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Challenges

The issue with integrative systems biology

Unlimited quantity of data
(n << p problem)
Data from multiple sources

→ Efficient and biologically relevant statistical methodologies are
needed to combine the information in these heterogeneous data
sets.
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The biological questions

Single Omics analysis
Do we observe a ‘natural’ separation between the different
groups of patients?
Can we identify potential biomarker candidates predicting the
status of the patients?

Integrative Omics analysis
Can we identify a subset of correlated genes and proteins from
matching data sets?
Can we predict the abundance of a protein given the
expression of a small subset of genes?
Do two matching omics data set contain the same
information?
How to take into account a repeated measurement design?
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Data setting

Data setting

n = number of patients
p, q = number of biological features (genes, proteins ..)

Single Omics analysis
one omic data set X(n x p)
for a supervised analysis, Y vector indicating the class of the
patients

Integrative Omics analysis
two matching omics data sets (measured on the same patients)
X (n x p) and Y (n x q) (unsupervised analysis)
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Multivariate analysis

Linear multivariate approaches enable:
Dimension reduction
→ project the data in a smaller subspace
To handle multicollinear, irrelevant, missing variables
To capture experimental and biological variation

In particular, in mixOmics, focus is on:
Data integration
Variable selection
Computationally efficient methodologies for large biological
data sets
Interpretable graphical outputs
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mixOmics

is an R package dedicated to the exploration and the
integrative analyses of high dimensional biological data sets.

Website
- R tutorials
- Newsletter, User Forum

Web Interface
- User friendly interface
- Comprehensive results page

-Lê Cao et al. (2009) integRomics/mixOmics: an R package to unravel
relationships between two omics data sets, Bioinformatics
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mixOmics
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Illustration on the PROOF study

The PROOF Center

Prevention of Organ Failure Centre of Excellence is a
not-for-profit organization that develops and implements
blood-based biomarker tests to better manage patients
with heart, lung and kidney failure and prevent disease
progression.

Kidney transplant study: patients with kidney deficiency received a
kidney transplant. Each Acute Rejection patient (AR) is matched
with a Non Rejection patient (NR).

The data: n = 40
1 Genomics (Affymetrix, p = 27, 306)
2 Proteomics (iTRAQ, q = 140)
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The biological questions

Single Omics analysis
Do we observe a ‘natural’ separation between the different
groups of patients?
Can we identify potential biomarker candidates predicting the
status of the patients?
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Introduction with PCA

Principal Component Analysis: PCA

Seek the best directions in the data that account for most of the
variability

→ principal components: artificial variables
that are linear combinations of the original
variables:

c = X v
(n) (nxp) (p)
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c is a linear function of the elements of X having maximal
variance
v is called the associated loading vector
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Introduction with PCA

Principal components cont.

The new PCs form a vectorial
subspace of dimension < p

Project the data on these new
axes.
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→ approximate representation of the data points in a lower
dimensional space

Problem:
Interpretation difficult with very large number of (possibly)
irrelevant variables

Kim-Anh Lê Cao

mixOmics



Intro mixOmics Single Omics Analysis Integrative Omics Analysis Recent developments Conclusions

Introduction with PCA

PCA

Objective function:

max
||vh ||=1

var(Xhvh), h = 1 . . .H

Several ways of solving PCA:
Eigenvalue problem: Sv = λv ; c = Xv
S = variance covariance matrix or correlation matrix if X is scaled

Singular Value Decomposition (SVD): X = UDV’; C = UD
D =diagonal matrix with

√
λj ;

u j (v j ) are eigenvectors of 1
nXX ′ ( 1

nX ′X )

NIPALS algorithm
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Independent Principal Component Analysis

Independent Component Analysis (ICA):
assumes non Gaussian data distribution (6= PCA).
‘blind source’ signal separation.
seeks for a set of independent components (6= PCA).

IPCA is based on Independent Component Analysis (ICA):
Combines the advantages of both PCA and ICA.
The PCA loadings are transformed via ICA to obtain
independent loading vectors and independent principal
components.

