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Bôıte courrier 187, 75252 Paris Cedex 05, France.
haraux@ann.jussieu.fr

Abstract

We establish a precise estimate of the ultimate bound of solutions to some second

order evolution equations with possibly unbounded linear damping and bounded forcing

term.
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Introduction

Let H be a real Hilbert space. In the sequel we denote by (u, v) the inner product of two
vectors u, v in H and by |u| the H− norm of u. Given f ∈ L∞(R, H), we consider the second
order evolution equation with possibly unbounded and time-dependent damping operator
B:

u′′ + Au + Bu′ = f(t) (0.1)

where A is a fixed linear, self-adjoint and positive operator in H. We assume that the domain
of A is dense in H and A is coercive, in other terms:

∃λ > 0, ∀u ∈ D(A), (Au, u) ≥ λ|u|2. (0.2)

Obviously the set of λ satisfying (0.2) is closed. For our purpose the best possible is the
largest one, ie.

λ = inf
u∈D(A),|u|=1

(Au, u) =: λ1(A).

We introduce V = D(A
1

2 ) endowed with the norm given by

∀u ∈ V, ‖u‖ = |A 1

2 u|.

This norm defined on V is equivalent to the graph norm of A
1

2 as a result of the coerciveness
hypothesis on A.

In the sequel, B : V → V ′ may be a time-dependent continuous operator. When B is
linear and time-independent, we write (0.1) in the following form:

U ′ + LU = F (t) (0.3)

with U = (u, u′), L =

(

0 −I

A B

)

and F = (0, f). If B ∈ L(V, V ′) satisfies

〈Bv, v〉 ≥ 0 ∀v ∈ V

then it is not difficult to check (cf.e.g. [1, 3, 4]) that L is a maximal monotone operator with
dense domain D(L) = {(u, v) ∈ V × V, Au + Bv ∈ H} in V × H. Then, by Hille -Yosida’s
Theorem (cf.e.g. [3, 13]), L generates a C0 contraction semi-group S(t) that insures the ex-
istence and uniqueness of a mild solution u ∈ C(R+, V )∩C1(R+, H) to (0.1) on R

+ for any
pair of initial data u0 = u(0) ∈ V ; u1 = u′(0) ∈ H. Moreover, the two following properties
are equivalent cf [9]:

1) S(t) is exponentially damped on V ×H which means that for some constants M ≥ 1, δ > 0

∀t ≥ 0, ‖S(t)‖L(H) ≤ M exp(−δt)
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2) ∀F ∈ L∞(R+, H), any solution of (0.3) is bounded in V × H for t ≥ 0 .

In addition in this case we have

lim
t→∞

‖U(t)‖ ≤ M

δ
lim
t→∞

‖F (t)‖H

In applications to infinite or even finite dimensional second order equations, this method
does not give the best possible estimate because it is not easy to optimize on M and δ. This
was already observed in [11] and [12] where precise estimates of limt→∞ ‖U(t)‖ were given

in the case of (0.1) with B = cI or B = cA
1

2 .

The main objective of this paper is to generalize the results of [11, 12] for B time inde-

pendent and improve some of the results in the specific cases B = cI andB = cA
1

2 . We shall
consider also the case B = cA which was not studied before.

The plan of the paper is the following: section 1 contains an improvement of the main
result from [11] in the general case B = β(t). Section 2 is devoted to the case where B = B(t)
is linear and self-adjoint. Section 3 gives the precise statements when B = cAα with a spe-
cial treatment in the case B = B0 = cA

1

2 and Section 4 is devoted to the main concrete
applications of Theorem 2.1. Finally Section 5 is devoted to slightly different examples and
some additional remarks.

1 An ultimate bound valid for general time-dependent

damping terms

We consider the equation:
u′′ + β(t)u′ + Au = f(t) (1.1)

where t ∈ R
+. For this equation, we improve some general estimates obtained in [11] when

β(t) : R
+ → C(V, V ′) is a measurable family of possibly nonlinear continuous operators

which satisfies the two hypotheses:

∃c > 0, ∀t ∈ R
+, ∀v ∈ V, 〈β(t)v, v〉 ≥ c|v|2. (1.2)

∃C > 0, ∀t ∈ R
+, ∀v ∈ V, ‖β(t)v‖2

∗ ≤ C〈β(t)v, v〉. (1.3)

It is immediate (cf. e.g. [11]) that c ≤ Cλ1 where λ1 = λ1(A). Our main result is the
following
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Theorem 1.1. For any solution u ∈ W
1,∞
loc (R+, V ) ∩ W

2,∞
loc (R+, H) of (1.1) we have the

estimate :

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(
√

12

√

C

c
,
3

c
) lim

t→∞
|f(t)| (1.4)

Proof. For simplicity of the formulas, we drop the variable t whenever possible and we
denote by z′ the time derivative of a (scalar or vector) time-dependent function z. We
consider for some α > 0 to be chosen later the following modified energy functional:

Φ = |u′|2 + ‖u‖2 + α(u, u′) − α2

4
|u|2.

