Sharp ultimate bounds of solutions to a class of second order linear evolution equations with bounded forcing term

Faouzia ALOUI
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.
aloui@ann.jussieu.fr
Alain HARAUX $(1,2)$
1. UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.
2- CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, Boîte courrier 187, 75252 Paris Cedex 05, France.
haraux@ann.jussieu.fr

Abstract

We establish a precise estimate of the ultimate bound of solutions to some second order evolution equations with possibly unbounded linear damping and bounded forcing term.

Introduction

Let H be a real Hilbert space. In the sequel we denote by (u, v) the inner product of two vectors u, v in H and by $|u|$ the H - norm of u. Given $f \in L^{\infty}(\mathbb{R}, H)$, we consider the second order evolution equation with possibly unbounded and time-dependent damping operator B :

$$
\begin{equation*}
u^{\prime \prime}+A u+B u^{\prime}=f(t) \tag{0.1}
\end{equation*}
$$

where A is a fixed linear, self-adjoint and positive operator in H. We assume that the domain of A is dense in H and A is coercive, in other terms:

$$
\begin{equation*}
\exists \lambda>0, \quad \forall u \in D(A), \quad(A u, u) \geq \lambda|u|^{2} \tag{0.2}
\end{equation*}
$$

Obviously the set of λ satisfying (0.2) is closed. For our purpose the best possible is the largest one, ie.

$$
\lambda=\inf _{u \in D(A),|u|=1}(A u, u)=: \lambda_{1}(A)
$$

We introduce $V=D\left(A^{\frac{1}{2}}\right)$ endowed with the norm given by

$$
\forall u \in V, \quad\|u\|=\left|A^{\frac{1}{2}} u\right|
$$

This norm defined on V is equivalent to the graph norm of $A^{\frac{1}{2}}$ as a result of the coerciveness hypothesis on A.

In the sequel, $B: V \rightarrow V^{\prime}$ may be a time-dependent continuous operator. When B is linear and time-independent, we write (0.1) in the following form:

$$
\begin{equation*}
U^{\prime}+L U=F(t) \tag{0.3}
\end{equation*}
$$

with $U=\left(u, u^{\prime}\right), L=\left(\begin{array}{cc}0 & -I \\ A & B\end{array}\right)$ and $F=(0, f)$. If $B \in L\left(V, V^{\prime}\right)$ satisfies

$$
\langle B v, v\rangle \geq 0 \quad \forall v \in V
$$

then it is not difficult to check (cf.e.g. $[1,3,4]$) that L is a maximal monotone operator with dense domain $D(L)=\{(u, v) \in V \times V, A u+B v \in H\}$ in $V \times H$. Then, by Hille -Yosida's Theorem (cf.e.g. [3, 13]), L generates a C^{0} contraction semi-group $S(t)$ that insures the existence and uniqueness of a mild solution $u \in C\left(\mathbb{R}^{+}, V\right) \cap C^{1}\left(\mathbb{R}^{+}, H\right)$ to (0.1) on \mathbb{R}^{+}for any pair of initial data $u_{0}=u(0) \in V ; u_{1}=u^{\prime}(0) \in H$. Moreover, the two following properties are equivalent cf [9]:

1) $S(t)$ is exponentially damped on $V \times H$ which means that for some constants $M \geq 1, \delta>0$

$$
\forall t \geq 0, \quad\|S(t)\|_{L(H)} \leq M \exp (-\delta t)
$$

2) $\forall F \in L^{\infty}\left(\mathbb{R}^{+}, H\right)$, any solution of (0.3) is bounded in $V \times H$ for $t \geq 0$.

In addition in this case we have

$$
\varlimsup_{t \rightarrow \infty}\|U(t)\| \leq \frac{M}{\delta} \varlimsup_{t \rightarrow \infty}\|F(t)\|_{H}
$$

In applications to infinite or even finite dimensional second order equations, this method does not give the best possible estimate because it is not easy to optimize on M and δ. This was already observed in [11] and [12] where precise estimates of $\varlimsup_{t \rightarrow \infty}\|U(t)\|$ were given in the case of (0.1) with $B=c I$ or $B=c A^{\frac{1}{2}}$.

The main objective of this paper is to generalize the results of $[11,12]$ for B time independent and improve some of the results in the specific cases $B=c I$ and $B=c A^{\frac{1}{2}}$. We shall consider also the case $B=c A$ which was not studied before.

The plan of the paper is the following: section 1 contains an improvement of the main result from [11] in the general case $B=\beta(t)$. Section 2 is devoted to the case where $B=B(t)$ is linear and self-adjoint. Section 3 gives the precise statements when $B=c A^{\alpha}$ with a special treatment in the case $B=B_{0}=c A^{\frac{1}{2}}$ and Section 4 is devoted to the main concrete applications of Theorem 2.1. Finally Section 5 is devoted to slightly different examples and some additional remarks.

1 An ultimate bound valid for general time-dependent damping terms

We consider the equation:

$$
\begin{equation*}
u^{\prime \prime}+\beta(t) u^{\prime}+A u=f(t) \tag{1.1}
\end{equation*}
$$

where $t \in \mathbb{R}^{+}$. For this equation, we improve some general estimates obtained in [11] when $\beta(t): \mathbb{R}^{+} \rightarrow C\left(V, V^{\prime}\right)$ is a measurable family of possibly nonlinear continuous operators which satisfies the two hypotheses:

$$
\begin{gather*}
\exists c>0, \quad \forall t \in \mathbb{R}^{+}, \quad \forall v \in V, \quad\langle\beta(t) v, v\rangle \geq c|v|^{2} . \tag{1.2}\\
\exists C>0, \quad \forall t \in \mathbb{R}^{+}, \quad \forall v \in V, \quad\|\beta(t) v\|_{*}^{2} \leq C\langle\beta(t) v, v\rangle . \tag{1.3}
\end{gather*}
$$

It is immediate (cf. e.g. [11]) that $c \leq C \lambda_{1}$ where $\lambda_{1}=\lambda_{1}(A)$. Our main result is the following

Theorem 1.1. For any solution $u \in W_{\text {loc }}^{1, \infty}\left(\mathbb{R}^{+}, V\right) \cap W_{\text {loc }}^{2, \infty}\left(\mathbb{R}^{+}, H\right)$ of (1.1) we have the estimate :

$$
\begin{equation*}
\max \left(\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|\right) \leq \max \left(\sqrt{12} \sqrt{\frac{C}{c}}, \frac{3}{c}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{1.4}
\end{equation*}
$$

Proof. For simplicity of the formulas, we drop the variable t whenever possible and we denote by z^{\prime} the time derivative of a (scalar or vector) time-dependent function z. We consider for some $\alpha>0$ to be chosen later the following modified energy functional:

$$
\Phi=\left|u^{\prime}\right|^{2}+\|u\|^{2}+\alpha\left(u, u^{\prime}\right)-\frac{\alpha^{2}}{4}|u|^{2}
$$

Then

$$
\begin{aligned}
\Phi^{\prime} & =-2\left\langle\beta u^{\prime}, u^{\prime}\right\rangle+\alpha\left|u^{\prime}\right|^{2}-\alpha\|u\|^{2}-\alpha\left\langle\beta u^{\prime}, u\right\rangle+\left\langle f, 2 u^{\prime}+\alpha u\right\rangle-\frac{\alpha^{2}}{2}\left(u, u^{\prime}\right) \\
& =-\frac{\alpha}{2}\left(\left|u^{\prime}\right|^{2}+\|u\|^{2}+\alpha\left(u, u^{\prime}\right)\right)-2\left\langle\beta u^{\prime}, u^{\prime}\right\rangle+\frac{3 \alpha}{2}\left|u^{\prime}\right|^{2}-\frac{\alpha}{2}\|u\|^{2}-\alpha\left\langle\beta u^{\prime}, u\right\rangle+\left\langle f, 2 u^{\prime}+\alpha u\right\rangle
\end{aligned}
$$

we set $\Psi=\left|u^{\prime}\right|^{2}+\|u\|^{2}+\alpha\left(u, u^{\prime}\right) \geq \Phi$.
Then, by using (1.2), we have:

$$
\Phi^{\prime} \leq-\frac{\alpha}{2} \Phi-\frac{1}{2}\left\langle\beta u^{\prime}, u^{\prime}\right\rangle-\left(\frac{3 c}{2}-\frac{3 \alpha}{2}\right)\left|u^{\prime}\right|^{2}-\frac{\alpha}{2}\|u\|^{2}-\alpha\left\langle\beta u^{\prime}, u\right\rangle+\left\langle f, 2 u^{\prime}+\alpha u\right\rangle
$$

we have, from (1.3):

$$
\left|\left\langle\beta u^{\prime}, u\right\rangle\right| \leq \sqrt{C}\left\langle\beta u^{\prime}, u^{\prime}\right\rangle^{\frac{1}{2}}\|u\|
$$

