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Hydrodynamic modeling of perforated structures

B. Molin

École Centrale Marseille & Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHE), 13451 Marseille cedex 20, France

A hydrodynamic model of perforated or slotted structures is proposed. It is asymptotic in the sense that 
the openings are supposed to be infinitely small and numerous, and the wall thickness to be nil. At variance 
with other work, a quadratic, not linear, law, relating the pressure differential to the traversing velocity, 
is assumed. As a result the hydrodynamic coefficients (added mass and damping) become amplitude 
dependent. The model is applied to bodies of various shapes including cylinders, plates and disks, in forced 
motion or submitted to incoming waves. Good agreement with experimental data is generally observed. 

1. Introduction

This paper aims at reviewing and presenting in a synthetic and
compact form a collection of work done by the author and his
co-workers over a period of more than 20 years. It started in the
late eighties with the hydrodynamic analysis of the ‘‘stabilizer’’ of
the Roseau (reed) compliant tower. This stabilizer consisted in an
open-ended square box attached to the jacket frame, with the 4
vertical sides composed of a dozen plates separated by horizon-
tal slots (Fig. 1). The purpose of the stabilizer was to increase lo-
cally the horizontal added mass, in order to properly ‘‘tune’’ the
tower with regard to the wave frequencies. Forced motion model
tests with the stabilizer deeply submerged below the free surface
revealed that the added mass was highly dependent on the ampli-
tude of motion, and that it was accompanied by a strong damping.

Another perforated or ‘‘ventilated’’ structure which turned out
to yield a strongdependence of the addedmass upon the amplitude
of motion is the tubular frame shown in Fig. 2, used as a protection
for subsea modules on the seabed.

Fig. 3, taken from [2], shows the measured added masses of
five different such ventilated frames, divided by the solid added
masses, as a function of the parameter A(1 − τ)/(2Dτ 2), where A
is the motion amplitude, D the short side of the frames and τ (r in
the figure) the porosity or open-area ratio. It can be seen that,when
plotted vs. this parameter, the five experimental curves more or
less coalesce into one. It can also be noticed that, at low values of
the abscissa, the added mass ratio is nearly nil.

Obviously the sensitivity of the added mass to the amplitude of
motion must be related to viscous effects, that is flow separation
through the slots of the stabilizer and through the openings of the
tubular frame. In the theoretical model proposed here, separation
is always be assumed, no matter how small the amplitude ofE-mail address: bernard.molin@centrale-marseille.fr.
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Fig. 1. The Roseau tower and its stabilizer.

Fig. 2. Example of ventilated structure, a protection cover for subsea modules [1].

motion or the size and shape of the openings. Moreover we go to
the limit when the slots or openings are infinitely numerous and
small, so that the only relevant geometric parameter is the open-
area ratio or porosity. It must be emphasized that this is porosity
defined in a superficial, not volumetric, sense.

To summarize the assumptions of our theoretical model are:

(i) negligible thickness
(ii) flow separation through the openings or slots, resulting in a

quadratic discharge law
(iii) openings infinitely small and numerous.

In Section 2 we show that, as a consequence of assumption (iii),
local inertia effects are negligible, that is the pressure differential
only relates to the averaged traversing velocity squared, no matter
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Fig. 3. Added mass ratio (ventilated/solid) vs. A(1 − τ)/(2Dτ 2) for 5 ventilated
structures [2].

Fig. 4. Added mass coefficient vs. open-area ratio.

whether the flow and/or structure is accelerated or not. However
this does not mean that the inertia loads on the global body are nil,
due to phase differences between the local flow and the outer flow.
In Section 3 our theoreticalmodel is comparedwith otherworks on
porous or perforated structures. Then different cases of application
are presented: two- and three-dimensional cylinders (Sections 4
and 5), wave absorbers consisting in perforated plates (Section 6),
plates and disks (Section 7) and water entry of perforated wedges
(Section 8).

2. Theoretical model

For the sake of simplicitywe consider the two-dimensional case
of a channel flow through a slit or diaphragm. Be d the width of the
channel and d−2b thewidth of the diaphragm,meaning a porosity
τ = (d − 2b)/d = 1 − 2b/d. From [3], the added mass of the
obstruction isMa = Ca(τ )ρπb2 with

Ca(τ ) =
8

(1 − τ)2π2
ln

[
1

2
tan

πτ

4
+

1

2
cot

πτ

4

]
. (1)

The added mass coefficient Cm is plotted in Fig. 4 as a function
of the open-area ratio τ .

