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CRAN Task View “Bayesian Inference”

The CRAN Task View “Bayesian Inference” is maintained by Jong
Hee Park

Classification N Packages

General model fitting 8
Specific models or methods 73
Post-estimation tools 5
Learning Bayesian statistics 5
Linking R to other sampling engines 8

Total 99

Most of these packages use Markov Chain Monte Carlo (MCMC)
or other simulation methods (sequential Monte Carlo, approximate
Bayesian computing, importance sampling, ...).
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BUGS: Bayesian Inference using Gibbs sampling

• The design of BUGS is based on developments in Artificial
Intelligence in the 1980s (Lunn et al 2009)

• Separation of knowledge base from inference engine
• Knowledge base represented in a declarative form that “express

local relationships between entities”

• Knowledge base represented by directed acyclic graph.

• Uncertainty represented with probability distribution on the
graph.
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Brief MCMC overview

• MCMC creates a Markov chain with a given target
distribution (in this case, the posterior distribution of the
parameters) as its equilibrium distribution

• Under regularity conditions, the Markov chain will converge to
the equilibrium distribution.

• MCMC then generates dependent samples from the target
distribution

• Inference is conducted using the empirical distribution of the
samples.
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1980s-1990s: The growth of MCMC

• In the 1990s it became feasible to use simulation-based
methods to analyse reasonably large statistical problems

• Markov Chain Monte Carlo (MCMC) techniques rediscovered
• Gibbs sampling (Geman and Geman, 1989)
• Metropolis-Hastings sampling (Metropolis et al 1950; Hastings

1970)

• BUGS combined Bayesian networks with MCMC.
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1995: BUGS becomes WinBUGS

• Rewritten in Component Pascal

• Depends on the Black Box
component framework

• Runs on Windows only

• Scripting language replaced by
point-and-click interface
(scripting re-introduced in later
versions)
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JAGS is Just Another Gibbs Sampler

Motivations for JAGS:

1. To have an alternative BUGS language engine that
• is extensible
• is cross-platform
• can interface to R (rjags, R2jags, runjags)

2. To create a platform for exploring ideas in Bayesian modelling
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Other Bayesian software libraries

PyMC MCMC for Python
http://code.google.com/p/pymc

HBC Hierarchical Bayes Compiler
http://www.cs.utah.edu/~hal/HBC

YADAS Yet Another Data Analysis System
http://www.stat.lanl.gov/yadas

HYDRA MCMC library
http://sourceforge.net/projects/hydra-mcmc

Scythe Statistical library (MCMCpack)
http://scythe.wustl.edu

CppBUGS C++ version of BUGS
https://github.com/armstrtw/CppBugs

Stan A C++ library for probability and sampling
http://code.google.com/p/stan/

http://code.google.com/p/pymc
http://www.cs.utah.edu/~hal/HBC
http://www.stat.lanl.gov/yadas
http://sourceforge.net/projects/hydra-mcmc
http://scythe.wustl.edu
https://github.com/armstrtw/CppBugs
http://code.google.com/p/stan/
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Statistical models as graphs

• In a graphical model, random variables are represented as
nodes, and the relations between them by edges.

X Y

In this simple model, Y is the outcome variable and X is a
vector of predictor variables, or covariates.

• Graphical models become more interesting when we have
multiple variables, and the relations between them become
more complex.

• The BUGS language is an S-like language for describing
graphical models.
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Stochastic Relations

The relation

Y ∼ N(µ, τ−1)

is written as

Y ~ dnorm(mu, tau)

Y

µ τ

This relation can be represented by a graph in which Y , µ, τ are
nodes. The dependency of Y on parameters µ, τ is represented by
directed edges.
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Stochastic relations

A parameter can itself have a
distribution with its own
hyper-parameters

τ ∼ Γ(0.01, 0.01)

In the BUGS language

tau ~ dgamma(0.01, 0.01)

This fits with the Bayesian approach
to statistical inference, in which the
parameters of a model are also
random variables.

Y

µ τ

0.01 0.01
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Deterministic relations

We can also describe deterministic
relationships between variables

µ = α + βx

In BUGS:

mu <- alpha + beta * x

They are represented by double
arrows.

