
Classification of Dataflow Actors with

Satisfiability and Abstract Interpretation

Matthieu Wipliez, Mickaël Raulet

IETR/INSA

UMR CNRS 6164

F-35043 Rennes, France

Email: mwipliez@insa-rennes.fr

Email: mraulet@insa-rennes.fr

ABSTRACT

Dataflow programming has been used to describe signal processing applications for many years,
traditionally with cyclo-static dataflow (CSDF) or synchronous dataflow (SDF) models that
restrict expressive power in favor of compile-time analysis and predictability. More recently,
dynamic dataflow is being used for the description of multimedia video standards as promoted
by the RVC standard (ISO/IEC 23001:4). Dynamic dataflow is not restricted with respect to
expressive power, but it does require runtime scheduling in the general case, which may be
costly to perform on software. We presented in a previous paper a method to automatically
classify actors of a dynamic dataflow program within more restrictive dataflow models when
possible, along with a method to transform the actors classified as static to improve execution
speed by reducing the number of FIFO accesses (Wipliez and Raulet (2010)). This paper
presents an extension of our classification method using satisfiability solving, and details the
precise semantics used for the abstract interpretation of actors. Our extended classification is able
to classify more actors than what could previously be achieved.

Keywords: dataflow program, classification, satisfiability, abstract interpretation.

INTRODUCTION

The arrival of multi-core in the desktop computing market has renewed the interest in multi-
processor programming. There are many different techniques to write multiprocessing programs,
depending on memory architecture (shared or distributed), processor architecture (uniprocessor
or multiprocessor), number of cores (single core, multi-core, many-core), etc. Most of these
techniques constrain program design in a way that makes it difficult to use a different technique,
should the program be ported to a different architecture than initially planned. Dataflow
programming is a portable platform-agnostic alternative that allows an algorithm to be described
so that parallelism is made explicit.

A dataflow description is a directed graph where vertices (or actors) process data and edges
carry data, with the requirement that vertices cannot share data. Actors can only communicate
with other actors through ports connected to edges. The semantics of a dataflow program are
defined by a Model of Computation (MoC) that dictates conditions for existence of a valid
schedule, bounded memory consumption, proof of termination, and other properties. MoCs go

from Synchronous Dataflow (SDF) with total compile-time predictability with respect to
scheduling, memory consumption, termination, to dynamic dataflow where those properties are
not predictable in the general case, with increasing expressiveness, for instance see (E. Lee and
Messerschmitt (1987); Bilsen, Engels, Lauwereins, and Peperstraete (1996); Bhattacharya and
Bhattacharyya (2001); Buck and Lee (1993); Buck (1994); E. A. Lee and Parks (1995)).

The Reconfigurable Video Coding (RVC) standard defines existing MPEG video standards as
dynamic dataflow programs in which actors are written in a language called RVC-CAL
(Mattavelli, Amer, and Raulet (2010)). These dataflow programs can be automatically translated
and ported to a wide range of platforms and languages, from hardware to multi-core software
(Mattavelli et al. (2010)). Contrary to SDF and a few other MoCs, RVC-CAL has a much greater
expressive power, but this also means that runtime scheduling is mandatory in the general case,
which impacts execution speed.

Fortunately, most signal processing applications are far from being entirely dynamic, and
parts with static behavior need not be dynamically scheduled. The problem is to detect actors that
behave statically or quasi-statically, since dynamic dataflow has an expressive power equivalent
to a Turing machine (Buck and Lee (1993)), which means it is not possible to prove the
termination of a dynamic dataflow program in general. We presented in a previous paper a
method to automatically classify actors of a dynamic dataflow program within more restrictive
dataflow models when possible, along with a method to transform the blocks classified as static
to improve execution speed by reducing the number of FIFO accesses (Wipliez and Raulet
(2010)).

This paper makes the following contributions:
• We describe an Intermediate Representation (IR) of dataflow actors that is more suitable

for classification than the Abstract Syntax Tree (AST) of actors, and how to translate the
AST of an actor to its IR.

• We describe the precise semantics behind the abstract interpretation of the IR of an actor,
which is the basis for our classification method that is able to discover facts about an
actor without the need for actual data. We show an example of how abstract
interpretation can be used to find cyclo-static behavior.

• We present the extension of our classification method that is able to determine more
precisely actors that present a time-dependent behavior. Time-dependent behavior can be
used for low-level optimizations, but it makes the actor behave in a non-deterministic
way (it is possible, however, for an application with some nondeterministic actors to
behave in a deterministic way). Because the RVC standard specifies the behavior of
video standards with RVC-CAL dataflow actors, and the specification is expected to be
deterministic, it is vital to be able to prove that a given actor is deterministic.

• We show how the IR of a dataflow actor is translated to the standard format used for
satisfiability solving called SMT-LIB. SMT (Satisfiability Modulo Theories) allows us to
determine properties of the source code that are required by our classification method.

BACKGROUND

A Taxonomy of Dataflow Models of Computation

A Model of Computation (MoC) defines the behavior of a program described as a dataflow
graph. A dataflow graph is a directed graph whose vertices are actors and edges are
unidirectional FIFO channels with unbounded capacity, connected between ports of actors.
Dataflow graphs respect the semantics of Dataflow Process Networks (DPNs) (E. A. Lee and
Parks (1995)), which are related to Kahn Process Networks (KPNs) (Kahn (1974)) in the
following ways:

• Those models contain blocks (processes in a KPN, actors in a DPN) that communicate
with each other through unidirectional, unlimited FIFO channels.

• Writing to a FIFO is non-blocking, i.e. a write returns immediately.
• Programs that respect one model or the other must be scheduled dynamically in the

general case (E. A. Lee and Parks (1995); Parks (1995); W. Haid et al. (2009)).

The main difference between the two models is that DPNs adds expressiveness to the KPN
model in the form of non-determinism at the network level, without requiring the actor to be
non-determinate, by allowing actors to test an input port for the absence or presence of data (E.
A. Lee and Parks (1995)). Indeed, in a KPN process, reading from a FIFO is blocking: if a
process attempts to read data from a FIFO and no data is available, it must wait. Conversely, a
DPN actor will only read data from a FIFO if enough data is available, and a read returns
immediately. As a consequence, an actor need not be suspended when it cannot read, which in
turn means that scheduling a DPN does not require context-switching nor concurrent processes.