Then

Φ′ = −2〈βu′, u′〉 + α|u′|2 − α‖u‖2 − α〈βu′, u〉 + 〈f, 2u′ + αu〉 − α2

2
(u, u′)

= −α

2
(|u′|2 + ‖u‖2 + α(u, u′)) − 2〈βu′, u′〉 +

3α

2
|u′|2 − α

2
‖u‖2 − α〈βu′, u〉 + 〈f, 2u′ + αu〉

we set Ψ = |u′|2 + ‖u‖2 + α(u, u′) ≥ Φ.

Then, by using (1.2), we have:

Φ′ ≤ −α

2
Φ − 1

2
〈βu′, u′〉 − (

3c

2
− 3α

2
)|u′|2 − α

2
‖u‖2 − α〈βu′, u〉 + 〈f, 2u′ + αu〉

we have, from (1.3):

|〈βu′, u〉| ≤
√

C〈βu′, u′〉 1

2‖u‖
By using Young’s inequality we deduce :

|α〈βu′, u〉| ≤ αC〈βu′, u′〉 + α
‖u‖2

4

Assuming αC ≤ 1
2
, then:

Φ′ +
α

2
Φ ≤ −3

2
(c − α)|u′|2 + 2〈f, u′〉 − α

4
‖u‖2 + α〈f, u〉

Assuming 3
2
(c − α) ≥ 1

2
c, then α ≤ 2

3
c.

We have, by using Young’s inequality:

−3

2
(c − α)|u′|2 + 2〈f, u′〉 ≤ − c

2
|u′|2 + 2〈f, u′〉

≤ 2

c
|f |2
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Moreover
α〈f, u〉 ≤ α√

λ1

|f |‖u‖

Therefore, by Young’s inequality:

−α

4
‖u‖2 + α〈f, u〉 ≤ α(−‖u‖2

4
+

1√
λ1

|f |‖u‖)

≤ α

λ1

|f |2

≤ αC

c
|f |2

≤ 1

2c
|f |2

Then

Φ′ +
α

2
Φ ≤ 5

2c
|f |2

Then, we find that Φ is bounded with:

lim
t→∞

Φ(t) ≤ 5

cα
lim
t→∞

|f(t)|2.

Moreover, we have:

−α(u, u′) ≤ |u′|2 +
α2

4
|u|2

We set F = limt→∞ |f(t)|2.

In particular for any ǫ > 0 we have for t large enough

(1 − α2

2λ1

)‖u(t)‖2 ≤ ‖u(t)‖2 − α2

2
|u(t)|2 ≤ Φ(t) ≤ 5

cα
F +

ǫ

2
.

Now since α ≤ 2
3
c and α ≤ 1

2C
, we have

α2

2λ1

≤ c

6λ1C
≤ 1

6

Then we find

lim
t→∞

‖u(t)‖2 ≤ 6

cα
F + 2ǫ

Finally, by choosing α = inf(2
3
c, 1

2C
), we obtain by letting ǫ → 0:

lim
t→∞

‖u(t)‖ ≤ max(

√

12C

c
,
3

c
) lim

t→∞
|f(t)|.
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In order to estimate u′, observe that for t large enough:

|u′(t)|2 + λ1|u(t)|2 + α(u, u′) − α2

4
|u(t)|2 ≤ 5

cα
F +

ǫ

2

Since α ≤ 2
3
c ≤ c and α ≤ 1

2C
≤ λ1

2c
, then α2 ≤ αc ≤ λ1

2
.

Consequently for t large enough

5

6
|u′(t)|2 + 2α2|u(t)|2 +

1

6
|u′(t)|2 + α(u, u′) − α2

4
|u(t)|2 ≤ 5

cα
F +

ǫ

2

In other terms
5

6
|u′(t)|2 +

α2

4
|u(t)|2 + | 1√

6
u′ +

√
3√
2
αu|2 ≤ 5

cα
F +

ǫ

2

Then:

lim
t→∞

|u′(t)|2 ≤ 6

cα
F + 2ǫ

Also assuming α = inf( 1
2C

, 2
3
c) and letting ǫ → 0, we have:

lim
t→∞

|u′(t)| ≤ max(

√

12C

c
,
3

c
) lim

t→∞
|f(t)|.

Remark 1.2. If β(t) = B0 ∈ L(V, V ′), it is well known that the conditions (u0, u1) ∈
D(A) × V and f ∈ C1(R+, V ) imply u ∈ C1(R+, V ) ∩ C2(R+, H). By density on (u0, u1, f)
we obtain easily the following

Corollary 1.3. Let β(t) = B0 ∈ L(V, V ′). In this case any mild solution u ∈ C(R+, V ) ∩
C1(R+, H) of (1.1) satisfies (1.4).

