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The intrinsic structural metastability in cuprate high Tc materials, evidenced in a checker-board
domain structure of the CuO2 planes, locally breaks translational and rotational symmetry. Dynam-
ical charge - deformation fluctuations of such nano-size unidirectional domains, involving Cu-O-Cu
molecular bonds, result in resonantly fluctuating diamagnetic pairs embedded in a correlated Fermi
liquid. As a consequence, the single-particle spectral properties acquire simultaneously (i) fermionic
low energy Bogoliubov branches for propagating Cooper pairs and (ii) bosonic localized glassy struc-
tures for tightly bound states of them at high energies. The partial localization of the single-particle
excitations results in a fractionation of the Fermi surface as the strength of the exchange coupling
between itinerant fermions and partially localized fermion pairs increases upon moving from the
nodal to the anti-nodal point. This is also the reason why, upon hole doping, bound fermion pairs
predominantly accumulate near the anti-nodal points and ultimately condense in an anisotropic
fashion, tracking the gap in the single particle spectrum.

PACS numbers: 74.20.-z,74.20.Mn,74.40.+k

I. INTRODUCTION.

High Tc superconductivity of the cuprates, it is gen-
erally agreed upon, emerges out of an unconventional
normal state. The most remarkable signatures of its
strange metal behavior are the pseudogap in the density
of states and the associated to it remnant Bogoliubov
modes. Both show up in a wide temperature regime
above Tc in the single-particle excitations, observed in
angle resolved photoemission spectroscopy (ARPES)1.
Novel scanning tunneling microscopy are now able to
measure the spatial distribution of quasi-particle excita-
tions on the atomic length scale2–6 and find intrinsic tex-
tured electronic structures, ranging over a wide regime
from low doped to optimally doped and beyond. The
spatial patterns of the single-particle spectral properties
indicate an inter-relation between the low frequency Bo-
goliubov modes and their high frequency counterparts,
representing localized glassy structures. In this work we
show how this feature can be related to a scenario in
which itinerant fermionic charge carriers scatter in and
out of bosonic tightly bound pairs of them in which they
are momentarily trapped on nano-size deformable molec-
ular clusters. The single-particle excitations thus appear
as superpositions of itinerant and localized entities. Ever
since the discovery of the high Tc cuprates, experimen-
tal evidence for their very unusual lattice properties has
become increasingly evident. Apart from their well es-
tablished strongly correlated nature, these compounds
are metastable single phase materials7. Their metasta-
bility arises from frozen-in structural misfits, involving
an incompatibility between the Cu-O distances of square
planar [Cu-O4] configurations in the CuO2 planes and of
cation-ligand distances in the adjacent layers. Metastable
compounds have been known for a long time for their in-
trinsic local diamagnetic fluctuations8, capable of induc-
ing a strong pairing component in the many-body ground
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FIG. 1: (Color online) An idealized picture of the local struc-
ture of the CuO2 planes, compatible with the STM results2–6.
It is composed of (i) Cu4O12 domains acting as localizing
pairing centers with directionally oriented Cu-O-Cu molec-
ular bonds, having central bridging O’s (grey circles) which
can be displaced out of the CuO2 plane and (ii) Cu4O4 square
plaquettes housing the delocalized charge carriers. Small red
circles denote Cu cations and the larger blue ones the O an-
ions not directly involved in displacements.

state wave function. The interest in synthesizing mate-
rials with such properties was to bypass the stringent
conditions on the upper limit of Tc, imposed by phonon
mediated BCS superconductivity9.

On a microscopic level, the metastability in the
cuprates arises from fluctuating [Cu-O-Cu] molecular
bonds in the CuO2 planes2,3. Their deformable lig-
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and environments10,11 act as potential pairing centers4

induced in the undoped systems upon hole doping.
These nano size domains exhibit an atomic structure5,
which locally breaks translational as well as rotational
symmetry6. Two degenerate spatially orthogonally ori-
ented [Cu-O-Cu] bonds cause the CuO2 plane structure
to segregate into a patchwork of orientationally disor-
dered domains, separated by a lattice of essentially un-
deformable molecular clusters. Ultimately, this forms an
effective bipartite lattice structure2,6 of the CuO2 planes.
The charge transfer between the pairing centers and the
molecular clusters on the lattice surrounding them leads
to resonant pairing on that latter. It is controlled by an
interplay between localization of the charge carriers in
form of bound pairs on the pairing centers and their de-
localization on the lattice which spatially separates them.
On a macroscopic level, those materials exhibit an over-
all homogeneous crystal structure in a coarse grained
sense12. But occasionally, such as in La2−xBaxCuO4 for
x=1/8, the local lattice deformations of the pairing cen-
ters lock together in a charge ordered phase and thereby
impeach superconductivity to occur5.

II. THE SCENARIO

The ”formal chemical” Cu valence - not to be con-
fused with its ionic charge - in the d-hole doped CuO2

planes lies between CuII and CuIII . For an isolated un-
doped CuO2 plane this would correspond to stereochem-
ical [CuII -O] distances of 1.94 Å in the [Cu-O4] basic
blocks. The misfits between the atomic structure of the
CuO2 planes and those of the adjacent layers, which fur-
nish the dopant holes, push the bridging oxygen of the
[Cu-O-Cu] bonds out of the CuO2 plane, making them
buckled. By doing so, they can accommodate the stereo-
chemically assigned inter-atomic distance of those bonds.
The scenario for the doped cuprates, which we want

