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ABSTRACT

We formulate a novel extension of nonnegative matrix fac-

torization (NMF) to take into account partial information

on source-specific activity in the spectrogram. This infor-

mation comes in the form of masking coefficients, such as

those found in an ideal binary mask. We show that state-of-

the-art results in source separation may be achieved with

only a limited amount of correct annotation, and further-

more our algorithm is robust to incorrect annotations. Since

in practice ideal annotations are not observed, we propose

several supervision scenarios to estimate the ideal mask-

ing coefficients. First, manual annotations by a trained

user on a dedicated graphical user interface are shown to

provide satisfactory performance although they are prone

to errors. Second, we investigate simple learning strate-

gies to predict the Wiener coefficients based on local in-

formation around a given time-frequency bin of the spec-

trogram. Results on single-channel source separation show

that time-frequency annotations allow to disambiguate the

source separation problem, and learned annotations open

the way for a completely unsupervised learning procedure

for source separation with no human intervention.

1. INTRODUCTION

During the past decade, nonnegative matrix factorization

(NMF) has become the core algorithm in single-channel

source separation. A rich literature has been developed

to adapt NMF to difficult scenarios in which sources are

highly synchronized, and little or no development data is

available.

In the past years, intensive research on Bayesian mod-

elling and parameterized methods have been conducted to

improve the identifiability of basis elements by restricting

the complexity of the estimated model. More recently, an-

other category of contributions consider incorporating in-

formation that is directly relevant to the data at hand, and

specified by the user. In [2], time activation of the sources

is used to specify direct constraints on the activation coeffi-

cients of the decomposition. Pitch estimates [5] were used
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for lead voice extraction. In [8], detailed score information

is provided so that each individual note can be separated.

While these contributions may use different NMF models,

a common trait is that user information is used to spec-

ify the support of decomposition coefficients at the coding

stage. A quite different line of work is proposed in [1, 3],

where isolated signals are used as proxy for the source sig-

nals, so that information on both the basis functions and

the activation coefficients can be used to constrain the fac-

torization.

In this paper, we propose to annotate directly the time-

frequency representation that is used to perform source

separation. We assume that we are given recordings where

a large fraction of time-frequency bins of the spectrogram

may be assigned unambiguously to one dominant source.

This hypothesis holds as long as there are not too many

sources, and post-processing of the recording does not in-

volve heavily non-linear effects. As illustrated in Figure

1, some patches in the spectrogram are cues for source-

specific activity, which may be exploited as information

on the optimal binary mask.
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Figure 1: Cues from computational audio source analysis

may be used as information on the optimal masking coef-

ficients

In this article we make three contributions : we propose

in Section 2 a novel modification of NMF (semi-supervised

NMF) to take into account time-frequency annotations of

the spectrogram, that is robust to errors in the annotations.

In Section 2.3, we present a graphical user interface to re-

trieve such time-frequency annotations. In Section 3, we



propose supervised learning algorithms to automatize an-

notations, and explain how to combine them with semi-

supervised NMF. Finally, we illustrate our contributions on

publicly available source separation databases in Section 4.

2. SEMI-SUPERVISED NMF

2.1 Model and interpretation

In this section we propose a novel modification of NMF

to incorporate annotations in the spectrogram. Let us first

briefly summarize our NMF model and introduce mathe-

matical notations, before proceeding to the main part of

the contribution.

Given the short time Fourier transform of a signal X ∈
C

F×N (in the following f indexes frequency and n time),

we assume that X =
∑

g S
(g), where S(g) ∈ C

F×N is the

spectrogram of each source signal for g ∈ {1, . . . , G}. De-

fine the power spectrograms of the sources V
(g)
fn = |S(g)|2.

They are assumed to follow a linear model :

V
(g)
fn =

∑Kg

k=1 W
(g)
fk H

(g)
kn , where W (g) ∈ R

F×Kg

+ , H(g) ∈

R
Kg×N . Define K =

∑
g Kg , W = (W (1), . . . ,W (G)) ∈

R
F×K
+ and H⊤ = ((H(1))⊤, . . . , (H(G))⊤) ∈ R

K×N
+ .

