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Abstract

The primary immune response mediated by CD8 T cells constitutes a major mech-

anism to fight an infection by intra-cellular pathogens. This response begins with an

expansion phase through a fast increase of CD8 T cell count. Then most of the popu-

lation dies by apoptosis in a contraction phase, followed by the generation of memory

cells. These latter are specific of the antigen and will better control the pathogen in

a subsequent infection.

We generated experimental data, consisting in CD8 T cell numbers time evolution

during the immune response to three different live intra-cellular pathogens, two viruses

(influenza and vaccinia), and one bacteria (Listeria monocytogenes). These pathogens

all harbour the same antigen, but differ in their interaction with the host, like the

infection route. We are interested in characterizing how such differences translate into

differences in the CD8 immune response.

We developed a mathematical model describing the evolution of CD8 T cell count

and pathogen amount during the immune response. This model includes feedback con-

trols that regulate the response, and is able to reproduce the characteristic dynamics
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of the response. We have confronted this model to the three data series, and made an

exhaustive estimation of the model parameters. We aim at determining not the best

parameter which provides a good fit, but a set of parameter values which are suitable

for a given parameter. This allows us to be more confident in evaluating the validity

of the model and the influence of the parameters on the model. First we discuss how

the suitable parameter values are different or not according to the fitted data series,

and so according to the nature of the pathogen or the characteristics of the infection

it generates. Then we refine the parameter values by discussing supplementary con-

straints on dynamics of memory cell subpopulation in the model. Finally we discuss

how parameter values could be further validated, in particular with supplementary

experimental investigations.

1 Introduction

The adaptative immune response constitutes one of the major mechanisms to fight in-

fection by a pathogen. It involves a wealth of different cell types including B cells, CD4

and CD8 T lymphocytes and antigen presenting cells such as dendritic cells. Here, we

focus on the cytolytic response mediated by CD8 T cells. These cells play an essential

role in controlling infections by intra-cellular pathogens such as influenza viruses (Flu)

(Ennis et al 1994; Wong and Pamer 2003; Kedzierska et al 2006), vaccinia virus (VV)

(Snyder et al 2004; Jing et al 2005) or the bacteria Listeria monocytogenes (Lm) (Busch

and Pamer 1999). We are interested in the characteristic dynamical behavior of the CD8

T lymphocytes responding to an infection by an intra-cellular pathogen (Murali-Krishna

et al 1998). After pathogen encounter, these lymphocytes are activated and leave the

naive state to enter an expansion phase associated with strong proliferation and differ-

entiation into effector cells. CD8 effectors display cytotoxic capacities that allow them

to kill infected cells and clear the pathogen. After the peak of proliferation concluding

the expansion phase, most of the population dies by apoptosis, in a contraction phase.

Effector cells can differentiate into memory cells, a crucial subpopulation able to respond

more efficiently and to better control the pathogen in the case of a subsequent infection.

Different models based upon systems of ordinary differential equations were proposed

to model the details of these kinetics of cell dynamics (De Boer et al 2001; Rouzine et al

2005; Kim et al 2007). In particular, Antia et al (2003, 2005) proposed a model with

an age structure for the effector cell equation. They considered a limit age τ⋆, such as

when effector cells did not die before reaching this age τ = τ⋆, then they differentiated

into memory cells. Inspired by this model, we have developed a model with ordinary and

age-structured differential equations (Terry et al 2012). It describes a primary response to

an acute infection when the pathogen has never been encountered before and does not lead

to a chronic infection. Effector cells can differentiate into memory cells, according to their

age, and the two populations can be generated in parallel. Nonlinearities in the model

account for biological feedback controls, able to regulate cell dynamics. Simulations were

performed to qualitatively reproduce the data found in the literature (Murali-Krishna
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et al 1998) and the model was able to fit correctly the phases of a primary response

to a lymphocytic choriomeningitis virus (LCMV) infection in mice. Those simulations

were only performed to reproduce qualitatively a ”typical” CD8 T cell immune response,

without going any further into a bona fide parameter analysis to investigate which values

were able to really reproduce relevant kinetics of the response. Furthermore, viral load

and replication were not considered, whereas they represent key parameters during an

infection (Jing et al 2007; Lee et al 2009). Hence, to obtain a more realistic and versatile

model that can describe CD8 responses to different pathogens, this infectious process must

be taken into account. In this work, we therefore introduce pathogen replication into the

model.

We compare the model to experimental data that were specifically generated for this

purpose. These data consist in CD8 T cell numbers, measured during the CD8 T cell

immune response to three different live intra-cellular pathogens (two viruses: an H1N1

Flu and the Western Reserve (WR) strain of VV; and one bacteria Lm). The three

pathogens have been modified by reverse genetics to express the NP68 epitope that is

recognized by the F5 T cell receptor (TCR). Hence, we can use transgenic naive CD8 T

cells expressing the F5 TCR to monitor the response induced by these 3 different pathogens

(H1N1-NP, VV-NP and Lm-NP). Although, these pathogens all activate a robust CD8

response, they differ in their interaction with the host in terms of host cells targeted,

replication mechanisms and activation of the innate immune response.

Vaccinia virus infection provides protection against variola virus, the causative agent

of smallpox, and stands as the classic example of a successful vaccine that confers life long

protection. Vaccinia virus, an orthopoxvirus, is a large virus with a double-stranded DNA

genome that replicates in the cytoplasm. The WR strain of vaccinia that is used in this

study is a vaccinal strain that was adapted to the mouse (Parker et al 1941).

Despite their importance, T lymphocyte mechanisms involved in a vaccinia infection

were not thoroughly studied (Snyder et al 2004). However, smallpox vaccines could be

improved, since the existing vaccines are based on live viruses and stay contraindicated for

some people (Oseroff et al 2008; Rehm et al 2009; Lantto et al 2011). Moreover vaccinia

virus could also be used as a platform for the design of vaccines directed against other

viruses (Snyder et al 2004).

Listeria monocytogenes is a Gram-positive bacterium that causes disease mainly in

immunocompromised humans. Humans are exposed to Lm by ingesting contaminated

foods such as dairy products. The Bacteria invades epithelial cells where it replicates. In

mice, most studies of infection with Lm focus on immune responses to systemic infection

following intravenous inoculation (Pamer 2004). The highly virulent 10403s strain was

used in this study.

