
HAL Id: hal-00717463
https://hal.science/hal-00717463

Submitted on 13 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharp ultimate bounds of solutions to a class of second
order linear evolution equations with bounded forcing

term
Faouzia Aloui, Alain Haraux

To cite this version:
Faouzia Aloui, Alain Haraux. Sharp ultimate bounds of solutions to a class of second order linear
evolution equations with bounded forcing term. 2012. �hal-00717463�

https://hal.science/hal-00717463
https://hal.archives-ouvertes.fr


Sharp ultimate bounds of solutions to a class

of second order linear evolution equations

with bounded forcing term

Faouzia ALOUI
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions,

F-75005, Paris, France.
aloui@ann.jussieu.fr

Alain HARAUX (1, 2)
1. UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions,

F-75005, Paris, France.
2- CNRS, UMR 7598, Laboratoire Jacques-Louis Lions,
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Abstract

We establish a precise estimate of the ultimate bound of solutions to some second

order evolution equations with possibly unbounded linear damping and bounded forcing

term.
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Introduction

Let H be a real Hilbert space. In the sequel we denote by (u, v) the inner product of two
vectors u, v in H and by |u| the H− norm of u. Given f ∈ L∞(R, H), we consider the second
order evolution equation with possibly unbounded and time-dependent damping operator
B:

u′′ + Au + Bu′ = f(t) (0.1)

where A is a fixed linear, self-adjoint and positive operator in H. We assume that the domain
of A is dense in H and A is coercive, in other terms:

∃λ > 0, ∀u ∈ D(A), (Au, u) ≥ λ|u|2. (0.2)

Obviously the set of λ satisfying (0.2) is closed. For our purpose the best possible is the
largest one, ie.

λ = inf
u∈D(A),|u|=1

(Au, u) =: λ1(A).

We introduce V = D(A
1

2 ) endowed with the norm given by

∀u ∈ V, ‖u‖ = |A 1

2 u|.

This norm defined on V is equivalent to the graph norm of A
1

2 as a result of the coerciveness
hypothesis on A.

In the sequel, B : V → V ′ may be a time-dependent continuous operator. When B is
linear and time-independent, we write (0.1) in the following form:

U ′ + LU = F (t) (0.3)

with U = (u, u′), L =

(

0 −I

A B

)

and F = (0, f). If B ∈ L(V, V ′) satisfies

〈Bv, v〉 ≥ 0 ∀v ∈ V

then it is not difficult to check (cf.e.g. [1, 3, 4]) that L is a maximal monotone operator with
dense domain D(L) = {(u, v) ∈ V × V, Au + Bv ∈ H} in V × H. Then, by Hille -Yosida’s
Theorem (cf.e.g. [3, 13]), L generates a C0 contraction semi-group S(t) that insures the ex-
istence and uniqueness of a mild solution u ∈ C(R+, V )∩C1(R+, H) to (0.1) on R

+ for any
pair of initial data u0 = u(0) ∈ V ; u1 = u′(0) ∈ H. Moreover, the two following properties
are equivalent cf [9]:

1) S(t) is exponentially damped on V ×H which means that for some constants M ≥ 1, δ > 0

∀t ≥ 0, ‖S(t)‖L(H) ≤ M exp(−δt)
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2) ∀F ∈ L∞(R+, H), any solution of (0.3) is bounded in V × H for t ≥ 0 .

In addition in this case we have

lim
t→∞

‖U(t)‖ ≤ M

δ
lim
t→∞

‖F (t)‖H

In applications to infinite or even finite dimensional second order equations, this method
does not give the best possible estimate because it is not easy to optimize on M and δ. This
was already observed in [11] and [12] where precise estimates of limt→∞ ‖U(t)‖ were given

in the case of (0.1) with B = cI or B = cA
1

2 .

The main objective of this paper is to generalize the results of [11, 12] for B time inde-

pendent and improve some of the results in the specific cases B = cI andB = cA
1

2 . We shall
consider also the case B = cA which was not studied before.

The plan of the paper is the following: section 1 contains an improvement of the main
result from [11] in the general case B = β(t). Section 2 is devoted to the case where B = B(t)
is linear and self-adjoint. Section 3 gives the precise statements when B = cAα with a spe-
cial treatment in the case B = B0 = cA

1

2 and Section 4 is devoted to the main concrete
applications of Theorem 2.1. Finally Section 5 is devoted to slightly different examples and
some additional remarks.

1 An ultimate bound valid for general time-dependent

damping terms

We consider the equation:
u′′ + β(t)u′ + Au = f(t) (1.1)

where t ∈ R
+. For this equation, we improve some general estimates obtained in [11] when

β(t) : R
+ → C(V, V ′) is a measurable family of possibly nonlinear continuous operators

which satisfies the two hypotheses:

∃c > 0, ∀t ∈ R
+, ∀v ∈ V, 〈β(t)v, v〉 ≥ c|v|2. (1.2)

∃C > 0, ∀t ∈ R
+, ∀v ∈ V, ‖β(t)v‖2

∗ ≤ C〈β(t)v, v〉. (1.3)

It is immediate (cf. e.g. [11]) that c ≤ Cλ1 where λ1 = λ1(A). Our main result is the
following
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Theorem 1.1. For any solution u ∈ W
1,∞
loc (R+, V ) ∩ W

2,∞
loc (R+, H) of (1.1) we have the

estimate :

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(
√

12

√

C

c
,
3

c
) lim

t→∞
|f(t)| (1.4)

Proof. For simplicity of the formulas, we drop the variable t whenever possible and we
denote by z′ the time derivative of a (scalar or vector) time-dependent function z. We
consider for some α > 0 to be chosen later the following modified energy functional:

Φ = |u′|2 + ‖u‖2 + α(u, u′) − α2

4
|u|2.