Remark 1.4. In [11], the following estimate was established

sup{ lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|)} ≤
√

3(C +
4

c
) lim

t→∞
|f(t)| (1.5)

Since
√

12C

c
≤

√
12

4
(C +

4

c
) =

√
3

2
(C +

4

c
)

and
3

c
≤ 3

4
(C +

4

c
) ≤

√
3

2
(C +

4

c
),

we can see that Theorem 1.1 improves the estimate (1.5) by a factor 2 for all values of c and

C. Moreover if C → ∞ with C
c

bounded, max(
√

12C
c

, 3
c
) remains bounded and (C + 4

c
) tends

to infinity, therefore (1.4) improves (1.5) by an arbitrarily large amount. A typical case is :
β = cB0 with c → ∞ since then C

c
is fixed and C → ∞.

6



2 The case of a linear self-adjoint damping operator

In this section, we study the equation (0.1) where B : R
+ −→ L(V, V ′) is a self-adjoint and

possibly unbounded operator and satisfies the following hypotheses:

∃c > 0, ∀t ∈ R
+, ∀v ∈ V, 〈B(t)v, v〉 ≥ c|v|2 (2.1)

∃C > 0, ∀t ∈ R
+, ∀v ∈ V, 〈B(t)v, v〉 ≤ C〈Av, v〉 (2.2)

The following result, will give close to optimal estimates even when B is independent of time.

Theorem 2.1. Any solution u ∈ W
1,∞
loc (R+, V ) ∩ W

2,∞
loc (R+, H) of (0.1)

satisfies the following estimate:

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(

√

3C

c
,

3√
2c

) lim
t→∞

|f(t)| (2.3)

Proof. Considering again the energy functional Φ = |u′|2 + ‖u‖2 + α(u, u′)− α2

4
|u|2 we find:

Φ′ = −2|B 1

2 u′|2 + α|u′|2 − α‖u‖2 − α(Bu′, u) + (f, 2u′ + αu) − α2

2
(u, u′)

= −α

2
Ψ − (2 − 3α

2c
)|B 1

2 u′|2 − α

2
‖u‖2 − α(Bu′, u) + (f, 2u′ + αu)

≤ −α

2
Φ − (2 − 3α

2c
)|B 1

2 u′|2 − α

2
‖u‖2 − α(Bu′, u) + (f, u′ + αu) + (f, u′)

where Ψ = |u′|2 + ‖u‖2 + α(u, u′) ≥ Φ. By (2.1) and Young’s inequality, we have

(f, u′) ≤ 1

2c
|f |2 +

c

2
|u′|2

≤ 1

2c
|f |2 +

1

2
|B 1

2 u′|2

Therefore by using (2.2), we obtain

Φ′ ≤ −α

2
Φ − (

3

2
− 3α

2c
)|B 1

2 u′|2 − α

2C
|B 1

2 u|2 − α(Bu′, u) +
1

2c
|f |2 + (f, u′ + αu)

Assuming
3

2
− 3α

2c
≥ 1

2
and α2 ≤ α

C

which means

α ≤ 2

3
c and α ≤ 1

C
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we deduce

Φ′ ≤ −α

2
Φ − 1

2
|B 1

2 u′|2 − α2

2
|B 1

2 u|2 − α(Bu′, u) +
1

2c
|f |2 + (f, u′ + αu)

≤ −α

2
Φ − 1

2
|B 1

2 (u′ + αu)|2 +
1

2c
|f |2 + (f, u′ + αu)

By using (2.1), we find

Φ′ ≤ −α

2
Φ − c

2
|u′ + αu|2 +

1

2c
|f |2 + (f, u′ + αu)

By using Young’s inequality in the last term, we have

(f, u′ + αu) ≤ 1

2c
|f |2 +

c

2
|u′ + αu|2

Then

Φ′ ≤ −α

2
Φ +

1

c
|f |2

Then we find that Φ is bounded with

lim
t→∞

Φ(t) ≤ 2

cα
lim
t→∞

|f(t)|2

By setting F = limt→∞ |f(t)|2 we see that for t large enough and any ǫ > 0

|u′(t)|2 + ‖u(t)‖2 + α(u(t), u′(t)) − α2

4
|u(t)|2 ≤ 2

cα
F +

ǫ

2

In other terms

‖u(t)‖2 + |u′(t) +
α

2
u(t)|2 − α2

2
|u(t)|2 ≤ 2

cα
F +

ǫ

2

By using α ≤ 2
3
c and (2.1), we obtain for t large enough:

‖u(t)‖2 − α

3
|B 1

2 u(t)|2 ≤ 2

cα
F +

ǫ

2

now using α ≤ 1
C

and (2.2), for t large enough we obtain :

‖u(t)‖2 ≤ 3

αc
F + 2ǫ

Finally by selecting α = inf(2
3
c, 1

C
)and letting ǫ → 0 we find :

lim
t→∞

‖u(t)‖ ≤ max(

√

3C

c
,

3√
2c

) lim
t→∞

|f(t)|
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In order to estimate u′, for t large enough by using (0.2)

2

3
|u′(t)|2 + λ1|u(t)|2 + α(u(t), u′(t)) +

1

3
|u′(t)|2 − α2

4
|u(t)|2 ≤ 2

cα
F +

ǫ

2

Since α ≤ 2
3
c ≤ c and α ≤ 1

C
≤ λ1

c
, we have α2 ≤ αc ≤ λ1.

