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The ingap state spectral properties in the cuprates’ pseudogap phase
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The single-particle excitations, which initiate the pseudogap in the cuprate superconductors at
some temperature T ∗, relate to specific local spectral features of resonant pairing, where charge
carriers get momentarily trapped on dynamically deformable molecular Cu-O-Cu clusters. We show
how those local excitations evolve into dispersive branches with a characteristic ”S”-like shape
for three-peak structured ingap excitations in the cuprates’ pseudogap phase, when we consider
a lattice of such clusters. This feature should be detectable in ”momentum distribution curve”
ARPES analysis.
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Introduction. Superconductivity in the cuprates
evolves out of an insulating state of phase uncorrelated
pairs of charge carriers, when doping beyond a certain
concentration of xsc = 5− 10% holes per Cu ion. Alter-
natively, for x ≥ xsc, the superconducting state can be
obtained out of the pseudogap state, which sets in below
a certain T ∗(x). The opening of the pseudogap is due
to phase uncorrelated fluctuating diamagnetic pairs. It
is unrelated to any superconducting precursor pairing,[1]
which sets in below a certain temperature TM (x) ≤ T ∗(x)
where these bonding pairs acquire phase correlations on a
finite space/time scale. This is evidenced in: a transient
Meissner screening, the Nernst effect in thermal trans-
port, torque magnetization measurements and zero bias
conductance of pseudogap/superconducting junctions.[2]
Our scenario of resonant pairing, attributed to the intrin-
sic metastability of the cuprate crystal structure, involves
dynamically fluctuating molecular Cu-O-Cu clusters,[3–
5] which, momentarily capture charge carriers in form
of bound singlet pairs, respectively accommodate them
as itinerant particles while passing through them. This
causes a breaking of crystalline symmetry on a local
level,[6] which makes the fermionic charge carriers to
be partly itinerant and partly localized, as observed in
STM imaging studies, see Ref.[7] and references therein.
A duplicitous feature of fermionic charge carriers,[8] co-
existing in localized and delocalized states, had been
known for some time in dilute polaronic systems, in
the region separating the anti-adiabatic and adiabatic
regimes [9]. It was this dual localization-delocalization
feature, which lead one of us (JR) to conjecture in the
early eighties, that in a Many Body polaronic system, it
should result in an intrinsic metastability of such com-
pounds. It was a natural extension of the work on the
Bipolaronic Superconductivity,[10] an extremely fragile
state of matter, most likely unrealizable in real mate-
rials, which prefer to localize their charge carriers under
similar conditions.[11]. In an attempt to materialize a su-
perconducting state in strongly coupled electron lattice

systems, it appeared judicious to consider the possibil-
ity of fluctuating bipolaronic states rather than bound
states. This led to the proposition of a phenomenologi-
cal model, the Boson Fermion model (BFM). A first at-
tempt to explore this scenario [12] showed a pairing state
below a certain temperature T ∗, driven by a finite am-
plitude of the local pairing field. Such a state was later
on ascribed to as the pseudogap state in the cuprates.
Upon lowering the temperature this state can, but does
not have to, condense into a phase correlated superfluid
states. Depending on the concentration of charge carri-
ers, it can equally result in an Mott correlation driven
bipolaronic insulator. A prime motivation for introduc-
ing this scenario was the widely appreciated fact that
metastable crystalline structures support fluctuating dia-
magnetic pairs, which favored a superconductivity that
avoided the stringent limitations of phonon mediated low
temperature BCS Cooper pairing.[13] and thus could at-
tain substantially higher critical temperatures Tc,[14, 15].
The BFM, which captures the basic physics of polaroni-
cally driven pair fluctuating systems, can account for the
emergence of a phase correlated superconducting state
of locally fluctuating bipolarons out of their correlation
driven Mott-like insulating state.[16] The Boson-Fermion
exchange mechanism proposed in this model avoids the
condensation into the Bipolaronic Superconductor state.
It preserves the fermionic character of the system, albeit
with a fractionated Fermi surface [6, 17] and controls the
breakdown of the superconducting state at Tc by phase
(i.e., via the disappearance of the density of superfuid
carriers) rather than amplitude fluctuations.

