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Sharp ultimate bounds of solutions to a class of second order linear evolution equations with bounded forcing term

We establish a precise estimate of the ultimate bound of solutions to some second order evolution equations with possibly unbounded linear damping and bounded forcing term.

Introduction

Let H be a real Hilbert space. In the sequel we denote by (u, v) the inner product of two vectors u, v in H and by |u| the H-norm of u. Given f ∈ L ∞ (R, H), we consider the second order evolution equation with possibly unbounded and time-dependent damping operator B:

u

′′ + Au + Bu ′ = f (t) (0.1)
where A is a fixed linear, self-adjoint and positive operator in H. We assume that the domain of A is dense in H and A is coercive, in other terms:

∃λ > 0, ∀u ∈ D(A), (Au, u) ≥ λ|u| 2 . (0.2)
Obviously the set of λ satisfying (0.2) is closed. For our purpose the best possible is the largest one, ie. λ = inf u∈D(A),|u|=1

(Au, u) =: λ 1 (A).

We introduce V = D(A

2 ) endowed with the norm given by

∀u ∈ V, u = |A 1 2 u|.
This norm defined on V is equivalent to the graph norm of A 1 2 as a result of the coerciveness hypothesis on A.

In the sequel, B : V → V ′ may be a time-dependent continuous operator. When B is linear and time-independent, we write (0.1) in the following form:

U ′ + LU = F (t) (0.3) with U = (u, u ′ ), L = 0 -I A B and F = (0, f ). If B ∈ L(V, V ′ ) satisfies Bv, v ≥ 0 ∀v ∈ V
then it is not difficult to check (cf.e.g. [START_REF] Aloui | Compactness of trajectories to some nonlinear second order evolution equations and applications[END_REF][START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert North-Holland Mathematics Studies[END_REF][START_REF] Brezis | Equations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF]) that L is a maximal monotone operator with dense domain D(L) = {(u, v) ∈ V × V, Au + Bv ∈ H} in V × H. Then, by Hille -Yosida's Theorem (cf.e.g. [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert North-Holland Mathematics Studies[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), L generates a C 0 contraction semi-group S(t) that insures the existence and uniqueness of a mild solution u ∈ C(R + , V ) ∩ C 1 (R + , H) to (0.1) on R + for any pair of initial data u 0 = u(0) ∈ V ; u 1 = u ′ (0) ∈ H. Moreover, the two following properties are equivalent cf [START_REF] Haraux | Uniform decay and Lagrange stability for linear contraction semi-groups[END_REF]:

1) S(t) is exponentially damped on V ×H which means that for some constants

M ≥ 1, δ > 0 ∀t ≥ 0, S(t) L(H) ≤ M exp(-δt) 2) ∀F ∈ L ∞ (R + , H), any solution of (0.3) is bounded in V × H for t ≥ 0 .
In addition in this case we have

lim t→∞ U (t) ≤ M δ lim t→∞ F (t) H
In applications to infinite or even finite dimensional second order equations, this method does not give the best possible estimate because it is not easy to optimize on M and δ. This was already observed in [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF] and [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF] where precise estimates of lim t→∞ U (t) were given in the case of (0.1) with B = cI or B = cA

1 2 .
The main objective of this paper is to generalize the results of [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF][START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF] for B time independent and improve some of the results in the specific cases B = cI andB = cA 1 2 . We shall consider also the case B = cA which was not studied before.

The plan of the paper is the following: section 1 contains an improvement of the main result from [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF] in the general case B = β(t). Section 2 is devoted to the case where B = B(t) is linear and self-adjoint. Section 3 gives the precise statements when B = cA α with a special treatment in the case B = B 0 = cA 1 2 and Section 4 is devoted to the main concrete applications of Theorem 2.1. Finally Section 5 is devoted to slightly different examples and some additional remarks.