Therefore, for t large enough:

2

3
|u′(t)|2 + α2|u(t)|2 + α(u(t), u′(t)) +

1

3
|u′(t)|2 − α2

4
|u(t)|2 ≤ 2

cα
F +

ǫ

2

Then, for t large enough

2

3
|u′(t)|2 +

3α2

4
|u(t)|2 + α(u(t), u′(t)) +

1

3
|u′(t)|2 ≤ 2

cα
F +

ǫ

2

In other terms
2

3
|u′(t)|2 + |

√
3

2
αu(t) +

1√
3
u′(t)|2 ≤ 2

cα
F +

ǫ

2

Hence, for t large enough

|u′(t)|2 ≤ 3

αc
F + 2ǫ

Finally by letting ǫ → 0

lim
t→∞

|u′(t)| ≤ max(

√

3C

c
,

3√
2c

) lim
t→∞

|f(t)|

By using Remark 1.2 we obtain

Corollary 2.2. Let β(t) = B0 ∈ L(V, V ′). In this case any mild solution u ∈ C(R+, V ) ∩
C1(R+, H) of (0.1) satisfies (2.3).

Remark 2.3. When B is linear and self-adjoint, Theorem 2.1 improves the result (1.4) with
β(t) = B(t) by a factor ∈ [

√
2, 2] depending on the values of C and c. Indeed in this case

(but not in general) the two inequalities (1.3) and (2.2) are equivalent, see Section 5 below.

3 Applications when B = γAα, 0 ≤ α ≤ 1

In this section we consider the case of a time independent self-adjoint B proportional to some
positive power of A. In order to garantee exponential damping of the associated semi-group
the power will be taken ≤ 1.
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3.1 The ODE case

We consider the equation:
u′′ + γu′ + ω2u = f(t) (3.1)

We apply theorem 2.1 to (3.1) with c = γ and C = γ
ω2 , we find

∀t ∈ R, |u(t)| ≤ max(

√
3

ω2
,

3√
2γω

) lim
t→∞

|f(t)| (3.2)

By comparaison with the estimates in [10], we find that the result of theorem 2.1 is optimal
up to a factor K(ω, γ) = 3π

4
√

2
, if γ < 2ω and

√
3 if γ ≥ 2ω. More precisely, in [10]

the exact minimum global bound for solutions bounded on the whole line is given, and the
minimum turns out to be achieved on some periodic solutions (corresponding to a periodic
source term) for which the ultimate bound of course coincides with the global bound on R.

3.2 The case B = γAα, 0 ≤ α ≤ 1

We consider the equation
u′′ + γAαu′ + Au = f(t) (3.3)

In this case (cf. Proposition 5.4 )we have c = γλα
1 and C = γ

λ1−α

1

, then, by Theorem 2.1, we

have the following estimates

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t))| ≤ max(

√

3

λ1

,
3√

2γλα
1

) lim
t→∞

|f(t)| (3.4)

Considering the special case H = R , A = ω2I we conclude that this result is always
sharp up to a factor

√
3.

3.3 The case B = γI :

we consider the equation:

u′′ + γu′ + Au = f(t) (3.5)

Applying Theorem 2.1 to (3.5) with C = γ
λ1

and c = γ we find :

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t))| ≤ max(

√

3

λ1

,
3√
2γ

) lim
t→∞

|f(t)| (3.6)
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Remark 3.1. Let us compare our result on (3.6) with the estimates from [8].
In [8] it was shown that

lim
t→∞

‖u(t)‖ ≤
√

4

γ2
+

1

λ1

lim
t→∞

|f(t)|. (3.7)

If γ is fixed and λ1 → ∞ we have:

max(

√

3

λ1

,
3√
2γ

) =
3√
2γ

and
√

4

γ2
+

1

λ1

⋍

2

γ

therefore we find that (3.6) is worse than (3.7), hence Theorem 2.1 is weaker than the result
of [8] in this case.

If λ1 is fixed and γ → ∞ we have:

max(

√

3

λ1

,
3√
2γ

) =

√

3

λ1

and
√

4

γ2
+

1

λ1

⋍

√

1

λ1

therefore in this case Theorem 2.1 is also weaker than [8].

Let us determine the values of γ and λ1 for which condition (3.6) is better than (3.7).
To this end we can study the condition:

√

4
γ2 + 1

λ1

max(
√

3
λ1

, 3√
2γ

)
> 1

Therefore, we introduce:

g(γ, λ1) =

√

4 + γ2

λ1

max(
√

3γ2

λ1

, 3√
2
)

By setting r = γ√
λ1

, we obtain:

g(γ, λ1) = p(r) =

√
4 + r2

max(
√

3r2, 3√
2
)
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Introducing τ = r2, we have:

P (τ) =
4 + τ

max(9
2
, 3τ)

A simple calculation shows that

P (τ) > 1 ⇐⇒ τ ∈]
1

2
, 2[ ⇐⇒ r2 ∈]

1

2
, 2[ ⇐⇒ r ∈]

1√
2
,
√

2[.