Dataflow MoCs are defined as subsets the more general DPN model. The taxonomy shown on
Figure 1 reflects the fact that MoCs are progressively restricted from DPN towards SDF with
respect to expressiveness, but at the same time they become more amenable to analysis. We first
study the rules of DPN, and then present the models that can be used to model static, cyclo-static,
quasi-static, and dynamic actors.

Figure 1: Dataflow Models of Computation. (c) 2010, Wipliez. Used with permission.

An actor of a DPN executes (or fires) when at least one of its firing rules is satisfied. Each

firing may consume and produce tokens. An actor can have N firing rules, where each one
represents an acceptable sequence of tokens. Additionally an actor has a firing function that takes
a sequence of tokens and produces a sequence of tokens.

Synchronous Dataflow (SDF) (E. Lee and Messerschmitt (1987)) is the least expressive DPN
model, but it is also the model that can be analyzed more easily. Schedulability and memory
consumption of SDF graphs can be determined at compile-time, and algorithms exist that can
map and schedule SDF graphs onto multi-processors in linear time with respect to the number of

vertices and processors (Pelcat et al. (2009)). Any two firing rules of an SDF actor must consume
the same amount of tokens, and all firings must produce the same amount of tokens on the output
ports. This definition is actually included in Lee’s denotational semantics for SDF (E. A. Lee and
Parks (1995)), which states that SDF actors have a single firing rule. Our definition simply
allows SDF actors to have several firing rules as long as they have the same
production/consumption rate, which in practice makes it easier to describe SDF actors that have
data-dependent computations.

Cyclo-static Dataflow (CSDF) (Bilsen et al. (1996)) extends SDF with the notion of state
while retaining the same compile-time properties concerning scheduling and memory
consumption. State can be represented as an additional argument to the firing rules and firing
function, in other words it is modeled as a self-loop.

Synchronous and cyclo-static dataflow allow signal processing algorithms to be modeled as
graphs with fixed production/consumption rates. On the other hand, so-called “quasi-static”
graphs can be used to describe data-dependent token production and consumption. Quasi-static
dataflow differs from dynamic dataflow in that there are techniques that statically schedule as
many operations as possible so that only data-dependent operations are scheduled at runtime
(Buck and Lee (1993); Bhattacharya and Bhattacharyya (2001); Boutellier et al. (2009)). We
chose to use the PSDF (Bhattacharya and Bhattacharyya (2001)) model as a target for our
classification because it can be used to model static, cyclo-static and quasi-static behavior as a
dataflow graph.

Dataflow Programming with RVC-CAL

In 2009, MPEG published the ISO/IEC 23001:4 standard, also known as Reconfigurable Video
Coding (RVC), to describe existing and future video standards with dataflow programming.
Within the RVC framework, a video decoder is described as a dataflow program, which is a
hierarchical DPN whose actors are written with a Domain-Specific Language (DSL) called
RVC-CAL. This language is a restricted version of CAL (Cal Actor Language), which was
invented by Eker and Janneck and is described in their technical report (Eker and Janneck
(2003)). Although our classification method is not limited to RVC-CAL (or CAL for that
matters), this paper focuses on this language to explain our method. Indeed, the dataflow
programs written by the RVC working group (and by others) form a basis of real-world
applications for experimentations. Moreover, many concepts presented in the paper are more
easily expressed with the means of a language in our opinion.

An RVC-CAL actor is an entity that is conceptually separated into a header and a body. The
header describes the name, parameters, and port signature of the actor. For instance, the header
of the actor shown on Figure 2 defines an actor called GzipParser. This actor takes two
parameters, one boolean and one integer, whose values are specified at runtime, when the actor is
instantiated, i.e. when it is initialized by the network that references it. The port signature of
GzipParser is an input port I and two output ports HDATA and BDATA. The body of the actor
may be empty, or may contain state variables declarations, functions, procedures, actions,
priorities, and at most one Finite State Machine.

RVC-CAL, like hardware description languages, has integers with an arbitrary bit-width.

Integers can be signed (declared with the int keyword) or unsigned (declared with uint keyword).
The bit width may be omitted, in which case the type has a default bit width, or it can be
specified by an arbitrary expression. The other types supported by RVC-CAL are booleans
(bool), floating-point real numbers (float), strings (String) and lists (List). The list type is
generally used like an array type, in other words with a fixed type and a fixed size.

The language also features side-effect free expressions: an expression cannot modify variables
or write to memory, as opposed to imperative languages such as C where an expression can
increment a pointer or call a procedure that changes a state variable. The language of expressions
includes references to variables (possibly with indexes when referring to a list), binary and unary
operations, as well as calls to side-effect free functions. Expressions also borrow constructions
from functional languages, like if/then/else conditional expressions, and list generators. A list
generator is similar to the map function found in many functional programming languages, and is
a kind of inline for loop that creates a list whose members are described by an expression. Figure
3 shows an example of an RVC-CAL expression that describes a list whose each element is the
sum of x[i] and o[i] right-shifted by 0 or 3 depending on the value of the ROW variable, for each
value of i between 0 and 7 inclusive.

State variables can be used to define constants and to store the state of the actor they are

contained in. Figure 4 shows the three different ways of declaring a state variable. The first
variable called MAGIC_NUMBER is a 16-bit unsigned integer constant whose value is the
number that identifies a GZIP stream (RFC 1951, IETF (1996)). The bits variable is a 16-bit
unsigned integer variable without an initial value. The need_bits variable is a boolean that is
initialized to true (note the difference between the = used to initialize a constant and the := used
to initialize a variable). The initial value of a variable is an expression.

Figure 3: Example of an RVC-CAL Expression

[(x[i] + o[i]) >> if ROW then 0 else 3 end :

 for uint(size=3) i in 0 .. 7]

actor GzipParser(bool checkHeaderCRC, int acceptedMethods)

 int I ==> int HDATA, int BDATA :

// body

end

Figure 2: Header of an RVC-CAL actor.