Then, depending on the assumed distribution of S(g), es-

timation of W and H amounts to minimizing d(V,WH)
where d is a measure of fit between data and the under-

lying model. In this article we will use the Itakura-Saito

divergence, but actually any β-divergence may be used.

Given estimates V̂
(g)
fn of the power spectrogram of each

source, time domain estimates of the sources are then com-

puted by Wiener filtering, where the Wiener coefficients

of the source in the time-frequency domain are given by :

M
(g)
fn =

V̂
(g)
fn

V̂fn

.

The key idea in our contribution is the following : sup-

pose we have at hand a set L of annotated time-frequency

bins and a set of time-frequency masks M
(g)
fn such that :

M
(g)
fn ∈ [0, 1], and

∑
g M

(g)
fn = 1 if (f, n) ∈ L,

∑
g M

(g)
fn =

0 otherwise.

For annotated time-frequency bins, we define target val-

ues for each source spectrogram : Ṽ
(g)
fn = M

(g)
fn Vfn.

The remaining, un-annotated entries of V̂ are then com-

puted so as to fit the observed spectrogram. This idea trans-

lates into the following optimization problem :

min
∑

(f,n)

dIS(Vfn, V̂fn)+λ
∑

(f,n)∈L

g=1,...,G

µfndIS(Ṽ
(g)
fn , V̂

(g)
fn ) ,

(1)

where dIS(x, y) =
x
y
−log x

y
−1 is the Itakura-Saito diver-

gence 1 , and optimization is subject to the constraints that

W ≥ 0 (point-wise nonnegativity), H ≥ 0, and
∑

f Wfk =
1 to avoid scaling ambiguity. We interpret the second term

in Eq. (1) as a relaxed version of the constraints that V̂
(g)
fn

be equal to their target value M
(g)
fn Vfn, for all annotated

bins (f, n) ∈ L.

1 Given that some values are set to zero, we replace the IS divergence
dIS(x, y) by dIS(ǫ + x, ǫ + y) (where ǫ = 10−7) in our optimization
problem, in order to deal with ill-conditioning of the objective function.

We may tune the relative importance of annotation by

varying parameter λ, from λ = 0 (standard NMF), to λ →

+∞ (in which case (WH)fn = V
(g)
fn is enforced exactly

if there are any feasible solutions). Thus, robustness to

uncertainty in the annotations is introduced by replacing

hard constraints by penalty terms in the NMF optimization

problem. Note that since annotations dictate the assign-

ment of components to sources, there is no need to group

components by hand. We will discuss the role of µfn in

the next section : in the case of user annotations, µfn = 1.

Let us discuss two cases :

(a) M
(g)
fn ∈ {0,1}: this is the case of user annotations,

where time-frequency bins are labelled by hand. In this

case, there can be only one active source at each time-

frequency bin, since
∑

g M
(g)
fn = 1. This is a strong as-

sumption, which is verified for a large fraction of the mix-

tures that are found in blind source separation.

(b) M
(g)
fn ∈ [0,1]: this general case is relevant to the learn-

ing procedures we introduce in the next section, since they

output decision values in [0, 1].
Discussing the algorithm is beyond the scope of this pa-

per : we used a multiplicative updates algorithm with ap-

propriate modifications to deal with the additional terms in

Eq. (1) [6].

Figure 2: Example of user annotations in a ten seconds’

audio track: green regions are assigned to voice, and red

regions to accompaniment (best seen in color).

2.2 Relation with previous work

As in [2, 8, 5], annotations are used to constraint some

sources to be inactive. In fact, time annotations are a spe-

cial case of our model, where annotations are such that

M
(g)
fn = M

(g)
f ′n for all (f, f ′) (i.e., zeroes come in columns).

Our model deals with that case when there are two sources.

The only difference between our model and [2] is that in-

stead of enforcing Hkn = 0 as a hard constraint, we in-

troduce a soft penalty to enforce WfkHkn = 0, with the

added benefit that incorrect annotations are dealt with in a

robust fashion. The case of more than two sources is dealt

with a simple extension of Eq. (1), which we omit here for

lack of space.



