0.
02
0

0.
03
0

-90 -60 -30 0 30 60 90

Vessel at Orientation 1:00
 
 
 
 
 
 
 
 

2:00 and 8:00 orientations

0.
00
0

0.
01
0

0.
02
0

0.
03
0

-90 -60 -30 0 30 60 90

Vessel at Orientation 2:00
 
 
 
 
 
 
 
 

4:00 and 10:00 orientations

0.
00
0

0.
01
0

0.
02
0

0.
03
0

-90 -60 -30 0 30 60 90

Vessel at Orientation 4:00
 
 
 
 
 
 
 
 

5:00 and 11:00 orientations

0.
00
0

0.
01
0

0.
02
0

0.
03
0

-90 -60 -30 0 30 60 90

Vessel at Orientation 5:00
 
 
 
 
 
 
 
 

D. Chauveau – RR Bordeaux 2012 New algorithms in mixtools



Mixture models and EM algorithm-ology
Quick look at some mixtools’ current algorithms

New models and algorithms for mixtools next version

EM Algorithm (1/3) Dempster Laird Rubin (1977)

General context of missing data: A fraction x of y is observed

MLE’s on observed data (x) and complete data (y):

θ̂x = arg max
θ∈Θ

Lx(θ), θ̂y = arg max
θ∈Θ

Lc
y(θ),

where Lx(θ) =
∑n

i=1 log gθ(xi) and Lc
y(θ) = . . .

Intuition: often the MLE on the complete data θ̂y is available,
while θ̂x is not

→ Try to maximize instead of Lc
y(θ), its expectation given x

Q(θ|θ′) := E [Lc
Y(θ)|x; θ′]

for “some” θ′ . . .
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EM Algorithm (2/3): general principle

θ0 = some “arbitrary” initialization, θt = current value:

EM θt → θt+1 iteration

Expectation step: compute θ 7→ Q(θ|θt)

Maximization step: set θt+1 = arg maxθ∈Θ Q(θ|θt).

Why does it works under mild conditions?

Ascent property for the observed loglikelihood

Lx(θ
t+1) ≥ Lx(θ

t)

alternatives: GEM, ECM, MM, Stochastic-EM,. . .

D. Chauveau – RR Bordeaux 2012 New algorithms in mixtools



Mixture models and EM algorithm-ology
Quick look at some mixtools’ current algorithms

New models and algorithms for mixtools next version

EM Algorithm (3/3): parametric mixture fj = f (x |φj)

E-step: Amounts to find the posterior probabilities

Z t
ij := Eθt [Zij |xi ] = Pθt [Zij = 1|xi ] =

λt
j f (xi |φt

j )∑
j ′ λ

t
j ′ f (xi |φt

j ′)

M-step: Maximization looks like weighted MLE

λt+1
j =

1
n

n∑
i=1

Z t
ij generic for EM algorithms for mixtures

and for e.g., the Gaussian f (x |φj) = the pdf of N (µj , vj),

µt+1
j =

∑n
i=1 Z t

ij xi∑n
i=1 Z t

ij
, vj

t+1 =

∑n
i=1 Z t

ij (xi − µt+1
j )2∑n

i=1 Z t
ij
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About Stochastic EM versions

In some (mixture) setup, it may be useful to simulate the latent
data from the posterior probabilities:

Ẑ
t
i ∼ Mult

(
1 ; Z t

i1, . . . ,Z
t
im
)
, i = 1, . . . ,n

Then:
The “complete” data (x, Ẑ

t
) allows direct computation of

the MLE
the sequence (θt)t≥1 becomes a Markov Chain
Historically, parametric Stochastic EM introduced by
Celeux Diebolt (1985, 1986,. . . )
General convergence properties: Nielsen 2000

In non-parametric framework: Stochastic EM for reliability
mixture models, Bordes C (2010, 2012) more on this later
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Old Faithful data with parametric Gaussian EM

Time between Old Faithful eruptions (minutes)
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R> data(faithful)
R> attach(faithful)
R> normalmixEM(waiting,

mu=c(55,80),
sigma=5)

number of iterations= 24

Gaussian EM result:
µ̂ = (54.6,80.1)
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Univariate identifiable semiparametric mixtures

One originality of mixtools:

Its capability to handle various nonparametric components fj ’s
in gθ(x) =

∑m
j=1 λj fj(x), for several models

Benaglia C Hunter Young (J. Stat. Soft. 2009)