Now consider a channel of width D with a series of N identical
slots and solid parts of widths (1− τ)D/N . The total added mass is

Ma = N × ρπ
(1 − τ)2D2

4N2
Ca(τ )

=
2

π
ρ
D2

N
ln

[
1

2
tan

πτ

4
+

1

2
cot

πτ

4

]
(2)

and goes to zero as N goes no infinity, no matter the value of the
open-area ratio τ .
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So, according to potential flow theory, inertia loads are nil in the
limiting casewhen the openings are infinitely small and numerous.
This result also assumes that the wall thickness is zero.

Let us now consider viscous effects and loads resulting from
flow separation. Again for a two-dimensional channel of width d
with a diaphragm of width τd, if v is the averaged flow velocity far
upstream and downstream the diaphragm, then v/τ is the aver-
aged velocity through the diaphragm and the pressure differential
acting on the solid part of width (1 − τ)d is given by

1P =
1

2µ
ρ

v|v|
τ 2

(3)

or, considering an equivalent pressure differential 1p that applies
all over the channel width:

1p =
1 − τ

2µτ 2
ρv|v|. (4)

Here µ is a discharge coefficient of order one. Typically µ ≃
0.3 − 0.4 for a perforated plate of porosity less than 50% (see the
following section).

When the body ismovingwith respect to the fluid, the relation-
ship (4) is generalized in

1p =
1 − τ

2µτ 2
ρvr |vr | (5)

with vr the relative velocity in the normal direction:

vr = (
−→
V l,r − −→

U ) · −→n . (6)
−→
V l the fluid velocity on the left-hand side,

−→
V r the fluid velocity on

the right-hand side,
−→
U the local body velocity and −→n the normal

vector to the body surface.
Mass conservation implies:

−→
V l · −→n = −→

V r · −→n . (7)

Since the openings are assumed to be infinitely small, thewakes
will be quickly regularized and homogenized, so that potential
flow theory can be applied to the outer flow. The pressure is then
obtained through the Bernoulli–Lagrange equation

pl,r = Hl,r(t) − ρgz − ρ
∂Φl,r

∂t
−

1

2
ρ(∇Φl,r)

2 (8)

with Φl (resp. Φr ) the velocity potential of the left-hand side (resp.
right-hand side) and Hl,r the Bernoulli constants.

In most cases considered here the pressure is linearized in

pl,r = −ρgz − ρ
∂Φl,r

∂t
. (9)

3. Connection with other works

There is a wide literature on steady flow interaction with
screens, gauzes and other porous surfaces. Taylor [4] makes the
distinction between wire gauzes or perforated sheets, where the
pressure drop relates to the square of the flow velocity, and mate-
rial with very fine pores where the relationship becomes linear. A
review is given by Laws and Livesey [5] for screens of low solidity
ratios.

A wealth of information, relative to barriers distributed over
channel flows, is to be found in [6] (chapter 8). Various formulas
are given for the resistance coefficient such as

K =
1p

1/2ρv2
=

[0.707(1 − τ)3/8 + 1 − τ ]2

τ 2
(10)

for perforated sheets with sharp-edged orifices, or

K = 1.3(1 − τ) +

1

τ
− 1

2

(11)

for screens made of metal wires, or

K = 1.28
1 − τ

τ 2
(12)

for two-plane screens made from bars of circular cross section.
Other formulas, similar but not identical, are gathered in [7]

(chapter 10). For instance, in the case of single-plane screens with
round rods at open-area ratios less than 80%, Blevins gives

K = β
1 − τ 2

τ 2
(13)

with β = 0.52 for Reynolds numbers larger than 400.
For slat screens, Tait et al. [8] apply

K =


1

Ccτ
− 1

2

with Cc = 0.405e−π(1−τ) + 0.595. (14)

Blevins [7] also gives information on the effect of inclination of
the flow, where it appears that the cos2 θ law implied by Eq. (6) is
applicable.

All these formulations agree on the fact that the resistance is nil
when τ = 1, and that is behaves as τ−2 when τ → 0. Hence it may
always be written that

K =
1 − τ

µτ 2
(15)

where it is understood that µ depends on the open-area ratio,
geometry of the openings, and Reynolds number, and that it must
be determined on a case by case basis.