Then

Φ′ = −2〈βu′, u′〉 + α|u′|2 − α‖u‖2 − α〈βu′, u〉 + 〈f, 2u′ + αu〉 − α2

2
(u, u′)

= −α

2
(|u′|2 + ‖u‖2 + α(u, u′)) − 2〈βu′, u′〉 +

3α

2
|u′|2 − α

2
‖u‖2 − α〈βu′, u〉 + 〈f, 2u′ + αu〉

we set Ψ = |u′|2 + ‖u‖2 + α(u, u′) ≥ Φ.

Then, by using (1.2), we have:

Φ′ ≤ −α

2
Φ − 1

2
〈βu′, u′〉 − (

3c

2
− 3α

2
)|u′|2 − α

2
‖u‖2 − α〈βu′, u〉 + 〈f, 2u′ + αu〉

we have, from (1.3):

|〈βu′, u〉| ≤
√

C〈βu′, u′〉 1

2‖u‖
By using Young’s inequality we deduce :

|α〈βu′, u〉| ≤ αC〈βu′, u′〉 + α
‖u‖2

4

Assuming αC ≤ 1
2
, then:

Φ′ +
α

2
Φ ≤ −3

2
(c − α)|u′|2 + 2〈f, u′〉 − α

4
‖u‖2 + α〈f, u〉

Assuming 3
2
(c − α) ≥ 1

2
c, then α ≤ 2

3
c.

We have, by using Young’s inequality:

−3

2
(c − α)|u′|2 + 2〈f, u′〉 ≤ − c

2
|u′|2 + 2〈f, u′〉

≤ 2

c
|f |2
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Moreover
α〈f, u〉 ≤ α√

λ1

|f |‖u‖

Therefore, by Young’s inequality:

−α

4
‖u‖2 + α〈f, u〉 ≤ α(−‖u‖2

4
+

1√
λ1

|f |‖u‖)

≤ α

λ1

|f |2

≤ αC

c
|f |2

≤ 1

2c
|f |2

Then

Φ′ +
α

2
Φ ≤ 5

2c
|f |2

Then, we find that Φ is bounded with:

lim
t→∞

Φ(t) ≤ 5

cα
lim
t→∞

|f(t)|2.

Moreover, we have:

−α(u, u′) ≤ |u′|2 +
α2

4
|u|2

We set F = limt→∞ |f(t)|2.

In particular for any ǫ > 0 we have for t large enough

(1 − α2

2λ1

)‖u(t)‖2 ≤ ‖u(t)‖2 − α2

2
|u(t)|2 ≤ Φ(t) ≤ 5

cα
F +

ǫ

2
.

Now since α ≤ 2
3
c and α ≤ 1

2C
, we have

α2

2λ1

≤ c

6λ1C
≤ 1

6

Then we find

lim
t→∞

‖u(t)‖2 ≤ 6

cα
F + 2ǫ

Finally, by choosing α = inf(2
3
c, 1

2C
), we obtain by letting ǫ → 0:

lim
t→∞

‖u(t)‖ ≤ max(

√

12C

c
,
3

c
) lim

t→∞
|f(t)|.
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In order to estimate u′, observe that for t large enough:

|u′(t)|2 + λ1|u(t)|2 + α(u, u′) − α2

4
|u(t)|2 ≤ 5

cα
F +

ǫ

2

Since α ≤ 2
3
c ≤ c and α ≤ 1

2C
≤ λ1

2c
, then α2 ≤ αc ≤ λ1

2
.

Consequently for t large enough

5

6
|u′(t)|2 + 2α2|u(t)|2 +

1

6
|u′(t)|2 + α(u, u′) − α2

4
|u(t)|2 ≤ 5

cα
F +

ǫ

2

In other terms
5

6
|u′(t)|2 +

α2

4
|u(t)|2 + | 1√

6
u′ +

√
3√
2
αu|2 ≤ 5

cα
F +

ǫ

2

Then:

lim
t→∞

|u′(t)|2 ≤ 6

cα
F + 2ǫ

Also assuming α = inf( 1
2C

, 2
3
c) and letting ǫ → 0, we have:

lim
t→∞

|u′(t)| ≤ max(

√

12C

c
,
3

c
) lim

t→∞
|f(t)|.

Remark 1.2. If β(t) = B0 ∈ L(V, V ′), it is well known that the conditions (u0, u1) ∈
D(A) × V and f ∈ C1(R+, V ) imply u ∈ C1(R+, V ) ∩ C2(R+, H). By density on (u0, u1, f)
we obtain easily the following

Corollary 1.3. Let β(t) = B0 ∈ L(V, V ′). In this case any mild solution u ∈ C(R+, V ) ∩
C1(R+, H) of (1.1) satisfies (1.4).