An ultimate bound valid for general time-dependent damping terms

We consider the equation:

u ′′ + β(t)u ′ + Au = f (t) (1.1)
where t ∈ R + . For this equation, we improve some general estimates obtained in [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF] when

β(t) : R + → C(V, V ′
) is a measurable family of possibly nonlinear continuous operators which satisfies the two hypotheses:

∃c > 0, ∀t ∈ R + , ∀v ∈ V, β(t)v, v ≥ c|v| 2 . (1.2) ∃C > 0, ∀t ∈ R + , ∀v ∈ V, β(t)v 2 * ≤ C β(t)v, v . (1.3)
It is immediate (cf. e.g. [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF]) that c ≤ Cλ 1 where λ 1 = λ 1 (A). Our main result is the following

Theorem 1.1. For any solution u ∈ W 1,∞ loc (R + , V ) ∩ W 2,∞ loc (R + , H) of (1.1)
we have the estimate :

max( lim t→∞ u(t) , lim t→∞ |u ′ (t)|) ≤ max( √ 12 C c , 3 c ) lim t→∞ |f (t)| (1.4)
Proof. For simplicity of the formulas, we drop the variable t whenever possible and we denote by z ′ the time derivative of a (scalar or vector) time-dependent function z. We consider for some α > 0 to be chosen later the following modified energy functional:

Φ = |u ′ | 2 + u 2 + α(u, u ′ ) - α 2 4 |u| 2 .
Then

Φ ′ = -2 βu ′ , u ′ + α|u ′ | 2 -α u 2 -α βu ′ , u + f, 2u ′ + αu - α 2 2 (u, u ′ ) = - α 2 (|u ′ | 2 + u 2 + α(u, u ′ )) -2 βu ′ , u ′ + 3α 2 |u ′ | 2 - α 2 u 2 -α βu ′ , u + f, 2u ′ + αu we set Ψ = |u ′ | 2 + u 2 + α(u, u ′ ) ≥ Φ.
Then, by using (1.2), we have:

Φ ′ ≤ - α 2 Φ - 1 2 βu ′ , u ′ -( 3c 2 - 3α 2 )|u ′ | 2 - α 2 u 2 -α βu ′ , u + f, 2u ′ + αu we have, from (1.3): | βu ′ , u | ≤ √ C βu ′ , u ′ 1 2
u By using Young's inequality we deduce :

|α βu ′ , u | ≤ αC βu ′ , u ′ + α u 2 4
Assuming αC ≤ 1 2 , then:

Φ ′ + α 2 Φ ≤ - 3 2 (c -α)|u ′ | 2 + 2 f, u ′ - α 4 u 2 + α f, u Assuming 3 2 (c -α) ≥ 1 2 c, then α ≤ 2 3 c.
We have, by using Young's inequality:

- 3 2 (c -α)|u ′ | 2 + 2 f, u ′ ≤ - c 2 |u ′ | 2 + 2 f, u ′ ≤ 2 c |f | 2 Moreover α f, u ≤ α √ λ 1 |f | u
Therefore, by Young's inequality:

- α 4 u 2 + α f, u ≤ α(- u 2 4 + 1 √ λ 1 |f | u ) ≤ α λ 1 |f | 2 ≤ αC c |f | 2 ≤ 1 2c |f | 2 Then Φ ′ + α 2 Φ ≤ 5 2c |f | 2
Then, we find that Φ is bounded with:

lim t→∞ Φ(t) ≤ 5 cα lim t→∞ |f (t)| 2 .
Moreover, we have:

-α(u, u ′ ) ≤ |u ′ | 2 + α 2 4 |u| 2 
We set

F = lim t→∞ |f (t)| 2 .
In particular for any ǫ > 0 we have for t large enough

(1 - α 2 2λ 1 ) u(t) 2 ≤ u(t) 2 - α 2 2 |u(t)| 2 ≤ Φ(t) ≤ 5 cα F + ǫ 2 .
Now since α ≤ 2 3 c and α ≤ 1 2C , we have

α 2 2λ 1 ≤ c 6λ 1 C ≤ 1 6
Then we find lim

t→∞ u(t) 2 ≤ 6 cα F + 2ǫ Finally, by choosing α = inf( 2 3 c, 1 
2C ), we obtain by letting ǫ → 0:

lim t→∞ u(t) ≤ max( 12C c , 3 c ) lim t→∞ |f (t)|.
In order to estimate u ′ , observe that for t large enough:

|u ′ (t)| 2 + λ 1 |u(t)| 2 + α(u, u ′ ) - α 2 4 |u(t)| 2 ≤ 5 cα F + ǫ 2 Since α ≤ 2 3 c ≤ c and α ≤ 1 2C ≤ λ 1 2c , then α 2 ≤ αc ≤ λ 1 2 .
Consequently for t large enough