Location-shift semi-parametric mixture model:

gθ(x) = λ1f (x − µ1) + (1− λ1)f (x − µ2)

This model is identifiable when f (·) is even. Bordes Mottelet
Vandekerkhove (2006), Hunter Wang Hettmansperger (2007)

Bordes C Vandekerkhove (2007) introduced an EM-like
algorithm that includes a Kernel Density Estimation (KDE) step.
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Nonparametric multivariate “EM” algorithms

mixtools’ Semi-parametric “EM” algorithm

E-step: Same as usual:

Z t
ij ≡ Eθt [Zij |xi ] =

λt
j f

t(xi − µt
j )

λt
1f t(xi − µt

1) + λt
2f t(xi − µt

2)

M-step: Maximize complete data “loglikelihood” for λ and µ:

λt+1
j =

1
n

n∑
i=1

Z t
ij µt+1

j = (nλt+1
j )−1

n∑
i=1

Z t
ijxi

Weighted KDE-step: Update f t (for some bandwidth h) by

f t+1(u) =
1

nh

n∑
i=1

2∑
j=1

Z t
ij K

(
u − (xi − µt+1

j )

h

)
, then symmetrize.
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Location-shift semi-parametric mixture model

gθ(x) = λ1f (x − µ1) + (1− λ1)f (x − µ2)

Time between Old Faithful eruptions (minutes)
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λ1 = 0.361

Gaussian EM:
µ̂ = (54.6,80.1)

Semiparametric EM
R> spEMsymloc(waiting,

mu=c(55,80),

h=4) # bandwidth

µ̂ = (54.7,79.8)
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Identifiability: the blessing of dimensionality (!)

Recall the model in the multivariate case, r > 1:

gθ(x) =
m∑

j=1

λj

r∏
k=1

fjk (xk )

N.B.: Assume conditional independence of x1, . . . , xr

Hall Zhou (2003) show that when m = 2 and r ≥ 3,
the model is identifiable under mild restrictions on the fjk (·)
Hall et al. (2005) . . . from at least one point of view, the
‘curse of dimensionality’ works in reverse.
Allman et al. (2008) give mild sufficient conditions for
identifiability whenever r ≥ 3
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Univariate (semiparametric) mixtures
Nonparametric multivariate “EM” algorithms

The notation gets even worse. . .

Motivation:
the Water-level data with 4 “blocks” of 2 similar responses

Let the r coordinates be grouped into B ≤ r blocks of
conditionally iid coordinates.
bk ∈ {1, . . . ,B} is the block index of the k th coordinate
The model becomes

g(x) =
m∑

j=1

λj

r∏
k=1

fjbk (xk )

Special cases:
bk = k for k = 1, . . . , r : general model of conditional
independence as in (Hall et al. 2005...)
bk = 1 for all k : Conditionally i.i.d. assumption
(Elmore et al. 2004)
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Univariate (semiparametric) mixtures
Nonparametric multivariate “EM” algorithms

Nonparametric “EM” Benaglia C Hunter (2009, 2011)

E-step: Same as for a genuine parametric EM,

Z t
ij =

λt
j
∏r

k=1 f t
jbk

(xik )∑
j ′ λ

t
j ′
∏r

k=1 f t
j ′bk

(xik )

M-step: Maximize complete data “loglikelihood” for λ:

λt+1
j =

1
n

n∑
i=1

Z t
ij

WKDE-step: Update estimate of fj` (component j , block `) by

f t+1
j` (u) =

1
nht+1

j` C`λ
t+1
j

r∑
k=1

n∑
i=1

Z t
ij I{bk =`}K

(
u − xik

ht+1
j`

)
where C` = # of coordinates in block `,
ht+1

j` = Iterative and per component & block adaptive bandwidth
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Univariate (semiparametric) mixtures
Nonparametric multivariate “EM” algorithms

The Water-level data

Dataset previously analysed with conditional i.i.d. assumption.
Hettmansperger Thomas (2000), Elmore et al. (2004)
The non appropriate conditional i.i.d. assumption masks
interesting features that our model reveals