2.3 A graphical user interface for time-frequency

annotation of spectrograms

In this section, we investigate manual annotation of the

spectrogram. A GUI was designed in Matlab to anno-

tate spectrograms (see Figure 2), with some extra sound

functionalities to help the user. It takes sound files as in-

put, applies some basic preprocessing (re-sampling at user-

specified rate, down-mixing to mono), computes a time-

frequency representation via user-specified parameters, and

displays the spectrogram. Zooming and slide-rule navi-

gation are enabled for better visualization. Annotation of

sources is done with a simple rectangle drawing utility :

one color for each source, as illustrated in Figure 2. An-

notations are stored in an annotation mask of dimension

F × N × G (where (F,N) is the size of the spectrogram

and G the number of sources). Several annotation masks

may be loaded into memory and displayed alternatively,

so the user can compare, for instance, manual annotations

with the output of a blind source separation algorithm. An-

notation masks may be exported to .mat format for further

processing. Finally, we implemented playback functional-

ities to help the user annotate the spectrogram.

We designed the GUI to make the annotation process

easier and faster : indeed, in our experience, while time an-

notations are easy and require only listening once or twice

to the mix, time-frequency annotations are hard even for

trained users : it takes up to one hour to annotate 20% of a

twenty seconds track.

3. TOWARDS A SUPERVISED ALGORITHM FOR

ANNOTATION

Research in computational audio scene analysis (CASA)

has emphasized the role of frequency tracks in source iden-

tification : indeed by looking at a spectrogram, it is easy to

assign a significant number of frequency tracks either to a

voiced source or a musical source (see Figure 1). In previ-

ous works, such cues have been used to compute a similar-

ity matrix that would then be used to perform clustering see

[9, 4]. We propose here a supervised learning procedure to

predict annotations automatically. At train stage, we have

at hand separate sources so that we observe not only the

mix, but also the Wiener coefficients M
(g)
fn computed on

the ground truth, while at test stage we only observe V .

Thus, the goal is to predict E(M (g)|V ). In order to allevi-

ate the computational burden 2 , we make two restrictions

on the learning procedure : each vector (M
(1)
fn , . . . ,M

(G)
fn )

for a given time-frequency bin (f, n) is predicted inde-

pendently of the others, and based only on the values of

patches centered at that time-frequency bin.

We now introduce the features and algorithms used to

train our predictor.

3.1 Features

The basic input to our learning algorithms consists in rect-

angular time-frequency blocks extracted from the input power

2 indeed even for ten seconds’ excerpts, there are more than 500 ×

1000 time-frequency bins for standard STFT parameters
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Figure 3: Samples of patches extracted from the SISEC

database. Intensity reflects amplitude, patches which are

labeled as accompaniment are in red, while patches which

are labeled as voice are in green. Patches in brown have

mixed Wiener coefficients (best seen in color).

spectrogram. The size of the rectangular blocks is fixed as

a parameter of the algorithm. They are then normalized to

have unit ℓ1-norm so the features are scale invariant. We

also considered taking the log of patches, adding coordi-

nates of the patch as additional information, and taking a

Gabor transform of the patches. The Gabor transform in

particular was introduced so that correlations between pix-

els in each time-frequency blocks is taken into account.

Finally, we also tried averaging the ground truth Wiener

coefficients before learning, so that predicted regression

surfaces are smoother in time-frequency space.

3.2 Learning algorithms

Due to space limitation, we restrict ourselves to naming

the algorithms we chose and highlighting the key parame-

ters to tune. We refer the reader to standard textbooks on

machine learning for more details (e.g., [7]).

K-nearest neighbors (knn): for each test point x
(test)
i , the

C nearest points x
(train)
j , j ∈ {1, . . . , C} from the train set

are used to predict M
(g)
i = 1/C

∑
j M

(g)
j .

Quantized knn (km): We learn C clusters from the train

set using K-means; for each cluster, we compute average

prediction coefficients M
(g)
c . For each test point, we pre-

dict M
(g)
c from the nearest cluster c.

Random Forests (rf): We learn C regression trees of depth

d from the train set and average over the C predictions for

each test point.

We will refer to this supervised learning procedure as

automatic annotations, no matter which algorithm is used.