Finally, we obtain that if γ ∈]
√

λ1

2
,
√

2λ1[, Theorem 2.1 improves the result of [8].

3.4 The case B = γA :

Let us consider the equation:

u′′ + γAu′ + Au = f(t) (3.8)

with γ > 0.

When we apply Theorem 2.1 to the equation (3.8) with C = γ and c = γλ1, we obtain
immediately:

Corollary 3.2. Any solution of (3.8) satisfies the following hypotheses:

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(

√

3

λ1

,
3√

2γλ1

) lim
t→∞

|f(t)| (3.9)

Remark 3.3. This result is new and was not obtained in [11].

3.5 The case B = γA
1

2

In this subsection we consider the so-called structural damping (cf [5, 6, 7] for the terminology
and main properties). Therefore we consider as in [12] the equation:

u′′ + γA
1

2 u′ + Au = f(t) (3.10)

with γ > 0.
If we apply theorem (2.1) with c = γ

√
λ1 and C = γ√

λ1

, we obtain

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(

√

3

λ1

,
3√

2γ
√

λ1

) lim
t→∞

|f(t)| (3.11)

By comparaison with [12], we remark that (2.1) gives a weaker result. We shall now recover
the estimate on u from [12] in the case of large damping by a method introduced by C. Fitouri
(cf. [8]) which is less complicated than the method of [12].
We recall the main result from [12].
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Theorem 3.4. The bounded solution of (3.10) satisfies the estimate

∀t ∈ R, ‖u(t)‖ ≤ 1√
λ1

max(1,
2

γ
)‖f(t)‖L∞(R,H).

Proof. In the case of a small damping we refer to [2]. We now prove (3.4) when

γ ≥ 2 (3.12)

We choose the energy functional

Φ = |A 1

4 u′|2 + |A 3

4 u|2 + α(A
1

2 u′, A
1

2 u)

Then, we have:

Φ′ = (2A
1

2 u′, u′′ + Au) + α|A 1

2 u′|2 + α(Au, u′′)

= −2γ|A 1

2 u′|2 + α|A 1

2 u′|2 − γα(Au, A
1

2 u′) − α|Au|2 + (f, 2A
1

2 u′ + αAu)

= −α

2
(|A 1

2 u′|2 + α(Au, A
1

2 u′) + |Au|2) + (
3α

2
− 2γ)|A 1

2 u′|2 + (
α2

2
− γα)(Au, A

1

2 u′)

− α

2
|Au|2 + (f, 2A

1

2 u′ + αAu)

we set
Ψ = |A 1

2 u′|2 + α(Au, A
1

2 u′) + |Au|2

Then:

Φ′ = −α

2
Ψ + (

3α

2
− 2γ)|A 1

2 u′|2 + (
α2

2
− γα)(Au, A

1

2 u′) − α

2
|Au|2 + (f, 2A

1

2 u′ + αAu)

by using Young’s inequality, we obtain:

(f, 2A
1

2 u′ + αAu) ≤ α
2
|f |2 + 1

2α
(4|A 1

2 u′|2 + 4α(Au, A
1

2 u′) + α2|Au|2)

Therefore

Φ′ ≤ −α
2
Ψ + (3α

2
+ 2

α
− 2γ)|A 1

2 u′|2 + (α2

2
− γα + 2)(Au, A

1

2 u′) + α
2
|f |2

we remark that α = γ −
√

γ2 − 4 is a solution of the equation:

x2 − 2γx + 4 = 0, then:
α2

2
− γα + 2 = 0

we have also

2γ − 3α

2
− 2γ +

2

α
= α − γ < 0

13



then
Φ′ ≤ −α

2
Ψ +

α

2
|f |2

We have:

α = γ −
√

γ2 − 4 =
4

γ +
√

γ2 − 4
≤ 4

γ

then, from (3.12)

0 <
α2

4
≤ 4

γ2
< 1

We have

Ψ = |A 1

2 u′|2 + α(Au, A
1

2 u′) + |Au|2

= |A 1

4 (A
1

4 u′ +
α

2
A

3

4 u)|2 + (1 − α2

4
)|Au|2

≥
√

λ1|A
1

4 u′ +
α

2
A

3

4 u)|2 + (1 − α2

4
)|A 3

4 u|2

=
√

λ1Φ

Hence

Φ′ ≤ −α
√

λ1

2
Φ +

α

2
|f |2

since Φ is bounded, we have

∀t ∈ R, Φ(t) ≤ 1√
λ1

‖f(t)‖2
∞

which means

∀t ∈ R, |A 1

4 u′(t)|2 + |A 3

4 u(t)|2 + α(A
1

2 u(t), A
1

2 u′(t)) ≤ 1√
λ1

‖f(t)‖2
∞

Then

∀t ∈ R,
√

λ1|A
1

2 u(t)|2 +
α

2

d

dt
|A 1

2 u(t)|2 ≤ 1√
λ1

‖f(t)‖2
∞

Finally, since u is bounded in V on R, we obtain

∀t ∈ R, ‖u(t)‖ ≤ 1√
λ1

‖f(t)‖∞ (3.13)

Remark 3.5. By this method, we do not recover the estimate of u′ from [12] in the strongly
damped case γ > 2.
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4 Main examples

Let Ω be a bounded domain in R
N and γ > 0.