In mixtools: npEM algorithm

R> library(mixtools)
R> data(Waterdata)
R> a <- npEM(Waterdata, 3,

blockid=c(1,2,3,4,2,1,4,3),
h=4) # user-fixed bandwidth here

R> par(mfrow=c(2,2))
R> plot(a)
R> summary(a) # some statistics per components
...
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The Water-level data, m = 3 components, 4 blocks
Block 1:  1:00 and 7:00 orientations
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Block 2:  2:00 and 8:00 orientations
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Block 3:  4:00 and 10:00 orientations
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From npEM to NEMS for nonparametric mixtures

Motivation: Our npEM algorithms are not true EM

Idea: combine regularization and npEM approach to define an
algorithm with a provable ascent property
Levine Hunter C (Biometrika 2011)

“Nonparametric” in smooth EM literature refers to a continuous
mixing distribution

� true EM but ill-posed difficulties , Vardi et al. (1985)
� Smoothed EM (EMS), Silverman et al. (1990)
� Nonlinear EMS (NEMS) regularization approach

Eggermont, LaRiccia (1995); Eggermont (1992, 1999)
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Smoothing the mixture

Applying Eggermont (1992, 1999) idea to component pdf’s
Nonlinear smoothing

N f (x) = exp
∫

Ω
Kh(x− u) log f (u) du,

where Kh(u) = h−r ∏r
k=1 K (h−1uk ) is a product kernel

For f = (f1, . . . , fm), define

MλN f(x) :=
m∑

j=1

λjN fj(x)

Goal: minimizing the∞-sample objective function (Kullback)

`(θ) = `(f,λ) :=

∫
Ω

g(x) log
g(x)

[MλN f](x)
dx.
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Majorization-Minimization (MM) trick

Principle: Let θt be the current value of θ in an algorithm.

A function B(θ|θt) is said to majorize
`(θ) at θt provided

B(θ|θt) ≥ `(θ) for all θ

B(θt |θt) = `(θt)

MM minimization algorithm: set θt+1 = arg min
θ

B(θ|θt)

The MM algorithm satisfies the descent property

`(θt+1) ≤ `(θt)

and we can define such a majorizing function B(θ|θt) here!
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MM algorithm with a descent property

Smoothed “log-likelihood” version for finite sample-size
given the sample x1, . . . ,xn iid ∼ g

`n(f,λ) := −
n∑

i=1

log[MλN f](xi)

The following MM algorithm satisfies a descent property

`n(ft+1,λt+1) ≤ `n(ft ,λt)
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nonparametric Maximum Smoothed Likelihood
(npMSL) algorithm

E-step: (requires additional univariate numerical integrations)

w t
ij =

λt
jN f t

j (xi)

MλtN ft(xi)
=

λt
j
∏r

k=1N f t
jk (xik )∑m

j ′=1 λj ′
∏r

k=1N f t
j ′k (xik )

M-step: for j = 1, . . . ,m

λt+1
j =

1
n

n∑
i=1

w t
ij

WKDE-step: For each component j and coord. k (or blocks),

f t+1
jk (u) =

1
nhλt+1

j

n∑
i=1

w t
ij K
(

u − xik

h

)
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The Water-level data again, npEM vs. npMSL (dotted)
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npMSL in mixtools:

R> b <- npMSL(Waterdata, 3,
blockid=c(1,2,3,4,2,1,4,3),
h=4) # bandwidth

R> plot(b)
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Further extensions: Semiparametric models

Component or block density may differ only in location and/or
scale parameters, e.g.

fj`(x) =
1
σj`

fj

(
x − µj`

σj`

)
or

fj`(x) =
1
σj`

f`

(
x − µj`

σj`

)
or

fj`(x) =
1
σj`

f
(

x − µj`

σj`

)
where fj , f`, f remain fully unspecified

For all these situations special cases of the npEM/npMSL
algorithm can be designed (some are already in mixtools).
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Mixture models for censored lifetime data

Bordes C (2010, 2012)
Typical data from reliability and life testing + mixture model:

lifetime data on R+ (X1, . . . ,Xn) iid ∼ gθ =
∑

j λj fj(x)

censoring times (C1, . . . ,Cn) iid ∼ q (unknown)
Random (right) censoring Ti = min(Xi ,Ci), Di = I{Xi≤Ci}

Observed (incomplete) data (t,d) = ((ti ,di), i = 1, . . .n)

A semiparametric example:

Semiparametric accelerated lifetime mixture model

gθ(x) = λf (x) + (1− λ)ξ f (ξx)

Scaling model: (X |Z1 = 1) has distribution U ∼ f , and
(X |Z2 = 1) ∼ U/ξ, identifiable under some restrictions
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Semi-parametric Stochastic-EM for censored data (1)

Denote F the cdf of f , S = 1− F the Survival function
and α = f/S the hazard rate

Building blocks:

For a single censored sample (t,d), S and α can be
estimated nonparametrically using Kaplan-Meier and
Nelson-Aalen estimators.