By using Young's inequality we deduce :

$$
\left|\alpha\left\langle\beta u^{\prime}, u\right\rangle\right| \leq \alpha C\left\langle\beta u^{\prime}, u^{\prime}\right\rangle+\alpha \frac{\|u\|^{2}}{4}
$$

Assuming $\alpha C \leq \frac{1}{2}, \quad$ then:

$$
\Phi^{\prime}+\frac{\alpha}{2} \Phi \leq-\frac{3}{2}(c-\alpha)\left|u^{\prime}\right|^{2}+2\left\langle f, u^{\prime}\right\rangle-\frac{\alpha}{4}\|u\|^{2}+\alpha\langle f, u\rangle
$$

Assuming $\frac{3}{2}(c-\alpha) \geq \frac{1}{2} c, \quad$ then $\alpha \leq \frac{2}{3} c$.
We have, by using Young's inequality:

$$
\begin{aligned}
-\frac{3}{2}(c-\alpha)\left|u^{\prime}\right|^{2}+2\left\langle f, u^{\prime}\right\rangle & \leq-\frac{c}{2}\left|u^{\prime}\right|^{2}+2\left\langle f, u^{\prime}\right\rangle \\
& \leq \frac{2}{c}|f|^{2}
\end{aligned}
$$

Moreover

$$
\alpha\langle f, u\rangle \leq \frac{\alpha}{\sqrt{\lambda_{1}}}|f|\|u\|
$$

Therefore, by Young's inequality:

$$
\begin{aligned}
-\frac{\alpha}{4}\|u\|^{2}+\alpha\langle f, u\rangle & \leq \alpha\left(-\frac{\|u\|^{2}}{4}+\frac{1}{\sqrt{\lambda_{1}}}|f|\|u\|\right) \\
& \leq \frac{\alpha}{\lambda_{1}}|f|^{2} \\
& \leq \frac{\alpha C}{c}|f|^{2} \\
& \leq \frac{1}{2 c}|f|^{2}
\end{aligned}
$$

Then

$$
\Phi^{\prime}+\frac{\alpha}{2} \Phi \leq \frac{5}{2 c}|f|^{2}
$$

Then, we find that Φ is bounded with:

$$
\varlimsup_{t \rightarrow \infty} \Phi(t) \leq \frac{5}{c \alpha} \varlimsup_{t \rightarrow \infty}|f(t)|^{2}
$$

Moreover, we have:

$$
-\alpha\left(u, u^{\prime}\right) \leq\left|u^{\prime}\right|^{2}+\frac{\alpha^{2}}{4}|u|^{2}
$$

We set $F=\varlimsup_{t \rightarrow \infty}|f(t)|^{2}$.
In particular for any $\epsilon>0$ we have for t large enough

$$
\left(1-\frac{\alpha^{2}}{2 \lambda_{1}}\right)\|u(t)\|^{2} \leq\|u(t)\|^{2}-\frac{\alpha^{2}}{2}|u(t)|^{2} \leq \Phi(t) \leq \frac{5}{c \alpha} F+\frac{\epsilon}{2} .
$$

Now since $\alpha \leq \frac{2}{3} c \quad$ and $\quad \alpha \leq \frac{1}{2 C}, \quad$ we have

$$
\frac{\alpha^{2}}{2 \lambda_{1}} \leq \frac{c}{6 \lambda_{1} C} \leq \frac{1}{6}
$$

Then we find

$$
\varlimsup_{t \rightarrow \infty}\|u(t)\|^{2} \leq \frac{6}{c \alpha} F+2 \epsilon
$$

Finally, by choosing $\alpha=\inf \left(\frac{2}{3} c, \quad \frac{1}{2 C}\right)$, we obtain by letting $\epsilon \rightarrow 0$:

$$
\varlimsup_{t \rightarrow \infty}\|u(t)\| \leq \max \left(\sqrt{\frac{12 C}{c}}, \frac{3}{c}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

In order to estimate u^{\prime}, observe that for t large enough:

$$
\left|u^{\prime}(t)\right|^{2}+\lambda_{1}|u(t)|^{2}+\alpha\left(u, u^{\prime}\right)-\frac{\alpha^{2}}{4}|u(t)|^{2} \leq \frac{5}{c \alpha} F+\frac{\epsilon}{2}
$$

Since $\alpha \leq \frac{2}{3} c \leq c \quad$ and $\quad \alpha \leq \frac{1}{2 C} \leq \frac{\lambda_{1}}{2 c}, \quad$ then $\quad \alpha^{2} \leq \alpha c \leq \frac{\lambda_{1}}{2}$.
Consequently for t large enough

$$
\frac{5}{6}\left|u^{\prime}(t)\right|^{2}+2 \alpha^{2}|u(t)|^{2}+\frac{1}{6}\left|u^{\prime}(t)\right|^{2}+\alpha\left(u, u^{\prime}\right)-\frac{\alpha^{2}}{4}|u(t)|^{2} \leq \frac{5}{c \alpha} F+\frac{\epsilon}{2}
$$

In other terms

$$
\frac{5}{6}\left|u^{\prime}(t)\right|^{2}+\frac{\alpha^{2}}{4}|u(t)|^{2}+\left|\frac{1}{\sqrt{6}} u^{\prime}+\frac{\sqrt{3}}{\sqrt{2}} \alpha u\right|^{2} \leq \frac{5}{c \alpha} F+\frac{\epsilon}{2}
$$

Then:

$$
\varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|^{2} \leq \frac{6}{c \alpha} F+2 \epsilon
$$

Also assuming $\alpha=\inf \left(\frac{1}{2 C}, \frac{2}{3} c\right)$ and letting $\epsilon \rightarrow 0$, we have:

$$
\varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right| \leq \max \left(\sqrt{\frac{12 C}{c}}, \frac{3}{c}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

Remark 1.2. If $\beta(t)=B_{0} \in L\left(V, V^{\prime}\right)$, it is well known that the conditions $\left(u_{0}, u_{1}\right) \in$ $D(A) \times V$ and $f \in C^{1}\left(\mathbb{R}^{+}, V\right)$ imply $u \in C^{1}\left(\mathbb{R}^{+}, V\right) \cap C^{2}\left(\mathbb{R}^{+}, H\right)$. By density on $\left(u_{0}, u_{1}, f\right)$ we obtain easily the following

Corollary 1.3. Let $\beta(t)=B_{0} \in L\left(V, V^{\prime}\right)$. In this case any mild solution $u \in C\left(\mathbb{R}^{+}, V\right) \cap$ $C^{1}\left(\mathbb{R}^{+}, H\right)$ of (1.1) satisfies (1.4).
Remark 1.4. In [11], the following estimate was established

$$
\begin{equation*}
\left.\sup \left\{\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|\right)\right\} \leq \sqrt{3}\left(C+\frac{4}{c}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{1.5}
\end{equation*}
$$

Since

$$
\sqrt{\frac{12 C}{c}} \leq \frac{\sqrt{12}}{4}\left(C+\frac{4}{c}\right)=\frac{\sqrt{3}}{2}\left(C+\frac{4}{c}\right)
$$

and

$$
\frac{3}{c} \leq \frac{3}{4}\left(C+\frac{4}{c}\right) \leq \frac{\sqrt{3}}{2}\left(C+\frac{4}{c}\right)
$$

we can see that Theorem 1.1 improves the estimate (1.5) by a factor 2 for all values of c and C. Moreover if $C \rightarrow \infty$ with $\frac{C}{c}$ bounded, $\max \left(\sqrt{\frac{12 C}{c}}, \frac{3}{c}\right)$ remains bounded and $\left(C+\frac{4}{c}\right)$ tends to infinity, therefore (1.4) improves (1.5) by an arbitrarily large amount. A typical case is : $\beta=c B_{0}$ with $c \rightarrow \infty$ since then $\frac{C}{c}$ is fixed and $C \rightarrow \infty$.