to advocate in this work, is that the static displace-
ments of the bridging oxygens, which characterize the un-
doped and low doped insulating phase, become dynamic.
The fluctuation of the bridging oxygens of the [Cu-O-
Cu] bonds, in and out of the planes, tends to diminish
the plane buckling which characterizes the undoped ma-
terial. This tendency gets more and more pronounced
as the doping is increased, driven by the increased cova-
lency of the CuO2 basal plane building blocks. It how-
ever shows a marked slowing down of this behavior as
one passes through optimal doping13. On a microscopic
level, this implies fluctuations between kinked [CuII - O
- CuII ] molecular bonds (characteristic for the undoped
systems) and straightened out ones [CuIII - O - CuIII ],
with an ideal stereochemical [CuIII -O] distances of 1.84
Å. In this process two electrons get momentarily cap-
tured in the local dynamically deformable structure of
the CuO2 planes. It results in locally correlated charge-
deformation fluctuations which break up the over-all ho-
mogeneous structure of the cuprates into a checker-board

structure, as scanning tunneling microscopy (STM) re-
sults (Figs. 4 and 5 in Ref. 6) have shown. The net
difference in length between the two different molecular
bonds on such charge-deformation fluctuating checker-
board pairing domains can be reduced (i) because of the
dynamical nature of these pairing fluctuations and (ii)
because it involves cooperatively several of such [Cu-O-
Cu] bonds.

The likelihood of a segregation of a homogeneous lat-
tice structure into polaronic domains, embedded in a non-
polaronic matrix, such as advocated in the present sce-
nario, had been speculated upon for a long time. For
the case of intermediate electron-lattice coupling and the
adiabatic to anti-adiabatic cross-over regime, individual
itinerant charge carriers are known to fluctuate in and
out of localized polaronic states14. Unfortunately, the
present state of art of the theory of many-polaronic sys-
tems can still not handle situations other than for homo-
geneous or globally symmetry broken solutions. Never-
theless indications for resonant pairing in such systems
exist, where the single-particle spectral function has both
coherent delocalized contributions and localized ones in
form of localized polarons, respectively bipolarons. This
has been discussed in the framework of dynamical mean
field theory, numerical renormalization group and Monte
Carlo studies15.

Given the complexity of the inter-related charge-
deformation dynamics in such systems, it appeared ju-
dicious to introduce a phenomenological Boson-Fermion
model (BFM), to capture the salient features of such in-
trinsically locally dynamically unstable systems with a
tendency to segregate into subsystems of localized and
itinerant charge carriers. This idea was originally pro-
posed by one of us (JR) in the early eighties in an at-
tempt to describe the abrupt cross-over between a weak
coupling adiabatic electron-phonon mediated BCS super-
conductor and an insulating state, respectively super-
conducting phase, of bipolarons in the strong coupling
anti-adiabatic regime. The essential features of this con-
jectured BFM was to introduce an effective local boson-
fermion exchange coupling between polaronically bound
pairs and itinerant charge carriers. This picture has been
substantiated subsequently by small cluster calculations
for electrons strongly coupled to localized lattice vibra-
tional modes16. It permits to relate the effective boson-
fermion exchange coupling back to the parameters, char-
acterizing the electron-lattice coupled system, ie., local
phonon frequency and electron-phonon coupling.

In order to cast into a tractable model the physics
of dynamically fluctuating [Cu-O-Cu] bonds, which trig-
ger local double charge fluctuations, we present in Fig.
1 an idealized structure for such a local checker-board
bipartite lattice structure, which comes very close to
the actually observed structure. The corresponding
checker-board pairing centers consist of Cu4O12 domains
(three nearest neighbor Cu-Cu distances across) on which
charge carriers pair up, driven by polaronic effects. The
lattice deformations of adjacent Cu4O12 domains are as-
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sumed to be uncorrelated in order to prevent the system
to undergo a global lattice instability. The orientational
randomness of the [Cu-O-Cu] unidirectional bonds, to-
gether with the quadratic Cu4O4 plaquettes (see Fig.1),
which separate those polaronic Cu4O12 domains, justi-
fies that. Ultimately, this results in the picture of an
overall bipartite lattice structure for the CuO2 planes
with a periodicity of four nearest neighbor Cu-Cu dis-
tances. d-holes on the non-polaronic Cu4O4 plaque-
ttes in the cuprates are known to behave as delocalized,
though strongly correlated, entities subject to dx2−y2 -
wave pairing correlations17,18. In the present study we
shall concentrate on the purely lattice driven pairing as-
pects in the cuprates, caused by their intrinsic metasta-
bilities. We hence neglect here any Hubbard type cor-
relations leading to hole pairing and treat the Cu4O4

square plaquettes as effective lattice sites on which the
charge carriers behave as itinerant uncorrelated quasi-
particles. When they hop on and off the Cu4O12 pairing
centers, they interact with their local dynamical defor-
mations. The resulting local physics for resonant pairing
for such a set-up and its manifestations in the electronic
and phononic spectral properties have been studied in
some detail by exact diagonalization studies16.

Indications for resonant pairing in the cuprates, driven
by local dynamical lattice fluctuations can be found in
quite a variety of experimental studies: the longitudi-
nal optical (LO) Cu-O bond stretching mode of about
60 meV appears strongly coupled to charge carriers near
the hotspot anti-nodal points in the Brillouin zone (BZ)
[qx, qy] = [±π/2, 0], [0,±π/2]10,11. Their pairing results
in the pseudogap feature, setting in when reducing the
temperature T to below a certain, strongly doping de-
pendent, T∗. Upon entering the superconducting doping
regime, coming from the insulating parent compound,
this LO mode splits into two modes, separated by ≃ 10
meV19. This indicates a crystal lattice symmetry break-
ing, linked to dynamical charge inhomogeneities which
are absent in the underdoped and overdoped insulat-
ing phases. Pressure20, isotope substitution studies21

and atomic resolution d2I/dV 2-spectroscopy11 show con-
comitant anticorrelated modulations of the pseudo-gap
size and the frequency of this LO buckling mode. Corre-
lated charge-deformation fluctuations, related to a reso-
nant pairing superconducting phase show up in the onset
of a macroscopic superfluid state of the charge carriers to-
gether with changes in the local lattice dynamics which
acquires phase correlated macroscopic features. They
are seen in Rutherford back scattering experiments22,
an abrupt decrease in the kinetic energy of local vibra-
tional modes23, a similar abrupt increase of a low energy
electronic background, seen in near IR excited Raman
scattering24 and an increase in intensity of certain Ra-
man active phonon modes25, indicative of changes in the
scattering mechanism involving the charge carriers and
local lattice modes.