All these formulas are based on experiments in steady flow
condition. Whether they remain applicable in unsteady flow is a
matter of Keulegan–Carpenter number based on the amplitude of
thewater particlemotion andon the size of the obstructions. Under
our assumption of infinitely numerous openings of infinitely small
size, this Keulegan–Carpenter number is infinite, meaning that the
steady flow formulas also apply in unsteady flow conditions.

Another extensive literature concerns wave interaction with
porousmedia. A review is given in [9]. In theseworks, the structure
is assumed to be composed of a porous medium of some width,
with the flow through it governed by Darcy’s law. This means a
linear relationship between pressure drop and traversing velocity.
Following Chwang [10], many authors have used this model to
tackle wave interaction with perforated bodies. For Darcy’s law to
be applicable the openings must be very minute as pointed out by
Taylor [4]. Therefore this model is not applicable to the problems
that we are dealing with here, where the openings are large and
sharp enough for the flow to separate and frictional forces to be
negligible as compared to pressure forces.

As quoted by Chwang and Chan [9], there is also some abundant
literature dealing with unsteady flow through apertures, within
potential flow theory. This means that flow separation is not ac-
counted for. There are relatively few works dealing with unsteady
separated wave flows. A review can be found in [11, chapter 6].
Most applications presented there concern wave interaction with
slotted barriers and assume long wave theory, with constant hor-
izontal velocity over the depth. The model that we present in
Section 6 is not restricted to shallow water conditions.

4. A model case: the two-dimensional circular cylinder

4.1. Forced harmonic motion

Weconsider a perforated two-dimensional cylinder undergoing
forced motion in the x direction. The fluid domain is unbounded
and at rest at infinity. The motion amplitude is assumed to be
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small as compared to the cylinder radius a and the equations are
linearized.

The fluid domain can be decomposed into an inner domain
(inside the cylinder) and an outer domain. In both domains the
velocity potential can be expressed as

Φi(R, θ, t) =
∞−

m=1

Am(t)a


R

a

m

cosmθ R ≤ a (16)

Φe(R, θ, t) =
∞−

m=1

Bm(t)a
 a
R

m
cosmθ R ≥ a (17)

with Bm = −Am so that ∂Φi/∂R = ∂Φe/∂R at R = a.
Making use of the linearization cos θ | cos θ | ≃ 8 cos θ/(3π)

only the m = 1 terms of Φi et Φe need to be retained.
The discharge equation takes the form

Ȧ1(t) =
∂A1

∂t
= −

2(1 − τ)

3πµτ 2a
(A1(t) − U(t))|A1(t) − U(t)| (18)

with U(t) the cylinder velocity. This equation can be integrated in
time for given U(t).

In the case of a sinusoidal motion, an analytical solution can be
obtained. Writing

U(t) = ℜ{Aωe−iωt} (19)

A1(t) = ℜ{Aω(1 + b)e−iωt} (20)

with A the motion amplitude and ω the frequency, and applying
again the linearization

ℜ{f e−iωt}|ℜ{f e−iωt}| ≃
8

3π
‖f ‖ℜ{f e−iωt} (21)

where ‖ ‖ means the modulus of the complex number, one gets
the equation

b‖b‖ = iC(1 + b) (22)

which has the solution

b =
√
C2 + 4 − C

2


−C + i



C

√
C2 + 4 − C

2


 (23)

where

C =

3π

4

2
µτ 2

1 − τ

a

A
. (24)

The hydrodynamic force writes

Fx = ℜ{iρπa2Aω2(Ca + iCb)e
−iωt} (25)

with the added mass and damping coefficients

Ca = 2 − C(

C2 + 4 − C) (26)

Cb =


C

2
(

C2 + 4 − C)3/2 (27)

shown in Fig. 5 as a function of the parameter KC = (1 − τ)
A/(2µτ 2a), which is a Keulegan–Carpenter number combined
with the porosity parameter: this means that it is equivalent to
increase the motion amplitude or to decrease the open-area ratio.

At zero motion amplitude, both the added mass and damping
coefficients are nil: it is as though the cylinder does not exist. As the
amplitude increases from zero, the addedmass coefficient steadily
increases to its asymptotic value of 2, which corresponds to the
case of a solid cylinder full of water. In the low amplitude range
the damping coefficient dominates the added mass one, until the
two curves cross each other. This corresponds to the maximum

Fig. 5. Two-dimensional porous cylinder. Addedmass and damping coefficients vs.