3.3 Computation of µfn for automatic annotations

While the learning algorithms presented above predict Wie-

ner coefficients, output values near 0.5 reflect uncertainty

in the Wiener coefficients rather than prediction of mixed

volumes. For this reason we introduce an additional tun-

ing parameter µfn in Eq. (1), so that output values near 0.5



are less taken into account than values near {0, 1}. As a

rule, we choose µfn = 1 − G
G−1

∑
g M

(g)
fn (1 −M

(g)
fn ), so

that 0 ≤ µfn ≤ 1 and µfn = 0 if all M
(g)
fn are equal.

Moreover, when annotations are in {0, 1}, we always have

µfn = 1.

4. EXPERIMENTAL RESULTS

4.1 Description of music databases

We used two publicly available databases in our experi-

ments: the QUASI database 3 and the SISEC database for

Professionally Produced Music Recordings 4 . All source

tracks were down-sampled from 44100 Hz to 16000 Hz,

and down-mixed to mono by taking the average of left and

right channels. A voice track and accompaniment track

are then created by aggregating the various source files,

and then a final mix is created by summing the two tracks.

Sine-bell windows of size 1024 with 512 overlap were used

to compute short time Fourier transforms. The QUASI

database contains longer tracks that are amenable to time

annotations. The SISEC database contains short tracks

where only time-frequency annotations can be used. Al-

though detailed instrumental tracks are provided for most

of the mixtures, we work only on single-channel signals.

Since we are dealing with under-determined mixtures, we

restrict ourselves to separating voice from accompaniment

in each track, in order to alleviate the difficulty of the prob-

lem.

4.2 Ideal performance of semi-supervised NMF and

robustness to wrong annotations

SDR1 SDR2 SIR1 SIR2 SAR1 SAR2

0.1 % -0.02 -0.60 5.15 5.16 3.62 2.33

1 % 0.70 0.24 4.59 6.25 4.39 2.85

10 % 6.71 6.68 13.57 16.53 7.95 7.40

100 % 10.40 10.41 19.88 20.88 11.00 10.88

Table 1: Mean results on the SISEC database, as the pro-

portion of annotation increases.

Table 1 displays source separation results achieved by

semi-supervised NMF on the SISEC database when fed

with the actual Wiener coefficients computed from the ground

truth sources. Source separation performance is measured

by Source to Distortion Ratio (SDR), Source to Interfer-

ence Ratio (SIR), and Source to Artefact Ratio (SAR). Higher

values indicate better performance. As we can see, sat-

isfactory results are obtained with as little as 10% of an-

notations. When 100% of annotations are given, NMF

does nothing and the computed masks are simply the ideal

Wiener coefficients computed from the sources.

We study the robustness of our NMF routine by replac-

ing part of the ideal annotations by noise to simulate hu-

man errors. Table 2 displays average SDRs obtained when

fixing the annotation rate to 10% and varying either the rate

3 www.tsi.telecom-paristech.fr/aao/
4 sisec.wiki.irisa.fr

wrong annotations p or the optimization parameter λ. As

expected, for fixed λ the average SDR drops as p increases.

When p is fixed, there is an optimal value of λ that trades

off the benefits and drawbacks of annotations. Fixing the

target annotation rate to 10%, satisfactory results are ob-

tained with up to 10% of wrong annotations (i.e.1% of the

spectrogram).

λ p = 0 p = 0.05 p = 0.1 p = 0.2 p = 0.5

10−1 0.11 -0.08 -1.76 -1.47 -1.47

100 5.59 4.10 3.50 2.29 1.20

101 7.59 6.53 5.32 3.43 0.59

102 7.07 5.66 4.54 3.15 0.77

Table 2: Mean SDR value as λ and the proportion of

wrong annotations vary. The proportion of annotations is

set to 0.1

4.3 Automatic annotation : comparison of algorithms

and experimental results

method mean error (% improvement)

4 8 loggabor km avg 0.141 ±0.018 (14.9)

4 16 wcoords knn avg 0.140 ±0.015 (15.9)

4 8 wcoords knn avg 0.138 ±0.015 (16.8)

4 32 loggabor rf avg 0.137 ±0.013 (17.4)

4 32 loggabor knn avg 0.137±0.010 (17.4)

Table 3: Mean error on Wiener coefficient predictions on

the SISEC database (% improvement over random predic-

tion), for various learning strategies .