Yao, F., Coquery, J. and Lê Cao, K-A. 2012 Independent Principal Component

Analysis for biologically meaningful dimension reduction of large biological data sets,

BMC Bioinformatics.
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Independent Principal Component Analysis

Illustration on the genomics data
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Variable selection

sparse Principal Component Analysis: sPCA

Principal components
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The principal components are linear combinations of the original
variables, variables weights are defined in the associated loading
vectors.
sparse PCA computes the sparse loading vectors to remove
irrelevant variables using lasso penalizations (Shen & Huang 2008, J.

Multivariate Analysis).
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Variable selection

sparse Principal Component Analysis: sPCA

sparse PCA: sparse loading vectors to remove noisy or irrelevant
variables which determine the principal components

→ Solving PCA through least squares problem (SVD) allows to
include regularization parameters

min
vh
||Xh − uhvT

h ||2F + Pλ(uh)

Pλ is a penalty function with tuning regularization parameter λ

→ use Lasso penalization
→ obtain sparse loading vectors, with very few non-zero elements

Shen, H., Huang, J.Z. 2008. Sparse principal component analysis via regularized low

rank matrix approximation, J. Multivariate Analysis.
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Variable selection

Illustration: PCA and sPCA
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Discriminant Analysis
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Looking for discriminative genes

PLS - Discriminant Analysis

Similarly to Linear Discriminant Analysis, classical PLS-DA
looks for the best components to separate the sample groups.
As opposed to PCA/ICA methods, it is a supervised approach.

Objective function:

max
||uh||=1,||vh||=1

cov(Xhuh,Y vh) h = 1 . . .H

Y is the qualitative response matrix (dummy block matrix)

Lê Cao K-A., Boitard S. and Besse P. (2011) Sparse PLS Discriminant Analysis:

biologically relevant feature selection and graphical displays for multiclass problems,

BMC Bioinformatics, 12:253.
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Looking for discriminative genes

sparse PLS - Discriminant Analysis
Include variable selection in PLS-DA via L1 penalization on the
loading vectors.

Let Mh = XT
h Yh,

min
uh
||Mh − uhvT

h ||2F + Pλ(uh), h = 1 . . .H

use Lasso penalization (Pλ is a penalty function with regularization
parameter λ ),
sparse loading vector uh enables variable selection,
sPLS-DA searches for discriminative variables that can help
separating the sample groups,
evaluate the discriminative power of the variable selection
using cross-validation.
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Looking for discriminative genes

Illustration of sPLS-DA
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Parameters tuning

Parameters to tune

Number of components:
-PCA, IPCA: explained variance
-IPCA: kurtosis value
-PLS-DA: K − 1
Lasso penalization λh, (h = 1, . . . ,H):
-sPCA, sIPCA: sparsity degree, stability analysis, permutations,
cluster analysis
-sPLS-DA: classification error rate with cross-validation

→ the biologist will also help choosing these parameters!
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Motivation

Integrative Omics analysis
Can we identify a subset of correlated genes and proteins from
matching data sets?
Can we predict the abundance of a protein given the
expression of a small subset of genes?
Do two matching omics data set contain the same
information?
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Motivation

Partial Least Squares regression maximises the covariance
between each linear combination (components) associated to
each data set
sparse PLS has been developed to include variable selection
from both data sets
Two modes are proposed to model the relationship between the
two data sets (mode=‘regression’ or mode = ‘canonical’)

Lê Cao K-A., Rossouw D., Robert-Granié C. and Besse P. 2008. A Sparse PLS for
Variable Selection when Integrating Omics data. SAGMB 7(1).