Remark 1.4. In [11], the following estimate was established

sup{ lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|)} ≤
√

3(C +
4

c
) lim

t→∞
|f(t)| (1.5)

Since
√

12C

c
≤

√
12

4
(C +

4

c
) =

√
3

2
(C +

4

c
)

and
3

c
≤ 3

4
(C +

4

c
) ≤

√
3

2
(C +

4

c
),

we can see that Theorem 1.1 improves the estimate (1.5) by a factor 2 for all values of c and

C. Moreover if C → ∞ with C
c

bounded, max(
√

12C
c

, 3
c
) remains bounded and (C + 4

c
) tends

to infinity, therefore (1.4) improves (1.5) by an arbitrarily large amount. A typical case is :
β = cB0 with c → ∞ since then C

c
is fixed and C → ∞.
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2 The case of a linear self-adjoint damping operator

In this section, we study the equation (0.1) where B : R
+ −→ L(V, V ′) is a self-adjoint and

possibly unbounded operator and satisfies the following hypotheses:

∃c > 0, ∀t ∈ R
+, ∀v ∈ V, 〈B(t)v, v〉 ≥ c|v|2 (2.1)

∃C > 0, ∀t ∈ R
+, ∀v ∈ V, 〈B(t)v, v〉 ≤ C〈Av, v〉 (2.2)

The following result, will give close to optimal estimates even when B is independent of time.

Theorem 2.1. Any solution u ∈ W
1,∞
loc (R+, V ) ∩ W

2,∞
loc (R+, H) of (0.1)

satisfies the following estimate:

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(

√

3C

c
,

3√
2c

) lim
t→∞

|f(t)| (2.3)

Proof. Considering again the energy functional Φ = |u′|2 + ‖u‖2 + α(u, u′)− α2

4
|u|2 we find:

Φ′ = −2|B 1

2 u′|2 + α|u′|2 − α‖u‖2 − α(Bu′, u) + (f, 2u′ + αu) − α2

2
(u, u′)

= −α

2
Ψ − (2 − 3α

2c
)|B 1

2 u′|2 − α

2
‖u‖2 − α(Bu′, u) + (f, 2u′ + αu)

≤ −α

2
Φ − (2 − 3α

2c
)|B 1

2 u′|2 − α

2
‖u‖2 − α(Bu′, u) + (f, u′ + αu) + (f, u′)

where Ψ = |u′|2 + ‖u‖2 + α(u, u′) ≥ Φ. By (2.1) and Young’s inequality, we have

(f, u′) ≤ 1

2c
|f |2 +

c

2
|u′|2

≤ 1

2c
|f |2 +

1

2
|B 1

2 u′|2

Therefore by using (2.2), we obtain

Φ′ ≤ −α

2
Φ − (

3

2
− 3α

2c
)|B 1

2 u′|2 − α

2C
|B 1

2 u|2 − α(Bu′, u) +
1

2c
|f |2 + (f, u′ + αu)

Assuming
3

2
− 3α

2c
≥ 1

2
and α2 ≤ α

C

which means

α ≤ 2

3
c and α ≤ 1

C
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we deduce

Φ′ ≤ −α

2
Φ − 1

2
|B 1

2 u′|2 − α2

2
|B 1

2 u|2 − α(Bu′, u) +
1

2c
|f |2 + (f, u′ + αu)

≤ −α

2
Φ − 1

2
|B 1

2 (u′ + αu)|2 +
1

2c
|f |2 + (f, u′ + αu)

By using (2.1), we find

Φ′ ≤ −α

2
Φ − c

2
|u′ + αu|2 +

1

2c
|f |2 + (f, u′ + αu)

By using Young’s inequality in the last term, we have

(f, u′ + αu) ≤ 1

2c
|f |2 +

c

2
|u′ + αu|2

Then

Φ′ ≤ −α

2
Φ +

1

c
|f |2

Then we find that Φ is bounded with

lim
t→∞

Φ(t) ≤ 2

cα
lim
t→∞

|f(t)|2

By setting F = limt→∞ |f(t)|2 we see that for t large enough and any ǫ > 0

|u′(t)|2 + ‖u(t)‖2 + α(u(t), u′(t)) − α2

4
|u(t)|2 ≤ 2

cα
F +

ǫ

2

In other terms

‖u(t)‖2 + |u′(t) +
α

2
u(t)|2 − α2

2
|u(t)|2 ≤ 2

cα
F +

ǫ

2

By using α ≤ 2
3
c and (2.1), we obtain for t large enough:

‖u(t)‖2 − α

3
|B 1

2 u(t)|2 ≤ 2

cα
F +

ǫ

2

now using α ≤ 1
C

and (2.2), for t large enough we obtain :

‖u(t)‖2 ≤ 3

αc
F + 2ǫ

Finally by selecting α = inf(2
3
c, 1

C
)and letting ǫ → 0 we find :

lim
t→∞

‖u(t)‖ ≤ max(

√

3C

c
,

3√
2c

) lim
t→∞

|f(t)|
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In order to estimate u′, for t large enough by using (0.2)

2

3
|u′(t)|2 + λ1|u(t)|2 + α(u(t), u′(t)) +

1

3
|u′(t)|2 − α2

4
|u(t)|2 ≤ 2

cα
F +

ǫ

2

Since α ≤ 2
3
c ≤ c and α ≤ 1

C
≤ λ1

c
, we have α2 ≤ αc ≤ λ1.