KC .

value of the damping coefficient, which is equal to one, or half the
solid case added mass coefficient. This feature has been observed
for all geometries, in two and three dimensions (in infinite fluid,
i.e. without a free surface): the maximum value of the damping
coefficient is always half the solid added mass coefficient and the
two curves always intersect at that point.

The two-dimensional circular cylinder seems to be the only
geometry that admits an analytical solution. It was first given by
Molin [12]. In the other considered cases, the main numerical
difficulty resides with the nonlinearity of the discharge equation.
Two methods have been used to overcome this problem: solve in
the time domain, or proceed through iterations so that a linear
problem be solved at each iteration. As an illustration we show
the obtained results when Eq. (22) is solved iteratively through the
scheme

b(i) =
i C

‖b(i−3/2)‖ − i C
(28)

where (i − 3/2) means the averaged value between the previous
two iterations (i − 1) and (i − 2) (in order to introduce some
relaxation in the iterative scheme).

Fig. 6 shows that the iterative scheme is most efficient at low
values of the parameter KC . At large KC values other iterative
schemes can be devised (e.g. see [13]).

4.2. Nonharmonic motion

Let us consider the general case of a complex (for instance
bichromatic)motionwith velocity (U(t), V (t)) in x and y direction.
We also add up a current in the x direction with velocity C . A time
domain resolution method can then be employed, as follows.

In a reference frame linked to the cylinder the absolute velocity
potential can be expressed as

Φi(R, θ, t) =
N−

n=1

a


R

a

n

[An(t) cos nθ + Bn(t) sin nθ ]

R ≤ a (29)

Φe(R, θ, t) = −
N−

n=1

a
 a
R

n
[An(t) cos nθ + Bn(t) sin nθ ]

+ C


R +

a2

R


cos θ R ≥ a. (30)

The pressure being given by

p = H(t) − ρΦt −
1

2
ρ(∇Φ)2 + ρ

−→
U E · ∇Φ (31)
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Fig. 6. Two-dimensional porous cylinder. Iterative resolution of the added mass (left) and damping (right) coefficients vs. KC .

with
−→
U E = (U, V ), the discharge equation can finally be put in the

form [14]:

N−

n=1

Ȧn cos nθ + Ḃn sin θ = f (θ, t) (32)

with

f (θ, t) =
1

a
[(C − U) sin θ + V cos θ ]

×

C sin θ −

N−

n=1

n(An sin nθ − Bn cos nθ)



+
K(t)

2ρa
−

1 − τ

4µτ 2a


N−

n=1

n(An cos nθ + Bn sin nθ)

− U cos θ − V sin θ



×


N−

n=1

n(An cos nθ + Bn sin nθ)

− U cos θ − V sin θ

 . (33)

The coefficients An(t), Bn(t) therefore obey the evolution
equations

Ȧn =
1

π

∫ 2π

0
f (θ, t) cos nθdθ (34)

Ḃn =
1

π

∫ 2π

0
f (θ, t) sin nθdθ. (35)

These are integrated in time, from initial values corresponding,
for instance, to the solid cylinder case. At any time the hydrody-
namic load is obtained as

Fx = −2πρa[aȦ1 + (C − U)A2 − VB2] (36)

Fy = −2πρa[aḂ1 + (C − U)B2 + VA2]. (37)

In [15,16] application is made to a bichromatic forced motion,
representative, for instance, of combinedwave frequency response
and slow-drift motion of a moored or compliant structure. It turns
out that the hydrodynamic coefficients of each motion component
can be very different from the values they take in single harmonic
motion. This means, for instance, that the low frequency motion
can be heavily damped in still water but not in waves; or the other
way around [16].

Fig. 7. Two-dimensional porous cylinder. Drag coefficient in current vs. open-area
ratio τ .

Fig. 8. Two-dimensional porous cylinder in current. Calculated streamlines in the
case τ = 0.5, µ = 1.