Other features of the language include side-effect free functions, and imperative procedures.

Both can have parameters and local variables, but differ by their contents: a function can only
contain an expression, whereas a procedure contains a sequence of imperative statements that
have side-effects. The kind of statements that can be used are (1) assignment of an expression to
a local variable or a state variable, possibly with indexes when the target is a list, (2) call to a
procedure or a function; the result of a function call can be assigned to a local variable or a state
variable, (3) execution of statements a finite number of times with a foreach loop that resembles
the generator expression, except its body is a sequence of statements: it defines an index variable
and executes the statements it contains for each value of the index within defined bounds, (4)
conditional execution of statements with an if/then/else construct, and (5) execution of
statements an unknown number of times with a while loop.

The only entry points of an actor are its actions; functions and procedures can only be called
by an action. An action may:

• Be identified by a tag, which is a list of identifiers separated by colons, such as “a.b.c”. It
is possible to select several actions with a given tag, for instance the tag “a” refers to all
actions whose tag’s first identifier is “a”, such as “a.x” and “a.b.c”.

• Read tokens from input ports, as described by an input pattern. It is possible to read
several distinct tokens from a port, or to read a sequence of tokens with a repeat clause.

• Have firing conditions, called guards, which depend on the values of input tokens or the
current state. Guards must be satisfied for the action to execute.

• Perform computations, described in the body of the action, which is the same as the body
of a procedure.

• Write tokens to output ports, as described by an output pattern.

An actor is executed (or fired) by selecting a fireable action and firing it. An action is fireable

if it has enough tokens, and its guards (if any) are true. Action selection may be further
constrained using a Finite State Machine (FSM), to select actions according to the current state,
and priority inequalities, to impose a partial order among action tags. Finally, it is possible to
have tagged actions and untagged actions even in the presence of an FSM, in which case
untagged actions have the highest priority.

Figure 4: Declaration of State Variables.

uint(size=16) MAGIC_NUMBER = 0x1F8B;

// 8 bits read, possibly spanning two bytes

uint(size=16) bits;

// if we need to read more bits

bool need_bits := true;

Figure 5 shows an example of an action that reads one token on the “C” port, one token on the

“I” port, has two guards “c = false” and “count > 0”. When there is at least one token on the
FIFO connected to “C”, and one token on the FIFO connected to “I”, and “c” is false, and
“count” is greater than zero, the action can fire. When it does, it computes the list L, decrements
the “count” state variable, and writes two elements of L (as indicated with the repeat clause) to
the “O” output port.

INTERMEDIATE REPRESENTATION OF DATAFLOW ACTORS

This section presents an Intermediate Representation (IR) of dataflow actors that is more suitable
for classification than the Abstract Syntax Tree (AST) of actors, and how to translate the AST of
an actor to its IR.

Need for an Intermediate Representation (IR) of Actors

Classification is the process that analyzes the behavior of an RVC-CAL actor in terms of number
of tokens it receives and sends, patterns that may govern token exchanges, and possibly
acceptable token values. In the simplest case, structural information of an actor is enough to
classify it, for instance the rules for an actor to be considered SDF only depend on the input and
output patterns of actions. In more complicated cases, it is necessary to gather information from
an actual execution of the actor.

The structural information necessary for classification is not directly expressed in the AST of
an RVC-CAL actor, and the AST must be annotated with pre-computed information first. For
instance, token production/consumption rates for an action must be computed from the rules of
input/output patterns, which depend on the number of tokens and repeat clause, or the type of
tokens and repeat clause. Likewise, priorities only express a partial order on action tags, so one
must compute the topological sort of the priority graph whose vertices are actions from each set
used in priorities. The FSM uses action tags too, so a transition from one state to another may in
fact become several possible transitions if the tag associated with the transition refers to several
actions.

In cases where the structural information is not enough, the actor needs to be interpreted so its
behavior can be properly analyzed. It is possible to execute the actor by interpreting the AST
directly, but this is cumbersome. For example, RVC-CAL has a generator expression, a foreach
construct, and a while construct. Writing an interpreter for the RVC-CAL AST means
implementing these three separately, but they can all be transformed to while loops. Using an
Intermediate Representation (IR) makes both structural and semantic information explicit and
easier to manipulate and transform.

an.example: action C:[c], I:[x] ==> O:[L] repeat 2

guard

 not c, count > 0

do

 uint(size=8) L[2] := [x & 0xFF, (x >> 8) & 0xFF];

 count := count - 1;

end

Figure 5: An example of an RVC-CAL action.

Description of the IR of an Actor

An IR actor has the same structural elements as the original actor with the notable exception of
priorities. Contrary to the original actor, in which the order of actions may be under-specified,
when priorities are absent or only specify a partial order, the IR of an actor contains a total order
of actions. While not always the case, having only a partial order of actions can lead to non-
deterministic behavior of the actor itself, because the order in which the scheduler will test the
schedulability of actions is not fully determined.

 Although this non-determinism was a design choice (as specified in the CAL Language
Report (CLR)), it complicates analysis while being at most marginally useful. Further, non-
determinism in the choice of actions is not compatible with the sequential ordering of firing rules
specified in the DPN model. We also need to have reproducible and similar results on multiple
executions of an actor. Finally, the CLR specifies that any resolution of the non-determinism is
acceptable. All this explains why priorities are absent from the IR.

The Finite State Machine (FSM) of an RVC-CAL actor is transformed in our IR to an FSM in
a form that is easier to manipulate and to generate code from while keeping the same information
(initial state and list of transitions). The FSM in the IR contains a list of states to facilitate code
generation. Rather than having several transitions departing from a single state, transitions are
grouped by starting state.