III. THE MODEL

Superconductivity in the cuprates is destroyed, ex-
clusively, by phase fluctuations of a bosonic order
parameter26,27, with the finite amplitude of it, being al-
ready established well above Tc. It reflects the local
nature of the Cooper-pairs, whose signature is (i) a Tc

scaling with the zero temperature density of superfluid
carriers28 and (ii) the XY character of the transition29.
Going into the normal state, above Tc, the propagating
Cooperons become diffusive and the superconducting gap
changes into a pseudogap in a continuous fashion30. The
observed Nernst31, transient Meissner effect32 and the
proximity induced pseudogap33 bare this out. The gap
in the single-particle spectrum and the diffusively prop-
agating strongly bound Cooper pairs testify the compe-
tition between amplitude and phase fluctuations of the
order parameter in form of an anti-correlated Tc versus
T∗ variation upon changing the hole doping34,35. The in-
sulating, not antiferromagnetically ordered glassy state,
at low temperature and low doping can be envisaged
as a Mott correlation driven state of phase uncorrelated
singlet-bonding pairs. With increased doping, this insu-
lating state changes into a superconducting phase corre-
lated state of such bonding pairs36,37. Bonding pairs are
defined by local linear superpositions of bound pairs and
pairs of itinerant charge carriers. To what extent such an
insulating state could result from a Cooper-pair Wigner
crystallization, has been investigated38,39.

The features which characterize the normal and super-
conducting phase of the cuprates necessitate to treat am-
plitude and phase fluctuations on an equal footing. This
had originally also been the objective in conjecturing the
BFM and to project out coexisting effective bosonic and
fermionic charge excitations for systems which are at the
frontier between amplitude fluctuation driven BCS su-
perconductors and a phase fluctuation driven superfuid-
ity of tightly bound real-space pairs. The BFM is de-
signed to treat a single component system, where at any
given moment a certain percentage of the charge carriers
is locally paired and thus results in a finite bosonic ampli-
tude. This is achieved by imposing a common chemical
potential (determined by the bosonic energy level) for the
fermionic and bosonic charge carriers. A charge exchange
term, linking the fermionic and bosonic subsystem, then
controls the inter-related dynamics between amplitude
and phase fluctuations. It drives the system either to an
insulating or superfluid state with corresponding super-
conducting, respectively insulating, gaps being centered
at the chemical potential. The opening of such gaps does
not depend on any particular set of Fermi wavevectors
and hence is unrelated to any global translational sym-
metry breaking.

The degree of anisotropy of pairing and of the charge
carrier dispersion in the CuO2 planes monitors the rel-
ative importance of localization versus delocalization in
different regions of the Brillouin zone. Near the anti-
nodal points, strong pairing results from strong intra-



4

bonding pair correlations between bound pairs on the
pairing centers and their itinerant counterparts in their
immediate vicinity16. It leads to their partial localiza-
tion, which shows up in form of a pseudogap in the single-
particle spectral properties and destroys the Fermi sur-
face. As one moves toward the nodal points, [kx, ky] =
[±π/2,±π/2], along the socalled Fermi arc in the Bril-
louin zone (corresponding to the Fermi surface in the
non-interacting system), those intra-bonding pair phase
correlations are weakened. The degree of localization
then reduces and with it, the size of the pseudogap. At
the same time, inter-bonding pair phase correlations be-
tween neighboring pairing domains come into play and
with it, superconducting phase locking. At low energies,
this leads to Bogoliubov like modes, which emerge out
of localized phase uncorrelated bonding pairs. We derive
below these properties on the basis of the BFM, adapted
to the specific anisotropic features of the cuprates.

Transposing our picture of the cuprate molecular struc-
ture (Fig. 1) onto the BFM (see also Figs. 3 and 4 in
Ref.40) implies the following: We introduce effective lat-
tice sites, which are composed of two components: One
which represents the pairing centers (the Cu4O12 do-
mains) and describes selftrapped bosonic pairs of charge
carriers. The other one which describes the itinerant
charge carriers on the four-site ring, constituted of the
Cu4O4 plaquettes, taking into account that each such
plaquette is shared by four neighboring pairing centers.
For the undoped half-filled band situation, with one elec-
tron per Cu site, we thus have four itinerant electrons
on the ring, belonging to a specific pairing center and
four electrons being localized in form of two CuII -O-CuII

bonds on the pairing centers. Deviating from the un-
doped limit upon doping nh holes per Cu ion into the sys-
tems, reduces the concentration of CuII -O-CuII bonds in
the trapping centers by nB ≃ 1

2 nh . This opens up the
phase space for itinerant electrons from the four-site ring
to hop on off those trapping centers. Such a resonant
scattering process converts a small number nB of those
itinerant charge carriers into bosonic bound pairs. Fol-
lowing the experimental results of the strong changes in
local lattice properties with hole doping, we assume that
hole doping monitors exclusively the concentration of the
CuII -O-CuII bonds and that hence the total number of
itinerant electrons and induced pairs of them will remain
roughly the same as it was in the undoped case, i.e., ntot
= nF + 2nB = 1.