Fig. 7 shows the drag coefficients derived from the time domain
simulations, in current only, as a function of the porosity ratio τ , for
different values of the discharge coefficient µ. Due to the potential
flowmodel assumed the drag coefficient is zero when the cylinder
is solid (τ = 0), so our results are unphysical at low porosities. It
is noteworthy that the drag coefficient peaks at about 1.15, a value
very close to the drag coefficient for a solid cylinder in subcritical
flow. Fig. 8 shows the calculated streamlines when τ = 0.5 and
µ = 1. Molin [17] presents a similar investigation for the case
of shrouded cylinders, with qualitative agreement with available
results from the literature.
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5. Three-dimensional circular cylinder

This case was also considered by Molin [12]. Further informa-
tion can be found in [18], where the problem is solved in the
frequency domain, or [15]where a time domain resolutionmethod
is used.

The problem is formulated in cylindrical coordinates (R, θ, z)
with the vertical cylinder extending from zb to zt . The fluid domain
is bounded, some distance away from the cylinder edges, by two
planes z = 0 and z = hwhere a no-flow condition is assumed. The
cylinder is located midway in between the two planes (see Fig. 9).

The cylinder being again given a forced motion with velocity
U(t) in the x-direction, the velocity potential can be expressed
under the form

Φi(R, z, θ, t) =

A0(t)

R

a
+

∞−

n=1

An(t) cos knz
I1(knR)

I ′1(kna)


cos θ

R ≤ a (38)

Φe(R, z, θ, t) =


−A0(t)
a

R
+

∞−

n=1

An(t) cos knz
K1(knR)

K ′
1(kna)


cos θ

R ≥ a (39)

with kn = 2nπ/h and I1, K1 the modified Bessel functions
of order 1.

Here we briefly present the iterative frequency domain resolu-
tion. U(t) = Aω cosωt being again the imposed velocity, we look
for Φi and Φe under the form ℜ{ϕ(R, θ, z) exp(−iωt)} and intro-
duce the new unknowns an such that:

ϕi − ϕe|R=a =
N−

n=0

an cos knz cos θ (40)

ϕR|R=a =
N−

n=0

αnan cos knz cos θ (41)

with α0 = (2a)−1 and αn = kn[ I1(kna)I ′1(kna)
− K1(kna)

K ′
1(kna)

]−1.

The following equations are then derived

N−

n=0

an cos knz = 0 0 ≤ z ≤ zb zt ≤ z ≤ h (42)


N−

n=0

αnan cos knz − Aω


N−

n=0

αnan cos knz − Aω



= i C ′
N−

n=0

an cos knz zb ≤ z ≤ zt (43)

with C ′ = 2(3π/8)2µτ 2/(1 − τ).

We define the suite a(i)
n and the complex z function

f (i)(z) = −
i

C ′


N−

n=0

αna
(i)
n cos knz − Aω

 . (44)

Eqs. (42) and (43) now take the form

N−

n=0

a(i)
n cos knz = 0 0 ≤ z ≤ zb zt ≤ z ≤ h (45)

N−

n=0

[1 − αnf
(i−3/2)(z)]a(i)

n cos knz = −Aωf (i−3/2)(z)

zb ≤ z ≤ zt . (46)

Multiplying the first equation by cos kmz, the second one by
cos kmz/[1 − αmf

(i−3/2)(z)], integrating in z over their respective
domains of validity and adding up for m = 0, 1, . . . ,N gives a
linear system which is solved with a standard Gauss method. This
process is repeated (and the matrix rebuilt at each iteration) until
convergence is reached.

Molin and Legras [18] report an experimental campaign, carried
out in the offshore tank of ENSM Nantes (now ECN, École Centrale
Nantes), on stabilizers of octagonal shapes, of height 1 m and
equivalent radius 0.5 m, located at mid-depth of the 3 m deep
basin. This meant, roughly, a scale of 1:60 with respect to the
full scale stabilizer. As can be seen in the photographs of Fig. 10,
both slotted and perforatedmodelswere tested, with two different
open-area ratios (10% and 24% in the perforated case, 10% and 20%
in the slotted one). The wall thickness was 1 mm and the opening
diameter 2 mm (in the perforated case).