The pair fluctuation driven pseudogap, predicted on
the basis of this model, [19] manifests itself in a wide tem-
perature regime above Tc. It exhibits ingap states, whose
nature is considered to play a key role in our attempt
to understand high Tc superconductivity. The single-
particle spectral function A(k, ω) in this pseudogap phase
in the temperature regime [TM , T ∗], is predominantly de-
termined by the strong local phase correlations between
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itinerant and localized pairs of charge carriers on indi-
vidual clusters, which make up the effective lattice sites
of these cuprates. We show here how this local physics,
which is at the origin of duplicitous localized and delocal-
ized charge carriers, is carried over into the spatial (alias
momentum) dependent A(k, ω) and how the ingap states
evolve into hybridized modes, constructed of (i) disper-
sionless branches, tracking the localized aspects and (ii)
the bare tight binding spectrum of itinerant charge car-
riers, tracking their delocalized aspects.

The scenario. The BFM Hamiltonian, describing a
lattice composed of effective sites which act as resonant
trapping centers, is given by

H = ε0
∑

i,σ

c†iσciσ − t
∑

〈ij〉,σ

c†iσcjσ

+ E0

∑

i

ρ+i ρ
−
i + g

∑

i

[ρ+i ci↓ci↑ + c†i↑c
†
i↓ρ

−
i ]. (1)

c
(†)
iσ denote the annihilation (creation) operators for
fermions with spin σ at some effective sites i and ρ+i
and ρ−i are pseudo-spin 1/2 operators, describing tightly
bound fermion pairs which behave as hardcore bosons. t,
g, ε0 = zt − µ, E0 = ∆B − 2µ denote respectively: the
hopping integral for the fermions, the boson-fermion pair-
exchange coupling constant, the local fermion and boson
energy levels with respect to the chemical potential µ,
which has to be common to fermions and bosons, up to a
factor 2 for the bosons being composed of two fermions.
The bosonic and fermionic particles deriving from the
same source, requires that at any given moment, such
locally fluctuating bosonic pairs and itinerant unpaired
fermionic charge carriers are in thermal equilibrium. A
transition from a phase correlated superconducting into
the phase uncorrelated insulating phase takes place for
a boson concentration close to nB = 1/2, when increas-
ing g beyond a certain gSIT . [16] We shall here consider
that case, taking ntot = nF + 2nB = 2 and study the
cross-over at finite temperatures, from a metallic param-
agnetic state into the diamagnetic pseudogap phase and
eventually into a correlation driven insulator of phase un-
correlated pairs by gradually increasing g.

The prevailing physics of resonant pairing is related
to the spectral properties of an isolated site, which is
encoded in the spectral properties of the atomic limit
of eq. 1, Hat = limt→0H . The Hilbert space of this
local problem consist of eight configurations of product
states made out of four fermionic states |2〉 = |c†↑〉, |3〉 =
|c†↓〉, |6〉 = |c†↑ρ+〉, |7〉 = |c†↓ρ+〉 with energies E2 = E3 =
ε0, E6 = E7 = ε0 + E0 and four bosonic states 1〉 =

|0〉, |4〉 ≡ |B〉 = (1/
√
2)[|c†↑c

†
↓〉 − |ρ+〉], |5〉 ≡ |AB〉 =

(1/
√
2)[|c†↑c

†
↓〉+ |ρ+〉], |8〉 = |c†↑c

†
↓ρ

+〉 with energies E1 =
0, EB = −g, EAB = +g, E8 = 2ε0 + E0. In order to
keep the algebra as simple as possible, we shall restrict
ourselves to the discussion of the case, where the bosonic

level coincides with the center of the fermionic band i.e.,
∆B = 2ε0. This dictates the position of the chemical
potential µ ≃ ∆B/2 and implies a half-filled fermionic
band (nF ≃ 1). Putting ε0 = 0, leads to ∆ = µ = 0.
The single-particle Green’s function for this atomic

limit has been derived previously, [20, 21] and is:

Gat(iωn) = −
∫ β

0

dτ expiωnτ 〈T [cσ(τ)c†σ ]〉

=
ZF

iωn − ε0
+

1− ZF

iωn − ε0 − g2/(iωn + ε0 − E0)
,(2)

with ZF = 2/(3 + coshβg). This local single-particle
spectral function Aat(ω) = −ImGat(iωn = ω + iδ) of
an isolated cluster site is composed of two contributions:
The first term arises from uncorrelated charge carriers.
The second term is reminiscent of the single-particle spec-
tral function for BCS superconductivity, with g playing
the role of the gap. It describes the contributions coming
from bonding |B〉, respectively anti-bonding states |AB〉.
The significant difference between resonant pairing and
BCS Cooper pairing is the appearance in the spectral
function of temperature dependent spectral weights ZF ,
respectively 1 − ZF . It monitors the relative weight of
the intrinsic uncorrelated single-particle excitations and
those which derive from bonding and antibonding pair-
ing states, as we change g. We illustrate in Fig. 2 the
variation with temperature of Aat(ω). As one reduces
the temperature below a characteristic value T ≃ g, the
spectral intensity of the single-particle non-bonding ex-
citations ZF at ω = 0, shows a significant drop and goes
to zero for T → 0, while that of the bonding and anti-
bonding states at ω = ∓g increases correspondingly. Si-
multaneously the local exchange correlations, given by
〈c↓c↑ρ+〉 = (1/2)tanh(βg/2), show a marked increase
upon decreasing T below g and saturates at 0.5 for T → 0
(see Fig 3 in Ref. 21). These features indicate that the
local density of states at the chemical potential (ω = 0)
rapidly drops below T = g. Considering a finite sys-
tem, it forshadows the opening of a gap-like structure
at the Fermi surface, which is independent of any sym-
metry breaking. We shall now explore, how this local
physics, given by Aat(ω), evolves into dispersive modes,
when putting such effective sites into a lattice with charge
exchange between adjacent sites. Such questions have to
be handled in a non-perturbartive scheme, because of the
strong inter-relation between single and two-particle ex-
citations in resonant pairing systems. We choose for that
purpose a dynamical mean field theory (DMFT) analysis.

Single-particle spectral features. Taking into account
the physics of the local problem (Hat) exactly, we re-
formulate the Hamiltonian, Eq. 1, for the D∞ problem
in the standard way by coupling this local physics, con-
tained in Hat and discussed above, to a Weiss field, which

mimics the itinerancy of the original fermions c
(†)
i,σ on a
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FIG. 1: The single-particle spectral function in the atomic
limit as a function of frequency for different temperatures T .

Bethe lattice. The effective Hamiltonian for that is

H = g [ c†↑c
†
↓ρ

− + ρ+c↓c↑]

+
∑

k,σ

wkd
†
k,σdk,σ +

∑

k,σ

vk [ d†k,σcσ + c†σdk,σ ].(3)

d
(†)
k,σ denote the operators of the auxiliary Fermionic exci-

tations of this Weiss field, having energies wk and which
are coupled to the original fermionic excitations on an
”Anderson impurity” site by a hybridization term of
strength vk. After rewriting this Hamiltonian in terms
of Hubbard operators, corresponding to Hat of the iso-
lated local problem, we calculate the local Green’s func-
tion Gimp(iωn) = [iωn − ε0 − ΣW (iωn) − Σ̃g

int(iωn)]
−1.

Requiring Gimp(iωn) to be identical to the local part
of lattice Green’s function Glat(iωn) =

∫
dε ρ(ε)[iωn −

ε − Σ̃g
int(iωn)]

−1, we obtain ΣW (iωn) = t2Gimp(iωn),
which determines the spectral distribution of the Weiss
field energies {wk} in a selfconsistent way. ρ(ε) =
(1/2πt2)

√
ε(4t− ε) denotes the density of states of bare

uncoupled fermions of the lattice problem in D∞ with a
band width D = 4t. Once having obtained ΣW (iωn),
we deduce the selfenergy for the lattice problem via
Σ̃g

int(iωn) = iωn − ΣW (iωn) − [Gimp(iωn)]
−1. In deter-

mining Gimp(iωn), we use a modification of the original
Non-Crossing Approximation (NCA) approach by Bick-
ers [22], adapted to the present BFM in Ref.[23]. By

introducing Σ̃g
int(iωn) ≡ Σg

int(iωn) − Σg=0
int (iωn) we sub-

tract out the effect of kinematic interactions, which arise
in such a NCA formalism and are able in this way to de-
scribe qualitatively correctly the redistribution of spec-
tral weight of the fermionic excitations over the entire
frequency regime of the fermionic excitations. We il-
lustrate in Fig. 2 the real and imaginary part of the
fermionic selfenergy for a given temperature T = 0.05
and for three characteristic values of g, which describe
the (i) a paramagnetic metallic phase for 0.05 < g < 0.1
and (ii) the pseudogap phase of diamagnetic bonding
pairs, merging into a correlation driven insulator for
0.1 < g < 0.15. The onset of the pseudogap phase is
manifest in the single-particle excitations, by the abrupt
appearence above g = 0.1 of a three-pole structure of the
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FIG. 2: (Color Online) Real and imaginary part of the
fermionic self energy as a function of frequency ω for vari-
ous values of g and T = 0.05 in units of D.

lattice Green’s function, given by iω−ε−ReΣ̃g
int(iω) = 0.