Y

τ

0.01 0.01

µ

α βx

β x
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Arrays and for loops

Repeated structures in the graph can
be simplified using arrays and for
loops.

Yi ∼ N(µi , τ
−1) i = 1 . . . n

In BUGS:

for (i in 1:n) {

Y[i] ~ dnorm(mu[i], \tau)

}

Here the nodes Y[1] to Y[n] are
embedded in the array Y. Matrices
and higher-dimensional arrays can
also be used.

Y1 Y2 Yn

µ1 µ2 µn

τ

. . .
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Plates

Repeated structures can make the
graph hard to read.
To simplify drawing of the graph, we
use a “plate” notation.

• Only one entry in the for loop is
shown.

• The rest are implied by the
stack of plates

Yi

µi

τ

i = 1 . . . n
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A linear regression example
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Code for the linear regression example

In BUGS
for (i in 1:N) {

y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq



History of BUGS The BUGS language JAGS and R Conclusion

Code for the linear regression example

In BUGS
for (i in 1:N) {

y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)
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In R
lm(y ∼ x)
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BUGS code can be verbose

All parts of the model must be explicitly defined.

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

• You need to specify the
parameters as well as the
data.

• Parameters need to have
explicit prior distributions

• Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

• The model may include
parameter
transformations.
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MCMC on a graphical model

• A BUGS model defines a distribution on a set of nodes
{v1, . . . vn} on a graph.

• The distribution factorizes as

p(v) =
n∏

i=1

p(vi | Parents(vi ))

• Gibbs sampling is an MCMC algorithm that consists of
visiting each node in turn, sampling it from its full conditional
distribution p(vi | v−i ) where v−i = {v1 . . . vi−1, vi+1 . . . vn}

• p(vi | v−i ) depends only on local properties of the graph
(children, parents, co-parents of vi ).
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Metropolis-Hastings within Gibbs sampling

• We do not need to sample from p(vi | v−i ) directly.

• It is sufficient to generate a reversible transition vi → v ′i that
satisfies the detailed balance relation.

p(vi | v′−i )pt(vi → v ′i ) = p(v ′i | v′−i )pt(v ′i → vi )

• Slice sampling is the default method in JAGS for generating
reversible transitions

• Metropolis-Hastings is a general algorithm turning a
proposed transition kernel pt(vi → v ′i ) into a reversible
transition, at the cost of rejecting some proposed moves.
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Model objects in R

In general, a model object in R is created from

• A description of the model

• A data set (or variables from the calling environment)

• Initial values (optional)

glm.out <- glm(lot1 ~ log(u), family=Gamma, data=clotting)

The model object can be queried via extractor functions to
produce:

• Parameter estimates (summary, coef, vcov, confint)

• Predictions (predict)

These functions are generic. New methods can be developed for
new model objects.
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jags.model objects in the rjags package

A JAGS model object is created in the standard way

library(rjags)

m <- jags.model("blocker.bug", data, inits, n.chains = 2)

• The first argument is the name of a file containing the BUGS
code for the model.

• data is a named list of data for observed nodes

• inits is a list of lists of initial values (one for each chain)

• n.chains is the number of parallel chains

But m does not represent a “fitted model”. It is a dynamic object
that can be queried to generate samples from the posterior.
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Burn-in

• Unlike most algorithms used in statistics, the MCMC
algorithm does not tell you when it has converged.

• Convergence must be determined empirically by running
parallel chains from very different starting values.

• This is formalized by the Gelman-Rubin convergence
diagnostic.

• In any case, we need to discard the initial output from the
Markov chain (typically 1000–10000 samples)

• The update method runs the Markov chain but discards the
sampling history

update(m, 3000)
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Drawing samples from a jags.model object

The coda.samples function updates the model and stores the
sampled values of monitored nodes

x <- coda.samples(m, c("d","delta.new","sigma"),

n.iter=30000, thin=10)

It returns an object of class "mcmc.list".
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CRAN package coda

• CODA is (almost) an abbreviation of “Convergence Diagnosis
and Output Analysis”

• Provides an object-based infrastructure for representing
MCMC output

• Convergence diagnostics are empirical tests of convergence or
run length control.