The d-wave paring symmetry of those systems imposes
an analogous d-wave symmetry for the exchange interac-

tion between (i) pairs of itinerant charge carriers c
(†)
kσ ,

corresponding to the ”plaquette site” states and (ii) po-

laronicaly bound pairs of them b
(†)
q , corresponding to the

”pairing center site” states. The Hamiltonian describing

such a scenario is then given by

HBFM = H0
BFM +Hexch

BFM (1)

H0
BFM =

∑

kσ

(εk − µ)c†kσckσ +
∑

q

(Eq − 2µ)b†qbq. (2)

Hexch
BFM = (1/

√
N)

∑

k,q

(gk,qb
†
qcq−k,↓ck,↑ +H.c.), (3)

The anisotropy, which characterizes the electronic struc-
ture of cuprates, is contained in the standard expres-
sion for the bare charge carrier dispersion given by εk =
−2t[coskx + cosky] + 4t′coskxcosky of the CuO2 planes
with t′/t = 0.4 and the bare d-wave exchange coupling
gk,q = g[coskx − cosky ]. Given the polaronic origin of
the localized pairs of tightly bound charge carriers, we
assume them as dispersionless bosonic excitations with
Eq = 2∆.

The charge exchange term Hexch
BFM controls the transfer

of electrons (holes) between real and momentum space41

and monitors the interplay between the delocalizing and
the localizing effect. Depending on the strength of the ex-
change coupling gk,q, it results in a competition between
local intra-bonding pair correlations, favoring insulating
features, and spatial inter-bonding pair correlations, fa-
voring superconducting phase locking36. The fermionic
particles thereby acquire contributions coming from the
bosonic particles and the bosonic particles having fea-
tures derived from their fermionic constituents. As we
shall see below, the physically meaningful fermions in
such a system are superpositions of fermions and bosonic
bound fermion pairs, accompanied by fermion holes. This
boson-fermion duality, which characterizes the electronic
state of the cuprates, results from the ”duplicituous”41

nature of their charge carriers, which supports simultane-
ously superconducting correlations in momentum space
(fermionic Bogoliubov excitations) and real space cor-
relations resulting in the pseudogap (derived from lo-
calized bosonic bound fermion pairs). This apparent
”schizophrenic” behavior42 of the quasi-particles can be
traced back to their different energy scales characteriz-
ing their excitations. Large excitation energies (above
the Fermi energy) characterize their localized selftrapped
nature and small excitation energies (below the Fermi
energy) their quasi-coherently propagating Cooper pair
nature.

In order to obtain the spectroscopic features of effec-
tive fermionic and bosonic excitations we have to refor-
mulate this interacting Boson-Fermion mixture in terms
of two effective commuting Hamiltonians, one describ-
ing purely fermionic excitations and one purely bosonic
ones. The boson-fermion interaction thereby is absorbed
into inter-dependent coupling constants by renormaliz-
ing gk,q down to zero via a flow-equation renormalization
approach43. At every step of this procedure the renor-
malized Hamiltonian is projected onto the basic struc-
ture given by H0

BFM plus a renormalization generated
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fermion-fermion interactions term44

HF−F
BFM =

1

N

∑

p,k,q

UF−F
p,k,qc

†
p↑c

†
k↓cq↓cp+k−q↑. (4)

This is achieved by transforming the Hamiltonian in
infinitesimal steps, controlled by a flow parameter ℓ
in tems of repeated unitary transformations H(ℓ) =
eS(ℓ)He−S(ℓ), resulting in differential equations ∂ℓH(ℓ) =
[η(ℓ), H(ℓ)] with η(ℓ) ≡ (∂ℓe

S(ℓ)/∂ℓ)e
−S(ℓ), determining

the flow of the parameters of our system. In its canonical
form43, η(ℓ) = [H0(ℓ), H(ℓ)] presents an anti-Hermitean
generator. For details of the ensuing coupled non-linear
differential equations for the various ℓ dependent pa-
rameters εk(ℓ), Eq(ℓ), U

F−F
p,k,q(ℓ), gk,q(ℓ), µ(ℓ) we refer the

reader to our previous work44,45. The parameters, char-
acterizing H0 and Hexch, evolve as the flow parame-
ter ℓ increases. The renormalization procedure starts
with ℓ = 0, for which they are given by the bare val-
ues εk, Eq = 2∆, gk,q together with UF−F

p,k,q ≡ 0. The

chemical potential µ(ℓ) is chosen at each step of the
renormalization flow such as to fix a given total num-
ber of fermions and bosons. The flow of these pa-
rameters converges for ℓ → ∞ and results in two un-
coupled systems: one for the effective fermionic exci-
tations and one for the effective bosonic ones with a
fix point Fermion dispersion ε∗k = εk(ℓ → ∞). For
isotropic exchange coupling and fermion dispersion this
problem had been studied previously37,44,45, predicting
the pseudogap46 and damped Bogoliubov modes45 in an-
gle resolved photoemission spectra. Both have since been
verified experimentally1.