Influenza viruses are the causative agent of acute respiratory diseases. Influenza is an

Orthomyxoviridae with a negative single-stranded RNA segmented genome that replicates

in the nucleus. The WSN mouse adapted H1N1 strain was used in this study. Even more

than vaccinia, influenza proves to be a topical problem, with the H1N1 pandemia for
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example.

Influenza dynamics have been modeled quite extensively (see Smith al (2010) and

Beauchemin et al (2011)). First, influenza infection at population scale was widely studied,

to model the spread of the infection by transmission between infected hosts. This type

of models, mainly based on networks, can be used for health decisions, to limit epidemic

spread, or determine a vaccine strategy (Alexander and Kobes 2011; Jing et al 2007;

Mercer et al 2011). Yet these models do not provide any information on the mechanisms

of the infection in the host, or how an infected organism reacts against the virus. More

recently, within-host models for influenza infection appeared in various papers (Bocharov

and Romanyukha 1994; Beauchemin et al 2005; Baccam et al 2006; Beauchemin et al

2008; Saenz et al 2010), allowing to focus on cellular mechanisms, reacting against virus

introduction. Beauchemin et al (2005) developed a cellular automaton describing spread

of the virus between target cells, in which the virus was not explicitly considered. This

model was used to study the impact of the initial distribution of infected cells, regeneration

of dead cells and proliferation of immune cells (Beauchemin 2006). Continuous models

have also been considered where target cell and infected cell dynamics are described by

ordinary differential equations, and replication of the virus is also described (Bocharov and

Romanyukha 1994; Baccam et al 2006; Beauchemin et al 2008; Saenz et al 2010). In these

types of models, the virus is produced in the infected cells, and its proliferation is limited

by the number of uninfected cells. Some models also consider an eclipse phase, with a

supplementary compartment, which corresponds to infected cells which are not yet able to

produce viruses (Baccam et al 2006; Saenz et al 2010). To go further in the description of

the antiviral defence mechanisms, some papers do study the role of interferon (Bocharov

and Romanyukha 1994) or of the innate response (Saenz et al 2010) or the impact of drug

treatments (Beauchemin et al 2008).

Since the immune response by cytotoxic lymphocytes plays a key role in the evolution

of an influenza virus infection (Ennis et al 1994), immune cells have been added to the

previous models of uninfected/infected cells (Chang and Young 2007; Handel et al 2010;

Miao et al 2010; Tridane and Kuang 2010). In most of these models, an equation was

added to describe the immune response, and the T cells were just labelled as activated or

cytotoxic, without any further detail. Other authors decided to deal with many cell types

involved in the immune response, such as effector cells, antigen presenting cells, B cells

and Th1 and Th2 lymphocytes (Bocharov and Romanyukha 1994; Hancioglu et al 2009).

Yet none of these models describes the naive, effector and memory states of the CD8 T cell

population, or the possible crossregulations and feedbacks between these differentiation

stages. Lee et al (2009) distinguished naive and effector CD8 T cells, but at the cost of

an hypersophistication of the model which incorporated CD4 T cells in different states

(naive, effector, mature...), B cells, dendritic cells, and uninfected and infected cells. The

recirculation of these cells between different organs where the immune response takes place

was also modeled. It resulted in a 48 parameter-model, that could not be submitted to

a systematic parameter sweep. A key question in modeling biological systems indeed lies
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within the estimation of relevant parameters of the model. For influenza, many previously

described works compared their model to data. To do this, the authors estimated part of

their parameters and/or used parameters from previously published models or published

experimental data (Bocharov and Romanyukha 1994; Baccam et al 2006; Hancioglu et al

2009; Lee et al 2009; Handel et al 2010; Miao et al 2010; Saenz et al 2010). Nevertheless,

data used were very heterogeneous and parameter values which were chosen remain difficult

to validate, in the absence of a systematic parameter sweep (Beauchemin and Handel

2011).

In the present work, we aim to describe the mechanisms of a CD8 T cell immune

response dynamic against infection by an intra-cellular pathogen. We take into account

naive, effector and memory differentiation states which were not described in the previous

models with uninfected/infected cells (Chang and Young 2007; Handel et al 2010; Miao

et al 2010; Tridane and Kuang 2010). We make an exhaustive estimation of the model

parameters, by confronting the model with influenza, vaccinia and listeria experimental

data. We aim at determining not the best parameter which provides a good fit, but a

set of parameter values which are suitable for a given parameter, allowing us to be more

confident in evaluating the validity of the model and the influence of the parameters on

the model. Thus we can observe how suitable parameter values are different according to

the fitted data series, or are the same for the three data series. Fitting to three different

data series also allows to track the impact of the parameters in infection mechanisms and

robustness of the model.

2 Materials and Methods

2.1 Experimental work

Experiments were performed to measure the CD8 T cell responses to the three pathogens

in vivo. CD8 T lymphocyte numbers were measured by flow cytometry during the course

of the immune response that was triggered by infection. All experimental procedures were

approved by our local ethics committee and accreditations have been obtained from French

governmental agencies.

F5 TCR transgenic T cells recognizing the NP68 epitope were transferred by retro-

orbital injection in congenic C57Bl/6 mice. To normalize the experiments the same number

of naive F5 CD8 T cells (2.105) were transferred in the three models of infection. The

influenza H1N1 WSN strain, the vaccinia WR strain and the Listeria 10403s strain were

all modified by reverse genetics to express the NP68 epitope. H1N1-NP was constructed

and produced by Drs. O. Ferraris and M. Ottmann in Pr. B. Lina’s laboratory (Jubin

et al 2012). VV-NP was constructed and produced by Dr. D.Y.L. Teoh in Pr. Sir A.J.

McMichael’s laboratory (Cottalorda et al 2009). Lm-NP was constructed and produced

by Dr. B. Mercier in Drs. N. Bonnefoy-Bérard and G. Lauvau’s laboratories (unpublished

data). In three distinct experiments, mice were inoculated intranasaly with (2.105 TCID50)
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H1N1-NP or (2.105 PFU) VV-NP or intravenously with 3000 Lm-NP bacteria, the day

after the transfer of naive F5 CD8 T cells. Intranasal inoculation of the influenza or the

vaccinia viruses leads to a localized infection of the lung, while intravenous inoculation of

Listeria leads to a systemic infection of the host. Mice were briefly anesthetized with 3%

isofluorane in an oxygen chamber before being transferred or infected intravenously with

Lm-NP or profoundly anesthetized with 70 mg/kg of Ketamin and 9 mg/kg of Xylazin

before intranasal infection with viruses.