2 The case of a linear self-adjoint damping operator

In this section, we study the equation (0.1) where $B: \mathbb{R}^{+} \longrightarrow L\left(V, V^{\prime}\right)$ is a self-adjoint and possibly unbounded operator and satisfies the following hypotheses:

$$
\begin{align*}
\exists c>0, \quad \forall t \in \mathbb{R}^{+}, \quad \forall v \in V, \quad\langle B(t) v, v\rangle \geq c|v|^{2} \tag{2.1}\\
\exists C>0, \quad \forall t \in \mathbb{R}^{+}, \quad \forall v \in V, \quad\langle B(t) v, v\rangle \leq C\langle A v, v\rangle \tag{2.2}
\end{align*}
$$

The following result, will give close to optimal estimates even when B is independent of time.
Theorem 2.1. Any solution $u \in W_{l o c}^{1, \infty}\left(\mathbb{R}^{+}, V\right) \cap W_{l o c}^{2, \infty}\left(\mathbb{R}^{+}, H\right)$ of (0.1)
satisfies the following estimate:

$$
\begin{equation*}
\max \left(\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|\right) \leq \max \left(\sqrt{\frac{3 C}{c}}, \frac{3}{\sqrt{2} c}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{2.3}
\end{equation*}
$$

Proof. Considering again the energy functional $\Phi=\left|u^{\prime}\right|^{2}+\|u\|^{2}+\alpha\left(u, u^{\prime}\right)-\frac{\alpha^{2}}{4}|u|^{2}$ we find:

$$
\begin{aligned}
\Phi^{\prime} & =-2\left|B^{\frac{1}{2}} u^{\prime}\right|^{2}+\alpha\left|u^{\prime}\right|^{2}-\alpha\|u\|^{2}-\alpha\left(B u^{\prime}, u\right)+\left(f, 2 u^{\prime}+\alpha u\right)-\frac{\alpha^{2}}{2}\left(u, u^{\prime}\right) \\
& =-\frac{\alpha}{2} \Psi-\left(2-\frac{3 \alpha}{2 c}\right)\left|B^{\frac{1}{2}} u^{\prime}\right|^{2}-\frac{\alpha}{2}\|u\|^{2}-\alpha\left(B u^{\prime}, u\right)+\left(f, 2 u^{\prime}+\alpha u\right) \\
& \leq-\frac{\alpha}{2} \Phi-\left(2-\frac{3 \alpha}{2 c}\right)\left|B^{\frac{1}{2}} u^{\prime}\right|^{2}-\frac{\alpha}{2}\|u\|^{2}-\alpha\left(B u^{\prime}, u\right)+\left(f, u^{\prime}+\alpha u\right)+\left(f, u^{\prime}\right)
\end{aligned}
$$

where $\Psi=\left|u^{\prime}\right|^{2}+\|u\|^{2}+\alpha\left(u, u^{\prime}\right) \geq \Phi$. By (2.1) and Young's inequality, we have

$$
\begin{aligned}
\left(f, u^{\prime}\right) & \leq \frac{1}{2 c}|f|^{2}+\frac{c}{2}\left|u^{\prime}\right|^{2} \\
& \leq \frac{1}{2 c}|f|^{2}+\frac{1}{2}\left|B^{\frac{1}{2}} u^{\prime}\right|^{2}
\end{aligned}
$$

Therefore by using (2.2), we obtain

$$
\Phi^{\prime} \leq-\frac{\alpha}{2} \Phi-\left(\frac{3}{2}-\frac{3 \alpha}{2 c}\right)\left|B^{\frac{1}{2}} u^{\prime}\right|^{2}-\frac{\alpha}{2 C}\left|B^{\frac{1}{2}} u\right|^{2}-\alpha\left(B u^{\prime}, u\right)+\frac{1}{2 c}|f|^{2}+\left(f, u^{\prime}+\alpha u\right)
$$

Assuming

$$
\frac{3}{2}-\frac{3 \alpha}{2 c} \geq \frac{1}{2} \quad \text { and } \quad \alpha^{2} \leq \frac{\alpha}{C}
$$

which means

$$
\alpha \leq \frac{2}{3} c \quad \text { and } \quad \alpha \leq \frac{1}{C}
$$

we deduce

$$
\begin{aligned}
\Phi^{\prime} & \leq-\frac{\alpha}{2} \Phi-\frac{1}{2}\left|B^{\frac{1}{2}} u^{\prime}\right|^{2}-\frac{\alpha^{2}}{2}\left|B^{\frac{1}{2}} u\right|^{2}-\alpha\left(B u^{\prime}, u\right)+\frac{1}{2 c}|f|^{2}+\left(f, u^{\prime}+\alpha u\right) \\
& \leq-\frac{\alpha}{2} \Phi-\frac{1}{2}\left|B^{\frac{1}{2}}\left(u^{\prime}+\alpha u\right)\right|^{2}+\frac{1}{2 c}|f|^{2}+\left(f, u^{\prime}+\alpha u\right)
\end{aligned}
$$

By using (2.1), we find

$$
\Phi^{\prime} \leq-\frac{\alpha}{2} \Phi-\frac{c}{2}\left|u^{\prime}+\alpha u\right|^{2}+\frac{1}{2 c}|f|^{2}+\left(f, u^{\prime}+\alpha u\right)
$$

By using Young's inequality in the last term, we have

$$
\left(f, u^{\prime}+\alpha u\right) \leq \frac{1}{2 c}|f|^{2}+\frac{c}{2}\left|u^{\prime}+\alpha u\right|^{2}
$$

Then

$$
\Phi^{\prime} \leq-\frac{\alpha}{2} \Phi+\frac{1}{c}|f|^{2}
$$

Then we find that Φ is bounded with

$$
\varlimsup_{t \rightarrow \infty} \Phi(t) \leq \frac{2}{c \alpha} \varlimsup_{t \rightarrow \infty}|f(t)|^{2}
$$

By setting $F=\varlimsup_{t \rightarrow \infty}|f(t)|^{2}$ we see that for t large enough and any $\epsilon>0$

$$
\left|u^{\prime}(t)\right|^{2}+\|u(t)\|^{2}+\alpha\left(u(t), u^{\prime}(t)\right)-\frac{\alpha^{2}}{4}|u(t)|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

In other terms

$$
\|u(t)\|^{2}+\left|u^{\prime}(t)+\frac{\alpha}{2} u(t)\right|^{2}-\frac{\alpha^{2}}{2}|u(t)|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

By using $\alpha \leq \frac{2}{3} c$ and (2.1), we obtain for t large enough:

$$
\|u(t)\|^{2}-\frac{\alpha}{3}\left|B^{\frac{1}{2}} u(t)\right|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

now using $\alpha \leq \frac{1}{C}$ and (2.2), for t large enough we obtain :

$$
\|u(t)\|^{2} \leq \frac{3}{\alpha c} F+2 \epsilon
$$

Finally by selecting $\alpha=\inf \left(\frac{2}{3} c, \frac{1}{C}\right)$ and letting $\epsilon \rightarrow 0$ we find :

$$
\varlimsup_{t \rightarrow \infty}\|u(t)\| \leq \max \left(\sqrt{\frac{3 C}{c}}, \frac{3}{\sqrt{2} c}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

In order to estimate u^{\prime}, for t large enough by using (0.2)

$$
\frac{2}{3}\left|u^{\prime}(t)\right|^{2}+\lambda_{1}|u(t)|^{2}+\alpha\left(u(t), u^{\prime}(t)\right)+\frac{1}{3}\left|u^{\prime}(t)\right|^{2}-\frac{\alpha^{2}}{4}|u(t)|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