5 6 |u ′ (t)| 2 + 2α 2 |u(t)| 2 + 1 6 |u ′ (t)| 2 + α(u, u ′ ) - α 2 4 |u(t)| 2 ≤ 5 cα F + ǫ 2 In other terms 5 6 |u ′ (t)| 2 + α 2 4 |u(t)| 2 + | 1 √ 6 u ′ + √ 3 √ 2 αu| 2 ≤ 5 cα F + ǫ 2 Then: lim t→∞ |u ′ (t)| 2 ≤ 6 cα F + 2ǫ Also assuming α = inf( 1 2C , 2 3 
c) and letting ǫ → 0, we have:

lim t→∞ |u ′ (t)| ≤ max( 12C c , 3 c ) lim t→∞ |f (t)|. Remark 1.2. If β(t) = B 0 ∈ L(V, V ′ ), it is well known that the conditions (u 0 , u 1 ) ∈ D(A) × V and f ∈ C 1 (R + , V ) imply u ∈ C 1 (R + , V ) ∩ C 2 (R + , H)
. By density on (u 0 , u 1 , f ) we obtain easily the following

Corollary 1.3. Let β(t) = B 0 ∈ L(V, V ′ ). In this case any mild solution u ∈ C(R + , V ) ∩ C 1 (R + , H) of (1.1) satisfies (1.4).
Remark 1.4. In [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF], the following estimate was established sup{ lim

t→∞ u(t) , lim t→∞ |u ′ (t)|)} ≤ √ 3(C + 4 c ) lim t→∞ |f (t)| (1.5) Since 12C c ≤ √ 12 4 (C + 4 c ) = √ 3 2 (C + 4 c ) and 3 c ≤ 3 4 (C + 4 c ) ≤ √ 3 2 (C + 4 c ),
we can see that Theorem 1.1 improves the estimate (1.5) by a factor 2 for all values of c and

C. Moreover if C → ∞ with C c bounded, max( 12C c , 3 c
) remains bounded and (C + 4 c ) tends to infinity, therefore (1.4) improves (1.5) by an arbitrarily large amount. A typical case is :

β = cB 0 with c → ∞ since then C c is fixed and C → ∞.
2 The case of a linear self-adjoint damping operator

In this section, we study the equation (0.1) where B : R + -→ L(V, V ′ ) is a self-adjoint and possibly unbounded operator and satisfies the following hypotheses:

∃c > 0, ∀t ∈ R + , ∀v ∈ V, B(t)v, v ≥ c|v| 2 (2.1) ∃C > 0, ∀t ∈ R + , ∀v ∈ V, B(t)v, v ≤ C Av, v (2.2) 
The following result, will give close to optimal estimates even when B is independent of time.

Theorem 2.1.

Any solution u ∈ W 1,∞ loc (R + , V ) ∩ W 2,∞ loc (R + , H
) of (0.1) satisfies the following estimate:

max( lim t→∞ u(t) , lim t→∞ |u ′ (t)|) ≤ max( 3C c , 3 √ 2c ) lim t→∞ |f (t)| (2.3) Proof. Considering again the energy functional Φ = |u ′ | 2 + u 2 + α(u, u ′ ) -α 2
4 |u| 2 we find:

Φ ′ = -2|B 1 2 u ′ | 2 + α|u ′ | 2 -α u 2 -α(Bu ′ , u) + (f, 2u ′ + αu) - α 2 2 (u, u ′ ) = - α 2 Ψ -(2 - 3α 2c )|B 1 2 u ′ | 2 - α 2 u 2 -α(Bu ′ , u) + (f, 2u ′ + αu) ≤ - α 2 Φ -(2 - 3α 2c )|B 1 2 u ′ | 2 - α 2 u 2 -α(Bu ′ , u) + (f, u ′ + αu) + (f, u ′ ) where Ψ = |u ′ | 2 + u 2 + α(u, u ′ ) ≥ Φ. By (2.1
) and Young's inequality, we have

(f, u ′ ) ≤ 1 2c |f | 2 + c 2 |u ′ | 2 ≤ 1 2c |f | 2 + 1 2 |B 1 2 u ′ | 2
Therefore by using (2.2), we obtain