For each experiment a cohort of 20 mice was used, alternate groups of 5 mice were

bled at regular intervals to quantify F5 CD8 T cell numbers. Mice blood was sam-

pled, at days 0, 3, 4, 5, 6, 10, 12, 14, 18, 21, 28, 38 postinfection for experiment with H1N1-

NP, at days 4, 6, 7, 8, 11, 13, 15, 19, 22, 28, 35, 47 for experiment with VV-NP, and at days

3, 5, 7, 10, 12, 17, 34 for experiment with Lm-NP. The time course was designed in order

to capture the different phases of the response, i.e. the activation-induced expansion,

contraction and memory phases.

The volume of blood samples was measured to calculate CD8 T cell numbers and

a given number of fluorescent calibration beads was added to each samples. Cells were

then stained with fluorescent antibodies against CD8, CD45 and CD45.1 to identify the

transferred F5 CD8 T cells. Samples were then analyzed by flow cytometry to detect F5

CD8 T cells and fluorescent beads. These calibration beads were used to re-calculate the

concentration of F5 CD8 T cells per mL of blood and total numbers of F5 CD8 T cells

were calculated, considering 2mL of blood per mouse.

In the following, we present the detailed model, constituted by a system of ordinary

differential equations, that we developed and compared to the data.

2.2 Model

Mice were infected by three live pathogens that can replicate within the host. Naive CD8

T cells when they encounter their cognate peptide differentiate into effector cells able to

eliminate the pathogen, and a fraction of these cells will then differentiate into memory

cells (see Figure 1). We consider a system based on ordinary differential equations, de-

scribing the evolution of CD8 T cell numbers (naive, effector and memory cells), and of

the pathogen count. This system includes 4 feedback functions, as cell differentiation, pro-

liferation and death are strongly controlled by feedback loops, depending on interactions

between the different CD8 populations (naive, effector, memory cell populations) and with

the pathogen. For example, pathogen induces differentiation of naive cells into effector

cells, and promotes proliferation of effector cells.

We denote by N(t) the naive cell number at time t. Naive cells die with a constant

rate µN , positive, and differentiate in effector cells with a rate δNEP (t) which depends on

the pathogen count denoted by P (t) (Appay and Rowland-Jones 2004).

We denote by E(t) the effector cell number at time t. Effector cells proliferate with

a rate ρEP (t) which depends on the pathogen count (Appay and Rowland-Jones 2004;
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Figure 1: Schematic representation of the T CD8 immune response mechanisms after
an infection by an intra-cellular pathogen, either influenza or vaccinia viruses, or listeria
bacteria in our experiments. Biological justifications of this scheme are mentionned in
Section 2.2, and referenced here by numbers: [1] Antia et al 2003, [2] Appay and Rowland-
Jones 2004, [3] Kemp et al 2004, [4] Su et al 1993.

Kemp et al 2004; Kim et al 2007) and die with a rate µEE(t) which depends on their

own number, due particularly to competition for limited resources such as cytokines, or

fratricidal death (Su et al 1993; Kemp et al 2004). Effector cells can also differentiate in

memory cells with a constant rate δEM .

We denote by M(t) the memory cell number at time t. Memory cells die with a

constant rate µM .

Finally, we denote by P (t) the pathogen count at time t. We assume that pathogen

proliferates with a rate ρPP (t) which depends on its own count, and die with a rate

µPE(t)+µ0
P in which µPE(t) depends on the effector cell number (Antia et al 2003), and

µ0
P > 0 is constant and corresponds to the natural death rate of pathogen.

Cell numbers N(t), E(t), M(t) and the pathogen count P (t) satisfy the following

system of ordinary differential equations (Terry et al 2012), for t > 0:
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dN

dt
(t) = [−µN − δNEP (t)]N(t), N(0) = N0,

dE

dt
(t) = δNEP (t)N(t) + [ρEP (t)− µEE(t)− δEM ]E(t), E(0) = E0,

dM

dt
(t) = −µMM(t) + δEME(t), M(0) = M0,

dP

dt
(t) = [ρPP (t)− (µPE(t) + µ0

P )]P (t), P (0) = P0.

(1)

We do not consider any production of naive cells from hematopoietic stem cells, as

naive cells used in the experiments are exogenous and do not self renew in mice (see

Section 2.1).

Finally, without dealing with initial conditionsN0, E0,M0 and P0, the model contains 9

constant parameters µN , δNE , ρE , µE, δEM , µM , ρP , µP , µ
0
P . The goal is to determine which

parameter values are able to fit the data, and how T-cell subpopulations, which can be

simulated by the model, evolve with these parameters.

The values of N0, E0, M0 are known from experimental data: a given number N0 of

purified naive CD8 T cells is injected at time t = 0 in mice, and in the absence of pathogen

there are no effector or memory cells, so E0 = 0 and M0 = 0. However, the value of P0

is not known, since in experimental data, dynamics of pathogen counts remain unknown.

Hence, we should count P0 as an other parameter to be determined, and the model would

exhibit 10 free parameters. To avoid this supplementary difficulty, we re-scale the system

(1) as follows.

Define p(t) = P (t)/P0 where P0 > 0. Then, p(t) satisfies:

dp

dt
(t) = [ρPP0p(t)− (µPE(t) + µ0

P )]p(t), with p(0) = 1.

With the same re-scaling, the equations for N and E in (1) become:

dN

dt
(t) = [−µN − δNEP0p(t)]N(t),

dE

dt
(t) = δNEP0p(t)N(t) + [ρEP0p(t)− µEE(t)− δEM ]E(t),

and the equation for M does not change. Finally, the re-scaled system (1) is:
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dN

dt
(t) = [−µN − δ̄NEP (t)]N(t), N(0) = N0,

dE

dt
(t) = δ̄NEP (t)N(t) + [ρ̄EP (t)− µEE(t)− δEM ]E(t), E(0) = E0,

dM

dt
(t) = −µMM(t) + δEME(t), M(0) = M0,

dP

dt
(t) = [ρ̄PP (t)− (µPE(t) + µ0

P )]P (t), P (0) = 1,

(2)

where, for the sake of simplicity, we still denote the pathogen count by P (t), and δ̄NE =

δNEP0, ρ̄E = ρEP0, ρ̄P = ρPP0. Consequently, the parameters δ̄NE , ρ̄E , ρ̄P have not

the same meaning than in the system (1). However, it does not change the method to

estimate all the parameters, described in Section 3.3, so it does not add any difficulty,

and for the sake of simplicity, we will keep the notations δNE , ρE , ρP in the following. A

detailed analysis of the system (2) (existence of steady states and their linear stability)

is presented in Supplementary Material. In the following, we describe the method we

used for simulating the model in order to fit it to the data, and to make an exhaustive

estimation of the model parameters.