Example 4.1. We consider the following equation

{

utt − ∆u + γut = f

u/∂Ω = 0
(4.1)

Then, as a consequence of (3.5) we have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)
,

3√
2γ

)

lim
t→∞

|f(t)|

This result improves on [11] when
√

λ1(Ω)
2

< γ <
√

2λ1(Ω).

Example 4.2. We consider the equation

{

utt − ∆u − γ∆ut = f

u/∂Ω = 0
(4.2)

We have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)
,

3√
2γλ1(Ω)

)

lim
t→∞

|f(t)|

Example 4.3. We consider the equation

{

utt + ∆2u − γ∆ut = f

u = ∆u = 0 on ∂Ω
(4.3)

Then, we have for all mild solutions

lim
t→∞

{
∫

Ω

|∆u|2 dx

}
1

2

≤ 1

λ1(Ω)
max

(

1,
2

γ

)

lim
t→∞

|f(t)|

This follows from Theorem 3.4 since here λ1(A) = λ1(Ω)2

Example 4.4. We consider the equation

{

utt + ∆2u − γ∆ut = f

u = |∇u| = 0 on ∂Ω
(4.4)

15



Then, we shall establish

lim
t→∞

{
∫

Ω

|∆u|2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)λ1(A)
,

3√
2γλ1(Ω)

)

lim
t→∞

|f(t)|

Indeed, in this example, we have

B = −γ∆ : H1
0 → H−1; A = ∆2

with domain
D(A) = {u ∈ H2(Ω)| u = |∇u| = 0 on ∂Ω}

and
cI ≤ B ≤ CA,

with
c = γλ1(Ω)

To get an estimate for C we observe that

(Bv, v) = γ

∫

Ω

‖∇u‖2 dx

= −γ

∫

Ω

∆v.v dx

= γ(

∫

Ω

|∆v|2 dx)
1

2 (

∫

Ω

|v|2 ds)
1

2

=
γ

λ1(A)
(

∫

Ω

|∆v|2 dx)

=
γ

λ1(A)
(Av, v)

Therefore, we can take C ≤ γ
λ1(A)

and this shows the claim.

Remark 4.5. Actually, since we used a Cauchy-Schwarz inequality for two linearly indepen-
dent functions it is clear that the optimal value of C is striclly less than γ

λ1(A)
. More precisely

to obtain the optimum we need to evaluate

µ = inf

{

∫

Ω
|∆v|2 dx

∫

Ω
|∇v|2 dx

, v ∈ H2
0 (Ω), v 6= 0

}

= inf

{
∫

Ω

|∆v|2 dx, v ∈ H2
0 (Ω),

∫

Ω

|∇v|2 = 1

}

By the Lagrange multiplier theory, there is v 6= 0 such that

{

∆2v = −µ∆v

v ∈ H2
0 (Ω)

16



with
∆v ∈ L2(Ω)

and
−(∆ + µ)(∆v) = 0

Then we have C = 1
µ
. To illustrate this we consider the one dimensional case.

Proposition 4.6. If N = 1, Ω = (0, π) then C = 1
4
.

Proof. In order to compute C we need to find the minimal value of µ when

u(4) = −µu′′, u ∈ H2
0 (0, π)

Then, setting λ =
√

µ, we have

u = c1x + c2 + c3 cos(λx) + c4 sin(λx)

u′ = c1 − λc3 sin(λx) + λc4 cos(λx)

0 = c2 + c3

0 = c1π + c2 + c3 cos(πλ) + c4 sin(πλ)

0 = c1 + λc4

0 = c1 − λc3 sin(λπ) + λc4 cos(λπ)

c4 = −c3 sin(πλ) + c4 cos(πλ)

c4(1 − cos(πλ) = −c3 sin(πλ)

We distinguish 3 possibilities.

case 1: If sin(πλ) = 0 and cos(πλ) 6= 1 (= −1) then

c4 = 0 =⇒ c1 = 0, c2 = −c3 cos(πλ) = c3 =⇒ c2 = c3 = 0

then u ≡ 0 and this case is excluded.

case 2: If sin(πλ) = 0 and cos(πλ) = 1 =⇒ λ = 2k, k ∈ N

then
0 = c1π + c2 + c3 = c2 + c3 =⇒ c1 = 0

and

c4 = −1

λ
c1 = 0.

Therefore u = c2(1 − cos(2kx)) = 2c2 sin2 kx. In this case µ = 4k2 and therefore µ ≥ 4.

17



case 3: If sin(πλ) 6= 0, then

2c4 sin2(
πλ

2
) = −2c3 sin(

πλ

2
) cos(

πλ

2
)

hence

c3 = −c4 tan(
πλ

2
) c2 = −c3, c1 = −λc4.

and

−λπc4 + c4 tan(
πλ

2
) − c4 cos(πλ) tan(

πλ

2
) + c4 sin(πλ) = 0.