The IR of an action reflects the semantic difference between its scheduling information (input
patterns, output patterns, guards) and its body (local variable declarations, statements,
expressions computed in the output pattern). The IR of an action is thus made:

• Tag of the action
• Input pattern, output pattern, peek pattern
• Scheduling procedure
• Body procedure

The scheduling procedure contains the IR of the guards, and the body procedure contains the

IR of the body of the action. A pattern is an association between a port, the number of tokens
read/written on that port by the action, and the variable in which these tokens are to be stored.
The peek pattern is used by the scheduling procedure, because it represents the number of tokens
that are peeked from the port (i.e. read but not removed from the FIFO connected to the port).
Input/output patterns are used by the body procedure. The IR inside procedures is expressed with
a simple language with statements that have side-effects and expressions that are side-effect free,
and is represented as a Control Flow Graph.

a.b: action S:[s], I:[x] repeat 3 ==> O:[s, x[0] * x[1]]

guard

 s > 0

end

Figure 6 shows a simple RVC-CAL action and the corresponding IR, with scheduler and body

procedures written in a pseudo-language. The tag is a list of identifiers, here “a” and “b”. The
peek pattern is a subset of the input pattern that contains only the number of tokens peeked on
the S port because the guards only reference this port. Note that the scheduler function and the
body procedure do not read/write from/to FIFOs, and only represent the semantics of the guards
and action body respectively: reads/writes of FIFOs are performed solely based on the patterns.

Creation of the IR of an RVC-CAL Actor

This section presents an overview of the translation from RVC-CAL to the IR of an actor, as
shown on Figure 7: Transformation from RVC-CAL to IR. A more complete description is
available in (Wipliez (2010)).

Figure 7: Transformation from RVC-CAL to IR

The first step parses the RVC-CAL to an Abstract Syntax Tree (AST), which will be

manipulated in the subsequent stages. This AST is then fully typed, which means that the type of
all expressions is computed, before checking that the code does not contain type errors. The next
stage creates the structures of the IR of the actor: ports, state variables, FSM, and creates a
sequence of actions sorted by descending priority. At this stage, the actions only have the tag and
input/output/peek patterns filled in. Finally, the semantic transformation transforms expressions
in functions, and expressions and statements in procedures and actions to IR expressions and
statements.

ABSTRACT INTERPRETATION OF ACTORS

Tag: [a, b]

Peek pattern: [S=1]

Input pattern: [S=1, I=3]

Output pattern: [O=2]

Scheduler:

 function isSchedulable_a_b() --> bool :

 int s = S[0]; // load from peek pattern

 s > 0 // translation of guard

 end

Body:

 procedure a_b() begin

 int x_0 = I[0]; int x_1 = I[1]; int x_2 = I[2];

 O[0] = s; O[1] = x_0 * x_1;

 end

Figure 6: Example of the IR of an Action.

This section describes our abstract interpretation of an actor, and gives a complete example of an
actor that is classified as CSDF.

Definition of the Abstract Interpretation of an Actor

Classifying an actor within a MoC is based on checking that a certain number of MoC-dependent
rules hold true for any execution of this actor. Some of these rules are verified solely from the
structural information of the actor, for instance the rules for a static actor only depends on the
input and output patterns of actions. In more complicated cases, we need to be able to obtain
information from an actual execution. The actor must be executed so that the information
obtained is valid for any execution of the actor, whatever its environment (the values of the
tokens and the manner in which they are available). As a consequence it is not possible to simply
execute the actor with a particular environment supplied by the programmer. To circumvent this
problem we use abstract interpretation (Cousot and Cousot (1977)).

Abstract interpretation evaluates the computations performed by a program in an abstract
universe of objects rather than on concrete objects. Our abstract interpretation of an actor has the
following properties:

• The set of values that can be assigned to a variable is

The value ⊥ is used for variables whose value is unknown, e.g. for uninitialized variables.
• The environment is defined as an association of variables and their values:

ValuesIdentsEnv →:
Env initially contains the state variables of the actor associated with their initial value if they

have one, otherwise with ⊥ .
• When the interpreter enters an action, the environment is augmented with bindings

between the name of the tokens in the input pattern and ⊥ . In other words, a token read
has an unknown value by default.

The abstract interpreter interprets an actor by firing it repeatedly until either one of the

conditions is met:
1. The interpreter is told to stop because analysis is complete as determined by the

classification algorithm.
2. The interpreter cannot compute if an action may be fired because this information

depends on a variable whose value is ⊥ .

To fire the actor, the interpreter starts by selecting one fireable action, which is an action that

meets the criteria defined in RVC-CAL (see Background section). As far as the quantity of
tokens is concerned, the abstract interpretation models infinite FIFOs, which means an action
always has enough tokens to fire. Other differences between concrete interpretation of an actor,
and its abstract interpretation include the following. Any expression that references a variable v
where Env(v) = ⊥ has the value ⊥ . Conditional statements and loops that test an expression
whose value is ⊥ are not executed. However, guards evaluated as ⊥ cause the abstract
interpreter to stop as per condition 2.

Example of Abstract Interpretation

We show in this section an example of abstract interpretation on an actor called Algo_
Interpolation_halfpel, which is a low-level description of half-pixel interpolation. This
actor has an FSM presented on Figure 8.

Figure 8: The Finite State Machine of Algo Interpolation halfpel.

Figure 9 shows the variables of the actor, two of which, x and y, act as loop counters, and

other variables are used by computations in the actor.

Figure 9: Variables of Algo Interpolation halfpel.

The first action that can be fired is the start action. This action assigns zero to x and y, and

initializes the values of flags and round, as shown on Figure 10. After the action start is
fired, the actor is in the interpolate state. In this state, any of the actions done, row_col_0, other
(Figure 11) can be executed until the actor goes back to the start state. The actions are tested for
schedulability in this very order as constrained by the priority statement of the actor.

Figure 10: Action start of Algo Interpolation halfpel.

The done action contains the loop termination condition and after it is fired the actor is back

in the start state. The two other actions compute data and increment the x and y loop indexes.
Figure 12 contains the listing of the loop_body procedure.

Figure 11: Actions fireable in the interpolate state.

Figure 12: loop_body procedure.