2.3 Simulations

We performed an exhaustive exploration of the parameter value space, by computing

solutions of system (2), using 5 distinct values for each of the 9 parameters. It resulted

in 59 combinations of parameters, that is to say 1, 953, 125 simulations. Tested parameter

values are presented in Section 3.2. Simulations were performed using facilities of the

Calculus Center of the National Institute of Nuclear Physics and Particle Physics (IN2P3).

The 250 cores of IN2P3 were used to distribute the large number of needed simulations,

within 7, 812 simulations per core for the 249 first cores, and 7, 937 simulations for the last

core. For each simulation, the error ε between the experimental data points xi measured

at time ti and the corresponding simulated point x(ti) was determined using a least-square

method, with the formula

ε =

√

∑

i

(log xi − log x(ti))2.

This method was chosen for its easy implementation, and for its quickness to compute

the error. As the model is based on the description of the dynamics of T-cell subpopula-

tions (naive, effector and memory cells), whereas experimental data correspond to a total T

CD8 population count, the value of each simulated point x(t) is equal toN(t)+E(t)+M(t).

All these computed errors were ranked in increasing order. Hence, the smallest errors cor-

respond to the best fits and we can focus on the corresponding parameter sets (see Figure
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2 for an illustration of the method). It is noted that it is not relevant to compare error

values between experiments (influenza, vaccinia and listeria), as only rank of errors is

relevant. Many parameter sets lead to an unbounded solution of the system (2). They

correspond to computed simulations which do not provide any correct immune response,

with respect to experimental data, since proliferation of the pathogen is not limited by

CD8 T cells. Such simulations cannot fit experimental data. For these parameter sets,

the value of −1 was assigned to the corresponding error, and these values were deleted

before treating the results. Such combinations of values represent around 28% of the total

number of the tested parameter sets. In the following, we consider the simulations which

lead to a bounded solution that is with an error value not equal to −1.

Figure 2: The different steps of the analysis that were followed to determine the parameter
sets able to fit the model (black curve) on the data (red linked points).

Distribution of error values is computed (see Figure 6 in Supplementary Material).

Among the error values in the interval [10, 20], which represent around 60% of all consid-

ered computed errors, many errors correspond to parameter sets producing flat responses

(see Figure 7 in Supplementary Material for an example). These simulations are unable to

describe cellular expansion and contraction phases, observed in experimental data. This

justifies considering ε = 10 as a threshold value: above this value, fits will be described

as ”bad fits”. For each data series (influenza, vaccinia and listeria), around 20% of error

values are inferior or equal to 10. However, keeping all the parameter sets with an error

inferior or equal to 10 is still too large. For example, if we restrict the study to the 14, 003

smallest errors (1% of the smallest errors), the 14, 003thrd error is equal to 3.8, yet the cor-

responding parameter set leads to a fit which does not capture the phases of the response

and thus is not qualitatively correct (see Figure 8 in Supplementary Material). Hence,

keeping only parameters corresponding to the 1% of the lowest errors for the analysis is

still too large. Finally, the number of error values corresponding to correct fits may be
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restricted to 0.01% of best parameter sets, which correspond to an error less or equal

to 3. We hereafter present the results of the experimental work and of the simulations

performed on the model, and in particular, we discuss the results obtained with parameter

sets able to fit the data.

3 Results

3.1 Data

Five measurements of F5 CD8 T cell counts were performed on different time points after

infection with influenza, vaccinia or listeria (see Section 2.1). Experimental responses are

presented on Figure 3 where each point corresponds to the mean of the five experimental

points, with its associated standard deviation. The initial value of naive cells that grafted

in the host was experimentally measured in the influenza experiment. As the same num-

ber of F5 CD8 T cells was used for all experiments, the same initial value is considered

for vaccinia and listeria experiments. For each data series, a typical qualitative behaviour

of a CD8 T cell immune response can be observed, with a strong expansion from days

3 − 4 postinfection, a peak of response which occurs on day 7 postinfection for listeria

experiment, and later, around day 10 for influenza and vaccinia experiments. The peak is

followed by a contraction phase until day 20 postinfection, and a stabilization of lympho-

cyte population counts above the initial naive value. Influenza and vaccinia data lead to

similar responses, whereas the CD8 response against listeria seems to be different, with

an earlier and stronger proliferation of lymphocytes. Indeed, the peak for listeria response

reaches 6.10
5
cells while the peak does not overtake 105 cells for influenza and vaccinia

data. This suggests that the class of pathogen and/or the route of inoculation induces

different profiles of CD8 T cell responses.

3.2 Tested parameter sets of the model

The CD8 T cell immune responses against the three pathogens were modeled as presented

in Figure 1. This model is characterized by 9 parameters (see Section 2.2), and no a

priori knowledge of parameter values was available to help us to determine which values

should be preferentially tested. In the following, we focus on the parameter values, which

are constant, but it must be kept in mind that some parameters are associated to non-

constant biological rates. This point is detailed in Table 1.

We have explored parameter sets to fit the model to the data, first to influenza data,

followed by vaccinia and listeria data. Our method was to test a maximum of parame-

ter sets to be as exhaustive as possible. Tested parameter values are chosen under the

constraint of staying reasonable from a modeling point of view: for example, if parameter

ρP is taken equal to 100, it appears that in most of the simulations, the pathogen count

in the model increases infinitly. Hence such parameter value seems too large to ensure

a realistic immune response. Tested parameter sets are also chosen to take into account

11



as much as possible known biological metrics (see legend of Table 2), even if some values

look extreme: the goal of this exhaustive parameter estimation remains to investigate as

large a range of parameter sets as possible, and this idea of systematic parameter sweep

leads to keep large intervals of values. Ranges for each parameter are determined under

these conditions and five values distributed in the interval are tested (see Table 2). These

five values for each parameter have been determined after running numerous preliminary

trials (data not shown).