Φ ′ ≤ - α 2 Φ -( 3 2 - 3α 2c )|B 1 2 u ′ | 2 - α 2C |B 1 2 u| 2 -α(Bu ′ , u) + 1 2c |f | 2 + (f, u ′ + αu) Assuming 3 2 - 3α 2c ≥ 1 2 and α 2 ≤ α C which means α ≤ 2 3 c and α ≤ 1 C we deduce Φ ′ ≤ - α 2 Φ - 1 2 |B 1 2 u ′ | 2 - α 2 2 |B 1 2 u| 2 -α(Bu ′ , u) + 1 2c |f | 2 + (f, u ′ + αu) ≤ - α 2 Φ - 1 2 |B 1 2 (u ′ + αu)| 2 + 1 2c |f | 2 + (f, u ′ + αu)
By using (2.1), we find

Φ ′ ≤ - α 2 Φ - c 2 |u ′ + αu| 2 + 1 2c |f | 2 + (f, u ′ + αu)
By using Young's inequality in the last term, we have

(f, u ′ + αu) ≤ 1 2c |f | 2 + c 2 |u ′ + αu| 2 Then Φ ′ ≤ - α 2 Φ + 1 c |f | 2
Then we find that Φ is bounded with

lim t→∞ Φ(t) ≤ 2 cα lim t→∞ |f (t)| 2
By setting F = lim t→∞ |f (t)| 2 we see that for t large enough and any ǫ > 0

|u ′ (t)| 2 + u(t) 2 + α(u(t), u ′ (t)) - α 2 4 |u(t)| 2 ≤ 2 cα F + ǫ 2
In other terms

u(t) 2 + |u ′ (t) + α 2 u(t)| 2 - α 2 2 |u(t)| 2 ≤ 2 cα F + ǫ 2 By using α ≤ 2
3 c and (2.1), we obtain for t large enough:

u(t) 2 - α 3 |B 1 2 u(t)| 2 ≤ 2 cα F + ǫ 2 now using α ≤ 1 C and (2.
2), for t large enough we obtain :

u(t) 2 ≤ 3 αc F + 2ǫ
Finally by selecting α = inf( 2 3 c, 1 C )and letting ǫ → 0 we find :

lim t→∞ u(t) ≤ max( 3C c , 3 √ 2c ) lim t→∞ |f (t)|
In order to estimate u ′ , for t large enough by using (0.2)

2 3 |u ′ (t)| 2 + λ 1 |u(t)| 2 + α(u(t), u ′ (t)) + 1 3 |u ′ (t)| 2 - α 2 4 |u(t)| 2 ≤ 2 cα F + ǫ 2 Since α ≤ 2 3 c ≤ c and α ≤ 1 C ≤ λ 1 c , we have α 2 ≤ αc ≤ λ 1 .
Therefore, for t large enough:

2 3 |u ′ (t)| 2 + α 2 |u(t)| 2 + α(u(t), u ′ (t)) + 1 3 |u ′ (t)| 2 - α 2 4 |u(t)| 2 ≤ 2 cα F + ǫ 2 
Then, for t large enough

2 3 |u ′ (t)| 2 + 3α 2 4 |u(t)| 2 + α(u(t), u ′ (t)) + 1 3 |u ′ (t)| 2 ≤ 2 cα F + ǫ 2
In other terms

2 3 |u ′ (t)| 2 + | √ 3 2 αu(t) + 1 √ 3 u ′ (t)| 2 ≤ 2 cα F + ǫ 2 
Hence, for t large enough 3 Applications when B = γA α , 0 ≤ α ≤ 1

|u ′ (t)| 2 ≤ 3 αc F + 2ǫ
In this section we consider the case of a time independent self-adjoint B proportional to some positive power of A. In order to garantee exponential damping of the associated semi-group the power will be taken ≤ 1.

3.3

The case B = γI :

we consider the equation:

u ′′ + γu ′ + Au = f (t) (3.5)
Applying Theorem 2.1 to (3.5) with C = γ λ 1 and c = γ we find :

max( lim t→∞ u(t) , lim t→∞ |u ′ (t))| ≤ max( 3 λ 1 , 3 √ 2γ ) lim t→∞ |f (t)| (3.6) Remark 3.1.
Let us compare our result on (3.6) with the estimates from [START_REF] Fitouri | Sharp estimates of bounded solutions to some semilinear second order dissipative equations[END_REF].