The abstract interpretation of the actor starts with an initial environment that contains the

variables { x, y, flags, round, d0, ..., d9 }, all associated with ⊥ . For the sake of brevity we
will not represent variables nor tokens valued as ⊥ in the environment. Table 1 sums up the
abstract interpretation of the actor.

Table 1: Abstract interpretation of Algo_Interpolation_halfpel.

State Action fired Environment
start n/a Ø
interpolate start { x = 0, y = 0 }
interpolate row_col_0 { x = 1, y = 0 }
… … …
interpolate row_col_0 { x = 8, y = 0 }
interpolate row_col_0 { x = 0, y = 1 }
interpolate row_col_0 { x = 1, y = 1 }
interpolate other { x = 2, y = 1 }
… … …
interpolate other { x = 8, y = 1 }
interpolate other { x = 0, y = 2 }
start done { x = 0, y = 9 }

Like the concrete interpretation, the abstract interpretation starts by firing the only fireable
action in the initial state, the start action. Since the token f read on the halfpel port has by
definition the value ⊥ , the variables flags and round are set respectively to 2÷⊥ and ⊥
mod 2, in other words they are both set to ⊥ . The variables x and y both take the value 0. After
the action is fired, the interpreter changes the state to interpolate. This is shown on the table as
the first row.

In the interpolate state, there are three possible actions that can be executed. The interpreter
schedules the first one whose input patterns are satisfied and whose guard is true, in this case it is
the row_col_0 action because we consider that tokens are always available, and the condition x
= 0 or y = 0 is true. When the action fires, the abstract interpreter executes dn := dn-1 for n
in the interval [9..1], so variables d9 to d1 take the value ⊥ . Then it executes d0 := d, which
assigns d0 the value ⊥ because the d token is ⊥ too. The subsequent assignments to x and y
are executed as per concrete interpretation rules since both variables have concrete values, so x
takes the value 1, and y is unchanged. The row_col_0 action is fired as long as either x = 0
or y = 0 is true (second part of Table 1).

When y becomes greater than zero, the actor has a different behavior as can be seen on the
third part of Table 1. In this case, row_col_0 is executed once, and it is followed by 8 firings of
other. Then, row_col_0 can be fired again, followed by 8 firings of other, and so on. Finally, as
soon as y equals 9, done fires and takes back the actor to its initial state.

DETECTION OF TIME-DEPENDENT ACTORS

This section presents an algorithm for the detection of actors that have a time-dependent
behavior. The algorithm presented is an extension of the algorithm presented in (Wipliez and
Raulet (2010)).

Characteristics of Time-Dependent Behavior

Time-dependent behavior occurs when the behavior of an actor depends on the time at which
tokens are available. The description of time-dependent behavior (also called time-dependency)
is only possible in the Dataflow Process Network model because an actor may test the presence
of data on its input ports, something which is not allowed with more restrictive models
(including Kahn Process Networks). Time-dependency is characterized in RVC-CAL when a
given action reads fewer tokens from input ports than a higher-priority action, and these actions
have guards that are not mutually exclusive.

Figure 13 shows an excerpt of an actor that computes the length of a network packet as long
as there are bytes in the payload, and then sends the length computed so far. These two actions
create a time-dependent behavior because the “done” action has a lower priority than the
“transmit” action, and can only fire in the absence of tokens on the input port. Time-dependent
behavior is interesting to use in cases similar to this one, namely when an actor needs to react to
an absence of data.

The problem of time-dependent actors is that they may be impossible to classify with our

abstract interpretation. Indeed, our abstract interpretation of an actor is that the FIFOs connected
to it are infinite, in other words there will never be a lack of tokens on a port. This means that the
abstract interpretation cannot capture the behavior defined in lower-priority actions enabled
when there are not enough tokens. As such, it may not find a stop criterion and run forever (on
the example above it would only fire the “transmit” action). On the other hand, if we wanted to
create an abstract interpretation that modeled time-dependent behavior, it would have to explore
the space of all possible sequences of tokens, whose size is exponential: there are N! different
orderings for a sequence of N tokens. Therefore our classification method must detect and
discard time-dependent actors.

Detection of Time-Dependent Behavior

An actor with time-dependent behavior can be automatically identified by an algorithm based on
the following considerations. Time-dependent behavior occurs as soon as the choice of which
action to fire depends on the time at which tokens arrive on input ports. If the actor has a Finite
State Machine, the actions that can be fired at a given time are only those referenced by the
current state, in addition to anonymous actions; if the actor does not have an FSM, the actions
that are tested for fireability are all the actions of the actor. Time-dependent behavior is
characterized by the fact that a fireable action reads fewer tokens from input ports than a higher-
priority fireable action, and these actions are not mutually exclusive.

The algorithm starts by building all the lists of actions that can be fired in each state of the
actor. Each list is sorted by descending priority, and anonymous actions, if present, are at the
beginning of each list. If the actor does not have an FSM, there is only one list of actions to
consider. For each non-empty list, Algorithm 1 is executed.

transmit: action Payload:[byte] ==> Packet:[byte]

do

 length := length + 1;

end

done: action ==> Length:[length]

end

priority

 transmit > done;

end

Figure 13: Example of Time-Dependent Behavior.

The algorithm maintains a list of higher-priority actions, and the associated higher-priority

pattern, which at a given iteration contains the union of the patterns of all higher-priority actions
visited so far. An action is considered to potentially induce time-dependent behavior if its input
pattern is not a superset or equal to the higher-priority pattern. At this point, the algorithm checks
that the guard of the action being examined is mutually exclusive with the guards of all higher-
priority actions that have a pattern that is a subset of its pattern. This is handled by translating the
guards to SMT-LIB as described in the next section, and using a solver. If the solver concludes
that all guards are not mutually exclusive, it means the actor has a time-dependent behavior,
otherwise the algorithm continues and examines the next actions.

This algorithm is an extension of the algorithm we presented in (Wipliez and Raulet (2010)).
The main difference is that in our previous work we only considered the immediately preceding
pattern, which as it turns out is not sufficient in some cases. Additionally, we previously checked
the mutual exclusion of the guards of the current action and the guards of all higher-priority
actions indiscriminately. However, this is too strict, because the lower-priority action only needs
to have guards that are mutually exclusive with higher-priority actions that have a pattern that is
a superset of its pattern to guarantee time-independent behavior.