0 5 10 15 20 25 30 35 40 45
10

1

10
2

10
3

10
4

10
5

10
6

Time (Days)

C
D

8 
T

−
C

el
l P

op
ul

at
io

n 
C

ou
nt

s

 

 

data for Influenza infection
data for Vaccinia infection
data for Listeria infection

Figure 3: Experimental data: F5 CD8 T cell counts for influenza (red) and vaccinia (black)
virus infections and listeria bacterium (green) infection. Each data point corresponds to
the mean and standard deviation of CD8 T cells numbers from 5 individual mice.
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Table 1: Link between the parameters considered and the biological rates of the model. Graphic illustration is shown for the parameter values
corresponding to the best fit of the model using the influenza data (see Section 3.3 with Table 4).

Link between a parameter Parameters Corresponding biological rates Evolution of the biological rate
and the corresponding biological rate in day−1 or in cell−1 day−1 in day−1 (in day−1) during the response

Parameters, expressed in day−1, µN , δEM , µM , µ0
P µN , δEM , µM , µ0
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Table 2: Parameter values tested in simulations of the model described by system (2). To have an idea of the biological meaning of these
values, one can consider the following examples of parameter values associated to a death rate, a differentiation rate and a proliferation rate.
When µN = 10−4 day−1, it corresponds to the death of 0.01% of naive CD8 T cells per day, and when µN = 1 day−1, it corresponds to the
death of 63% of cells per day. When δEM = 10−3 day−1, it corresponds to the differentiation of 0.1% of effector cells in memory cells per day,
and when δEM = 10 day−1, it corresponds to the differentiation of 100% of effector cells in memory cells per day. When ρE = 10−1 day−1,
it corresponds to almost quiescent effector cells (1.5 division of an effector cell per ten days), and when ρE = 10 day−1, it corresponds to 14
divisions of an effector cell per day. Tested values are taken sufficiently large to ensure an exhaustive estimation of parameters, even if some
values are certainly too extreme to correspond to real biological metrics. Parameters µE and µP (cell−1 day−1) do not directly correspond to
cell rates, so their biological meaning is more difficult to define.

Biological rate Parameter Parameter unit Tested values

Death rate of naive cells µN Day−1 10−4 10−3 10−2 10−1 1
Differentiation rate of naive cells in effector cells δNE Day−1 10−2 5.10−2 10−1 5.10−1 1
Proliferation rate of effector cells ρE Day−1 10−1 5.10−1 1 5 10
Death rate of effector cells µE Cell−1 Day−1 10−8 5.10−8 10−7 5.10−7 10−6

Differentiation rate of effector cells in memory cells δEM Day−1 10−3 10−2 10−1 1 10
Death rate of memory cells µM Day−1 5.10−2 10−1 5.10−1 1 5
Death rate of pathogen dependent on effector cells µP Cell−1 Day−1 10−8 10−7 10−6 10−5 10−4

Natural death rate of pathogen µ0
P Day−1 10−3 10−2 10−1 1 10

Proliferation rate of pathogen ρP Day−1 10−3 10−2 10−1 1 10
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3.3 Fits on the data

Combinations of the 5 values presented in the previous section for each of the 9 parameters

were tested. The error between experimental data points and the corresponding simulated

values was computed for each parameter set (see Section 2.3 for details).

The smallest error values obtained are equal to 2 for influenza experiments, 1.6 for

vaccinia experiments, and 2.4 for listeria experiments. For these values, the corresponding

simulations with the selected parameter sets are presented in Table 3. We obtained correct

fits on total CD8 T lymphocyte population for the different data series, showing the

expected phases of expansion and contraction with a correct quantitative behavior. For

these simulations, a group of parameters, ρE , µE, δEM and ρP , presents exactly the same

values for all three pathogens (see Table 3). It suggests these parameters reproduce the

correct general behavior of the response observed in the three data series, as the three

infections trigger a similar qualitative response, that is an expansion phase followed by

a peak and a contraction phase. But what is also relevant consists in the differences in

parameter values which appear between influenza/vaccinia infections on one hand and

listeria infection on the other hand, since δNE , µM , µP and µ0
P have the same value for

influenza and vaccinia simulations but a different value for listeria simulation. It suggests

that this group of parameters distinguishes a response against a local infection by a virus

such as influenza or vaccinia and a systematic response against a bacteria such as listeria.
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Table 3: Best fits for the three experiments, and the corresponding parameter values of the model. Each graph displays the total T CD8
population count simulated (in black), and experimental data with standard deviation (red points) over the duration (in days) of each
experiment. The value ρE = 1 day−1 corresponds to 0.8 division for an effector cell per day. The value δEM = 10−2 day−1 corresponds to a
differentiation of 1% of effector cells into memory cells per day. The value ρP = 10−1 day−1 corresponds to a pathogen that proliferates at an
extremely low rate (1.5 division per ten days). The value µN = 10−1 (respectively 1) day−1 corresponds to a death of 10% (respectively 63%)
of naive cells per day. The value δNE = 10−2 (respectively 10−1) day−1 corresponds to a differentiation of 1% (respectively 10%) of naive
cells into effector cells per day. The value µM = 5.10−2 (respectively 5) day−1 corresponds to a death of 5% (respectively 99%) of memory
cells per day. The value µ0

P = 10−3 (respectively 10−2) day−1 corresponds to a natural death of 0.1% (respectively 1%) of pathogen per day.
Parameters µE and µP (cell−1 day−1) do not directly correspond to cell rates, so their biological meaning is more difficult to define.

Best fits for each experiment Associated parameter values
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P
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3.4 Parameter range

We investigate the frequency of appearance of each parameter value, in the parameter sets

corresponding to the 0.01% of the smallest classified errors. Indeed, if we consider 1% of

the smallest errors, the simulation results for the three data series are not qualitatively

correct for the worst cases (see Figure 8 in Supplementary Material for an example).

Hence, we decided to restrict our study to the 0.01% of parameter sets with the smallest

errors, that is to say approximately 140 parameter sets. It can be noted that in this group

of 0.01% of best parameter sets, errors have values less than or equal to 3 and provide fits

on the data that are very similar qualitatively and quantitatively. Differences between the

140 computed solutions appeared in the kinetics of the subpopulations, and not really in

the total population kinetic, which is fitted.

In Section A.1 of Supplementary Material, conditions for existence and stability of

steady states of the model are studied. For the 140 best parameter sets, a small number of

fits (3 for influenza experiment, 30 for vaccinia experiment and none for listeria experiment)

satisfies conditions (4), ensuring existence of the positive steady state. Nevertheless, it

appears that the condition µE > µP is never satisfied. Hence, stability of steady state

with a positive number of effector cells and pathogen can never occur within this relevant

parameter range. The only possible stable steady state is the one without effector cells

and pathogen, which is coherent with the expected behaviour on a long time: we do not

consider a chronic infection, and the pathogen should be eliminated, while effector cells

are not maintained in the organism.