Since $\alpha \leq \frac{2}{3} c \leq c \quad$ and $\quad \alpha \leq \frac{1}{C} \leq \frac{\lambda_{1}}{c}, \quad$ we have $\quad \alpha^{2} \leq \alpha c \leq \lambda_{1}$.
Therefore, for t large enough:

$$
\frac{2}{3}\left|u^{\prime}(t)\right|^{2}+\alpha^{2}|u(t)|^{2}+\alpha\left(u(t), u^{\prime}(t)\right)+\frac{1}{3}\left|u^{\prime}(t)\right|^{2}-\frac{\alpha^{2}}{4}|u(t)|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

Then, for t large enough

$$
\frac{2}{3}\left|u^{\prime}(t)\right|^{2}+\frac{3 \alpha^{2}}{4}|u(t)|^{2}+\alpha\left(u(t), u^{\prime}(t)\right)+\frac{1}{3}\left|u^{\prime}(t)\right|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

In other terms

$$
\frac{2}{3}\left|u^{\prime}(t)\right|^{2}+\left|\frac{\sqrt{3}}{2} \alpha u(t)+\frac{1}{\sqrt{3}} u^{\prime}(t)\right|^{2} \leq \frac{2}{c \alpha} F+\frac{\epsilon}{2}
$$

Hence, for t large enough

$$
\left|u^{\prime}(t)\right|^{2} \leq \frac{3}{\alpha c} F+2 \epsilon
$$

Finally by letting $\epsilon \rightarrow 0$

$$
\varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right| \leq \max \left(\sqrt{\frac{3 C}{c}}, \frac{3}{\sqrt{2} c}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

By using Remark 1.2 we obtain
Corollary 2.2. Let $\beta(t)=B_{0} \in L\left(V, V^{\prime}\right)$. In this case any mild solution $u \in C\left(\mathbb{R}^{+}, V\right) \cap$ $C^{1}\left(\mathbb{R}^{+}, H\right)$ of (0.1) satisfies (2.3).

Remark 2.3. When B is linear and self-adjoint, Theorem 2.1 improves the result (1.4) with $\beta(t)=B(t)$ by a factor $\in[\sqrt{2}, 2]$ depending on the values of C and c. Indeed in this case (but not in general) the two inequalities (1.3) and (2.2) are equivalent, see Section 5 below.

3 Applications when $B=\gamma A^{\alpha}, 0 \leq \alpha \leq 1$

In this section we consider the case of a time independent self-adjoint B proportional to some positive power of A. In order to garantee exponential damping of the associated semi-group the power will be taken ≤ 1.

3.1 The ODE case

We consider the equation:

$$
\begin{equation*}
u^{\prime \prime}+\gamma u^{\prime}+\omega^{2} u=f(t) \tag{3.1}
\end{equation*}
$$

We apply theorem 2.1 to (3.1) with $c=\gamma$ and $C=\frac{\gamma}{\omega^{2}}$, we find

$$
\begin{equation*}
\forall t \in \mathbb{R},|u(t)| \leq \max \left(\frac{\sqrt{3}}{\omega^{2}}, \frac{3}{\sqrt{2} \gamma \omega}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{3.2}
\end{equation*}
$$

By comparaison with the estimates in [10], we find that the result of theorem 2.1 is optimal up to a factor $K(\omega, \gamma)=\frac{3 \pi}{4 \sqrt{2}}, \quad$ if $\gamma<2 \omega$ and $\sqrt{3}$ if $\gamma \geq 2 \omega$. More precisely, in [10] the exact minimum global bound for solutions bounded on the whole line is given, and the minimum turns out to be achieved on some periodic solutions (corresponding to a periodic source term) for which the ultimate bound of course coincides with the global bound on \mathbb{R}.

3.2 The case $B=\gamma A^{\alpha}, 0 \leq \alpha \leq 1$

We consider the equation

$$
\begin{equation*}
u^{\prime \prime}+\gamma A^{\alpha} u^{\prime}+A u=f(t) \tag{3.3}
\end{equation*}
$$

In this case (cf. Proposition 5.4)we have $c=\gamma \lambda_{1}^{\alpha}$ and $C=\frac{\gamma}{\lambda_{1}^{1-\alpha}}$, then, by Theorem 2.1, we have the following estimates

$$
\begin{equation*}
\left.\max \left(\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty} \mid u^{\prime}(t)\right)\left|\leq \max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma \lambda_{1}^{\alpha}}\right) \varlimsup_{t \rightarrow \infty}\right| f(t) \right\rvert\, \tag{3.4}
\end{equation*}
$$

Considering the special case $H=\mathbb{R}, A=\omega^{2} I$ we conclude that this result is always sharp up to a factor $\sqrt{3}$.

3.3 The case $B=\gamma I$:

we consider the equation:

$$
\begin{equation*}
u^{\prime \prime}+\gamma u^{\prime}+A u=f(t) \tag{3.5}
\end{equation*}
$$

Applying Theorem 2.1 to (3.5) with $C=\frac{\gamma}{\lambda_{1}}$ and $c=\gamma$ we find:

$$
\begin{equation*}
\left.\max \left(\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty} \mid u^{\prime}(t)\right)\left|\leq \max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma}\right) \varlimsup_{t \rightarrow \infty}\right| f(t) \right\rvert\, \tag{3.6}
\end{equation*}
$$

Remark 3.1. Let us compare our result on (3.6) with the estimates from [8]. In [8] it was shown that

$$
\begin{equation*}
\varlimsup_{t \rightarrow \infty}\|u(t)\| \leq \sqrt{\frac{4}{\gamma^{2}}+\frac{1}{\lambda_{1}}} \varlimsup_{t \rightarrow \infty}|f(t)| \tag{3.7}
\end{equation*}
$$

If γ is fixed and $\lambda_{1} \rightarrow \infty$ we have:

$$
\max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma}\right)=\frac{3}{\sqrt{2} \gamma}
$$

and

$$
\sqrt{\frac{4}{\gamma^{2}}+\frac{1}{\lambda_{1}}} \simeq \frac{2}{\gamma}
$$

therefore we find that (3.6) is worse than (3.7), hence Theorem 2.1 is weaker than the result of [8] in this case.

If λ_{1} is fixed and $\gamma \rightarrow \infty$ we have:

$$
\max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma}\right)=\sqrt{\frac{3}{\lambda_{1}}}
$$

and

$$
\sqrt{\frac{4}{\gamma^{2}}+\frac{1}{\lambda_{1}}} \simeq \sqrt{\frac{1}{\lambda_{1}}}
$$

therefore in this case Theorem 2.1 is also weaker than [8].

Let us determine the values of γ and λ_{1} for which condition (3.6) is better than (3.7). To this end we can study the condition:

$$
\frac{\sqrt{\frac{4}{\gamma^{2}}+\frac{1}{\lambda_{1}}}}{\max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma}\right)}>1
$$

Therefore, we introduce:

$$
g\left(\gamma, \lambda_{1}\right)=\frac{\sqrt{4+\frac{\gamma^{2}}{\lambda_{1}}}}{\max \left(\sqrt{\frac{3 \gamma^{2}}{\lambda_{1}}}, \frac{3}{\sqrt{2}}\right)}
$$

By setting $r=\frac{\gamma}{\sqrt{\lambda_{1}}}$, we obtain:

$$
g\left(\gamma, \lambda_{1}\right)=p(r)=\frac{\sqrt{4+r^{2}}}{\max \left(\sqrt{3 r^{2}}, \frac{3}{\sqrt{2}}\right)}
$$

Introducing $\tau=r^{2}$, we have:

$$
P(\tau)=\frac{4+\tau}{\max \left(\frac{9}{2}, 3 \tau\right)}
$$

A simple calculation shows that

$$
P(\tau)>1 \quad \Longleftrightarrow \quad \tau \in] \frac{1}{2}, 2\left[\quad \Longleftrightarrow \quad r^{2} \in\right] \frac{1}{2}, 2[\quad \Longleftrightarrow \quad r \in] \frac{1}{\sqrt{2}}, \sqrt{2}[.
$$

Finally, we obtain that if $\gamma \in] \sqrt{\frac{\lambda_{1}}{2}}, \sqrt{2 \lambda_{1}}$, Theorem 2.1 improves the result of [8].