Therefore, for t large enough:

2

3
|u′(t)|2 + α2|u(t)|2 + α(u(t), u′(t)) +

1

3
|u′(t)|2 − α2

4
|u(t)|2 ≤ 2

cα
F +

ǫ

2

Then, for t large enough

2

3
|u′(t)|2 +

3α2

4
|u(t)|2 + α(u(t), u′(t)) +

1

3
|u′(t)|2 ≤ 2

cα
F +

ǫ

2

In other terms
2

3
|u′(t)|2 + |

√
3

2
αu(t) +

1√
3
u′(t)|2 ≤ 2

cα
F +

ǫ

2

Hence, for t large enough

|u′(t)|2 ≤ 3

αc
F + 2ǫ

Finally by letting ǫ → 0

lim
t→∞

|u′(t)| ≤ max(

√

3C

c
,

3√
2c

) lim
t→∞

|f(t)|

By using Remark 1.2 we obtain

Corollary 2.2. Let β(t) = B0 ∈ L(V, V ′). In this case any mild solution u ∈ C(R+, V ) ∩
C1(R+, H) of (0.1) satisfies (2.3).

Remark 2.3. When B is linear and self-adjoint, Theorem 2.1 improves the result (1.4) with
β(t) = B(t) by a factor ∈ [

√
2, 2] depending on the values of C and c. Indeed in this case

(but not in general) the two inequalities (1.3) and (2.2) are equivalent, see Section 5 below.

3 Applications when B = γAα, 0 ≤ α ≤ 1

In this section we consider the case of a time independent self-adjoint B proportional to some
positive power of A. In order to garantee exponential damping of the associated semi-group
the power will be taken ≤ 1.
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3.1 The ODE case

We consider the equation:
u′′ + γu′ + ω2u = f(t) (3.1)

We apply theorem 2.1 to (3.1) with c = γ and C = γ
ω2 , we find

∀t ∈ R, |u(t)| ≤ max(

√
3

ω2
,

3√
2γω

) lim
t→∞

|f(t)| (3.2)

By comparaison with the estimates in [10], we find that the result of theorem 2.1 is optimal
up to a factor K(ω, γ) = 3π

4
√

2
, if γ < 2ω and

√
3 if γ ≥ 2ω. More precisely, in [10]

the exact minimum global bound for solutions bounded on the whole line is given, and the
minimum turns out to be achieved on some periodic solutions (corresponding to a periodic
source term) for which the ultimate bound of course coincides with the global bound on R.

3.2 The case B = γAα, 0 ≤ α ≤ 1

We consider the equation
u′′ + γAαu′ + Au = f(t) (3.3)

In this case (cf. Proposition 5.4 )we have c = γλα
1 and C = γ

λ1−α

1

, then, by Theorem 2.1, we

have the following estimates

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t))| ≤ max(

√

3

λ1

,
3√

2γλα
1

) lim
t→∞

|f(t)| (3.4)

Considering the special case H = R , A = ω2I we conclude that this result is always
sharp up to a factor

√
3.

3.3 The case B = γI :

we consider the equation:

u′′ + γu′ + Au = f(t) (3.5)

Applying Theorem 2.1 to (3.5) with C = γ
λ1

and c = γ we find :

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t))| ≤ max(

√

3

λ1

,
3√
2γ

) lim
t→∞

|f(t)| (3.6)
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Remark 3.1. Let us compare our result on (3.6) with the estimates from [8].
In [8] it was shown that

lim
t→∞

‖u(t)‖ ≤
√

4

γ2
+

1

λ1

lim
t→∞

|f(t)|. (3.7)

If γ is fixed and λ1 → ∞ we have:

max(

√

3

λ1

,
3√
2γ

) =
3√
2γ

and
√

4

γ2
+

1

λ1

⋍

2

γ

therefore we find that (3.6) is worse than (3.7), hence Theorem 2.1 is weaker than the result
of [8] in this case.

If λ1 is fixed and γ → ∞ we have:

max(

√

3

λ1

,
3√
2γ

) =

√

3

λ1

and
√

4

γ2
+

1

λ1

⋍

√

1

λ1

therefore in this case Theorem 2.1 is also weaker than [8].

Let us determine the values of γ and λ1 for which condition (3.6) is better than (3.7).
To this end we can study the condition:

√

4
γ2 + 1

λ1

max(
√

3
λ1

, 3√
2γ

)
> 1

Therefore, we introduce:

g(γ, λ1) =

√

4 + γ2

λ1

max(
√

3γ2

λ1

, 3√
2
)

By setting r = γ√
λ1

, we obtain:

g(γ, λ1) = p(r) =

√
4 + r2

max(
√

3r2, 3√
2
)
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Introducing τ = r2, we have:

P (τ) =
4 + τ

max(9
2
, 3τ)

A simple calculation shows that

P (τ) > 1 ⇐⇒ τ ∈]
1

2
, 2[ ⇐⇒ r2 ∈]

1

2
, 2[ ⇐⇒ r ∈]

1√
2
,
√

2[.