Algorithm 1: Returns true if a list of actions exhibits time-dependent behavior

higherPriorityActions := [a1];
higherPriorityPattern := pattern of a1;
for each action ai (I >= 2) do
 if (pattern of ai is not a superset of higherPriorityPattern) then
 for each action aj in higherPriorityActions do
 if (pattern of ai is not a superset of pattern of aj) then
 if guards of ai and aj are compatible, return true
 end
 end

 add ai to the higherPriorityActions list
 include pattern into higherPriorityPattern
end

return false

CODE ANALYSIS OF AN ACTOR WITH SMT

This section explains the needs of our classification method in terms of code analysis and why
SMT (Satisfiability Modulo Theories) fits these needs. We then give an overview of SMT and
the SMT-LIB standard before showing how the IR of an actor is translated to SMT-LIB.

Code Analysis for Classification of Actors

Our classification method requires code analysis in two cases. First, to prove that an actor does
not have a time-dependent behavior, the classifier must check if guards of actions are mutually
exclusive. The second case is when trying to classify an actor as quasi-static. A quasi-static actor
has a given set of N configurations. A configuration is a non-empty sequence of actions that
behave according to the SDF or CSDF model. When the actor executes, one configuration is
chosen with an action whose guards depend on the values of tokens read from control ports. The
classifier needs to find the values of control tokens that allow each configuration i in [1..N] to be
executed.

In our previous work, we successfully used constraint solving, more specifically Integer
Linear Programming (ILP), to perform code analysis on a given number of actors (Wipliez and
Raulet (2010)). However, ILP has a number of limitations that prevents it to be used in certain
cases. For instance, bitwise operations cannot be modeled with ILP because they are not linear
operations: let “&” be the “bitwise and” operator, (1 + 7) & 3 = 8 & 3 = 0 is different from (1 &
3) + (7 & 3) = 1 + 3 = 4. Additionally, ILP does not support constructs such as arrays or
functions, which prevents it to be used with certain actors. Finally, the solver cannot handle
mutually exclusive constraints because it tries to find the best value that satisfies them, which in
this case does not exist, and leads to timeouts.

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) is an extension of SAT, the Boolean satisfiability problem,
which given a Boolean formula aims to find the values of this formula’s variables so that it is
true (satisfiable), or prove that it is always false (unsatisfiable) (Barrett et al. (2009)). SMT
extends SAT with higher-level constructs expressed with first-order logic predicates, i.e.
predicates that operate on variables, but not on other predicates. SMT supports formulas with
integers (and associated arithmetic operations), bit-vectors (and associated bitwise operations),
arrays, and functions.

The SMT-LIB initiative started in 2003 with the aim to create a common format for an SMT
Library, including a standard language and a standard set of theories and logics (Ranise and
Tinelli (2003)). A theory defines a set of types and functions over these types. Theories defined
by SMT-LIB are ArraysEx (functional arrays with extensionality), Fixed_Size_BitVectors (bit
vectors with arbitrary size), Core (core theory, defining the basic Boolean operators), Ints
(integer numbers), reals (real numbers), reals_Ints (real and integer numbers). A logic defines the
semantics of formulas that are supported based on existing theories. For instance, the QF_BV
logic allows closed quantifier-free (QF) formulas based on the Core and Fixed_Size_BitVectors
theories.

The SMT-LIB standard version 2.0 (SMT-LIB v2) defines a language based on Lisp’s s-
expressions (Steele (1990)) with which theories, logics, and formulas can be expressed. The
language includes commands that allow communication with an SMT-LIB v2 compliant solver,
which can be invoked interactively or with a script that contains a series of commands: definition

of the logic to use for solving, definition of functions and assertions, check satisfiability, retrieve
values of variables, etc.

Translation from IR to SMT-LIB

This section describes the translation from parts of the IR of an actor to an SMT-LIB v2 script.
In the context of classification, the only parts of the IR that require analysis are the guards of
actions, either in the case of analysis of time-dependent behavior or to determine values of
control tokens.

An SMT-LIB v2 script starts with the logic the solver will use for solving. In our case, we use
the QF_AUFBV logic, which means quantifier-free formulas with arrays, bit-vectors, and
functions. This is the minimal logic that can handle the formulas we generate from the IR: many
variables, as well as tokens, are arrays, and guards may use bitwise operations, and call
functions. The script follows by variable and function definitions: one SMT function is defined
for the IR of each scheduler function that requires analysis, as shown on Figure 14. State
variables and functions are defined on-demand before the function being translated when they
are referenced. All operands of SMT bit-vector operations must have the same type, and at the
moment we do not perform type coercion; instead, we use 32-bit vectors for all operations.

Depending on the kind of analysis that is needed, the script ends with the following
commands:

• Asserts all scheduler functions must be simultaneously satisfiable, and check
satisfiability.

• Asserts scheduler functions 1..N-1 must not be satisfiable, and scheduler function N must
be satisfiable; check satisfiability, and retrieve values of control tokens.

Figure 14 presents the translation of an action found in an actor to SMT-LIB. The BTYPE

port becomes an array from which tokens will be loaded. Because tokens may be loaded from
BTYPE by several actions, we allocate one local array per port read by each action. The “assert”
on “cmd_newVop_BTYPE” adds a constraint that the first element of the array equals the first
element of the BTYPE array. The script then declares the SMT-LIB equivalent of the NEWVOP
variable: it becomes a function with arity (number of arguments) 0, and is constrained to be
equal to the 32-bit vector that represents the integer 2048. After that, the
“isSchedulable_cmd_newVop” is defined, which is the scheduler function of the “cmd.newVop”
action. This function is asserted to be satisfiable, and finally we see the commands that prompt
the solver to check satisfiability and retrieve the value of the first element of the BTYPE array.

int NEWVOP = 2048;

cmd.newVop: action BTYPE:[cmd] ==>

guard

 (cmd & NEWVOP) != 0

end

(set-logic QF_AUFBV)