It appears that parameters ρE for the effector cell proliferation and µP for the pathogen

death depending on effector cells are strongly constrained in the 0.01% best parameter sets

for influenza, vaccinia and listeria infections (Table 4). In all parameter sets corresponding

to the 0.01% of smallest errors, ρE = 1 day−1, for influenza and listeria infections. For

vaccinia infection, in 65% of the 0.01% best parameter sets, ρE = 1 day−1, and in 35% of

the 0.01% best parameter sets, ρE = 5.10−1 day−1. For µP , the value 10
−5 cell−1 day−1 is

chosen at 89% for influenza infection, at 93% for vaccinia infection, and at 63% for listeria

infection. The value µP = 10−6 is chosen at 11% for influenza infection, at 7% for vaccinia

infection, and at 37% for listeria infection. These values are not on the bounds of the

intervals of the tested parameter values, as the tested values were in intervals [10−1, 10]

for ρE , and [10−8, 10−4] for µP . This allows us to be confident on the fact that a suitable

value could not be outside the selected interval.

Other frequently chosen parameter values are very close for influenza and vaccinia

infections, whereas values chosen for listeria infection are very different. In the following,

we name ”tolerance” as the characteristic that more than 2 values are possible or not for

a given parameter, in the 0.01% of best parameter sets we consider. Parameters δNE for

differentiation rate of naive into effector cells, µ0
P for natural pathogen death rate and ρP

for pathogen proliferation rate are chosen with a tolerance for different possible values in

influenza and vaccinia experiments, whereas there is no tolerance in the values for listeria
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experiment, since only one value of each of these parameters (values 10−1, 10−3 and 10−1

day−1 respectively) is chosen with listeria experiment. On the contrary, parameter µE for

effector cell death presents a tolerant choice of four values for listeria experiment, whereas

only one value, 10−6 cell−1 day−1, is selected for influenza and vaccinia experiments.

Selected values of parameter µN for naive cell death are opposite between influenza and

vaccinia experiments on one hand and listeria experiment on the other hand, since the value

1 day−1 is preferentially chosen for influenza and vaccinia, and is the only one which does

not appear as a possible value for listeria experiment. It suggests that these parameters

allow to distinguish the CD8 T cell immune response against a virus infection such as

influenza or vaccinia and against a bacteria infection such as listeria. It is noted that what

is observed here is the context of the response since all these responses are directed against

the same antigen. Parameters δEM , for differentiation of effector cells in memory cells, and

µM , for memory cell death, do not present any preferentially chosen value or any distinction

between pathogen experiments. But if we would consider the subpopulation kinetics, we

will see in the following that we could obtain additional discriminations between values of

parameters which were not preferentially chosen in a first time.

3.5 Refining parameter values

The fit is performed on the sum N(t) + E(t) +M(t) of the three subpopulations of lym-

phocytes, nevertheless, the model described by system (2) simulates explicitly the three

subpopulations and allows to follow their kinetics after the pathogen introduction (see

Figure 4). Thus the model brings relevant information, by providing the subpopulation

kinetics corresponding to a fit on the total population which correctly reproduces the ex-

perimental data. The behavior of these subpopulations can therefore be used for restricting

the relevant parameter values.

In the three best fits of each experiment (influenza, vaccinia and listeria experiments), it

appears that there is always more effector cells than memory cells, which are not generated

in large quantities, and that effector cells are maintained on a long time (see Figure 9 in

Supplementary Material for an example with the best fit on influenza infection data).

An additional way to discriminate between parameter values could therefore be to track

parameter sets leading to a case where the memory cell number is larger than the effector

cell number after 50 days postinfection. Indeed, it is more realistic to have a strong

generation of memory cells still present in the organism many days after infection, whereas

effector cells disappear earlier than memory cells. In the 0.01% of best parameter sets we

considered, 10 parameter sets for influenza experiment, 6 for vaccinia experiment and none

for listeria experiment correspond to a fit presenting such a crossing between effector cell

and memory cell population counts. Hence, it represents a very small number of the 140

best parameter sets considered. For listeria experiment, it could be possible to consider

less good fits than in the 0.01% of best parameter sets. However, if fits with the expected

crossing between effector cell and memory cell counts existed, it would come at the expense
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a poorer quality of the fit on experimental data. For influenza and vaccinia experiments,

studying the small number of fits with a crossing between effector cell and memory cell

population counts brings supplementary conditions on parameter values. Indeed, this

constraint of crossing leads, for example in influenza experiment, to an other best fit (see

Figure 5) than the previous one presented in Table 3 (or Figure 4). The error value for

this other fit is 2.2 which is very close to the smallest value 2. This new fit of the total

lymphocyte population count is not significantly different from the previous one, as all the

fits corresponding to the 0.01% of best parameter sets are similar. But the generation of

memory cells is more relevant, as there are more memory cells than effector cells at day

38 postinfection (3.103 effector cells and 104 memory cells).

Furthermore, since the model allows us to follow these subpopulation kinetics on a

time that extends much further than the experimentally measured points, one can see

that memory cells are maintained longer than effector cells, during 150 days postinfection,

which represents around 30 days more than effector cells (see Figure 10 in Supplementary

Material). The main difference between these two best fits consists in the value of the

parameter µM which characterizes memory cell death. This parameter is equal to 5 day−1

in the best fit without a crossing between effector cell and memory cell population counts.

It represents a death of 99% of memory cells per day, and it is reasonable to assume that

this value is really too high from a biological point of view. The lack of memory cell

generation in the best fit of Figure 4 confirms this idea. On the contrary, the parameter

µM is equal to 10−1 day−1 in the best fit presenting a crossing bewteen effector cell and

memory cell population counts. It represents a death of 9.5% of memory cells per day,

which is more reasonable.
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Figure 4: Best fit on experimental data for influenza infection, with the subpopulations
of lymphocytes which appear in the model described by system (2). The yellow line
corresponds to naive cell population kinetic, the blue line to effector cell population kinetic,
the pink line to memory cell population kinetic, the dashed line to total population (N(t)+
E(t) +M(t)) kinetic, the red line to pathogen count and the linked red points with error
bar correspond to experimental data points.
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Figure 5: Best fit on experimental data for influenza infection, with the subpopulations
of lymphocytes, with the constraint that a crossing bewteen effector cell and memory cell
population counts is expected, to ensure an efficient generation of memory cells. The yellow
line corresponds to naive cell population kinetic, the blue line to effector cell population
kinetic, the pink line to memory cell population kinetic, the dashed line to total population
(N(t) + E(t) + M(t)) kinetic, the red line to pathogen count and the linked red points
with error bar correspond to experimental data points.
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4 Discussion