In [START_REF] Fitouri | Sharp estimates of bounded solutions to some semilinear second order dissipative equations[END_REF] it was shown that

lim t→∞ u(t) ≤ 4 γ 2 + 1 λ 1 lim t→∞ |f (t)|. (3.7)
If γ is fixed and λ 1 → ∞ we have:

max( 3 λ 1 , 3 √ 2γ ) = 3 √ 2γ and 4 γ 2 + 1 λ 1 ⋍ 2
γ therefore we find that (3.6) is worse than (3.7), hence Theorem 2.1 is weaker than the result of [START_REF] Fitouri | Sharp estimates of bounded solutions to some semilinear second order dissipative equations[END_REF] in this case.

If λ 1 is fixed and γ → ∞ we have:

max( 3 λ 1 , 3 √ 2γ ) = 3 λ 1 and 4 γ 2 + 1 λ 1 ⋍ 1
λ 1 therefore in this case Theorem 2.1 is also weaker than [START_REF] Fitouri | Sharp estimates of bounded solutions to some semilinear second order dissipative equations[END_REF].

Let us determine the values of γ and λ 1 for which condition (3.6) is better than (3.7).

To this end we can study the condition:

4 γ 2 + 1 λ 1 max( 3 λ 1 , 3 √ 2γ ) > 1 
Therefore, we introduce:

g(γ, λ 1 ) = 4 + γ 2 λ 1 max( 3γ 2 λ 1 , 3 √ 
2 ) By setting r = γ √ λ 1 , we obtain:

g(γ, λ 1 ) = p(r) = √ 4 + r 2 max( √ 3r 2 , 3 √ 2 )
Introducing τ = r 2 , we have: 92 , 3τ ) A simple calculation shows that

P (τ ) = 4 + τ max(
P (τ ) > 1 ⇐⇒ τ ∈] 1 2 , 2[ ⇐⇒ r 2 ∈] 1 2 , 2[ ⇐⇒ r ∈] 1 √ 2 , √ 2[. Finally, we obtain that if γ ∈] λ 1 2 , √ 2λ 1 [, Theorem 2.
1 improves the result of [START_REF] Fitouri | Sharp estimates of bounded solutions to some semilinear second order dissipative equations[END_REF].

3.4

The case B = γA :

Let us consider the equation:

u ′′ + γAu ′ + Au = f (t) (3.8)
with γ > 0.

When we apply Theorem 2.1 to the equation (3.8) with C = γ and c = γλ 1 , we obtain immediately:

Corollary 3.2. Any solution of (3.8) satisfies the following hypotheses:

max( lim t→∞ u(t) , lim t→∞ |u ′ (t)|) ≤ max( 3 λ 1 , 3 √ 2γλ 1 ) lim t→∞ |f (t)| (3.9)
Remark 3.3. This result is new and was not obtained in [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF].

3.5

The case B = γA

1 2
In this subsection we consider the so-called structural damping (cf [START_REF] Chen | A mathematical model for elastic systems with structural damping[END_REF][START_REF] Chen | Proof of extensions of two conjectures on structural damping for elastic systems[END_REF][START_REF] Chen | Russell on Structural Damping for Elastic Systems[END_REF] for the terminology and main properties). Therefore we consider as in [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF] the equation:

u ′′ + γA 1 2 u ′ + Au = f (t) (3.10) with γ > 0. If we apply theorem (2.1) with c = γ √ λ 1 and C = γ √ λ 1 , we obtain max( lim t→∞ u(t) , lim t→∞ |u ′ (t)|) ≤ max( 3 λ 1 , 3 √ 2γ √ λ 1 ) lim t→∞ |f (t)| (3.11)
By comparaison with [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF], we remark that (2.1) gives a weaker result. We shall now recover the estimate on u from [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF] in the case of large damping by a method introduced by C. Fitouri (cf. [START_REF] Fitouri | Sharp estimates of bounded solutions to some semilinear second order dissipative equations[END_REF]) which is less complicated than the method of [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF]. We recall the main result from [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF].

then

Φ ′ ≤ - α 2 Ψ + α 2 |f | 2
We have:

α = γ -γ 2 -4 = 4 γ + γ 2 -4 ≤ 4 γ then, from (3.12) 0 < α 2 4 ≤ 4 γ 2 < 1 We have Ψ = |A 1 2 u ′ | 2 + α(Au, A 1 2 u ′ ) + |Au| 2 = |A 1 4 (A 1 4 u ′ + α 2 A 3 4 u)| 2 + (1 - α 2 4 )|Au| 2 ≥ λ 1 |A 1 4 u ′ + α 2 A 3 4 u)| 2 + (1 - α 2 4 )|A 3 4 u| 2 = λ 1 Φ Hence Φ ′ ≤ - α √ λ 1 2 Φ + α 2 |f | 2 since Φ is bounded, we have ∀t ∈ R, Φ(t) ≤ 1 √ λ 1 f (t) 2 ∞ which means ∀t ∈ R, |A 1 4 u ′ (t)| 2 + |A 3 4 u(t)| 2 + α(A 1 2 u(t), A 1 2 u ′ (t)) ≤ 1 √ λ 1 f (t) 2 ∞ Then ∀t ∈ R, λ 1 |A 1 2 u(t)| 2 + α 2 d dt |A 1 2 u(t)| 2 ≤ 1 √ λ 1 f (t) 2 ∞ Finally, since u is bounded in V on R, we obtain ∀t ∈ R, u(t) ≤ 1 √ λ 1 f (t) ∞ (3.13) 
Remark 3.5. By this method, we do not recover the estimate of u ′ from [START_REF] Haraux | Sharp estimates of bounded solutions to a second-order forced equation with structural damping[END_REF] in the strongly damped case γ > 2.

Main examples

Let Ω be a bounded domain in R N and γ > 0.

Example 4.1. We consider the following equation

u tt -∆u + γu t = f u /∂Ω = 0 (4.1)
Then, as a consequence of (3.5) we have the following result valid for all mild solutions

lim t→∞ Ω ∇u 2 dx 1 2 ≤ max 3 λ 1 (Ω) , 3 √ 2γ lim t→∞ |f (t)|
This result improves on [START_REF] Haraux | Sharp estimates of bounded solutions to some second-order forced dissipative equations[END_REF] when

λ 1 (Ω) 2 < γ < 2λ 1 (Ω).
Example 4.2. We consider the equation

u tt -∆u -γ∆u t = f u /∂Ω = 0 (4.2)
We have the following result valid for all mild solutions

lim t→∞ Ω ∇u 2 dx 1 2 ≤ max 3 λ 1 (Ω) , 3 √ 2γλ 1 (Ω) lim t→∞ |f (t)|
Example 4.3. We consider the equation

u tt + ∆ 2 u -γ∆u t = f u = ∆u = 0 on ∂Ω (4.3)
Then, we have for all mild solutions

lim t→∞ Ω |∆u| 2 dx 1 2 ≤ 1 λ 1 (Ω) max 1, 2 γ lim t→∞ |f (t)|
This follows from Theorem 3.4 since here λ 1 (A) = λ 1 (Ω) 2

Example 4.4. We consider the equation

u tt + ∆ 2 u -γ∆u t = f u = |∇u| = 0 on ∂Ω (4.4)
Then, we shall establish

lim t→∞ Ω |∆u| 2 dx 1 2 ≤ max 3 λ 1 (Ω)λ 1 (A) , 3 √ 2γλ 1 (Ω) lim t→∞ |f (t)|
Indeed, in this example, we have

B = -γ∆ : H 1 0 → H -1 ; A = ∆ 2 with domain D(A) = {u ∈ H 2 (Ω)| u = |∇u| = 0 on ∂Ω} and cI ≤ B ≤ CA, with c = γλ 1 (Ω)
To get an estimate for C we observe that

(Bv, v) = γ Ω ∇u 2 dx = -γ Ω ∆v.v dx = γ( Ω |∆v| 2 dx) 1 2 ( Ω |v| 2 ds) 1 2 = γ λ 1 (A) ( Ω |∆v| 2 dx) = γ λ 1 (A) (Av, v)
Therefore, we can take C ≤ γ λ 1 (A) and this shows the claim. Remark 4.5. Actually, since we used a Cauchy-Schwarz inequality for two linearly independent functions it is clear that the optimal value of C is striclly less than γ λ 1 (A) . More precisely to obtain the optimum we need to evaluate

µ = inf Ω |∆v| 2 dx Ω |∇v| 2 dx , v ∈ H 2 0 (Ω), v = 0 = inf Ω |∆v| 2 dx, v ∈ H 2 0 (Ω), Ω |∇v| 2 = 1
By the Lagrange multiplier theory, there is v = 0 such that 

∆ 2 v = -µ∆v v ∈ H 2 0 (Ω)
2 )(1 -cos(πλ) + 2 cos 2 ( πλ 2 )) = λπ ⇐⇒ 2 tan( πλ 2 ) = λπ ⇐⇒ tan( πλ 2 ) = πλ 2 Therefore πλ 2 > π =⇒ λ > 2 and µ = λ 2 > 4. πλ 
Summarizing the 3 cases we conclude that the minimal possible value of µ is 4.