E(X |Zj = 1) =
∫ +∞

0 Sj(s)ds, where
Sj(s) = P(X > s|Zj = 1) is the j th component survival

In this scaling model ξ = E(X |Z1=1)
E(X |Z2=1)

If X comes from component 2, then ξX ∼ f , so that
{Xi : Zi1 = 1} ∪ {ξXi : Zi2 = 1} iid ∼ f

→ Estimates ξ̂ and f̂ = α̂Ŝ available in mixture setup if Z is
observed
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Semi-parametric “St-EM” for censored data (2)

Stochastic version required here!

E-step: if di = 0 (censored lifetime)

Z t
i1 =

λtSt(ti)
λtSt(ti) + (1− λt)St(ξt ti)

else (di = 1 observed lifetime)

Z t
i1 =

λtαt(ti)St(ti)
λtαt(ti)St(ti) + (1− λt)ξtαt(ξt ti)Sk (ξk ti)

S-step: Simulate Ẑ t
i1 ∼ B(pt

i1), i = 1, . . . ,n, and set

χt
j = {i ∈ {1, . . . ,n} : Ẑ t

i1 = 1}, j = 1,2
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Semi-parametric “St-EM” for censored data (3)

M-step for λ, ξ:

λt+1 =
Card(χt

1)

n
, ξt+1 =

∫ τ t
1

0 Ŝt
1(s)ds∫ τ t

2
0 Ŝt

2(s)ds
, τ t

j = max
i∈χt

j

ti

where Ŝt
j is the Kaplan-Meier estimate based on {(ti ,di); i ∈ χt

j }

Nonparametric-step for α,S: Let tt be the order statistic of
{ti ; i ∈ χt

1} ∪ {ξ
t ti ; i ∈ χt

2} and dt the associated censoring
indicators

αt+1(s) =
n∑

i=1

1
h
K
(

s − t t
i

h

)
d t

i
n − i + 1

St+1(s) =
∏

i:t t
i ≤s

(
1−

d t
i

n − i + 1

)
for a kernel K and bandwidth h.D. Chauveau – RR Bordeaux 2012 New algorithms in mixtools



Mixture models and EM algorithm-ology
Quick look at some mixtools’ current algorithms

New models and algorithms for mixtools next version

Nonlinear smoothed MM for nonparametric mixtures
Mixture models for censored lifetime data
And more. . .

Simulated example: scale mixture of Lognormals
n = 300, 15% censored
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in mixtools:
semiparametric Reliability
Mixture Model Stochastic EM

R> library(mixtools)
R> library(survival) # for KM estimation
# simulating data...
R> s <- spRMMSEM(t, d, scaling=0.1)

R> plot(s)
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Other new models/algorithms available (1)

Parametric (Exponential, Weibull, lognormal. . . ) reliability
mixture models for censored data

Gaussian mixtures with linear constraints on the
parameters, e.g. for p ≤ m, known M,C,

µ =

µ1
...
µm

 = Mβ + C = M

β1
...
βp

+

C1
...

Cm


and similar constaints on variances
→ requires ECM and/or MM algorithms C Hunter (2011)
Advances in mixtures of regression: predictor-dependent
mixing proportions Young, Hunter (CSDA 2010)
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Other new models (2): Mixtures in FDR estimation

In multiple testing (e.g., micro-arrays) we consider
n multiple tests→ p-values p = (p1, . . . ,pn)

question: False Discovery Rate (FDR) = expected
proportion of falsely rejected H0’s

mixture modelling: latent variable Zi = 1 if H0 is true and
Zi = 0 if H0 is rejected (= interesting case)

gθ(p) = λ0f0(p) + (1− λ0)f1(p)

theoretically (pi |H0 true) ∼ U[0,1] ≡ f0 known!
nonparametric assumption for f1 as e.g. in Robin et. al.
2007 or the fdrtool package Strimmer 2008

In mixtools: a semiparametric EM with one component known,
for FDR estimation C Saby (2011, 2012)
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The end
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