If c4 = 0, then u = 0.

If c4 6= 0, we can reduce to c4 = 1, then we find

tan(
πλ

2
)(1 − cos(πλ) + 2 cos2(

πλ

2
)) = λπ ⇐⇒ 2 tan(

πλ

2
) = λπ ⇐⇒ tan(

πλ

2
) =

πλ

2

Therefore
πλ

2
> π =⇒ λ > 2

and
µ = λ2 > 4.

Summarizing the 3 cases we conclude that the minimal possible value of µ is 4.

Corollary 4.7. Any mild solution u of

{

utt + uxxxx − γuxxt = f

u(t, 0) = u(t, π) = ux(t, 0) = ux(t, π) = 0
(4.5)

satisfies the asymptotic bound:

lim
t→∞

{
∫

Ω

|uxx|2 dx

}
1

2

≤ max

(
√

3

2
,

3√
2γ

)

lim
t→∞

|f(t)| (4.6)
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5 Additional results

5.1 The first eigenvalue of a square root.

At several places in this paper we used implicitely the property

λ1(A
1

2 ) = (λ1(A))
1

2

where A is a self-adjoint coercive operator. This property is obvious when A has compact
inverse, but it is natural to ask what happens in general. In the next subsection we shall
derive a similar property for any positive power of A, but in the case of square roots an
easier proof can be given. The result is as follows

Proposition 5.1. Let A be as the introduction. Then A
1

2 is also coercive and λ1(A
1

2 ) =

(λ1(A))
1

2 .

The proof of this proposition relies on 2 simple lemmas :

Lemma 5.2. Let B ∈ L(H) be symmetric and nonnegative. Then we have

‖B2‖ = ‖B‖2

∀v ∈ H, |Bv|2 ≤ ‖B‖(Bv, v)

Proof. First we have B2 ∈ L(H) and ‖B2‖ ≤ ‖B‖2. The reverse inequality is also immediate
since

|Bu|2 = (B2u, u) ≤ ‖B2‖|u|2

Finally we have for any v ∈ H

|Bv|2 = |B 1

2 (B
1

2 v)|2 ≤ ‖B 1

2‖2|B 1

2 v|2 = ‖B‖(Bv, v)

Lemma 5.3. Let A be a self-adjoint, positive, coercive operator. Then

λ1(A) =
1

‖A−1‖

Proof. By definition it is clear that

λ1(A) =
1

‖A− 1

2‖2

Then the result follows from the previous Lemma.
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Proof of Proposition 5.1. We first show that A
1

2 is coercive. Actually A
1

2 ∈ L(V, H)
is clearly injective. Moreover for any h ∈ H , there is u ∈ D(A) with Au = h. But

then v = A
1

2 u ∈ V and A
1

2 v = h. Hence A
1

2 ∈ L(V, H) is onto and by Banach Theorem,

A− 1

2 ∈ L(H,V ). By Lemma 5.2 we find that that A
1

2 is coercive. Then λ1(A
1

2 ) = 1

‖A−
1
2 ‖

and

the result follows from a last application of Lemma 5.2

5.2 The first eigenvalue of a fractional power.

Let A be a self-adjoint coercive operator. The fractional power Aα with α ∈ (0, 1) is defined
as the inverse of the operator

A−α =
sin(πα)

π

∫ ∞

0

t−α(tI + A)−1dt

with domain equal to the range of A−α. D(Aα) is also the closure of D(A) under the semi-
norm pα(u) := |Aα(u)| (cf. e.g. [2, 13]).
We now generalize Proposition 5.1 to any positive power by relying on the above formula.

Proposition 5.4. For any α ∈ (0, 1), Aα is also coercive and λ1(A
α) = (λ1(A))α.

Proof. By homogeneity it is clearly sufficient to establish the result when λ1(A) = 1 Then
applying the result to A1 = λ1(A)−1

A gives the general case. First we show that

λ1(A) = 1 =⇒ λ1((A
α) ≥ 1

Indeed we have

‖A−α‖ ≤ sin(πα)

π

∫ ∞

0

t−α‖(tI + A)−1‖dt ≤ sin(πα)

π

∫ ∞

0

t−α(t + 1)−1dt = 1

and then Lemma 5.3 gives the result. Now we have for any u ∈ D(A)

(Au, u) = (AαA1−αu, u) = (AαAβu, Aβu)

with β = 1−α
2

. Hence

(Au, u) ≥ λ1(A
α)|Aβu, Aβu|2 = λ1(A

α)(A1−αu, u) ≥ λ1(A
α)λ1(A

1−α)|u|2

Then
1 = λ1(A) ≥ λ1(A

α)λ1(A
1−α)

Finally
λ1(A

α) = λ1(A
1−α) = 1
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5.3 The relationship between the two main results.