This is illustrated in Fig. 3, where we plot the real (ω∗)
and imaginary (ImΣ(ω∗) parts of these poles. Upon ap-
proaching g = 0.1 from below, ω∗ as a function of the
bare fermionic spectrum εk = −tcosk (presented here by
its corresponding energy ε, develops a kink-like structure
around the chemical potential at ε = 0 and finishes up
in a vertical slope upon approaching g = 0.1 T = 0.05.
With further increasing g, we find in a restricted region of
momentum (alias ε) around ε = 0, simultaneously three
dispersing modes. Two of them, the red continuous line
and the blue dotted line outside the pseudogap, follow
qualitatively the unrenormalized bare dispersion εk ≡ ε.
Inside the pseudogap however, the renormalization turns
the non-bonding states into a characteristic S-like shape
(the green dashed line) in accordance with the three-pole
structure of the atomic limit of the local spectral prop-
erties of A(ω)at. This S-like dispersing single-particle
feature is a finger print of resonant pairing which unlike
in the socalled cross-over scenario results not simply in
bound pairs but in strongly locally phase correlated local-
ized and delocalized states of bonding and anti-bonding
states |B〉 and |AB〉. Following the socalled Fermi-arcs in
the Brillouin zone of the cuprate CuO2 planar electronic
structure, going from the nodal toward the anti-nodal
point, whereupon the effective g increases, the change-
over from a well defined single ingap dispersive branch
ω∗(ε) ≃ ε to an overdamped one dispersing in the S like
shape discussed above, should be clearly visible in a ”mo-
mentum distribution curve” ARPES analysis. We plot it
for that purpose in Fig. 4 for a set of equidistant en-
ergies ω, concentrating on the pseudogap energy region.
Identifying the peak positions of the various curves, cor-
responding to different ω’s, with the corresponding values
of ε we deduce the dispersion of those ingap excitations,
which, as it should be, coincide with the dispersion of
ω∗(ε) (see Fig. 3).

Discussion On the basis of a resonant pairing sce-
nario and the Boson-Fermion model, where charge car-
riers are partly in localized pairing states and partly in
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FIG. 3: (Color Online) The real and imaginary parts of the
poles of the single-particle Green’s functions as a function of
the bare energies ε of the fermionic particles, measured from
the chemical potential and for a given temperature T = 0.05
and different values of g in units of D.
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FIG. 4: (Color Online) The single-particle spectral function
A(ε, ω) as a function of the bare electron dispersion ε, scan-
ning the various energies inside the pseudogap.

delocalized single-particle states, we illustrated how the
local physics of such systems, derived from their intrin-
sic metastability, evolves into diffusive dispersing ingap
states in the pseudogap phase of the cuprates. Such
modes never appear as well defined single-particle modes
in such a resonant pairing scenario, in clear distinction
to any BCS like physics [24]. They are intrinsically over-
damped, with a width extending over the entire pseudo-
gap frequency region. Nevertheless, we can distinguish
a characteristic S-like dispersion, which is imposed by
the underlying local physics and which dictates the fea-
tures of dispersing excitations. This is illustrated in pre-

senting the single-particle spectral function A(k, ω) as a
function of momentum k and scanning the energies in-
side the pseudogap. Experimentally it should be possible
to verify this by examining the ”momentum distribution
curves” of ARPES experiments and by going across the
hidden Fermi surface near the antinodal points. In the
present study we considered a temperature regime below
the onset of the pseudogap at T ∗, where fluctuating dia-
magnetic pairs on molecular clusters are spontaneously
created and destroyed. These ingap states are best seen
in this temperature regime, since below TM the onset of
spatial superconducting phase correlations between the
local diamagnetic fluctuations will strongly diminish the
spectral intensity of those ingap states, having shifted
their spectral weight to emerging diffusive Bogoliubov
branches.
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