3.4 The case $B=\gamma A$:

Let us consider the equation:

$$
\begin{equation*}
u^{\prime \prime}+\gamma A u^{\prime}+A u=f(t) \tag{3.8}
\end{equation*}
$$

with $\gamma>0$.
When we apply Theorem 2.1 to the equation (3.8) with $C=\gamma$ and $c=\gamma \lambda_{1}$, we obtain immediately:
Corollary 3.2. Any solution of (3.8) satisfies the following hypotheses:

$$
\begin{equation*}
\max \left(\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|\right) \leq \max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma \lambda_{1}}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{3.9}
\end{equation*}
$$

Remark 3.3. This result is new and was not obtained in [11].

3.5 The case $B=\gamma A^{\frac{1}{2}}$

In this subsection we consider the so-called structural damping (cf [5, 6, 7] for the terminology and main properties). Therefore we consider as in [12] the equation:

$$
\begin{equation*}
u^{\prime \prime}+\gamma A^{\frac{1}{2}} u^{\prime}+A u=f(t) \tag{3.10}
\end{equation*}
$$

with $\gamma>0$.
If we apply theorem (2.1) with $c=\gamma \sqrt{\lambda_{1}}$ and $C=\frac{\gamma}{\sqrt{\lambda_{1}}}$, we obtain

$$
\begin{equation*}
\max \left(\varlimsup_{t \rightarrow \infty}\|u(t)\|, \varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|\right) \leq \max \left(\sqrt{\frac{3}{\lambda_{1}}}, \frac{3}{\sqrt{2} \gamma \sqrt{\lambda_{1}}}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{3.11}
\end{equation*}
$$

By comparaison with [12], we remark that (2.1) gives a weaker result. We shall now recover the estimate on u from [12] in the case of large damping by a method introduced by C. Fitouri (cf. [8]) which is less complicated than the method of [12].
We recall the main result from [12].

Theorem 3.4. The bounded solution of (3.10) satisfies the estimate

$$
\forall t \in \mathbb{R}, \quad\|u(t)\| \leq \frac{1}{\sqrt{\lambda_{1}}} \max \left(1, \frac{2}{\gamma}\right)\|f(t)\|_{L^{\infty}(\mathbb{R}, H)}
$$

Proof. In the case of a small damping we refer to [2]. We now prove (3.4) when

$$
\begin{equation*}
\gamma \geq 2 \tag{3.12}
\end{equation*}
$$

We choose the energy functional

$$
\Phi=\left|A^{\frac{1}{4}} u^{\prime}\right|^{2}+\left|A^{\frac{3}{4}} u\right|^{2}+\alpha\left(A^{\frac{1}{2}} u^{\prime}, A^{\frac{1}{2}} u\right)
$$

Then, we have:

$$
\begin{aligned}
\Phi^{\prime}= & \left(2 A^{\frac{1}{2}} u^{\prime}, u^{\prime \prime}+A u\right)+\alpha\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\alpha\left(A u, u^{\prime \prime}\right) \\
= & -2 \gamma\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\alpha\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}-\gamma \alpha\left(A u, A^{\frac{1}{2}} u^{\prime}\right)-\alpha|A u|^{2}+\left(f, 2 A^{\frac{1}{2}} u^{\prime}+\alpha A u\right) \\
= & -\frac{\alpha}{2}\left(\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\alpha\left(A u, A^{\frac{1}{2}} u^{\prime}\right)+|A u|^{2}\right)+\left(\frac{3 \alpha}{2}-2 \gamma\right)\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\left(\frac{\alpha^{2}}{2}-\gamma \alpha\right)\left(A u, A^{\frac{1}{2}} u^{\prime}\right) \\
& -\frac{\alpha}{2}|A u|^{2}+\left(f, 2 A^{\frac{1}{2}} u^{\prime}+\alpha A u\right)
\end{aligned}
$$

we set

$$
\Psi=\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\alpha\left(A u, A^{\frac{1}{2}} u^{\prime}\right)+|A u|^{2}
$$

Then:

$$
\Phi^{\prime}=-\frac{\alpha}{2} \Psi+\left(\frac{3 \alpha}{2}-2 \gamma\right)\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\left(\frac{\alpha^{2}}{2}-\gamma \alpha\right)\left(A u, A^{\frac{1}{2}} u^{\prime}\right)-\frac{\alpha}{2}|A u|^{2}+\left(f, 2 A^{\frac{1}{2}} u^{\prime}+\alpha A u\right)
$$

by using Young's inequality, we obtain:
$\left(f, 2 A^{\frac{1}{2}} u^{\prime}+\alpha A u\right) \leq \frac{\alpha}{2}|f|^{2}+\frac{1}{2 \alpha}\left(4\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+4 \alpha\left(A u, A^{\frac{1}{2}} u^{\prime}\right)+\alpha^{2}|A u|^{2}\right)$

Therefore
$\Phi^{\prime} \leq-\frac{\alpha}{2} \Psi+\left(\frac{3 \alpha}{2}+\frac{2}{\alpha}-2 \gamma\right)\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\left(\frac{\alpha^{2}}{2}-\gamma \alpha+2\right)\left(A u, A^{\frac{1}{2}} u^{\prime}\right)+\frac{\alpha}{2}|f|^{2}$
we remark that $\alpha=\gamma-\sqrt{\gamma^{2}-4}$ is a solution of the equation:
$x^{2}-2 \gamma x+4=0$, then:

$$
\frac{\alpha^{2}}{2}-\gamma \alpha+2=0
$$

we have also

$$
2 \gamma-\frac{3 \alpha}{2}-2 \gamma+\frac{2}{\alpha}=\alpha-\gamma<0
$$

then

$$
\Phi^{\prime} \leq-\frac{\alpha}{2} \Psi+\frac{\alpha}{2}|f|^{2}
$$

We have:

$$
\alpha=\gamma-\sqrt{\gamma^{2}-4}=\frac{4}{\gamma+\sqrt{\gamma^{2}-4}} \leq \frac{4}{\gamma}
$$

then, from (3.12)

$$
0<\frac{\alpha^{2}}{4} \leq \frac{4}{\gamma^{2}}<1
$$

We have

$$
\begin{aligned}
\Psi & =\left|A^{\frac{1}{2}} u^{\prime}\right|^{2}+\alpha\left(A u, A^{\frac{1}{2}} u^{\prime}\right)+|A u|^{2} \\
& =\left|A^{\frac{1}{4}}\left(A^{\frac{1}{4}} u^{\prime}+\frac{\alpha}{2} A^{\frac{3}{4}} u\right)\right|^{2}+\left(1-\frac{\alpha^{2}}{4}\right)|A u|^{2} \\
& \left.\geq \sqrt{\lambda_{1}} \left\lvert\, A^{\frac{1}{4}} u^{\prime}+\frac{\alpha}{2} A^{\frac{3}{4}} u\right.\right)\left.\right|^{2}+\left(1-\frac{\alpha^{2}}{4}\right)\left|A^{\frac{3}{4}} u\right|^{2} \\
& =\sqrt{\lambda_{1}} \Phi
\end{aligned}
$$

Hence

$$
\Phi^{\prime} \leq-\frac{\alpha \sqrt{\lambda_{1}}}{2} \Phi+\frac{\alpha}{2}|f|^{2}
$$

since Φ is bounded, we have

$$
\forall t \in \mathbb{R}, \quad \Phi(t) \leq \frac{1}{\sqrt{\lambda_{1}}}\|f(t)\|_{\infty}^{2}
$$

which means

$$
\forall t \in \mathbb{R}, \quad\left|A^{\frac{1}{4}} u^{\prime}(t)\right|^{2}+\left|A^{\frac{3}{4}} u(t)\right|^{2}+\alpha\left(A^{\frac{1}{2}} u(t), A^{\frac{1}{2}} u^{\prime}(t)\right) \leq \frac{1}{\sqrt{\lambda_{1}}}\|f(t)\|_{\infty}^{2}
$$

Then

$$
\forall t \in \mathbb{R}, \quad \sqrt{\lambda_{1}}\left|A^{\frac{1}{2}} u(t)\right|^{2}+\frac{\alpha}{2} \frac{d}{d t}\left|A^{\frac{1}{2}} u(t)\right|^{2} \leq \frac{1}{\sqrt{\lambda_{1}}}\|f(t)\|_{\infty}^{2}
$$

Finally, since u is bounded in V on \mathbb{R}, we obtain

$$
\begin{equation*}
\forall t \in \mathbb{R}, \quad\|u(t)\| \leq \frac{1}{\sqrt{\lambda_{1}}}\|f(t)\|_{\infty} \tag{3.13}
\end{equation*}
$$

Remark 3.5. By this method, we do not recover the estimate of u^{\prime} from [12] in the strongly damped case $\gamma>2$.