Learning algorithms were trained by dividing the SISEC

database in two sets of tracks. For each set, we train detec-

tors and test them on the other set. Thus we may compute

annotations and run semi-supervised NMF for all tracks

without the risk of overfitting. We emphasize the fact that

each track is annotated with a detector that has never seen

the spectrogram before : our method is purely supervised

with no adaptation to test data. Parameters of the learning

algorithms were selected at train stage by cross-validation.

Time-frequency patches of size in {4, 8}×{8, 16, 32} were

extracted. Out of each track we extract 5 × 103 patches at

train time, and 105 patches a test time, so approximately

10% of the track is annotated at test time when semi-super-

vised NMF is called.

We display in Table 3 the results of the best 5 detec-

tors, in terms of mean prediction error (first column) and

in terms of relative improvement over a purely random

predictor. Detectors are named after the following rule :

{patch size} {feature} {learning method} {averaging or

identical}. For instance, the tag loggabor corresponds to

taking log then Gabor transform of patches, and wcoords

adding frequency coordinates of the patches as side infor-

mation. Note that we used exact Wiener coefficients to

compute errors, so that all detectors can be compared even

when averaging was used at train stage. The improvement

over a random predictor is consistent across the features

and the algorithms that were used. Figure 4 compares an-

notations provided by the best detectors from Table 3 with



(a) Automatic (b) Correct

Figure 4: Comparison of automatic annotations and correct annotations (at the same time-frequency bins). Gray-scale

time-frequency bins are not annotated, red bins are annotated as accompaniment, green bins as voice(best seen in color).

ideal annotations at the same points were automatic anno-

tations were made. Red time-frequency bins correspond

to accompaniment, and green to voice. The most strik-

ing observation is that, while ideal annotations are in very

bright colors (few Wiener coefficients are different from 0
or 1), automatic annotations, on the other hand, are gen-

erally biased towards 0.5. This is to be expected since

predicting 0.5 incurs a risk of losing at most 0.25 (since

we use a regression loss), while predicting 0 or 1 incurs

a maximum loss of 1. The main asset of automatic an-

notations is that pitch tracks with varying frequency are

successfully predicted as voice. Automatic annotations are

biased towards predicting voice in the higher frequencies

: however the learning algorithm in this example did not

have the information of frequency. This might be because

transients “look” a lot like patches of unvoiced speech. Fi-

nally, one may spot inconsistencies in the predictions in

the sense that points belonging to the same pitch tracks

are sometimes classified incoherently, which is not surpris-

ing since the learning algorithms we have proposed predict

time-frequency bins independently.

To sum up, predictions of Wiener coefficients from lo-

cal patches are not perfect but provide a good starting point

for further modelling of the spectrogram. We expect that

better performance could be obtained by using more ad-

vanced cues from CASA, such as pre-clustering the spec-

trogram into pitch tracks and transient tracks, before learn-

ing 5 .

4.4 Overall results

We now turn to results obtained by semi-supervised NMF

combined with various annotation methods. On the SISEC

database, manual time-frequency annotations were done

with the GUI presented in Section 2.3. On the QUASI

database, tracks were amenable to significant time anno-

5 This is very similar to what is done in vision, where super-pixels
help deal with consistency in prediction and alleviate the computational
burden of predicting all pixel values.

tations, so by comparing results on both databases we can

compare the respective benefits of time-frequency annota-

tions VS time annotations.

In both scenarios, we compare five methods :

auto : Automatic annotations and semi-supervised NMF.