IV. THE BOSON-FERMION DUALITY.

The anisotropy of the electronic structure of cuprates
tracks a change-over from self-trapped (localized)
fermions, in form of diffusively propagating bosonic pairs,
into itinerant propagating (delocalized) fermions upon
going from the anti-nodal to the nodal point on an arc in
the Brillouin zone, determined by ε∗kF

(φ) = µ. To illus-
trate that, we evaluate the single-particle spectral func-
tion for wave vectors k = |k|[sinφ, cosφ], orthogonally
intersecting this arc at various kF (φ), where the motion
of the charge carriers is essentially one dimensional. φ
denotes the angle of those k-vectors with respect to the
line [π, π]− [π, 0], (see Fig.3).
In order to relate our study to a nearly half filled band

situation, characterizing the doped cuprates, we choose
∆ ≃ 0.75 (in units of a nominal fermionic band width
of 8t), with the bosonic level lying just barely below the
center of the itinerant fermion band such as to repro-
duce the typical shape of the CuO2 planar Fermi sur-
face. Our choice of the boson-fermion exchange coupling
strength g = 0.1, yields a typical onset temperature T∗ =
0.016 for the pseudogap of roughly a hundred degrees K.
For a characteristic temperature of the pseudogap phase

(T = 0.007 < T ∗), it implies a concentration of itiner-

ant fermionic charge carriers nF =
∑

kσ〈c
†
kσckσ〉 = 0.88

and that of self-trapped ones bound into fermion pairs,
nB =

∑

q〈b†qbq〉 = 0.075. This corresponds to a hole
doping nh = 0.12, with a total number of carriers of
ntot = nF + 2nB = 1.03. Hole doping redistributes
the relative occupation of fermions and bosons which
ultimately leads to a shrinking of the arcs (see section
V). The charge carriers around the nodal point are pri-
marily given by delocalized fermionic one-particle states,
while at the hotspot anti-nodal points they are localized
bosonic bound fermion pairs. Yet, as we shall see be-
low, they will become itinerant and eventually condense
as the temperature is decreased. The reason for that is
that the bare exchange coupling gk,q is equal to zero at
the nodal point (φ = π/4) and increases as one moves to
the anti-nodal points (φ = 0, π/2), where it reaches its
maximal value, equal to g. As a consequence, ε∗k remains
essentially unrenormalized for k vectors crossing the arc
near the nodal point. Upon approaching the anti-nodal
point, on the contrary, ε∗k acquires a sharp S-like inflex-
ion at kF (φ), which leads to the the appearance of the
pseudogap in the single-particle density of states.
Our prime objective in the present study is to disen-

tangle the contributions to the single-particle spectral
function coming from the itinerant and from the local-
ized features. The latter arise from single-particles being
momentarily trapped in form of localized pairs. The ef-
fective fermionic and bosonic excitations are obtained in
a renormalization procedure similar to that of the Hamil-
tonian, but this time by applying it to the fermion and
boson operators themselves45,47. The evaluation of the
single-particle spectral function

AF (k, ω) = − 1

π
Im

∫ β

0

dτGF (k, τ)e(ω+0+)τ

GF (k, τ) = 〈〈ck↑(τ); c†k↓〉〉H (5)

in a correspondingly renormalized manner is achieved by
applying the unitary transformation eS(ℓ) to the Green’s
function itself. It results in

〈〈ckσ(τ); c†kσ(0)〉〉H =

〈〈eS(l)eτH(ℓ)ckσe
−τH(ℓ)e−S(l); eS(l)c†kσe

−S(l)〉〉H(ℓ) =

〈〈eS(∞)eτH
∗

ckσe
−τH∗

e−S(∞); eS(∞)c†kσe
−S(∞)〉〉H∗ , (6)

where the trace has to be carried out over the fully renor-
malized fixed point Hamiltonian H∗. Neglecting the
residual interaction UF−F

p,k,q between the fermions and re-
stricting ourselves to the pseudogap phase without any
long range phase locking, we obtain the following renor-
malized fermion operators47:

[

c†−k,−σ(ℓ)

ck,σ(ℓ)

]

= uF
k (ℓ)

[

c†−k,−σ

ck,σ

]

∓ 1√
N

∑

q

vFk,q(ℓ)

[

b†qcq+k,σ

bqc
†
q−k,−σ

]

, (7)
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with ℓ dependent parameters uF
k (ℓ), v

F
k (ℓ) determined by

the flow equations. The single-particle fermionic spectral
function resulting from such a procedure

AF (k, ω) = |uF
k (∞)|2δ (ω+µ−ε∗k)

+
1

N

∑

q 6=0

(

nB
q + nF

q−k↓

)

|vFk,q(∞)|2δ(ω−µ+ε∗q−k−E∗
q),(8)

is illustrated in Fig. 2 for T = 0.007 (< T ∗ = 0.016),
which lies in the pseudogap phase. We choose a k travers-
ing the arc in the Brillouin zone at kF (φ), in a character-
istic region around φ = φc = 15o, where the T indepen-
dent gap for φ ≤ φc changes over into a T dependent gap
in the single-particle density of states for values of φ ≥ φc

(see Fig 3). φc signals the separation between localized
and delocalized, respectively bosonic and fermionic, fea-
tures in the Brillouin zone.
For k vectors below kF (φ), A

F (k, ω) exhibits (i) low
energy (≤ µ) delocalized single-particle excitations (the
first term in eq. 8), which follow essentially the disper-
sion ε∗k ≃ εk and (ii) a high energy (≥ µ) broadened
upper Bogoliubov like branch. For k → 0 that latter
merges into the time reversed spectrum −εk. For wave
vectors k above kF (φ), A

F (k, ω) shows simultaneously
two features: (i) low frequency diffusively propagating
Bogoliubov modes and (ii) high frequency single-particle
excitations with a dispersion given by ε∗k ≃ εk and mov-
ing in a cloud of bosonic two-particle excitations in form
of bonding and antibonding states, seen by the wings
on either side of the coherent part (the first term in
Equ. 8) of those excitations. These low and high fre-
quency excitations for a given wave-vector characterize
the low and high frequency response of one and the same
phenomenon, with the latter testing the internal degrees
of freedom of the collective diffusively propagating Bo-
goliubov like modes. These internal degrees of freedom
are images of localized bonding and anti-bonding states,
such as given by the Green’s function in the atomic limit
(t, t′ = 0)48,49, GF

at(iωn) = 1/[GF
at(iωn)

−1 − ΣF
at(iωn)]

with the selfenergy

ΣF
at(iωn) =

(1− Z) g2 (iωn + µ)