4 Main examples

Let Ω be a bounded domain in $\mathbb{R}^{\mathbb{N}}$ and $\gamma>0$.
Example 4.1. We consider the following equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\gamma u_{t}=f \tag{4.1}\\
u_{/ \partial \Omega}=0
\end{array}\right.
$$

Then, as a consequence of (3.5) we have the following result valid for all mild solutions

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}\|\nabla u\|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\sqrt{\frac{3}{\lambda_{1}(\Omega)}}, \frac{3}{\sqrt{2} \gamma}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

This result improves on [11] when $\sqrt{\frac{\lambda_{1}(\Omega)}{2}}<\gamma<\sqrt{2 \lambda_{1}(\Omega)}$.
Example 4.2. We consider the equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u-\gamma \Delta u_{t}=f \tag{4.2}\\
u_{/ \partial \Omega}=0
\end{array}\right.
$$

We have the following result valid for all mild solutions

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}\|\nabla u\|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\sqrt{\frac{3}{\lambda_{1}(\Omega)}}, \frac{3}{\sqrt{2} \gamma \lambda_{1}(\Omega)}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

Example 4.3. We consider the equation

$$
\left\{\begin{array}{l}
u_{t t}+\Delta^{2} u-\gamma \Delta u_{t}=f \tag{4.3}\\
u=\Delta u=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

Then, we have for all mild solutions

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}|\Delta u|^{2} d x\right\}^{\frac{1}{2}} \leq \frac{1}{\lambda_{1}(\Omega)} \max \left(1, \frac{2}{\gamma}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

This follows from Theorem 3.4 since here $\lambda_{1}(A)=\lambda_{1}(\Omega)^{2}$
Example 4.4. We consider the equation

$$
\left\{\begin{array}{l}
u_{t t}+\Delta^{2} u-\gamma \Delta u_{t}=f \tag{4.4}\\
u=|\nabla u|=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

Then, we shall establish

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}|\Delta u|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\sqrt{\frac{3}{\lambda_{1}(\Omega) \lambda_{1}(A)}}, \frac{3}{\sqrt{2} \gamma \lambda_{1}(\Omega)}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

Indeed, in this example, we have

$$
B=-\gamma \Delta: H_{0}^{1} \rightarrow H^{-1} ; \quad A=\Delta^{2}
$$

with domain

$$
D(A)=\left\{u \in H^{2}(\Omega)|\quad u=|\nabla u|=0 \quad \text { on } \quad \partial \Omega\}\right.
$$

and

$$
c I \leq B \leq C A
$$

with

$$
c=\gamma \lambda_{1}(\Omega)
$$

To get an estimate for C we observe that

$$
\begin{aligned}
(B v, v) & =\gamma \int_{\Omega}\|\nabla u\|^{2} d x \\
& =-\gamma \int_{\Omega} \Delta v \cdot v d x \\
& =\gamma\left(\int_{\Omega}|\Delta v|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}|v|^{2} d s\right)^{\frac{1}{2}} \\
& =\frac{\gamma}{\lambda_{1}(A)}\left(\int_{\Omega}|\Delta v|^{2} d x\right) \\
& =\frac{\gamma}{\lambda_{1}(A)}(A v, v)
\end{aligned}
$$

Therefore, we can take $C \leq \frac{\gamma}{\lambda_{1}(A)}$ and this shows the claim.
Remark 4.5. Actually, since we used a Cauchy-Schwarz inequality for two linearly independent functions it is clear that the optimal value of C is striclly less than $\frac{\gamma}{\lambda_{1}(A)}$. More precisely to obtain the optimum we need to evaluate
$\mu=\inf \left\{\frac{\int_{\Omega}|\Delta v|^{2} d x}{\int_{\Omega}|\nabla v|^{2} d x}, v \in H_{0}^{2}(\Omega), v \neq 0\right\}=\inf \left\{\int_{\Omega}|\Delta v|^{2} d x, v \in H_{0}^{2}(\Omega), \quad \int_{\Omega}|\nabla v|^{2}=1\right\}$
By the Lagrange multiplier theory, there is $v \neq 0$ such that

$$
\left\{\begin{array}{l}
\Delta^{2} v=-\mu \Delta v \\
v \in H_{0}^{2}(\Omega)
\end{array}\right.
$$

with
and

$$
-(\Delta+\mu)(\Delta v)=0
$$

Then we have $C=\frac{1}{\mu}$. To illustrate this we consider the one dimensional case.
Proposition 4.6. If $N=1, \Omega=(0, \pi)$ then $C=\frac{1}{4}$.
Proof. In order to compute C we need to find the minimal value of μ when

$$
u^{(4)}=-\mu u^{\prime \prime}, \quad u \in H_{0}^{2}(0, \pi)
$$

Then, setting $\lambda=\sqrt{\mu}$, we have

$$
\begin{gathered}
u=c_{1} x+c_{2}+c_{3} \cos (\lambda x)+c_{4} \sin (\lambda x) \\
u^{\prime}=c_{1}-\lambda c_{3} \sin (\lambda x)+\lambda c_{4} \cos (\lambda x) \\
0=c_{2}+c_{3} \\
0=c_{1} \pi+c_{2}+c_{3} \cos (\pi \lambda)+c_{4} \sin (\pi \lambda) \\
0=c_{1}+\lambda c_{4} \\
0=c_{1}-\lambda c_{3} \sin (\lambda \pi)+\lambda c_{4} \cos (\lambda \pi) \\
c_{4}=-c_{3} \sin (\pi \lambda)+c_{4} \cos (\pi \lambda) \\
c_{4}\left(1-\cos (\pi \lambda)=-c_{3} \sin (\pi \lambda)\right.
\end{gathered}
$$

We distinguish 3 possibilities.
case 1: If $\sin (\pi \lambda)=0$ and $\cos (\pi \lambda) \neq 1(=-1)$ then

$$
c_{4}=0 \Longrightarrow c_{1}=0, \quad c_{2}=-c_{3} \cos (\pi \lambda)=c_{3} \Longrightarrow c_{2}=c_{3}=0
$$

then $u \equiv 0$ and this case is excluded.
case 2: If $\sin (\pi \lambda)=0$ and $\cos (\pi \lambda)=1 \Longrightarrow \lambda=2 k, \quad k \in \mathbb{N}$ then

$$
0=c_{1} \pi+c_{2}+c_{3}=c_{2}+c_{3} \Longrightarrow c_{1}=0
$$

and

$$
c_{4}=-\frac{1}{\lambda} c_{1}=0 .
$$

Therefore $u=c_{2}(1-\cos (2 k x))=2 c_{2} \sin ^{2} k x$. In this case $\mu=4 k^{2}$ and therefore $\mu \geq 4$.
case 3: If $\sin (\pi \lambda) \neq 0$, then

$$
2 c_{4} \sin ^{2}\left(\frac{\pi \lambda}{2}\right)=-2 c_{3} \sin \left(\frac{\pi \lambda}{2}\right) \cos \left(\frac{\pi \lambda}{2}\right)
$$

hence

$$
c_{3}=-c_{4} \tan \left(\frac{\pi \lambda}{2}\right) c_{2}=-c_{3}, c_{1}=-\lambda c_{4} .
$$

and

$$
-\lambda \pi c_{4}+c_{4} \tan \left(\frac{\pi \lambda}{2}\right)-c_{4} \cos (\pi \lambda) \tan \left(\frac{\pi \lambda}{2}\right)+c_{4} \sin (\pi \lambda)=0
$$