Lê Cao K.-A., Martin P.G.P, Robert-Granié C. and Besse, P. 2009. Sparse

Canonical Methods for Biological Data Integration: application to a cross-platform

study. BMC Bioinformatics, 10:34.
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Motivation

Integration of two data sets

Aims:
unravel the correlation stucture between two data sets
select co-regulated biological entities across samples

→ select and integrate in a one step procedure the different types
of data

PLS objective function:

max
||uh||=1,||vh||=1

cov(Xhuh,Yhvh), h = 1 . . .H

where X (n x p) is the transcriptomics data set and Y (n x q) is the proteomics
data set
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PLS

Partial Least Squares
x x yx y y2 p 21 q1

h

ξ
h

1

2

n

1

2

n

ω
h

u v
h

c
h

e
h

X = 
h

= X
h−1

− ξ
h
c’

h
Y

h
Y

h−1
ω

h
e’

h
−

For each iteration h, h = 1..H, decompose X and Y into:

1 Loadings vectors uh and vh, p- and q- dimensional vectors

2 Latent variables ξh and ωh, n-dimensional vectors

3 Regression of Xh−1 and Yh−1 on ξh and ωh, reg. coeff. ch and eh

4 Residual matrices: deflation step of Xh−1 and Yh−1
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sparse PLS

sparse PLS-SVD

Use the PLS-SVD variant that directly gives the latent variables
and loading vectors and low rank rank approximation.

Let Mh = XT
h Yh, sparse PLS solves the optimization problem:

min
uh,vh
||Mh − uhv′h||2F + Pλ1(uh) + Pλ2(vh)

where Pλ is a penalty function

→ obtain simultaneously sparse loadings uh and vh
→ simultaneous variable selection in both data sets

Kim-Anh Lê Cao
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Integrating genomics and proteomics

Illustration of sparse PLS: sample plot
sPLS aims at selecting correlated variables (genes, proteins) across
the same samples by performing a multivariate regression.
Regression: explain the protein abundance w.r.t the gene expression
“⇒ relationship”.

The latent variables (PLS
components) are determined based
on the selected genes and proteins
→ give more insight into the
samples similarities.
Unsupervised approach

Kim-Anh Lê Cao
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Integrating genomics and proteomics

Illustration of sparsePLS: variable plot
Relevance networks are bipartite graphs directly
inferred from the (s)PLS components.

González I., Lê Cao K.-A., Davis, M.D. and Déjean S. Visualising association between

paired ‘omics’ data sets. In revision.
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Integrating genomics and proteomics

Illustration of sparsePLS: variable plot
Some other insightful graphical outputs to highlight relationships
between 2 data sets:
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Figure: Correlation circle plots Figure: Clustered Image Maps
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Comparing two platforms

sPLS canonical mode: sample plots
Selects correlated variables across the same samples and highlights
the correlation structure between the two data sets.
Canonical mode: “⇔ relationship”
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Figure: Arrow plot to highlight the
similarities between 2 data sets

NCI60 cross-platform study
X = affymetrix, Y = cDNA
microarray platforms
Which are the variable from
both sets that contain similar
information on the samples?
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Parameters tuning

Parameters to tune

Number of PLS components:
-Q2

h index
Lasso penalizations λh

1, λ
h
2 (h = 1, . . . ,H):

-regression mode: error prediction with cross-validation
-canonical mode: maximisation of the covariance, stability
analysis, permutations

→ the biologist will also help choosing these parameters!
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Multilevel analysis

Cross-over design: VAC 18 study
Peripheral blood mononuclear cells obtained before and
after vaccination and simulated with 4 different
conditions: HIV-LIPO5, GAG+, GAG- and NS.

Transcripts (p = 44, 000), Cytokines (q = 10), n = 12
unique patients

Subject Stimulation
After vaccination LIPO5 GAG+ GAG- NS

1 × × × ×
2 × × × ×
...

...
...

...
...

12 × × × ×

→ Take into account the correlation across conditions

from B. Liquet
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Multilevel analysis

Split up variation with a mixed model framework
As suggested by Westerhuis et al., 2010:

X = Xm︸︷︷︸
offset term

+ X b︸︷︷︸
between-sample variation

+ Xw︸︷︷︸
within-sample variation

For the expression of variable k, subject s and treatment j ,

xk
sj = xk

··︸︷︷︸
offset

+ (xk
s· − xk

··)︸ ︷︷ ︸
between-sample variation

+ (xk
sj − xk

s·)︸ ︷︷ ︸
within-sample variation

where (xk
sj − xk

s·)︸ ︷︷ ︸
within-sample variation

= (xk
·j − xk

··)︸ ︷︷ ︸
Treatment effect

+(xk
sj − xk

s· − xk
·j + xk

··)︸ ︷︷ ︸
Error

from B. Liquet
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Multilevel analysis