In Remark 2.3 we said that when B is linear and self-adjoint, the two inequalities (1.3) and
(2.2) are equivalent. This is a consequence of the following

Proposition 5.5. Let A be as the introduction and ∈ L(V, V ′) be symmetric and nonnega-

tive. Then the 3 following conditions are equivalent

‖B‖L(V,V ′) ≤ C (5.1)

B ≤ CA (5.2)

∀u ∈ V, ‖Bu‖2
∗ ≤ C〈Bu, u〉 (5.3)

Proof. We proceed in 3 steps

1) Proof of (5.1) =⇒ (5.2). Assuming (5.1) we have

∀u ∈ V, 〈Bu, u〉 ≤ ‖B‖L(V,V ′)‖u‖ ≤ C‖u‖2 = C〈Au, u〉

Hence B ≤ CA.

2) Proof of (5.3) =⇒ (5.1). Assuming (5.3) we have

∀u ∈ V, ‖Bu‖2
∗ ≤ C〈Bu, u〉 ≤ C‖Bu‖∗‖u‖

Hence, either Bu = 0 or ‖Bu‖∗ ≤ C‖u‖ and we have (5.1).

3) Proof of (5.2) =⇒ (5.3). Since B ≥ 0 we have

∀(u, v) ∈ V × V, 〈Bu, v〉2 ≤ 〈Bu, u〉〈Bv, v〉
In this formula we choose v = A−1(Bu) Then

〈Bu, v〉 = 〈Bu, A−1(Bu)〉 = ‖A−1Bu‖2 = ‖Bu‖2
∗

so that we find

‖Bu‖4
∗ ≤ 〈Bu, u〉〈BA−1(Bu), A−1(Bu)〉 ≤ C〈Bu, u〉〈AA−1(Bu), A−1(Bu)〉

by using (5.2). Now

〈Bu, u〉〈AA−1(Bu), A−1(Bu) = 〈Bu, u〉‖A−1(Bu)‖2 = ‖Bu‖2
∗〈Bu, u〉

and if Bu 6= 0 we obtain (5.1) on dividing through by ‖Bu‖2
∗.
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Remark 5.6. For a general positive operator the conditions are not equivalent . For instance
take V = H = C and for some α > 0, β ∈ R

∀v ∈ V, Bv = (α + iβ)v

In this case we have
‖B‖ = (α2 + β2)

1

2

∀v ∈ V, (Bv, v) = α|v|2

so that the optimal value of C in (5.2) is α. The optimal value of C in (5.3) is α2+β2

α
. As

soon as β 6= 0 we have

α < (α2 + β2)
1

2 <
α2 + β2

α

and therefore the three constants are all different.

5.4 Some more examples.

Sometimes Theorem 2.1 can be applied to equations in unbounded domains. For brevity we
give only 2 typical examples

Example 5.7. Let Ω be a possibly unbounded domain in R
N and m > 0, γ > 0. We consider

the following equation
{

utt − ∆u + mu + γut = f

u/∂Ω = 0
(5.4)

Then, as a consequence of (3.5) we have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

m|u|2 + ‖∇u‖2 dx

}
1

2

≤ max

(

√

3

m + λ1(Ω)
,

3√
2γ

)

lim
t→∞

|f(t)|

Example 5.8. Let Ω be a bounded domain in R
N and γ > 0. We consider the cylinder

C = Ω × R and the following equation in R
+ × C

{

utt − ∆u + γut = f

u/∂C = 0
(5.5)

Then, as a consequence of (3.5), since A = −∆ is coercive in C with λ1(C) = λ1(Ω)we
have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)
,

3√
2γ

)

lim
t→∞

|f(t)|
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We conclude this section by giving 2 examples of application for Theorem 1.1 and The-
orem 2.1: a case where B is not selfadjoint and a case where B is non linear.

Example 5.9. Let V = H = C. Then any solution u of the ODE

u′′ + u + (α + iβ)u′ = f (5.6)

satisfies

max( lim
t→∞

|u(t)|, lim
t→∞

|u′(t)|) ≤ max(
√

12

√

1 +
β2

α2
,
3

α
) lim

t→∞
|f(t)|

We did not investigate how close from optimality this estimate is.

Example 5.10. Let Ω be a bounded domain in R
N and γ > 0. We consider the following

equation
{

utt − ∆u + α(t, x)u+
t − β(t, x)u−

t = f

u/∂Ω = 0
(5.7)

where α, β ∈ C1(R+, C0(Ω) are nonnegative functions with

0 < a ≤ min(α(t, x), β(t, x)) ≤ max(α(t, x), β(t, x)) ≤ A.

It is tempting to apply Theorem 1.1 in this situation. However it is better to use Theorem
2.1 as follows. First we can approach the solutions by strong solutions with f replaced by a
smooth function with a smaller or equal L2(Ω)-ultimate bound. For such a solution we can
write

α(t, x)u+
t − β(t, x)u−

t = B(t, x)ut

where
B(t, x) = α(t, x)χ(ut > 0) − β(t, x)χ(ut ≤ 0)

is a multiplication operator. Then, as a consquence of Theorem 2.1 we find

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3A

aλ1(Ω)
,

3

a
√

2

)

lim
t→∞

|f(t)|

We skip the details.
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