If $c_{4}=0$, then $u=0$.
If $c_{4} \neq 0$, we can reduce to $c_{4}=1$, then we find

$$
\tan \left(\frac{\pi \lambda}{2}\right)\left(1-\cos (\pi \lambda)+2 \cos ^{2}\left(\frac{\pi \lambda}{2}\right)\right)=\lambda \pi \Longleftrightarrow 2 \tan \left(\frac{\pi \lambda}{2}\right)=\lambda \pi \Longleftrightarrow \tan \left(\frac{\pi \lambda}{2}\right)=\frac{\pi \lambda}{2}
$$

Therefore

$$
\frac{\pi \lambda}{2}>\pi \quad \Longrightarrow \lambda>2
$$

and

$$
\mu=\lambda^{2}>4
$$

Summarizing the 3 cases we conclude that the minimal possible value of μ is 4 .
Corollary 4.7. Any mild solution u of

$$
\left\{\begin{array}{l}
u_{t t}+u_{x x x x}-\gamma u_{x x t}=f \tag{4.5}\\
u(t, 0)=u(t, \pi)=u_{x}(t, 0)=u_{x}(t, \pi)=0
\end{array}\right.
$$

satisfies the asymptotic bound:

$$
\begin{equation*}
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}\left|u_{x x}\right|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\frac{\sqrt{3}}{2}, \frac{3}{\sqrt{2} \gamma}\right) \varlimsup_{t \rightarrow \infty}|f(t)| \tag{4.6}
\end{equation*}
$$

5 Additional results

5.1 The first eigenvalue of a square root.

At several places in this paper we used implicitely the property

$$
\lambda_{1}\left(A^{\frac{1}{2}}\right)=\left(\lambda_{1}(A)\right)^{\frac{1}{2}}
$$

where A is a self-adjoint coercive operator. This property is obvious when A has compact inverse, but it is natural to ask what happens in general. In the next subsection we shall derive a similar property for any positive power of A, but in the case of square roots an easier proof can be given. The result is as follows

Proposition 5.1. Let A be as the introduction. Then $A^{\frac{1}{2}}$ is also coercive and $\lambda_{1}\left(A^{\frac{1}{2}}\right)=$ $\left(\lambda_{1}(A)\right)^{\frac{1}{2}}$.

The proof of this proposition relies on 2 simple lemmas:
Lemma 5.2. Let $B \in L(H)$ be symmetric and nonnegative. Then we have

$$
\begin{gathered}
\left\|B^{2}\right\|=\|B\|^{2} \\
\forall v \in H, \quad|B v|^{2} \leq\|B\|(B v, v)
\end{gathered}
$$

Proof. First we have $B^{2} \in L(H)$ and $\left\|B^{2}\right\| \leq\|B\|^{2}$. The reverse inequality is also immediate since

$$
|B u|^{2}=\left(B^{2} u, u\right) \leq\left\|B^{2}\right\||u|^{2}
$$

Finally we have for any $v \in H$

$$
|B v|^{2}=\left|B^{\frac{1}{2}}\left(B^{\frac{1}{2}} v\right)\right|^{2} \leq\left\|B^{\frac{1}{2}}\right\|^{2}\left|B^{\frac{1}{2}} v\right|^{2}=\|B\|(B v, v)
$$

Lemma 5.3. Let A be a self-adjoint, positive, coercive operator. Then

$$
\lambda_{1}(A)=\frac{1}{\left\|A^{-1}\right\|}
$$

Proof. By definition it is clear that

$$
\lambda_{1}(A)=\frac{1}{\left\|A^{-\frac{1}{2}}\right\|^{2}}
$$

Then the result follows from the previous Lemma.

Proof of Proposition 5.1. We first show that $A^{\frac{1}{2}}$ is coercive. Actually $A^{\frac{1}{2}} \in L(V, H)$ is clearly injective. Moreover for any $h \in H$, there is $u \in D(A)$ with $A u=h$. But then $v=A^{\frac{1}{2}} u \in V$ and $A^{\frac{1}{2}} v=h$. Hence $A^{\frac{1}{2}} \in L(V, H)$ is onto and by Banach Theorem, $A^{-\frac{1}{2}} \in L(H, V)$. By Lemma 5.2 we find that that $A^{\frac{1}{2}}$ is coercive. Then $\lambda_{1}\left(A^{\frac{1}{2}}\right)=\frac{1}{\left\|A^{-\frac{1}{2}}\right\|}$ and the result follows from a last application of Lemma 5.2

5.2 The first eigenvalue of a fractional power.

Let A be a self-adjoint coercive operator. The fractional power A^{α} with $\alpha \in(0,1)$ is defined as the inverse of the operator

$$
A^{-\alpha}=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{-\alpha}(t I+A)^{-1} d t
$$

with domain equal to the range of $A^{-\alpha} . D\left(A^{\alpha}\right)$ is also the closure of $D(A)$ under the seminorm $p_{\alpha}(u):=\left|A^{\alpha}(u)\right|$ (cf. e.g. $\left.[2,13]\right)$.
We now generalize Proposition 5.1 to any positive power by relying on the above formula.
Proposition 5.4. For any $\alpha \in(0,1)$, A^{α} is also coercive and $\lambda_{1}\left(A^{\alpha}\right)=\left(\lambda_{1}(A)\right)^{\alpha}$.
Proof. By homogeneity it is clearly sufficient to establish the result when $\lambda_{1}(A)=1$ Then applying the result to $A_{1}=\lambda_{1}(A)^{-1} A$ gives the general case. First we show that

$$
\lambda_{1}(A)=1 \Longrightarrow \lambda_{1}\left(\left(A^{\alpha}\right) \geq 1\right.
$$

Indeed we have

$$
\left\|A^{-\alpha}\right\| \leq \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{-\alpha}\left\|(t I+A)^{-1}\right\| d t \leq \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{-\alpha}(t+1)^{-1} d t=1
$$

and then Lemma 5.3 gives the result. Now we have for any $u \in D(A)$

$$
(A u, u)=\left(A^{\alpha} A^{1-\alpha} u, u\right)=\left(A^{\alpha} A^{\beta} u, A^{\beta} u\right)
$$

with $\beta=\frac{1-\alpha}{2}$. Hence

$$
(A u, u) \geq \lambda_{1}\left(A^{\alpha}\right)\left|A^{\beta} u, A^{\beta} u\right|^{2}=\lambda_{1}\left(A^{\alpha}\right)\left(A^{1-\alpha} u, u\right) \geq \lambda_{1}\left(A^{\alpha}\right) \lambda_{1}\left(A^{1-\alpha}\right)|u|^{2}
$$

Then

$$
1=\lambda_{1}(A) \geq \lambda_{1}\left(A^{\alpha}\right) \lambda_{1}\left(A^{1-\alpha}\right)
$$

Finally

$$
\lambda_{1}\left(A^{\alpha}\right)=\lambda_{1}\left(A^{1-\alpha}\right)=1
$$

5.3 The relationship between the two main results.

In Remark 2.3 we said that when B is linear and self-adjoint, the two inequalities (1.3) and (2.2) are equivalent. This is a consequence of the following

Proposition 5.5. Let A be as the introduction and $\in L\left(V, V^{\prime}\right)$ be symmetric and nonnegative. Then the 3 following conditions are equivalent

$$
\begin{gather*}
\|B\|_{L\left(V, V^{\prime}\right)} \leq C \tag{5.1}\\
B \leq C A \tag{5.2}\\
\forall u \in V, \quad\|B u\|_{*}^{2} \leq C\langle B u, u\rangle \tag{5.3}
\end{gather*}
$$

Proof. We proceed in 3 steps

1) Proof of (5.1) \Longrightarrow (5.2). Assuming (5.1) we have

$$
\forall u \in V, \quad\langle B u, u\rangle \leq\|B\|_{L\left(V, V^{\prime}\right)}\|u\| \leq C\|u\|^{2}=C\langle A u, u\rangle
$$