Multilevel approach

Multilevel approach: explains the different parts of variation.
The within-sample variation is explained by the Treatment
factor.
Objective: select the genes which can discriminate the 4
stimulations (stimulation effect)

→ apply sPLS-DA on the within matrix Xw rather than the original
data set X to take into account the repeated measures design.

from B. Liquet

Liquet, B. Lê Cao, K-A., Hocini, H., Thiébaut, R. A novel approach for biomarker

selection and the integration of repeated measures experiments from two platforms,

submitted.
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Multilevel analysis

Cross-over design

One data set 
repeated 

measurements 
(n x p) 

Two matching data 
sets 

repetated 
measurements 
(n x p) & (n x q) 

multilevel 
PLS-DA 

multilevel 
PLS 

Internal 
variable 
selection 

Multivariate 
approach Data 

multilevel 
sPLS-DA 

multilevel 
sPLS 

Graphical 
outputs 

supervised 

Sample plots 

Variable plots 

canonical, 1 level 

A novel approach for cross-over designs (repeated 
measurements up to 2 cross factors) 
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Multilevel analysis

Illustration: multilevel analysis
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Integration of multiple data sets

Regularized CCA
Classical Canonical Correlation Analysis solves the problem

max corah,bh(Xah,Ybh) s.t. var(Xah) = var(Ybh) = 1

For n << p + q, the empirical covariance matrices are
ill-conditionned → canonical correlations close to 1.

In regularized CCA the covariance matrices are replaced by:
Cov(X ) + λ1Id and Cov(Y ) + λ2Id

González I., Déjean S., Martin P.G.P., Goncalves O., Besse P. and Baccini A.

2009 Highlighting Relationships Between Heteregeneous Biological Data Through

Graphical Displays Based On Regularized Canonical Correlation Analysis, Journal of

Biological Systems, 17 (2).
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Integration of multiple data sets

Multi-block analysis: Regularized Generalised CCA

RGCCA generalizes rCCA to more than 2 data sets
Constitutes a general framework for many multi-block data
analysis methods
Objective: seeks linear combinations of block variables:
(i) block components explain their own block well and/or
(ii) block components that are assumed to be connected are
highly correlated.

Tenenhaus, A., Tenenhaus, M (2011) Regularized Generalised Canonical Correlation

Analysis, Psychometrika, 76 (2).
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Integration of multiple data sets

RGCCA
For J blocks of variables X 1, . . . ,X j , the design matrix C = {cj ,k},
the function g and the shrinkage constants τ1, . . . , τJ ,
RGCCA optimizes the problem:

max
a1,...,aJ

J∑
j ,k=1,j 6=k

ckjg(Cov(X jaj ,X kak))

subject to the constraints τj ||aj ||2 +(1− τj)Var(X jaj) j = 1, . . . , J,
where the aj are the loading vectors associated to each block j .

Similar to the sPLS, L1 penalizations can be applied to the loading
vectors to obtain a sparse version of RGCCA (sRGCCA, in
preparation).
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Integration of multiple data sets

Illustration: design and sample plot

Based on PLS path
modelling: decide
connexions btw blocks
Also choose the g function
depending on the type of
relationship between loading
vectors

Figure: PROOF data
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Integration of multiple data sets

Illustration: variable profile plot
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Conclusions

These multivariate integrative approaches are:
flexible and can answer various types of questions.
can highlight the potential of the data.
enable to generate new biological hypotheses to be further
investigated.

:
currently implements 6 different methodologies plus their
sparse variants
proposes comprehensive graphical outputs
includes a web-associated interface

Future work includes:
Cross-platform comparison and time-course experiments
integration
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Questions?

Questions?
Watch out the new look of our web interface!

(in progress)

http://mixomics.qfab.org
mixomics@math.univ-toulouse.fr
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