[(iωn + µ)(iωn − 2∆+ µ)− Zg2]
, (9)

which differs qualitatively from any BCS like structure
of Cooperons, because taking into account their intrin-
sic single-particle localized internal degrees of freedom.
Z ≃ 2/[3 + cosh(g/kBT )] (for our choice of parameters)
denotes the spectral weight of non-bonding delocalized
charge carriers, described by GF

0 (iωn) = 1/(iωn − µ).
The pseudogap in the density of states, ρ(ω) =

(1/N)
∑

k A
F (k, ω), which opens up at some T = T ∗

at kF (φ) has a size ∆pg(φ). It is determined by the
distance between the peaks either side of ε∗

kF (φ), when

upon lowering T the deviation from the bare density of
state, ρ0(ω) = (1/N)

∑

k δ(ω − εk) becomes noticeable.
We take as a criterion a reduction to 90% of ρ0(ω = 0).
The sharp peak in AF (kF , ω) in Fig. 2, arising from

FIG. 2: (Color online) A(k, ω) at T = 0.007 (< T ∗ = 0.016) as
a function of |k| (in units of the inverse lattice vector) near kF

(red line), corresponding to φ = 15o, orthogonally crossing the
Fermi arc. The spectral weight of the coherent and incoherent
contributions are indicated by blue, respectively yellow bars.

the coherent part of this spectrum, is a consequence of
having neglected the residual fermion-fermion interaction
UF−F
p,k,q, eq. 4. The effect of this interaction is to broaden

this delta function like peak, as we know from previous
studies using different approaches50,51. To describe this
effect within the present flow equation approach, requires
a fully self-consistent treatment of the diagonal part of

the renormalized fermions given by
∑

kσ(ε
∗
k − µ)c†kσckσ

and the residual fermion-fermion interaction HF−F
BFM - an

issue, which will be treated in some future study.

The appearance of the pseudogap is associated with a
reduction of the spectral weight of this coherent contri-
bution (given by the height of the blue bars in Fig. 2).
We illustrate in Fig. 3 the variation of ∆pg(φ) for differ-
ent T. Close to the anti-nodal point - the localized and
bosonic dominated regime - it is relatively T independent.
But approaching the nodal point, it abruptly drops to
zero, even though gk,q is still finite. Although reminis-
cent of BCS like superconducting correlations (without

FIG. 3: (Color online) Variation of the pseudogap for different
k vectors, orthogonally crossing the arc, given by angles φ.



7

any pseudogap) for 60o ≥ φ ≥ 30o, the momentum de-
pendence of the gap in the superconducting phase is T
dependent. This, clearly is a not a BCS mean-field type
behavior52. The reason behind the change-over from an
essentially T independent gap for φ ≤ φc and a T de-
pendent gap for φ ≥ φc is the following: As φ decreases,
the size of the pseudogap increases and at the same time
its position in the Brillouin zone at some kF (φ) dimin-
ishes until it reaches the bottom of ε∗k. (see Fig. 2 in Ref.
37). At this point, itinerant fermionic charge carriers dis-
appear in that part for the Brillouin zone, having been
converted into bosonic fermion pairs. The accumulation
of such bosonic charge carriers near the anti-nodal point
is a direct consequence of the anisotropic boson-femion
exchange coupling and d-wave pairing in those cuprates.
Since the excitation energies (size of the pseudogap) char-
acterizing such entities are determined by purely local
effects, they are relatively temperature as well as doping
independent for φ ≤ φc. Doping dependent however is
the value φ = φc of the cross-over to itinerant charge
carriers, as confirmed in ARPES experiments52.
In order to visualize the accumulation of bosonic

charge cariers near the anti-nodal points let us investi-
gate how the fermionic charge carriers in the various re-
gions near the arc in the Brillouin zone get converted into
diffusively propagating bound pairs of them. To do that
we evaluate the renormalized Bose spectral function,

AB(q, ω) = − 1

π
Im

∫ β

0

dτGB(q, τ)e(ω+i0+)τ

GB(q, τ) = 〈〈bq(τ); b†q〉〉H , (10)

for which we had previously derived the corresponding
renormalization flow equations47. It results in renormal-
ized boson operators

bq(ℓ) = uB
q (ℓ)bq +

1√
N

∑

k

vBq,k(ℓ)ck↓cq−k↑, (11)

with b†q(ℓ) = (bq(ℓ))
†, which ultimately leads to the

renormalized Boson spectral function given by

AB(q, ω) = |uB
q (∞)|2δ

(

ω − E∗
q

)

+
1

N

∑

k

fk,q−k|vBq,k(∞)|2δ
(

ω − ε∗k − ε∗q−k

)

. (12)

The corresponding number of such bosonic charge carri-
ers is given by nB(qx, qy) =

∫

dωAB(q, ω)[exp(ω/kBT )−
1]−1. We plot it for a series of q vectors in Fig. 4
for T=0.007, which sample the anisotropy of the CuO2

electronic structure, where θ indicates the azimuthal an-
gle in this plane. Notice that along the nodal direc-
tion the number of bosons is independent on |q|, be-
cause of the absence of any boson-fermion coupling. As
one approaches the direction linking the center of the
zone with the anti-nodal points, the exchange coupling
steadily increases and consequently the intrinsically lo-
calized bosons acquire itinerancy and gather in a region

of long wavelength. Those bosons have internal structure
of two fermions with opposite momenta centered around
kF (φ). In the inset of Fig. 4 we illustrate the total num-
ber of such bosons along the various q vectors and notice
the relative increase, respectively decrease compared to
their average value 0.075, depending on whether we are
sampling the nodal or the anti-nodal directions. The ac-
cumulation of fermions getting converted into fermion
pairs in certain parts of the Brillouin zone, close the
anti-nodal points, has its counter part in the diminish-
ing density of single-particle fermionic excitations in the
same regions. We illustrate that in Fig. 5, where we plot
the variation of the coherent part of the single-particle
dispersion, given by ε∗k around kF (φ). We notice that
with diminishing φ, approaching the anti-nodal points,
the corresponding value of kF (φ) diminishes. This an-
nounces a shrinking of the Fermi sea, causing an emp-
tying out of single-particle states and consequently an
increase of bound fermion pairs. This feature had pre-
viously been observed in connection with the transition
between the superconducting state of phase correlated
bonding pairs and the insulating state of such phase un-
correlated bonding pairs37.