Corollary 4.7. Any mild solution u of

u tt + u xxxx -γu xxt = f u(t, 0) = u(t, π) = u x (t, 0) = u x (t, π) = 0 (4.5)
satisfies the asymptotic bound:

lim t→∞ Ω |u xx | 2 dx 1 2 ≤ max √ 3 2 , 3 √ 2γ lim t→∞ |f (t)| (4.6)
5 Additional results

5.1

The first eigenvalue of a square root.

At several places in this paper we used implicitely the property

λ 1 (A 1 2 ) = (λ 1 (A)) 1 2
where A is a self-adjoint coercive operator. This property is obvious when A has compact inverse, but it is natural to ask what happens in general. In the next subsection we shall derive a similar property for any positive power of A, but in the case of square roots an easier proof can be given. The result is as follows Proposition 5.1. Let A be as the introduction. Then A 1 2 is also coercive and λ 1 (A

2 ) = (λ 1 (A)) 1 2 . 1 
The proof of this proposition relies on 2 simple lemmas : Lemma 5.2. Let B ∈ L(H) be symmetric and nonnegative. Then we have Proof. By definition it is clear that

B 2 = B 2 ∀v ∈ H, |Bv| 2 ≤ B (Bv, v) Proof.
λ 1 (A) = 1 A -1 2 2
Then the result follows from the previous Lemma.

Remark 5.6. For a general positive operator the conditions are not equivalent . For instance take V = H = C and for some α > 0, β ∈ R ∀v ∈ V, Bv = (α + iβ)v

In this case we have B = (α 2 + β 2 )

1 2
∀v ∈ V, (Bv, v) = α|v| 2 so that the optimal value of C in (5.2) is α. The optimal value of C in (5.3) is α 2 +β 2 α . As soon as β = 0 we have α < (α 2 + β 2 ) 1 2 < α 2 + β 2 α and therefore the three constants are all different. 

case 3 :c 3 = -c 4 tan( πλ 2 ) c 2 =

 3322 If sin(πλ) = 0, then 2c 4 sin 2 ( -c 3 , c 1 = -λc 4 . and -λπc 4 + c 4 tan( πλ 2 )c 4 cos(πλ) tan( πλ 2 ) + c 4 sin(πλ) = 0. If c 4 = 0, then u = 0. If c 4 = 0, we can reduce to c 4 = 1, then we find tan(

2 Finally we have for any v ∈ H |Bv| 2 1 2Lemma 5 . 3 . 1 (

 221531 First we have B 2 ∈ L(H) and B 2 ≤ B 2 . The reverse inequality is also immediate since |Bu| 2 = (B 2 u, u) ≤ B 2 |u| v| 2 = B (Bv, v) Let A be a self-adjoint, positive, coercive operator. Then λ

5. 4 m|u| 2 + ∇u 2 dx 1 Example 5 . 8 .

 42158 Some more examples.Sometimes Theorem 2.1 can be applied to equations in unbounded domains. For brevity we give only 2 typical examples Example 5.7. Let Ω be a possibly unbounded domain in R N and m > 0, γ > 0. We consider the following equationu tt -∆u + mu + γu t = f u /∂Ω = 0 (5.4)Then, as a consequence of (3.5) we have the following result valid for all mild solutions lim t→∞ Ω Let Ω be a bounded domain in R N and γ > 0. We consider the cylinder C = Ω × R and the following equation inR + × C u tt -∆u + γu t = f u /∂C = 0 (5.5)Then, as a consequence of (3.5), since A = -∆ is coercive in C with λ 1 (C) = λ 1 (Ω)we have the following result valid for all mild solutions lim t→∞ Ω

  Indeed in this case (but not in general) the two inequalities (1.3) and (2.2) are equivalent, see Section 5 below.

	Finally by letting ǫ → 0					
	lim t→∞	|u ′ (t)| ≤ max(	3C c	,	3 √ 2c	) lim

t→∞ |f (t)| By using Remark 1.2 we obtain Corollary 2.2. Let β

(t) = B 0 ∈ L(V, V ′ ). In this case any mild solution u ∈ C(R + , V ) ∩ C 1 (R + , H) of (0.1) satisfies (2.3).