(declare-fun BTYPE () (Array (_ BitVec 32) (_ BitVec 32)))

(declare-fun cmd_newVop_BTYPE ()

 (Array (_ BitVec 32) (_ BitVec 32)))

(assert (=

 (select cmd_newVop_BTYPE (_ bv0 32)) (select BTYPE (_ bv0 32))))

(declare-fun NEWVOP () (_ BitVec 32))

(assert (= NEWVOP (_ bv2048 32)))

(define-fun isSchedulable_cmd_newVop () Bool

 (let (cmd (select cmd_newVop_BTYPE (_ bv0 32)))

 (let (local_NEWVOP NEWVOP)

 (let (result

 (not (= (bvand cmd local_NEWVOP) (_ bv0 32)))) result))))

(assert isSchedulable_cmd_newVop)

(check-sat)

(get-value ((select BTYPE (_ bv0 32))))

Figure 14: Translation of an Action to SMT-LIB.

RESULTS AND DISCUSSION

We have implemented the classification method in the compilation infrastructure supported by
the Open RVC-CAL Compiler (Orcc) available at http://orcc.sf.net. Orcc compiles RVC-CAL
actors to the Intermediate Representation (IR) described in this paper. The IR of actors can then
be analyzed and transformed to source code in any of the target languages supported by back-
ends, such as C, C++, Java, LLVM, and VHDL.

We have tested the SMT-LIB scripts produced by our method with the only two major SMT
solvers that we have found to (1) implement a sufficient part of the SMT-LIB v2 standard, and
(2) be able to handle the logic we require: CVC3 (Barrett and Tinelli (2007)), and Z3 (De Moura
and Bjørner (2008)).

We had previously tested our classification method on 50 actors used by two dataflow
descriptions of an MPEG-4 part 2 decoder sharing some actors. Table 2 shows the classification
results with actors classified as static, cyclo-static, quasi-static, dynamic, time-dependent.

Table 2: Classification Results on 50 Actors.

Number of actors Classification
6 static
14 cyclo-static
11 quasi-static
13 dynamic
6 time-dependent

The updated results on this same set of actors are slightly different as shown on Table 3. First,

two actors have been modified and are now time-dependent (but they would have been detected
as such with our previous algorithm too). Thanks to improvements in the detection of time-
dependent actors and code analysis with SMT, two other actors were previously assumed to be
time-dependent, but are now proven to be time-dependent. Another actor was assumed to be
time-dependent, when in fact classification can now prove it is not time-dependent. Moreover,
increased precision of the abstract interpretation leads to more dynamic actors being found than
previously.

Table 3: Updated Classification Results on 50 Actors.

Number of actors Classification
6 static
12 cyclo-static
10 quasi-static
15 dynamic
7 time-dependent

Additionally, our improved method can now handle more diverse actors, and we have tested it

on an RVC-CAL description of an MPEG-4 part 10 decoder (Table 4). The results are quite
different from the actors we classified before: a vast majority of actors have a dynamic or time-
dependent behavior. We believe there are several reasons for this. First, the application is several
times more complex than an MPEG-4 part 2 decoder, and is a lot more control-oriented, which

makes it difficult to have actors that are SDF or CSDF. However, quasi-static actors could be
used advantageously here, which seems not to be the case.

Table 4: Classification Results on 68 Actors of an MPEG-4 part 10 Decoder.

Number of actors Classification
12 static
3 cyclo-static
1 quasi-static
41 dynamic
11 time-dependent

Actors of the MPEG-4 part 10 application have been written as part of the RVC

standardization effort. The granularity of actors seems to have been somewhat arbitrarily fixed:
the static and cyclo-static actors are generally less than 50 lines of code, and most of dynamic
actors are a lot larger, frequently between 500 and 1000 lines. Actors have been written by many
different persons, and as such they are written in a heterogeneous way. All this makes it unlikely
to find actors that behave according to more restricted MoCs, and leads us to believe that our
classification method will yield the best results on applications described with fine-grain, small
actors.

RELATED WORK

Zebelein, Falk, Haubelt, and Teich (2008) present a classification algorithm for dynamic
dataflow models. In their model, actors are defined as SystemC modules that receive and send
data via SystemC FIFOs. Their classification method is based on the analysis of read and write
patterns and FSMs of the different modules. Compared to ours, their approach is limited by the
fact that they ignore any C++ code that does not contain a read or a write, and that they do not
classify quasi-static actors.

A different approach that is based on an analysis of the Control-Flow Graph is presented by
Årzén, Nilsson, and Platen (2010). On one hand, their approach is capable of finding actors that
are static and cyclo-static, but not those that are quasi-static. These actors represent a non-
negligible proportion of actors in our test application. Moreover, no distinction is made between
dynamic and time-dependent actors, and one actor that our method finds to be cyclo-static is
classified by their method as time-dependent. On the other hand, Årzén et al. show an interesting
constraint-based system to find the optimal scheduling of a set of static and cyclo-static actors, as
well as an actor merging system. However, no experiments are shown with respect to the
expected performance increase that should result from these techniques. Finally, the report does
not present an equivalent of our loop rerolling transformation, which can dramatically reduce
runtime scheduling (Wipliez and Raulet (2010)).

Boutellier et al. (2009) show how to express quasi-static RVC-CAL actors as PSDF graphs
and how to derive a multiprocessor schedule from these graphs. However, they do not address
the issues of automated classification and transformation: Quasi-static behavior is specified with
parameters defined manually, and they do not explain how low-level Homogeneous SDF
(HSDF) graphs created from quasi-static branches can be automatically transformed to high-
level PSDF graphs. As a consequence, we believe that our work can serve as a preprocessing

step for their approach by automatically classifying actors as quasi-static and transforming them
to high-level PSDF graphs.