Finally, we obtain that if γ ∈]
√

λ1

2
,
√

2λ1[, Theorem 2.1 improves the result of [8].

3.4 The case B = γA :

Let us consider the equation:

u′′ + γAu′ + Au = f(t) (3.8)

with γ > 0.

When we apply Theorem 2.1 to the equation (3.8) with C = γ and c = γλ1, we obtain
immediately:

Corollary 3.2. Any solution of (3.8) satisfies the following hypotheses:

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(

√

3

λ1

,
3√

2γλ1

) lim
t→∞

|f(t)| (3.9)

Remark 3.3. This result is new and was not obtained in [11].

3.5 The case B = γA
1

2

In this subsection we consider the so-called structural damping (cf [5, 6, 7] for the terminology
and main properties). Therefore we consider as in [12] the equation:

u′′ + γA
1

2 u′ + Au = f(t) (3.10)

with γ > 0.
If we apply theorem (2.1) with c = γ

√
λ1 and C = γ√

λ1

, we obtain

max( lim
t→∞

‖u(t)‖, lim
t→∞

|u′(t)|) ≤ max(

√

3

λ1

,
3√

2γ
√

λ1

) lim
t→∞

|f(t)| (3.11)

By comparaison with [12], we remark that (2.1) gives a weaker result. We shall now recover
the estimate on u from [12] in the case of large damping by a method introduced by C. Fitouri
(cf. [8]) which is less complicated than the method of [12].
We recall the main result from [12].
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Theorem 3.4. The bounded solution of (3.10) satisfies the estimate

∀t ∈ R, ‖u(t)‖ ≤ 1√
λ1

max(1,
2

γ
)‖f(t)‖L∞(R,H).

Proof. In the case of a small damping we refer to [2]. We now prove (3.4) when

γ ≥ 2 (3.12)

We choose the energy functional

Φ = |A 1

4 u′|2 + |A 3

4 u|2 + α(A
1

2 u′, A
1

2 u)

Then, we have:

Φ′ = (2A
1

2 u′, u′′ + Au) + α|A 1

2 u′|2 + α(Au, u′′)

= −2γ|A 1

2 u′|2 + α|A 1

2 u′|2 − γα(Au, A
1

2 u′) − α|Au|2 + (f, 2A
1

2 u′ + αAu)

= −α

2
(|A 1

2 u′|2 + α(Au, A
1

2 u′) + |Au|2) + (
3α

2
− 2γ)|A 1

2 u′|2 + (
α2

2
− γα)(Au, A

1

2 u′)

− α

2
|Au|2 + (f, 2A

1

2 u′ + αAu)

we set
Ψ = |A 1

2 u′|2 + α(Au, A
1

2 u′) + |Au|2

Then:

Φ′ = −α

2
Ψ + (

3α

2
− 2γ)|A 1

2 u′|2 + (
α2

2
− γα)(Au, A

1

2 u′) − α

2
|Au|2 + (f, 2A

1

2 u′ + αAu)

by using Young’s inequality, we obtain:

(f, 2A
1

2 u′ + αAu) ≤ α
2
|f |2 + 1

2α
(4|A 1

2 u′|2 + 4α(Au, A
1

2 u′) + α2|Au|2)

Therefore

Φ′ ≤ −α
2
Ψ + (3α

2
+ 2

α
− 2γ)|A 1

2 u′|2 + (α2

2
− γα + 2)(Au, A

1

2 u′) + α
2
|f |2

we remark that α = γ −
√

γ2 − 4 is a solution of the equation:

x2 − 2γx + 4 = 0, then:
α2

2
− γα + 2 = 0

we have also

2γ − 3α

2
− 2γ +

2

α
= α − γ < 0

13



then
Φ′ ≤ −α

2
Ψ +

α

2
|f |2

We have:

α = γ −
√

γ2 − 4 =
4

γ +
√

γ2 − 4
≤ 4

γ

then, from (3.12)

0 <
α2

4
≤ 4

γ2
< 1

We have

Ψ = |A 1

2 u′|2 + α(Au, A
1

2 u′) + |Au|2

= |A 1

4 (A
1

4 u′ +
α

2
A

3

4 u)|2 + (1 − α2

4
)|Au|2

≥
√

λ1|A
1

4 u′ +
α

2
A

3

4 u)|2 + (1 − α2

4
)|A 3

4 u|2

=
√

λ1Φ

Hence

Φ′ ≤ −α
√

λ1

2
Φ +

α

2
|f |2

since Φ is bounded, we have

∀t ∈ R, Φ(t) ≤ 1√
λ1

‖f(t)‖2
∞

which means

∀t ∈ R, |A 1

4 u′(t)|2 + |A 3

4 u(t)|2 + α(A
1

2 u(t), A
1

2 u′(t)) ≤ 1√
λ1

‖f(t)‖2
∞

Then

∀t ∈ R,
√

λ1|A
1

2 u(t)|2 +
α

2

d

dt
|A 1

2 u(t)|2 ≤ 1√
λ1

‖f(t)‖2
∞

Finally, since u is bounded in V on R, we obtain

∀t ∈ R, ‖u(t)‖ ≤ 1√
λ1

‖f(t)‖∞ (3.13)

Remark 3.5. By this method, we do not recover the estimate of u′ from [12] in the strongly
damped case γ > 2.
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4 Main examples

Let Ω be a bounded domain in R
N and γ > 0.