Remark 2.3. When B is linear and self-adjoint, Theorem 2.1 improves the result (1.4) with β(t) = B(t) by a factor ∈ [ √ 2, 2] depending on the values of C and c.

The ODE case

We consider the equation:

We apply theorem 2.1 to (3.1) with c = γ and C = γ ω 2 , we find

By comparaison with the estimates in [START_REF] Haraux | On the double well Duffing equation with a small bounded forcing term[END_REF], we find that the result of theorem 2.1 is optimal up to a factor K(ω, γ) = 3π 4 √ 2 , if γ < 2ω and √ 3 if γ ≥ 2ω. More precisely, in [START_REF] Haraux | On the double well Duffing equation with a small bounded forcing term[END_REF] the exact minimum global bound for solutions bounded on the whole line is given, and the minimum turns out to be achieved on some periodic solutions (corresponding to a periodic source term) for which the ultimate bound of course coincides with the global bound on R.

The case

In this case (cf. Proposition 5.4 )we have c = γλ α 1 and

, then, by Theorem 2.1, we have the following estimates max( lim

Considering the special case H = R , A = ω 2 I we conclude that this result is always sharp up to a factor √ 3.

Theorem 3.4. The bounded solution of (3.10) satisfies the estimate

Proof. In the case of a small damping we refer to [START_REF] Balakrishnan | Fractional powers of closed operators and the semigroups generated by them[END_REF]. We now prove (3.4) when γ ≥ 2 (3.12)

We choose the energy functional

Then, we have:

by using Young's inequality, we obtain:

we remark that α = γγ 2 -4 is a solution of the equation:

and

Then we have C = 1 µ . To illustrate this we consider the one dimensional case.

Proposition 4.6.

Proof. In order to compute C we need to find the minimal value of µ when

Then, setting λ = √ µ, we have 

Therefore u = c 2 (1 -cos(2kx)) = 2c 2 sin 2 kx. In this case µ = 4k 2 and therefore µ ≥ 4.

Proof of Proposition 5.1. We first show that ,H) is onto and by Banach Theorem, A -1 2 ∈ L(H, V ). By Lemma 5.2 we find that that A 1 2 is coercive. Then λ 1 (A

and the result follows from a last application of Lemma 5.2

5.2

The first eigenvalue of a fractional power.

Let A be a self-adjoint coercive operator. The fractional power A α with α ∈ (0, 1) is defined as the inverse of the operator

with domain equal to the range of A -α . D(A α ) is also the closure of D(A) under the seminorm p α (u) := |A α (u)| (cf. e.g. [START_REF] Balakrishnan | Fractional powers of closed operators and the semigroups generated by them[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). We now generalize Proposition 5.1 to any positive power by relying on the above formula.

Proposition 5.4. For any α ∈ (0, 1), A α is also coercive and

Proof. By homogeneity it is clearly sufficient to establish the result when λ 1 (A) = 1 Then applying the result to A 1 = λ 1 (A) -1 A gives the general case. First we show that

Indeed we have

and then Lemma 5.3 gives the result. Now we have for any u ∈ D(A)

The relationship between the two main results.

In Remark 2.3 we said that when B is linear and self-adjoint, the two inequalities (1.3) and (2.2) are equivalent. This is a consequence of the following Proposition 5.5. Let A be as the introduction and ∈ L(V, V ′ ) be symmetric and nonnegative. Then the 3 following conditions are equivalent

Proof. We proceed in 3 steps 1) Proof of (5.1) =⇒ (5.2). Assuming (5.1) we have

Hence B ≤ CA.

2) Proof of (5.3) =⇒ (5.1). Assuming (5.3) we have

Hence, either Bu = 0 or Bu * ≤ C u and we have (5.1).

3) Proof of (5.2) =⇒ (5.3). Since B ≥ 0 we have

In this formula we choose v = A -1 (Bu) Then

so that we find

by using (5.2). Now

and if Bu = 0 we obtain (5.1) on dividing through by Bu 2 * .

We conclude this section by giving 2 examples of application for Theorem 1.1 and Theorem 2.1: a case where B is not selfadjoint and a case where B is non linear.

Example 5.9. Let V = H = C. Then any solution u of the ODE