The best detector from Table 3 was chosen.

user : User annotations and semi-supervised NMF (time-

frequency annotations for SISEC, manual annotations for

QUASI). We tried K ∈ {5, 10, 20} for the SISEC database

and {10, 20, 50} for the QUASI database, as well as λ ∈
{1, 10, 100}, and selected parameters yielding highest SDR

for fair comparison with the baseline.

baseline : Run NMF and permute factors to obtain op-

timal SDR. We set K = 8 because it already takes a 10

times as long to evaluate SDRs for all permutation on a

single track as it takes to run semi-supervised NMF.

self : set s(g) = 1
G
x as estimates for the sources, it serves

to estimate the difficulty of the source separation problem

for a given database.

oracle : results obtained with Wiener coefficients com-

puted from the ground truth. In addition we display track

by track annotation accuracy for user annotations, for com-

parison with Table 2. For each method, we ran NMF three

times for 1000 iterations to avoid local minima, and kept

the run with the lowest objective cost value.

Tables 5a and 5b display average evaluation metrics for

each source (source 1 is always the accompaniment, and

source 2 is always the voice), on two different databases :

% annotated % correct

track 1 0.23 0.91

track 2 0.10 0.89

track 3 0.29 0.91

track 4 0.17 0.81

track 5 0.22 0.95

Table 4: Evaluation of user annotations on the SISEC

database.



auto user (t-f) baseline self oracle

SDR1 0.97 6.21 6.16 3.09 14.79

SDR2 0.51 2.58 1.61 -3.18 11.53

SIR1 3.17 18.64 9.91 3.09 24.00

SIR2 4.57 11.35 5.09 -3.18 23.90

SAR1 6.74 6.91 9.26 279.17 15.41

SAR2 4.18 3.91 5.58 279.17 11.84

% ann. 8.69 19.81 0.00 0.00 100.00

(a) SISEC

auto user (t) baseline self oracle

SDR1 6.76 7.59 6.29 6.21 16.88

SDR2 -4.33 -4.57 -1.71 -6.22 10.37

SIR1 6.97 15.05 13.81 6.21 25.62

SIR2 -3.75 4.09 1.88 -6.22 24.83

SAR1 21.91 9.00 7.71 268.45 17.66

SAR2 10.28 0.21 4.29 268.45 10.60

% ann. 6.91 100.00 0.00 0.00 100.00

(b) QUASI

Table 5: Results on the evaluated databases: (a) time-frequency annotations, (b) time annotations.

on the SISEC database, we experimented with time-fre-

quency annotations since the tracks were too short for time

annotations. Overall, results on the SISEC database are

better than those on QUASI. Our interpretation is that since

most of the time the accompaniment is active, the dictio-

naries tend to overfit the accompaniment and underfit the

voice. Time-frequency annotations on SISEC yield SDRs

that are a few points below that predicted by our bench-

mark from Table 2 : indeed human errors are not dis-

tributed randomly as was the case in our benchmark. Time-

frequency annotations outperform the baseline by 1 point

in SDR, which is significant because in semi-supervised

NMF there is no manual grouping of the components. Time

annotations loose to the baseline by −1 in SDR, but they

are still significantly correlated with the true sources when

compared with the baseline.

On the SISEC database, automatic annotations are also

below the baseline, however they are also significantly cor-

related with the true sources, when compared with the “self”

column. Signal to Interference Ratios are even comparable

with those of the baseline on the SISEC database. Auto-

matic annotations do not perform as well on the QUASI

database since we trained detectors only on tracks from

SISEC, so that more supervision would significantly im-

prove those figures.

To conclude, we have shown that time-frequency anno-

tations can improve significantly over NMF with ideally

grouped components. On longer tracks, time only anno-

tations yield reasonable results, but even when 100% of

the track is annotated, the estimated sources contain strong

interferences. Automatic annotations yield similar results,

but leave considerable room for improvement, since with

time-frequency annotations there will always be a point

where enough annotations with limited errors will provide

audible estimates of the sources.

5. CONCLUSION

We have proposed a novel formulation of semi-supervised

NMF that successfully takes into account annotations to

enhance the discriminative power of NMF. Semi-supervised

NMF is defined so that when a certain amount of annota-

tions is reached, source separation quality is near that of

ideal binary masks. Manual annotations retrieved with our

graphical user interface yield satisfactory results. We are

investigating ways to define annotations independently of

the particular time-frequency representation that is used.

Finally, semi-supervised NMF opens the way for inter-

action with methods from computational audio scene anal-

ysis. As such, the simple features and textbook pattern

matching algorithms we have presented show promising

results.
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