Example 4.1. We consider the following equation

{

utt − ∆u + γut = f

u/∂Ω = 0
(4.1)

Then, as a consequence of (3.5) we have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)
,

3√
2γ

)

lim
t→∞

|f(t)|

This result improves on [11] when
√

λ1(Ω)
2

< γ <
√

2λ1(Ω).

Example 4.2. We consider the equation

{

utt − ∆u − γ∆ut = f

u/∂Ω = 0
(4.2)

We have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)
,

3√
2γλ1(Ω)

)

lim
t→∞

|f(t)|

Example 4.3. We consider the equation

{

utt + ∆2u − γ∆ut = f

u = ∆u = 0 on ∂Ω
(4.3)

Then, we have for all mild solutions

lim
t→∞

{
∫

Ω

|∆u|2 dx

}
1

2

≤ 1

λ1(Ω)
max

(

1,
2

γ

)

lim
t→∞

|f(t)|

This follows from Theorem 3.4 since here λ1(A) = λ1(Ω)2

Example 4.4. We consider the equation

{

utt + ∆2u − γ∆ut = f

u = |∇u| = 0 on ∂Ω
(4.4)
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Then, we shall establish

lim
t→∞

{
∫

Ω

|∆u|2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)λ1(A)
,

3√
2γλ1(Ω)

)

lim
t→∞

|f(t)|

Indeed, in this example, we have

B = −γ∆ : H1
0 → H−1; A = ∆2

with domain
D(A) = {u ∈ H2(Ω)| u = |∇u| = 0 on ∂Ω}

and
cI ≤ B ≤ CA,

with
c = γλ1(Ω)

To get an estimate for C we observe that

(Bv, v) = γ

∫

Ω

‖∇u‖2 dx

= −γ

∫

Ω

∆v.v dx

= γ(

∫

Ω

|∆v|2 dx)
1

2 (

∫

Ω

|v|2 ds)
1

2

=
γ

λ1(A)
(

∫

Ω

|∆v|2 dx)

=
γ

λ1(A)
(Av, v)

Therefore, we can take C ≤ γ
λ1(A)

and this shows the claim.

Remark 4.5. Actually, since we used a Cauchy-Schwarz inequality for two linearly indepen-
dent functions it is clear that the optimal value of C is striclly less than γ

λ1(A)
. More precisely

to obtain the optimum we need to evaluate

µ = inf

{

∫

Ω
|∆v|2 dx

∫

Ω
|∇v|2 dx

, v ∈ H2
0 (Ω), v 6= 0

}

= inf

{
∫

Ω

|∆v|2 dx, v ∈ H2
0 (Ω),

∫

Ω

|∇v|2 = 1

}

By the Lagrange multiplier theory, there is v 6= 0 such that

{

∆2v = −µ∆v

v ∈ H2
0 (Ω)
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with
∆v ∈ L2(Ω)

and
−(∆ + µ)(∆v) = 0

Then we have C = 1
µ
. To illustrate this we consider the one dimensional case.

Proposition 4.6. If N = 1, Ω = (0, π) then C = 1
4
.

Proof. In order to compute C we need to find the minimal value of µ when

u(4) = −µu′′, u ∈ H2
0 (0, π)

Then, setting λ =
√

µ, we have

u = c1x + c2 + c3 cos(λx) + c4 sin(λx)

u′ = c1 − λc3 sin(λx) + λc4 cos(λx)

0 = c2 + c3

0 = c1π + c2 + c3 cos(πλ) + c4 sin(πλ)

0 = c1 + λc4

0 = c1 − λc3 sin(λπ) + λc4 cos(λπ)

c4 = −c3 sin(πλ) + c4 cos(πλ)

c4(1 − cos(πλ) = −c3 sin(πλ)

We distinguish 3 possibilities.

case 1: If sin(πλ) = 0 and cos(πλ) 6= 1 (= −1) then

c4 = 0 =⇒ c1 = 0, c2 = −c3 cos(πλ) = c3 =⇒ c2 = c3 = 0

then u ≡ 0 and this case is excluded.

case 2: If sin(πλ) = 0 and cos(πλ) = 1 =⇒ λ = 2k, k ∈ N

then
0 = c1π + c2 + c3 = c2 + c3 =⇒ c1 = 0

and

c4 = −1

λ
c1 = 0.

Therefore u = c2(1 − cos(2kx)) = 2c2 sin2 kx. In this case µ = 4k2 and therefore µ ≥ 4.

17



case 3: If sin(πλ) 6= 0, then

2c4 sin2(
πλ

2
) = −2c3 sin(

πλ

2
) cos(

πλ

2
)

hence

c3 = −c4 tan(
πλ

2
) c2 = −c3, c1 = −λc4.

and

−λπc4 + c4 tan(
πλ

2
) − c4 cos(πλ) tan(

πλ

2
) + c4 sin(πλ) = 0.