Fig. 11, taken from [18], shows measured and calculated values
of the added mass (left) and damping (right) coefficients, in the
10% perforated case. The motion amplitudes on the horizontal axis
are full scale values, to be referred to an equivalent diameter of
60 m. So 5 m means a Keulegan–Carpenter number KC = 2πA/D
around 0.5. There is some scatter in the experimental results, but
it is clear that the experimental added mass does go to zero or
nearly zero as the motion amplitude decreases. The agreement
between experimental and numerical added mass coefficients is
rather good all over the range of motion amplitude. As for the
damping coefficient, the agreement slightly deteriorates as the
motion amplitude increases. This has been identified to be related
to flow separation at the lower and upper edges of the stabilizer,
an effect which is not accounted for by our theoretical model. The
dotted curve is simply obtained by adding up, to the calculated
damping force, a viscous force in the form FD = −1/2ρCDSV |V |,
with a drag coefficient CD equal to 5.

Very similar results were obtained in the slotted case, meaning
that open-area ratios matter a lot more than the shape of the
openings, as assumed in our theoretical model.
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Fig. 10. Experimental octagonal stabilizers (10% and 24% porosity ratios).

without drag correction
with drag correction
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Fig. 11. Perforated stabilizer at 10% porosity. Addedmass (left) and damping (right) coefficients, vs. motion amplitude, frommeasurements (symbols) and from calculations.

6. Regular wave interaction with perforated or slotted plates

There is an abundant literature onwave interactionwith slotted
barriers. A paper often quoted is due to Isaacson et al. [19].
They refer to Sollitt and Cross [20] to propose a linear discharge
law linking the pressure differential and the traversing velocity.
However Sollitt and Cross’ formulation was devised for rubble
mound breakwaters idealized as a rectangular porous medium of
some length b in the wave direction. The porosity that appears in
their formulation is a volumetric porosity, not an open-area ratio.
As a result of using Sollitt and Cross’ formulation, the barrier width
b remains in Isaacson et al.’s expression. This makes little sense
in the case of perforated or slotted walls of small thickness. A
linear discharge law also means that there is no effect of the wave
steepness.

Jamieson and Mansard [21] present an extensive experimental
investigation on wave absorbers consisting in series of perforated
vertical plates. Such ‘‘progressive wave absorbers’’ are used in
some wavetanks to damp out incoming waves and minimize
wave reflection, in the same purpose as parabolic beaches. The

Fig. 12. Regular wave interaction with a progressive wave absorber. Free surface
elevation envelope and profile at three different instants [13].

experimental results of Jamieson and Mansard [21] give evidence
that the hydrodynamic performances of vertical perforated plates
vary with the wave steepness.
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Fig. 13. Submerged horizontal plate. Measured and calculated values of the
reflection coefficient vs. the wave steepness [24].

Molin and Fourest [13] developed a numerical model that pre-
dicts regular wave interaction with a series of vertical perforated
plates followed by a vertical wall. Because of the free surface con-
dition it is difficult to solve the problem in the time domain and an
iterative frequency domain scheme is used. The absorber consist-
ing of N vertical plates, the fluid domain is divided in N + 1 rect-
angular sub-domains where the velocity potential is decomposed
as a series of propagative and evanescent modes. Good agreement
is obtained with the experimental results of [21]. Fig. 12 shows an
illustrative result for the case of a 15 plate absorber, 6 m long; the
waterdepth is 1 m, the wave period is 2 s, and the steepness kA is
equal to 0.2.

Kimmoun [22] uses a similar method to optimize a side wall
absorber consisting in 6 vertical plates of limited draft. The
performances of the optimized absorber are verified through
dedicated experiments in the wave flume of École Centrale
Marseille (ECM). In [23] the simpler case of a single vertical plate
is studied experimentally, also in the ECM flume, and numerically
up to second order in the wave amplitude.

Molin and Bétous [25] treat the case of a horizontal perforated
plate below the free surface. This is also solved through eigen-
function expansions and iterations. Only numerical results are
shown. In [24] experimental results are given for a submerged
plate at the end of the ECM flume and an efficient iterative scheme
is devised. Good agreement is obtained between experimental and
numerical values of the reflection coefficient which appears to be
highly sensitive to the incoming wave steepness (Fig. 13).

7. Hydrodynamic coefficients for plates and disks

7.1. Two-dimensional plate in unbounded fluid

This case has some relevance for bilge keels of FPSOs or skirts of
offloading buoys. For instance the N’Kossa barge,made of concrete,
has slotted bilge keels [26]. The two-dimensional plate case has
much similarity with the axisymmetric disk case considered in the
next section (it is just a matter of moving from (x, z) to (R, z)), so
the equations are not detailed. The technique used, as in the Roseau
stabilizer case, is to bound the fluid domain by two distant walls
and to use eigen-function expansions and iterate, or solve in the
time domain.