In many previous modeling works, where models were compared to data, only the best

parameter set providing a good fit on the data was determined, but no systematic pa-

rameter sweep was performed (Lee et al 2009; Handel et al 2010). Yet this latter method

allows being more confident if one wants to discuss validity of the model and influence

of the parameters. In the present work, we considered a model of the CD8 T cell im-

mune response, describing naive, effector and memory cell subpopulations kinetics, and

where pathogen replication was considered. Specific experimental data were generated to

confront our model to different dynamics of CD8 T cell immune responses, corresponding

to three intra-cellular pathogens, two viruses, influenza and vaccinia, and one bacteria,

listeria, all harbouring the same antigen (NP68).

To be able to perform this systematic investigation of parameters, we simulated the

59 combinations of parameters we aim at testing. The 5 tested values of each of the 9

parameters were chosen in order to obey two constraints: to keep a reasonable biological

meaning while allowing to explore as much as possible a large interval. For each simulation,

an error between experimental data and total CD8 T cell population count of the model

was computed, using a least-squares method. We could have chosen another method to

compute the error (genetic algorithm, bayesien approch...). But the least-squares method

presents the two advantages of an easy implementation and fast computation of the error.

These points are relevant in our approach, where we computed a very large amount of

errors, and ran many trials to determine which parameter values are relevant to test. All

these errors were ranked in increasing order. Hence, the smallest errors correspond to the

best fits and we can focus on the corresponding parameter sets.

For each data series, influenza, vaccinia or listeria, good fits on the total lymphocyte

population were performed. In each case, with restriction to the 0.01% of best parameter

sets, corresponding fits are similarly able to reproduce the data. None of these sets sat-

isfies the condition of stability of the steady state with a positive number of effector cells

and pathogen (see Section A.1 of Supplementary Material). It ensures that the model

reproduces a correct qualitative behavior, since effector cells and pathogen are not main-

tained in the long term, as expected from pathogens that do not lead to chronic infection.

The frequency of each parameter was studied for the whole sets of parameters. Two

parameters, ρE and µP , corresponding to the effector cell proliferation and the effector

cell-dependent pathogen death rate, are determined for each infection with values ρE = 1

(0.8 division of an effector cell per day) and µP = 10−5 (not directly a rate with a bio-

logical meaning). A group of parameters is different between the response against viruses

and the response against bacteria. These parameters are δNE for differentiation of naive

cells in effector cells, µ0
P for natural pathogen death, ρP for pathogen proliferation, µE

for effector cell death and µN for naive cell death. Three of those parameters characterize

biological rates which depend on the pathogen nature or counts. This suggests that these

parameters point to mechanisms of the immune response which change according to the
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nature of the pathogen, or to the extent of pathogen spread, i.e. localized versus systemic

infection. Further experimental investigations should be performed to confirm this idea.

Cell rates could be experimentally tracked by using CFSE and viability dyes (Nordon

et al 1999; Bernard et al 2003; De Boer and Perelson 2005; De Boer et al 2006) and the

proliferation, differentiation and death rates of the model could be confronted to these

new data. This would allow us to further validate these parameters. We could also induce

a systemic infection with vaccinia through intravenous injection, in order to determine if

the difference observed is due to the pathogen nature or to the extent of host infection.

Tracking the kinetics of the pathogen could also help to investigate differences between

CD8 T cell immune responses against a virus or a bacteria. Confronting pathogen kinetic of

the model to experimental pathogen kinetic could also help to validate model parameters.

For influenza infection, experimental data available in the literature suggest that the viral

dynamics mainly occur in the first 10 days postinfection (Wolk et al 2008; Desmet et al

2010; Garigliany et al 2010; Sun et al 2011). Wolk et al (2008) and Sun et al (2011) obtained

experimental dynamics where the virus titer tends to increase until a peak (around day

3), then decrease. This behaviour is what we obtained for the pathogen kinetic in the

model of response to influenza infection. What could be fitted more precisely is the time

at which the peak of virus titer occurs, for example. But data in the literature are very

heterogeneous and display few experimental points, only measured on a short period of

time. Therefore we should perform experiments measuring pathogen count, including

its initial count, at time 0. In this case, we would not have to re-scale the model by

normalizing pathogen count by its initial value, as it would not remain unknown in the

model. Then pathogen dynamic in the model could be confronted to the data, not only

qualitatively, but also quantitatively.

An other point that could be further investigated is the fit of the subpopulations

of naive, effector and memory cells described in the model. Indeed, the 0.01% of best

parameter sets lead to similar fits on total CD8 T cell population, with close error values.

Yet we can distinguish between these fits by looking at the subpopulation kinetics. In

particular, a characteristic of these kinetics remains the crossing between effector cell

and memory cell population counts. At the end of the response, a number of memory

cells larger than the number of effector cells is expected, as memory cells are generated

to fight against a second infection by the same pathogen, and effector cells just die by

apoptosis during the resolution of the infection. But in a certain number of the 0.01%

best fits, memory cell count always remains below the effector cell count. We could

add a constraint in the study of the parameter sets, keeping only the sets corresponding

to a fit where memory cell count becomes larger than effector cell count, during the

response against each infection. The parameter sets determined in this case could be

compared to the previous ones, and discriminate more precisely values corresponding to a

real biological response. This observation points out the relevance on considering kinetics

of the subpopulations of naive, effector and memory cells during a response. For example,

the time during which memory cells are maintained could also be a relevant experimental
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information to discriminate between the fits, not only with existence of a crossing between

effector cell and memory cell counts, but also with the number of generated memory cells

and the time during which these cells are maintained.

Fitting not only the total lymphocyte population count, but also the subpopulation

kinetics should be a relevant method to obtain the maximum of information on model

parameters. This study about subpopulation kinetics is currently under investigation:

it is not a trivial experimental task to distinguish, at every time of the response, the

different populations of naive, effector and memory cells. In particular, we still lack

markers or combinations of markers that are uniquely expressed by these different CD8

differentiation states. Establishing such combinations would permit to generate data that

could validate the model parameters.
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A Supplementary Material

A.1 Steady states of the system (2) (see Section 2.2)

We study steady states of the system, and obtain conditions on parameters for existence

and stability of these steady states. These conditions are relevant in the analysis of the

parameter sets able to fit the model on the data, in Section 3.4.