If c4 = 0, then u = 0.

If c4 6= 0, we can reduce to c4 = 1, then we find

tan(
πλ

2
)(1 − cos(πλ) + 2 cos2(

πλ

2
)) = λπ ⇐⇒ 2 tan(

πλ

2
) = λπ ⇐⇒ tan(

πλ

2
) =

πλ

2

Therefore
πλ

2
> π =⇒ λ > 2

and
µ = λ2 > 4.

Summarizing the 3 cases we conclude that the minimal possible value of µ is 4.

Corollary 4.7. Any mild solution u of

{

utt + uxxxx − γuxxt = f

u(t, 0) = u(t, π) = ux(t, 0) = ux(t, π) = 0
(4.5)

satisfies the asymptotic bound:

lim
t→∞

{
∫

Ω

|uxx|2 dx

}
1

2

≤ max

(
√

3

2
,

3√
2γ

)

lim
t→∞

|f(t)| (4.6)
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5 Additional results

5.1 The first eigenvalue of a square root.

At several places in this paper we used implicitely the property

λ1(A
1

2 ) = (λ1(A))
1

2

where A is a self-adjoint coercive operator. This property is obvious when A has compact
inverse, but it is natural to ask what happens in general. In the next subsection we shall
derive a similar property for any positive power of A, but in the case of square roots an
easier proof can be given. The result is as follows

Proposition 5.1. Let A be as the introduction. Then A
1

2 is also coercive and λ1(A
1

2 ) =

(λ1(A))
1

2 .

The proof of this proposition relies on 2 simple lemmas :

Lemma 5.2. Let B ∈ L(H) be symmetric and nonnegative. Then we have

‖B2‖ = ‖B‖2

∀v ∈ H, |Bv|2 ≤ ‖B‖(Bv, v)

Proof. First we have B2 ∈ L(H) and ‖B2‖ ≤ ‖B‖2. The reverse inequality is also immediate
since

|Bu|2 = (B2u, u) ≤ ‖B2‖|u|2

Finally we have for any v ∈ H

|Bv|2 = |B 1

2 (B
1

2 v)|2 ≤ ‖B 1

2‖2|B 1

2 v|2 = ‖B‖(Bv, v)

Lemma 5.3. Let A be a self-adjoint, positive, coercive operator. Then

λ1(A) =
1

‖A−1‖

Proof. By definition it is clear that

λ1(A) =
1

‖A− 1

2‖2

Then the result follows from the previous Lemma.
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Proof of Proposition 5.1. We first show that A
1

2 is coercive. Actually A
1

2 ∈ L(V, H)
is clearly injective. Moreover for any h ∈ H , there is u ∈ D(A) with Au = h. But

then v = A
1

2 u ∈ V and A
1

2 v = h. Hence A
1

2 ∈ L(V, H) is onto and by Banach Theorem,

A− 1

2 ∈ L(H,V ). By Lemma 5.2 we find that that A
1

2 is coercive. Then λ1(A
1

2 ) = 1

‖A−
1
2 ‖

and

the result follows from a last application of Lemma 5.2

5.2 The first eigenvalue of a fractional power.

Let A be a self-adjoint coercive operator. The fractional power Aα with α ∈ (0, 1) is defined
as the inverse of the operator

A−α =
sin(πα)

π

∫ ∞

0

t−α(tI + A)−1dt

with domain equal to the range of A−α. D(Aα) is also the closure of D(A) under the semi-
norm pα(u) := |Aα(u)| (cf. e.g. [2, 13]).
We now generalize Proposition 5.1 to any positive power by relying on the above formula.

Proposition 5.4. For any α ∈ (0, 1), Aα is also coercive and λ1(A
α) = (λ1(A))α.

Proof. By homogeneity it is clearly sufficient to establish the result when λ1(A) = 1 Then
applying the result to A1 = λ1(A)−1

A gives the general case. First we show that

λ1(A) = 1 =⇒ λ1((A
α) ≥ 1

Indeed we have

‖A−α‖ ≤ sin(πα)

π

∫ ∞

0

t−α‖(tI + A)−1‖dt ≤ sin(πα)

π

∫ ∞

0

t−α(t + 1)−1dt = 1

and then Lemma 5.3 gives the result. Now we have for any u ∈ D(A)

(Au, u) = (AαA1−αu, u) = (AαAβu, Aβu)

with β = 1−α
2

. Hence

(Au, u) ≥ λ1(A
α)|Aβu, Aβu|2 = λ1(A

α)(A1−αu, u) ≥ λ1(A
α)λ1(A

1−α)|u|2

Then
1 = λ1(A) ≥ λ1(A

α)λ1(A
1−α)

Finally
λ1(A

α) = λ1(A
1−α) = 1
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5.3 The relationship between the two main results.