• 93 packages on CRAN depend on, import, or suggest coda
• Not necessarily in the “Bayesian Inference” task view
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Plotting mcmc.list objects
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The plot method for mcmc.list
objects produces a trace plot
and a density plot.
This reflects the dual nature of
an mcmc object as both time
series and empirical estimate
of the posterior.
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Good and bad “mixing”

An inefficient MCMC sampler exhibits random walk behaviour

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Gibbs sampling

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Block updating

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

Gibbs sampling

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

Block updating

This can also be diagnosed by an autocorrelation plot.
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“Solving” autocorrelation by thinning
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“Solving” autocorrelation by thinning
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“Solving” autocorrelation by thinning
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“Solving” autocorrelation by thinning
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“Solving” autocorrelation by thinning

2000 4000 6000 8000 10000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Thinned chain − longer run



History of BUGS The BUGS language JAGS and R Conclusion

Effective number of samples

The effectiveSize function shows the equivalent number of
independent samples from the posterior that contain the same
information.

> niter(x)*nchain(x) #Number of actual samples

[1] 6000

> effectiveSize(x)

d delta.new sigma

1603.1158 4162.9912 956.4735
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JAGS library

The JAGS library consists of

• A compiler that creates a virtual graphical model from a
BUGS language description

• C++ classes for representing all the objects used by a virtual
graphical model (Nodes, Graphs, Samplers, Monitors,...)

• A “Console” class provides a clean, safe interface to the JAGS
library (e.g. it catches all exceptions)
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JAGS modules

Modules are dynamically loadable extensions to the JAGS library.
They can provide new

• Functions

• Distributions

• Samplers (More efficient ways of sampling)

• Monitors (Sequentially updated summary statistics)

• Random Number Generators
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Standard jags modules

basemod Functions and distributions built into the compiler.
“Universal” samplers.

bugs Functions and distributions from OpenBUGS.
Conjugate samplers.

dic Deviance statistics

mix Distributions for finite mixture models. Simulated
tempering sampler.

glm Block samplers for generalized linear (mixed) models.

lecuyer Pierre L’Ecuyer’s rngstreams.
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Design Patterns

• Design patterns are reusable solutions to commonly
recurring design problems

• Originally developed in architecture, the patterns concept
has been translated to software development.

• This may be a useful way of thinking about efficient
sampling of graphical models, which often have a rich
structure.

• First we need to look for recurring design motifs
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GLM as a design motif

Y1 Y2 Yn

θ1 θm

µ1 µ2 µn

η1 η2 ηn

. . .

. . .

. . .

. . .

A GLM is a sub-graph with the
following elements

• parameters θ with prior normal
distribution

• linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

• link functions transform linear
predictor η to mean value µ

• Outcome variables Y depend
on parameters θ via the mean µ
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Module “glm”: Linearisation by data augmentation

Some generalized linear models can be turned into linear models by
data augmentation.

Y1 Y2 Yn

θ

. . .
• Original idea by Albert

and Chib (1993) for
binary regression with a
probit link.

• Refined by Holmes and
Held (2006) and extended
to logistic regression.

• Poisson and Binomial
regression handled by
Fruhwirth-Schnatter et al
(2009).
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Module “glm”: Linearisation by data augmentation

Some generalized linear models can be turned into linear models by
data augmentation.

Y1 Y2 Yn

Z1 Z2 Zn

θ

. . .

. . .

• Original idea by Albert
and Chib (1993) for
binary regression with a
probit link.

• Refined by Holmes and
Held (2006) and extended
to logistic regression.

• Poisson and Binomial
regression handled by
Fruhwirth-Schnatter et al
(2009).
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Strengths

• Universal language (BUGS) for describing Bayesian models

• Universal method (MCMC) for analyzing them

• Perfect concordance between graphical models and MCMC.
• Density calculations remain feasible even in large graphical

models.
• The density depends only on local features of the graph.
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Weaknesses

• MCMC may not converge.

• Long runs may be required to get target effective sample size.

• Large memory overhead associated with virtual graphical
model.

• Restricted to fully parametric models.

• Restricted to models of fixed dimension.
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Future plans

• Rewriting coda

• Improving sampling methods in modules.

• Parallelization (See the dclone package)

• Documentation of API to encourage third-party modules
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Future perspectives

Computing is evolving towards parallel architecture. Can MCMC –
an inherently sequential algorithm – survive?
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