A solution (N̄ , Ē, M̄ , P̄ ) of system (2) is a steady state if and only if dN̄/dt = dĒ/dt =

dM̄/dt = dP̄ /dt = 0, that is

µN N̄ = −δNEP̄ N̄ , (3a)

δNEP̄ N̄ = −[ρEP̄ − µEĒ − δEM ]Ē, (3b)

µMM̄ = δEM Ē, (3c)

ρP P̄
2 = (µP Ē + µ0

P )P̄ . (3d)

From equation (3a), we deduce that N̄ = 0. From equations (3b) and (3d), we obtain

the following steady state values:

(Ē, P̄ ) = (0, 0), (Ē, P̄ ) =

(

0,
µ0
P

ρP

)

and (Ē, P̄ ) =

(

ρP δEM − ρEµ
0
P

ρEµP − µEρP
,
µP δEM − µEµ

0
P

ρEµP − µEρP

)

,

provided that

ρE
µE

>
ρP
µP

,
δEM

ρE
>

µ0
P

ρP
and

δEM

µE

>
µ0
P

µP

, (4)

or
ρE
µE

<
ρP
µP

,
δEM

ρE
<

µ0
P

ρP
and

δEM

µE

<
µ0
P

µP

, (5)

If one of the three conditions in (4) or (5) is not satisfied, then there exist two steady

states (Ē, P̄ ) = (0, 0) and (Ē, P̄ ) =

(

0, µ0
P /ρP

)

.

From the linearisation of system (2) around one of the steady states, we define the Jacobian

matrix

A =













−µN − δNEP̄ 0 0 0

δNEP̄ ρEP̄ − 2µEĒ − δEM 0 ρEĒ

0 δEM −µM 0

0 −µP P̄ 0 2ρP P̄ − µP Ē − µ0
P













.
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The characteristic equation associated with the linearized system is then defined by

det(λI −A) = 0, (6)

where I is the identity matrix in R
3. The steady states (N̄ , Ē, M̄ , P̄ ) of (2) are locally

asymptotically stable if all roots of (6) have negative real parts, and are unstable when

roots with positive real parts exist. After calculations, we obtain the following result:

1) The steady state (N̄ , Ē, M̄ , P̄ ) = (0, 0, 0, 0) is locally asymptotically stable and the

steady state (N̄ , Ē, M̄ , P̄ ) =

(

0, 0, 0, µ0
P /ρP

)

is unstable.

2) The steady state

(N̄ , Ē, M̄ , P̄ ) =

(

0,
ρP δEM − ρEµ

0
P

ρEµP − µEρP
,
δEM (ρP δEM − ρEµ

0
P )

µM (ρEµP − µEρP )
,
µP δEM − µEµ

0
P

ρEµP − µEρP

)

, (7)

which exists only when condition (4) or (5) holds true, is locally asymptotically stable only

when (4) is satisfied and provided that the supplementary conditions
ρP δEM

µEµ0
P

>
ρE − ρP
µE − µP

and µE > µP hold true.

The result of existence and local asymptotic stability of the steady state (N̄ , Ē, M̄ , P̄ ) =

(0, 0, 0, 0) shows that solutions of (2), with no effector cells and an eliminated pathogen

on a long time, which corresponds biologically to the resolution of the infection, can be

expected, in particular if the non-trivial steady state defined in (7) is not locally asymp-

totically stable (for instance, if µE > µP ).

25



A.2 Figures

Figure 6: Distribution of error values. Top: influenza infection; Middle: vaccinia infec-
tion; Bottom: listeria infection. In each case, 0.01% of parameter sets (corresponding
approximatively to 140 sets) display an error value of less than 3.
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Figure 7: Example of a simulation resulting in a flat response, for fitting the model on
influenza virus data. The yellow line corresponds to naive cell population kinetic, the blue
line to effector cell population kinetic, the pink line to memory cell population kinetic,
the dashed line to total population (N(t) +E(t) +M(t)) kinetic, the red line to pathogen
count and the linked red points with error bar correspond to experimental data points.
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Figure 8: Example of a fit (the 14, 003thrd in the ranking order of corresponding error
value) qualitatively not correct, for fitting the model on influenza virus data. The yellow
line corresponds to naive cell population kinetic, the blue line to effector cell population
kinetic, the pink line to memory cell population kinetic, the dashed line to total population
(N(t) + E(t) + M(t)) kinetic, the red line to pathogen count and the linked red points
with error bar correspond to experimental data points.
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Figure 9: Best fit on experimental data for influenza infection, with the subpopulations of
lymphocytes which appear in the model described by system (2), over 250 days. The yellow
line corresponds to naive cell population kinetic, the blue line to effector cell population
kinetic, the pink line to memory cell population kinetic and the dashed line to total
population (N(t) + E(t) +M(t)) kinetic.
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Figure 10: Best fit on experimental data for influenza infection, with the subpopulations
of lymphocytes over 250 days, with the constraint that a crossing between effector cell and
memory cell population counts is expected, to ensure an efficient generation of memory
cells. The yellow line corresponds to naive cell population kinetic, the blue line to effector
cell population kinetic, the pink line to memory cell population kinetic and the dashed
line to total population (N(t) + E(t) +M(t)) kinetic.
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also thank Gaël Kaneko for his invaluable help in the use of the IN2P3 ressources, Dr.

Denise Yu-Lin Teoh and Pr. Sir Andrew J. McMichael for kindly providing the VV-NP

vaccinia virus and Dr. Olivier Ferraris, Dr. Michelle Ottmann and Pr. Bruno Lina for the

generation of the H1N1-NP influenza virus, and Dr. Grégoire Lauvau and Dr. Nathalie
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Table 4: Percentage of frequency of tested parameter values, in the 0.01% of parameter
sets corresponding to the smallest errors (and so to the best fits). Each bar in histograms
corresponds to a percentage of appearance of a parameter value (see in the first column for
these values, associated to the bars by colors). The sum of the 5 values of each histogram
always equals 100%.

Parameters Influenza virus Vaccinia virus Listeria bacteria
experiment experiment experiment

ρE (Day−1)

µP (Cell−1 Day−1)

δNE (Day−1)

µ0
P (Day−1)

ρP (Day−1)

µE (Cell−1 Day−1)

µN (Day−1)

δEM (Day−1)

µM (Day−1)
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