 0.5

1.0

1.5

(0,0)

(π,0)

(0,π)

(π,π)

qy

qx

nB
(q)

θ

 0.05

0.1

 0.15

0o 15o 30o 45o

nB(θ)

θ

FIG. 4: (Color online) Variation of the number of paired
fermions as a function of wavevectors q along different direc-
tions in the Brillouin zone given by the angle θ. The variation
of the total number of such pairs is illustrated in the inset.
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V. SUMMARY AND OUTLOOK

Our scenario for the cuprate superconductivity is based
on resonant pairing, induced by local dynamical lattice
instabilities upon hole doping. It makes use of the fact
that such systems are prone to a segregation of glob-
ally homogeneous crystal structures into small nano-size
pairing domains. This breaks locally the translational
as well as rotational symmetry by randomly orienting
uni-directional Cu-O-Cu molecular bonds in different di-
rections. As a result, the fermionic charge carriers ac-
quire single-particle spectral features which comprise si-
multaneously: (i) quasi localized states, where they are
momentarily trapped in form of bound pairs in pola-
ronic charge fluctuating local domains and (ii) delocalized
states on a sublattice in which those polaronic domains
are embedded.

Due to the d-wave pairing, which in our case is encoded
in the anisotropic Boson-Fermion exchange coupling gk,q,
the spectral properties of the single-particle excitations
exhibit a pseudogap with the following features: As we
move on a constant energy line in the Brillouin zone,
corresponding to the chemical potential (where such an
arc determines the Fermi surface, whenever it exists),
|gk,q| diminishes as we go from the anti-nodal (φ ≃ 0)
to the nodal region (φ ≃ π/4). Concomitantly the size
of the pseudogap, ∆pg, decreases. For 0 < φ < φc, with
φc ≃ 15o for our choice of parameters, it remains rela-
tively unaffected by changes in temperature T. On the
contrary, for φc < φ < π/4, ∆pg becomes strongly T
dependent. For low T, it tends to zero gradually as one
approaches φ = π/4. With increasing T, it tends to zero
at increasingly larger values of φ, (see Fig.3), as observed

FIG. 5: (Color online) Variation of the renormalized single-
particle dispersion for wave-vectors k orthogonally crossing
the arcs along different directions in the Brillouin zone, char-
acterized by the angle φ = arcsin(kx/|k)|. The reduction in
the value of |kF (φ)| upon approaching the anti-nodal regime
indicates an emptying out of the fermionic single-particle ex-
citations in favor of an increase in their paired states.

experimentally6. This suggest that:

(i) the pseudogap in a finite region (0 < φ < φc)
around the anti-nodal point is controlled by predomi-
nately local pairing (via intra-bonding-pair correlations),
which is independent on doping and largely unaffected
by superconducting phase fluctuations.

(ii) the pseudogap in a finite region (φc < φ < π/4)
around the nodal point is controlled by both, local intra-
bonding-pair as well as non-local superconducting inter-
bonding-pair correlations, which are sensitive to phase
fluctuations and cause the dependence of ∆pg on T as
well as on doping.

The diffusively propagating low energy Bogoliubov like
excitations around kF , which trace out the pseudogap,
are a hallmark of the single-particle spectral features of
such resonant pairing systems and which exist even near
the anti-nodal points. In contrast to a BCS scenario,
here, their appearence above Tc does not require a phase
coherence of the bosonic bound fermion pairs. Such Bo-
goliubov like modes nucleate from local intra-bonding-
pair correlations between pairs of itinerant fermions and
localized fermion pairs48,49 on local molecular clusters,
such as discussed here. They are a signature of a prevail-
ing glassy Bose metallic behavior prone to transit into
a superconducting state of phase correlated such bosonic
intra-bonding-pairs. The momentum dependence of those
two-particle excitations, shows a strong tendency toward
condensation (see Fig. 4), which tracks the anisotropic
behavior of the gap. Provided the Boson-Fermion ex-
change coupling is not too big, such bosonic pairs forming
near the anti-nodal points, will dominate the supercon-
ductivity, against a widespread opinion that they should
be localized there. For sufficiently large g, they of course
will be localized. This is a topic which will require further
investigations, dealing with the superconductor to insu-
lator (Bose glass) transition with reduced hole doping.
The internal structure of those diffusively propagating
Cooperons, consisting of selftrapped fermions, is mani-
fest in their single-particle excitations above the chem-
ical potential. It reflects their atomic localized nature,
where two-particle localized bonding and anti-bonding
satellites trail the dispersion of their delocalized coher-
ent contributions48,49. The low energy diffusive collec-
tive Bogoliubov excitations and the high energy single-
particle excitations are two different manifestations of
the same entity. Whether there is a sharp border line
for the onset of the high energy localized features in the
Brillouin zone, as suggested by a socalled doping inde-
pendent ”extinction line”6,41, will have to be checked in
future for the present scenario.