Hence $B \leq C A$.
2) Proof of (5.3) \Longrightarrow (5.1). Assuming (5.3) we have

$$
\forall u \in V, \quad\|B u\|_{*}^{2} \leq C\langle B u, u\rangle \leq C\|B u\|_{*}\|u\|
$$

Hence, either $B u=0$ or $\|B u\|_{*} \leq C\|u\|$ and we have (5.1).
3) Proof of (5.2) \Longrightarrow (5.3). Since $B \geq 0$ we have

$$
\forall(u, v) \in V \times V, \quad\langle B u, v\rangle^{2} \leq\langle B u, u\rangle\langle B v, v\rangle
$$

In this formula we choose $v=A^{-1}(B u)$ Then

$$
\langle B u, v\rangle=\left\langle B u, A^{-1}(B u)\right\rangle=\left\|A^{-1} B u\right\|^{2}=\|B u\|_{*}^{2}
$$

so that we find

$$
\|B u\|_{*}^{4} \leq\langle B u, u\rangle\left\langle B A^{-1}(B u), A^{-1}(B u)\right\rangle \leq C\langle B u, u\rangle\left\langle A A^{-1}(B u), A^{-1}(B u)\right\rangle
$$

by using (5.2). Now

$$
\langle B u, u\rangle\left\langle A A^{-1}(B u), A^{-1}(B u)=\langle B u, u\rangle\left\|A^{-1}(B u)\right\|^{2}=\|B u\|_{*}^{2}\langle B u, u\rangle\right.
$$

and if $B u \neq 0$ we obtain (5.1) on dividing through by $\|B u\|_{*}^{2}$.

Remark 5.6. For a general positive operator the conditions are not equivalent. For instance take $V=H=\mathbb{C}$ and for some $\alpha>0, \beta \in \mathbb{R}$

$$
\forall v \in V, \quad B v=(\alpha+i \beta) v
$$

In this case we have

$$
\begin{gathered}
\|B\|=\left(\alpha^{2}+\beta^{2}\right)^{\frac{1}{2}} \\
\forall v \in V, \quad(B v, v)=\alpha|v|^{2}
\end{gathered}
$$

so that the optimal value of C in (5.2) is α. The optimal value of C in (5.3) is $\frac{\alpha^{2}+\beta^{2}}{\alpha}$. As soon as $\beta \neq 0$ we have

$$
\alpha<\left(\alpha^{2}+\beta^{2}\right)^{\frac{1}{2}}<\frac{\alpha^{2}+\beta^{2}}{\alpha}
$$

and therefore the three constants are all different.

5.4 Some more examples.

Sometimes Theorem 2.1 can be applied to equations in unbounded domains. For brevity we give only 2 typical examples

Example 5.7. Let Ω be a possibly unbounded domain in $\mathbb{R}^{\mathbb{N}}$ and $m>0, \gamma>0$. We consider the following equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+m u+\gamma u_{t}=f \tag{5.4}\\
u_{/ \partial \Omega}=0
\end{array}\right.
$$

Then, as a consequence of (3.5) we have the following result valid for all mild solutions

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega} m|u|^{2}+\|\nabla u\|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\sqrt{\frac{3}{m+\lambda_{1}(\Omega)}}, \frac{3}{\sqrt{2} \gamma}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

Example 5.8. Let Ω be a bounded domain in $\mathbb{R}^{\mathbb{N}}$ and $\gamma>0$. We consider the cylinder $\mathcal{C}=\Omega \times \mathbb{R}$ and the following equation in $\mathbb{R}^{+} \times \mathcal{C}$

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\gamma u_{t}=f \tag{5.5}\\
u_{/ \partial \mathcal{C}}=0
\end{array}\right.
$$

Then, as a consequence of (3.5), since $A=-\Delta$ is coercive in \mathcal{C} with $\lambda_{1}(\mathcal{C})=\lambda_{1}(\Omega)$ we have the following result valid for all mild solutions

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}\|\nabla u\|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\sqrt{\frac{3}{\lambda_{1}(\Omega)}}, \frac{3}{\sqrt{2} \gamma}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

We conclude this section by giving 2 examples of application for Theorem 1.1 and Theorem 2.1: a case where B is not selfadjoint and a case where B is non linear.

Example 5.9. Let $V=H=\mathbb{C}$. Then any solution u of the ODE

$$
\begin{equation*}
u^{\prime \prime}+u+(\alpha+i \beta) u^{\prime}=f \tag{5.6}
\end{equation*}
$$

satisfies

$$
\max \left(\varlimsup_{t \rightarrow \infty}|u(t)|, \varlimsup_{t \rightarrow \infty}\left|u^{\prime}(t)\right|\right) \leq \max \left(\sqrt{12} \sqrt{1+\frac{\beta^{2}}{\alpha^{2}}}, \frac{3}{\alpha}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

We did not investigate how close from optimality this estimate is.
Example 5.10. Let Ω be a bounded domain in $\mathbb{R}^{\mathbb{N}}$ and $\gamma>0$. We consider the following equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\alpha(t, x) u_{t}^{+}-\beta(t, x) u_{t}^{-}=f \tag{5.7}\\
u_{/ \partial \Omega}=0
\end{array}\right.
$$

where $\alpha, \beta \in C^{1}\left(\mathbb{R}^{+}, C^{0}(\bar{\Omega})\right.$ are nonnegative functions with

$$
0<a \leq \min (\alpha(t, x), \beta(t, x)) \leq \max (\alpha(t, x), \beta(t, x)) \leq A
$$

It is tempting to apply Theorem 1.1 in this situation. However it is better to use Theorem 2.1 as follows. First we can approach the solutions by strong solutions with f replaced by a smooth function with a smaller or equal $L^{2}(\Omega)$-ultimate bound. For such a solution we can write

$$
\alpha(t, x) u_{t}^{+}-\beta(t, x) u_{t}^{-}=B(t, x) u_{t}
$$

where

$$
B(t, x)=\alpha(t, x) \chi\left(u_{t}>0\right)-\beta(t, x) \chi\left(u_{t} \leq 0\right)
$$

is a multiplication operator. Then, as a consquence of Theorem 2.1 we find

$$
\varlimsup_{t \rightarrow \infty}\left\{\int_{\Omega}\|\nabla u\|^{2} d x\right\}^{\frac{1}{2}} \leq \max \left(\sqrt{\frac{3 A}{a \lambda_{1}(\Omega)}}, \frac{3}{a \sqrt{2}}\right) \varlimsup_{t \rightarrow \infty}|f(t)|
$$

We skip the details.

References

[1] F. Aloui, I. Ben Hassen \& A. Haraux, Compactness of trajectories to some nonlinear second order evolution equations and applications, to appear.
[2] A.V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 41943.
[3] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert North-Holland Mathematics Studies, No. 5, Amsterdam-London (1973)183 pp.
[4] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité Ann. Inst. Fourier (Grenoble) 18 (1968) fasc. 1, 115-175.
[5] G. Chen \& D.L.Russel, A mathematical model for elastic systems with structural damping, Quart.Appl.Math, 39, 4 (1982), 433-454.
[6] S.Chen \& R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), no. 1, 15-55.
[7] S.Chen \& R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on Structural Damping for Elastic Systems, Springer-Verlag, Lecture Notes in Mathematics, 1988, Volume 1354 (1988), 234-256.
[8] C. Fitouri. \& A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pures Appl. (9) 92 (2009), no. 3, 313-321.
[9] A. Haraux, Uniform decay and Lagrange stability for linear contraction semi-groups, Mat. Apl. Comput. 7 (1988), no. 3, 143-154.
[10] A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29 (2005), no. 1, 207-230.
[11] A. Haraux, Sharp estimates of bounded solutions to some second-order forced dissipative equations, J. Dynam. Differential Equations 19 (2007), no. 4, 915-933.
[12] A. Haraux, Sharp estimates of bounded solutions to a second-order forced equation with structural damping, Differ. Equ. Appl. 1 (2009), no. 3, 341-347.
[13] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.