The plate motion being A sinωt and the hydrodynamic force
being expressed as

F = ρπb2Aω2[Ca sinωt − Cb cosωt]. (47)

Fig. 14. Two-dimensional porous plate in unbounded fluid. Added mass and
damping coefficients vs. KC .

Fig. 14 shows the added mass Ca and damping Cb coefficients as a
function of the ‘‘porous Keulegan–Carpenter number’’ here defined
as KC = (1 − τ)A/(2µτ 2b) with A the amplitude of motion and
b the half-width of the plate. It can be seen that the damping
coefficient peaks at 0.5, that is half the solid added mass value,
when the two curves intersect. As written earlier this feature has
always been observed for perforated bodies in unbounded fluid.

Note that the physical validity of these results is more andmore
questionable as KC increases from zero, as the flow separation at
the plate edge is not accounted for (see the following section).

7.2. Disks

Interest for disks first rose from the heave plates used to
increase the heave added mass and damping of spar platforms.
These plates are solid, except for a central opening to give way to
the risers. Perforating them could be beneficial in the way that it
would increase the damping effect and decrease the added mass,
hence the structural loads. Usually more than one plate are piled
up and attached to the jacket frame of the spar. When the plates
are sufficiently close there are interaction effects that should be
accounted for.

In [27] the case of an infinite and periodic array of disks, in
unbounded fluid, is tackled. The problem is solved in the time
domain. (Timedomainhadbeen chosen because the initial purpose
was to solve the heave motion of a truss spar under irregular
waves, meaning several frequency components in the loading and
response.)

Subsequently there hadbeen some interest from theoil offshore
industry for hydrodynamic coefficients of structures such as the
protection cover shown in Fig. 2, during installation, all the way
from slightly below the free surface to the seafloor. Other ‘‘venti-
lated’’ structures that create installation problems are suction an-
chors or mudmats. Mudmats and hatch covers are rectangular, but
they were idealized as disks of equivalent area in [1] where a nu-
merical model is presented that gives the heave added mass and
damping of perforated disks under the free surface. The imposed
motion is supposed to be harmonic and the problem is solved in
the frequency domain, through iterations.

When the separation distance in the disk array is taken suf-
ficiently large, and when the isolated disk is sufficiently far
away from the free surface and seafloor, the same hydrodynamic
coefficients should be obtained. This is shown in Fig. 15, as a func-
tion of the porous Keulegan–Carpenter here defined as KC = (1 −
τ)A/(2µτ 2a) with A the motion amplitude and a the radius of the
disk. There are slight differences between the two sets of results,
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Fig. 15. Porous disk in unbounded fluid. Added mass and damping coefficients vs.

KC .

Fig. 16. Perforated disk below the free surface. Porosity 20%.

partly due to the fact that the problem is solved in the time domain
in one case and in the frequency domain in the other one (such
small discrepancies are also obtained for porous cylinders; see
Fig. 3 in [15], for instance); taking the disks far apart in the case of
the disk array, or far away from both the free surface and seafloor
in the case of the isolated disk, also hinders numerical convergence
and the truncation orders of the series are presumably too low
(see the discussion in [1]). The added mass and damping are made
nondimensional by dividing them by ρa3 and ρa3ω respectively.
Hence the asymptotic value of the added mass coefficient is 8/3
and the damping coefficient peaks at 4/3 when the two curves in-
tersect.

In [28] some experiments are reported on disks of diameters
60 cm and thickness 1 mm (with some radial stiffening to pre-
vent deformation), at porosities 0% (solid), 10%, and 20%. The wa-
terdepth is 50 cm and the disks are oscillated at various distances
from the free surface and bottom. A photograph of the 20% porosity
model is shown in Fig. 16.

Fig. 17, taken from [28], shows themeasured and calculated val-
ues of the added mass and damping coefficients, vs. the amplitude
of motion, with the disk at mid-depth and the oscillation period
equal to 1.2 s. At this combination of period and immersion there
are negligible free surface and bottom effects. There are two sets of

Fig. 17. Perforated disk at porosity 20%. Immersion 25 cm. Period 1.2 s. Measured
and calculated added mass and damping coefficients.

numerical curves, labeled as α = 0 and α = 6, a non-zero value of
αmeaning an empirical correction to account for flow separation at
the disk outer rim.Without this correction the calculated andmea-
sured values quickly diverge as the motion amplitude increases
and the range of validity of our numerical model is restricted to
very low values of the motion amplitude, or of the KC parameter.