Let us conclude this study with some remarks on the
kind of doping mechanism we can envisage in the cuprate
high Tc compounds. For low hole doping it can be un-
derstood in terms of a doped Mott insulator and an an-
tiferromagnetic ground state, transiting into a spin sin-
glet liquid glassy state with increased doping. For the
remaining doping regime, approaching the optimal and
overdoped regions, it remains largely an open problem
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to be resolved. Experimentally one finds a singular uni-
versal optimal doping rate nopth = 0.16 holes/Cu atom,
where Tc reaches its maximum together with a maximal
volume fraction of the Meissner effect and a Hall number
becoming sharply peaked53. In scenarios, like the present
one, based on inter-related amplitude and phase fluctua-
tions, optimal doping also characterizes the region where
the energies of the superconducting phase stiffness and
that of the pairing coincide26. These doping dependent
electronic features are accompanied by a reduction of the
buckling of the CuO2 planes13, which characterizes the
low doped insulating phase. Pressure tuned electronic
transitions, testing electronic and lattice features at the
same time54, point to a critical pressure which can be
identified with the critical doping rate nopth . The univer-

sal value of nopt
h =0.16, occures for any optimally doped

system, whatever the chemical structure of the doping
blocks might be. This suggests that, upon approaching
optimal doping, the electronic and lattice degrees of free-
dom must get strongly locked together55 and by doing
so increase the stability of these intrinsically metastable
materials. And indeed, upon trying to force extra holes
into such systems by overdoping nh > nopt

h , they seg-
regate into different crystalline phases56, with supercon-
ducting components composed of underdoped and opti-
mally doped regions. Understanding the doping depen-
dence of the cuprates thus becomes tantamount to under-
standing the structural stability of those system. It nec-
essarily must involve correlated macroscopic features22,23

of charge and lattice deformations, such that precisely at
optimal doping they optimally and constructively inter-
fere with each other.
Transposing these experimental facts on the scenario

discussed in this paper, the fluctuating local domains in
the CuO2 planes get increasingly coherently locked to-
gether as hole doping increases. This results in a de-
crease of spatial phase fluctuations of the bosonic reso-
nantly bound fermion pairs driven by locally fluctuating
lattice structures, while at the same time their conjugate
amplitude fluctuations increase. As a consequence Tc in-
creases and T∗ decreases. Previous studies57,58 on the
interplay between amplitude and phase fluctuations bare
that out.
According to the presently available experimental facts

(Ref. 13,34,35,53-55), the chemical doping mechanism,
which imposes itself in the cuprates (following our sce-
nario), converts part of the itinerant electrons into pola-
ronically driven resonating pairs, predominantly in cer-
tain regions of the Brillouin zone (see Fig. 4) near the
anti-nodal points. It manifests itself in the opening of
a pseudogap, which nucleates at the socalled hot-spots,
where the local Boson-Fermion exchange coupling g is
maximal. The self-regulating redistribution of itinerant
charge carriers and bosonic bound pairs of them on the
arcs in the Brillouin zone, is an intrinsic rather than an
extrinsic59 feature of the scenario presented here. It orig-

inates from strong electron-lattice coupling, in a system
with a highly anisotropic electronic dispersion and cou-
pling to local lattice modes, evidenced in the anisotropic
isotope dependent pseudogap and responsible for the lo-
cal symmetry breaking of those systems. Given this ex-
perimental situation, we conjecture that hole doping pri-
marily will replace the buckled CuII -O-CuII bonds by
unbuckled CuIII -O-CuIII ones, whose density nB will be
roughly given by 1

2nh, nh denoting the concentration of
chemically doped holes. Doping a single hole into the ba-
sic cluster of our segregated CuO2 planes means a doping
rate of 1/8= 0.125 per Cu ion. This is very close to the
critical doping rate, which changes the insulating glassy
phase into the superconducting one. Doping a hole into
the trapping centers breaks a CuII -O-CuII bond. Since
this is not compatible with the basic square planar CuO4

structure in the CuO2 planes, doping will trigger a charge
transfer between the trapping centers and the surround-
ing four-site rings, either by transferring an electron from
the ring to the trapping center and re-establish the sta-
ble square planar CuII -O-CuII bond, or by transferring
an electron from that hole doped bond into the ring and
leave behind a stable square planar CuIII -O-CuIII bond.
Both of these processes act together to ensure the overall
crystalline stability in systems with intrinsic local dy-
namically correlated charge-lattice fluctuations and thus
result in resonant pairing of the itinerant electrons on the
ring. The end-effect of this is a transfer of a fraction nhF of
the electrons on the ring into the pairing centers, where
they form pairs on a finite time scale with a concentra-
tion nB = 1

2n
h
F . This simultaneously implies a shrinking

of the Fermi surface. ntot = nF + 2nB in this doping
procedure remains unaltered i.e., equal to unity as it is
in the undoped case. The effect of hole doping is hence
to change the relative concentration of itinerant electrons
with respect to the concentration of partly bound pairs
of them.
A multitude of different experimental results discussed

here have been shown to be compatible with the reso-
nant pairing scenario. Qualitatively different from any
BCS pairing scenario, here the itinerant delocalized Bo-
goliubov excitations coexist with localized single-particle
ones which are selftrapped inside of them. Concerning
the origin of this resonant pairing in the cuprates, which
could be electronic18, as well as polaronic, the recently
observed breakdown of their homogeneous crystal struc-
tures into translational/rotational symmetry broken lo-
cal clusters6, gives us confidence that dynamical lattice
deformations should play a determinant role in the su-
perconducting state of high Tc compounds.
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34 Z. Tešanović, Nature Phys. 4, 408 (2008).
35 S. Huefner, M. A. Hossain, A. Damascelli and G. Sawatzky,

Rep. Prog. Phys. 71, 062501 (2008).
36 M. Cuoco and J. Ranninger, Phys. Rev. B 74, 094511

(2006)
37 T. Stauber and J. Ranninger, Phys. Rev. Lett. 99, 045301

(2007).
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