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The conditional logistic regression model is the standard tool for the analysis of epidemiological
studies in which one or more cases (the event of interest), are individually matched with one
or more controls (not showing the event). These situations arise, for example, in matched
case–control studies and self–matched case–only studies (such as the case–crossover [1], the
case–time–control [2] or the case–case–time–control [3] designs).

Usually, odds ratios are estimated by maximizing the conditional log–likelihood function and
variable selection is performed by conventional manual or automatic selection procedures, such
as stepwise. These techniques are, however, unsatisfactory in sparse, high-dimensional settings
in which penalized methods, such as the lasso (least absolute shrinkage and selection operator)
[4], have emerged as an alternative. In particular, the lasso and related methods have recently
been adapted to conditional logistic regression [5].

The R package clogitLasso implements, for small to moderate sized samples (less than 3, 000

observations), the algorithms discussed in [5], based on the stratified discrete-time Cox propor-
tional hazards model and depending on the penalized package [6]. For large datasets, clogit-
Lasso computes the highly efficient procedures proposed in [7, 8], based on an IRLS (iteratively
reweighted least squares) algorithm [9] and depending on the lassoshooting package [10]. The
most common situations that involve 1:1, 1:M and N:M matching are available.

The talk outlines the statistical methodology behind clogitLasso as well as its practical appli-
cation by means of three real data examples arising from Epidemiology.
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