In Remark 2.3 we said that when B is linear and self-adjoint, the two inequalities (1.3) and
(2.2) are equivalent. This is a consequence of the following

Proposition 5.5. Let A be as the introduction and ∈ L(V, V ′) be symmetric and nonnega-

tive. Then the 3 following conditions are equivalent

‖B‖L(V,V ′) ≤ C (5.1)

B ≤ CA (5.2)

∀u ∈ V, ‖Bu‖2
∗ ≤ C〈Bu, u〉 (5.3)

Proof. We proceed in 3 steps

1) Proof of (5.1) =⇒ (5.2). Assuming (5.1) we have

∀u ∈ V, 〈Bu, u〉 ≤ ‖B‖L(V,V ′)‖u‖ ≤ C‖u‖2 = C〈Au, u〉

Hence B ≤ CA.

2) Proof of (5.3) =⇒ (5.1). Assuming (5.3) we have

∀u ∈ V, ‖Bu‖2
∗ ≤ C〈Bu, u〉 ≤ C‖Bu‖∗‖u‖

Hence, either Bu = 0 or ‖Bu‖∗ ≤ C‖u‖ and we have (5.1).

3) Proof of (5.2) =⇒ (5.3). Since B ≥ 0 we have

∀(u, v) ∈ V × V, 〈Bu, v〉2 ≤ 〈Bu, u〉〈Bv, v〉
In this formula we choose v = A−1(Bu) Then

〈Bu, v〉 = 〈Bu, A−1(Bu)〉 = ‖A−1Bu‖2 = ‖Bu‖2
∗

so that we find

‖Bu‖4
∗ ≤ 〈Bu, u〉〈BA−1(Bu), A−1(Bu)〉 ≤ C〈Bu, u〉〈AA−1(Bu), A−1(Bu)〉

by using (5.2). Now

〈Bu, u〉〈AA−1(Bu), A−1(Bu) = 〈Bu, u〉‖A−1(Bu)‖2 = ‖Bu‖2
∗〈Bu, u〉

and if Bu 6= 0 we obtain (5.1) on dividing through by ‖Bu‖2
∗.
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Remark 5.6. For a general positive operator the conditions are not equivalent . For instance
take V = H = C and for some α > 0, β ∈ R

∀v ∈ V, Bv = (α + iβ)v

In this case we have
‖B‖ = (α2 + β2)

1

2

∀v ∈ V, (Bv, v) = α|v|2

so that the optimal value of C in (5.2) is α. The optimal value of C in (5.3) is α2+β2

α
. As

soon as β 6= 0 we have

α < (α2 + β2)
1

2 <
α2 + β2

α

and therefore the three constants are all different.

5.4 Some more examples.

Sometimes Theorem 2.1 can be applied to equations in unbounded domains. For brevity we
give only 2 typical examples

Example 5.7. Let Ω be a possibly unbounded domain in R
N and m > 0, γ > 0. We consider

the following equation
{

utt − ∆u + mu + γut = f

u/∂Ω = 0
(5.4)

Then, as a consequence of (3.5) we have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

m|u|2 + ‖∇u‖2 dx

}
1

2

≤ max

(

√

3

m + λ1(Ω)
,

3√
2γ

)

lim
t→∞

|f(t)|

Example 5.8. Let Ω be a bounded domain in R
N and γ > 0. We consider the cylinder

C = Ω × R and the following equation in R
+ × C

{

utt − ∆u + γut = f

u/∂C = 0
(5.5)

Then, as a consequence of (3.5), since A = −∆ is coercive in C with λ1(C) = λ1(Ω)we
have the following result valid for all mild solutions

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3

λ1(Ω)
,

3√
2γ

)

lim
t→∞

|f(t)|
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We conclude this section by giving 2 examples of application for Theorem 1.1 and The-
orem 2.1: a case where B is not selfadjoint and a case where B is non linear.

Example 5.9. Let V = H = C. Then any solution u of the ODE

u′′ + u + (α + iβ)u′ = f (5.6)

satisfies

max( lim
t→∞

|u(t)|, lim
t→∞

|u′(t)|) ≤ max(
√

12

√

1 +
β2

α2
,
3

α
) lim

t→∞
|f(t)|

We did not investigate how close from optimality this estimate is.

Example 5.10. Let Ω be a bounded domain in R
N and γ > 0. We consider the following

equation
{

utt − ∆u + α(t, x)u+
t − β(t, x)u−

t = f

u/∂Ω = 0
(5.7)

where α, β ∈ C1(R+, C0(Ω) are nonnegative functions with

0 < a ≤ min(α(t, x), β(t, x)) ≤ max(α(t, x), β(t, x)) ≤ A.

It is tempting to apply Theorem 1.1 in this situation. However it is better to use Theorem
2.1 as follows. First we can approach the solutions by strong solutions with f replaced by a
smooth function with a smaller or equal L2(Ω)-ultimate bound. For such a solution we can
write

α(t, x)u+
t − β(t, x)u−

t = B(t, x)ut

where
B(t, x) = α(t, x)χ(ut > 0) − β(t, x)χ(ut ≤ 0)

is a multiplication operator. Then, as a consquence of Theorem 2.1 we find

lim
t→∞

{
∫

Ω

‖∇u‖2 dx

}
1

2

≤ max

(

√

3A

aλ1(Ω)
,

3

a
√

2

)

lim
t→∞

|f(t)|

We skip the details.
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