The viscous correction consists in adding up to the hydrody-
namic load a drag term, in the form

Fv = −
1

2
ρCDπa2VR|VR| (48)

with CD = αKC−1/3 and KC = πA/a, as proposed by Sandvik
et al. [2]. The KC−1/3 dependence of the drag coefficient is based on
[29]. At low KC the α value strongly depends on the diameter over
thickness ratio of the disk [30]. In the case of their rather thick and
edge-rounded hatch covers, [2] obtain that α = 2 gives the best
fit with the experimental results. In [28], experiments with solid
disks are first reported where it is found that the α value should
be taken much higher! In Fig. 17 α = 6 provides a reasonably
good fit with the experiments in the considered case. The relative
velocity VR in Eq. (48) is taken as the disk velocity minus the
relative fluid velocity through the disk, averaged over the disk; this
results in a modification of the added mass coefficient as well. It
should be noted that when this viscous correction is applied, the
hydrodynamic coefficients depend no more on the KC value alone,
but both on KC and on KC .

Fig. 18, also extracted from [28] shows the added mass and
damping coefficients when the disk is oscillated just below the
free surface, at 5 cm from the still water level. At 0.8 s period
the agreement between experimental and numerical values is
rather good and the viscous correction, as formulated above, is
unnecessary. At 1.6 s there appears quickly deviations for the
added mass coefficient; as a matter of fact such deviations also
appear for the solid disk where nonlinear free surface effects in the
shallow region above the disk seem to quickly come into play at
oscillation periods larger than 1.2 s.

8. Water entry

An operational problem related to well-head covers such as
shown in Fig. 2 is their installation procedure and possible wave
loads when lifted through the splash zone. It is intuitive that a
perforated body will endure much lower slamming loads than the
equivalent solid body, but to which extent?

In order to quantify this expected reduction the academic case
of the water entry of a perforated wedge has been considered
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Fig. 18. Perforated disk at porosity 20%. Immersion 5 cm. Measured and calculated added mass and damping coefficients. Period 0.8 s (left) and 1.6 s (right).

Fig. 19. Water entry of a porouswedge. cotβ = 10. Free surface elevation obtained
from self-similar solution for α = 1, 4, 16, 64, 256, 1024 and for a solid wedge.

Fig. 20. Water entry of a porous wedge. Vertical force as a function of the porosity
ratio τ , for different deadrise angles.

in [31]. This simple geometry permits to exhibit a self-similar
solution, which is obtained through iterations.

Fig. 19, taken from [31], shows the free surface elevations
obtained for a wedge of deadrise angle β such that cotβ = 10,
for different values of the parameter α = (1 − τ)/(2µτ 2) and for
the solid case. These are the free surface elevations in an averaged
sense: practically jets would be seen flowing upward through the
wedge openings.

Fig. 20, also taken from [31], shows the reduction factor of the
vertical hydrodynamic load, as a function of the porosity τ , for
three different values of the deadrise angles. (Straight lines at the
origin are asymptotic results for small open-area ratios). It can be
observed that the reduction factor is appreciable: for instancewith
a porosity of 20% the load decreases by a factor 7 for the flattest
wedge!

9. Final comments

We have considered several application cases which, in our
opinion, give evidence that our theoretical model, described in
Section 2, has somepractical validity. Asmuch aswe couldwe have
presented comparisonswith experimental results,with convincing
agreement except for the edge effect which, in the case of disks
or hatch covers, limits the range of validity of our model to small
values of the porous Keulegan–Carpenter number KC (as a rule of
thumb, to the upwardpart of the damping curve). Some results that
we have presented are purely numerical however, like the drag
coefficient of the two-dimensional cylinder shown in Fig. 7, or the
water entry of the perforatedwedge. On these cases confrontations
with experimental measurements seem to be desirable.

These findings suggest that perforating parts of marine or
offshore structures can be an efficient means for reducing inertia
and slamming loads, and for increasing the damping of resonant
responses. There are many potential applications, like bilge keels,
heave plates of truss spars (e.g. see [32]), bodies that must be lifted
down through the splash zone likemudmats and hatch covers [33],
etc.
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