Gu et al. (2009) present a technique to recognize a set of Statically Schedulable Regions
(SSRs) within a dynamic dataflow program. SSRs are sets of ports that are statically coupled,
which essentially means that the production of an output port matches the consumption of the
input port(s) it is connected to (additional criteria are developed in Gu et al. (2009)). On the one
hand, SSR classification has potentially more knowledge about static behavior because it looks at
connected actors rather than just inside actors. On the other hand, by considering an actor as a
whole our classification can discover its behavior (cyclo-static and quasistatic) and transform it
into a high-level SDF or PSDF graph that will make merging easier. Using SSRs to obtain
additional information as an input to our classification algorithm is a possible direction for future
work.

CONCLUSION

This paper presented a method to automatically classify dynamic dataflow actors into more
restricted dataflow MoCs, based on satisfiability and abstract interpretation. The paper detailed
an Intermediate Representation (IR) of dataflow actors, and described an abstract interpretation
of the IR of an actor, which is the basis for our classification method. We then showed how to
find actors that present a time-dependent behavior, and finally explained how the IR of a
dataflow actor could be translated to the standard format used for satisfiability solving called
SMT-LIB, which allows us to perform code analysis required by our classification method. The
method presented in the paper is an extension of our previous work on classification. We
presented results and compared them with results we previously obtained. We experimented our
method on a total of 118 actors, and discussed the results.

Future work could include classification of actors at the network level, in order to find sets of
actors that have a static, cyclo-static or quasi-static behavior. Another direction for future work is
to extend the MoCs that can be recognized, for instance the “quasi-static” model is only a subset
of Parameterized SDF, which also allows modeling of dynamic loops and complex conditionals.
Classification is an important contribution towards efficient implementation of dynamic dataflow
programs, and is scheduled to be used in combination with other approaches (Boutellier et al.
(2011); Gorin et al. (2011)). However, no publications have demonstrated yet that a large
speedup could be achieved with clustering or static scheduling of actors classified with our
approach; we aim to investigate the use of such techniques as future work.

REFERENCES

Årzén, K., Nilsson, A., & Platen, C. von. (2010). Model Compiler [Computer software manual].

Barrett, C. and Sebastiani, R. and Seshia, S.A. and Tinelli, C. (2009). Handbook of Satisfiability.

Barrett, C. and Tinelli, C. (2007). CVC3. Proceedings of the 19th international conference on

Computer aided verification, Springer-Verlag.

Bhattacharya, B., & Bhattacharyya, S. S. (2001). Parameterized Dataflow Modeling for DSP
Systems. IEEE Transactions on Signal Processing, 49, 2408–2421.

Bilsen, G., Engels, M., Lauwereins, R., & Peperstraete, J. (1996). Cyclo-static dataflow. IEEE

Transactions on Signal Processing, 44(2), 397–408.

Boutellier, J., Lucarz, C., Lafond, S., Gomez, V., & Mattavelli, M. (2009). Quasi-static
scheduling of CAL actor networks for Reconfigurable Video Coding. Journal of Signal

Processing Systems, 1–12.

Boutellier, J., Silven, O. & Raulet, M. (2011). Scheduling of CAL actor networks based on
dynamic code analysis. Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP).

Buck, J. (1994). Static scheduling and code generation from dynamic dataflow graphs with
integer-valued control streams. Presented at 28th Asilomar conference on signals.

Buck, J., & Lee, E. (1993). Scheduling dynamic dataflow graphs with bounded memory using
the token flow model. IEEE International Conference on Acoustics, Speech, and Signal

Processing, 429-432.

Cousot, P., & Cousot, R. (1977). Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4

th

ACM Sigact-Sigplan Symposium on Principles Of Programming Languages (pp. 238–252).

De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In Proceedings of the theory

and practice of software, 14th international conference on tools and algorithms for the

construction and analysis of systems (pp. 337–340).

Eker, J. & Janneck, J.. CAL Language Report. Technical Report ERL Technical Memo

UCB/ERL M03/48, University of California at Berkeley, December 2003.

Gorin, J., Wipliez, M., Prêteux, F. & Raulet, M. (2011). LLVM-based and scalable MPEG-RVC
decoder. Journal of Real-Time Image Processing, Springer.

Gu, R., Janneck, J., Bhattacharyya, S., Raulet, M., Wipliez, M., & Plishker, W. (2009).
Exploring the concurrency of an MPEG RVC decoder based on dataflow program analysis. IEEE

Transactions on Circuits and Systems for Video Technology.

W. Haid, L. Schor, K. Huang, I. Bacivarov, & L. Thiele. Efficient execution of Kahn process
networks on multi-processor systems using protothreads and windowed FIFOs. In Proc. IEEE

Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia), pages 35–44, 2009.

IETF. (1996, May). RFC 1951: DEFLATE Compressed Data Format Specification version 1.3
[Computer software manual].

Kahn, G. (1974, August). The semantics of a simple language for parallel programming. In
Proceedings of IFIP’74 (p. 471-475).

Lee, E., & Messerschmitt, D. (1987). Synchronous data flow. Proceedings of the IEEE, 75(9),
1235–1245.

Lee, E. A., & Parks, T. M. (1995, May). Dataflow Process Networks. Proceedings of the IEEE,
83(5), 773–801.

Mattavelli, M., Amer, I., & Raulet, M. (2010, May). The Reconfigurable Video Coding Standard
[Standards in a Nutshell]. IEEE Signal Processing Magazine, 27(3), 159 -167.

Nevill-Manning, C., & Witten, I. (1997). Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research, 7(1), 67–82.

Parks, T. M. (1995). Bounded Scheduling of Process Networks. Doctoral dissertation, Berkeley,
CA, USA.

Pelcat, M., Piat, J., Wipliez, M., Aridhi, S., & Nezan, J. (2009). An open framework for rapid
prototyping of signal processing applications. EURASIP Journal on Embedded Systems, 2009,
3.

Ranise, S. & Tinelli, C. (2003). The SMT-LIB format: An initial proposal. Proceedings of the 1st

Workshop on Pragmatics of Decision Procedures in Automated Reasoning.

Steele, G.L. (1990). Common LISP: the language.

Stitt, G., & Vahid, F. (2005). New decompilation techniques for binary-level co-processor
generation. In IEEE/ACM international conference on computer-aided design, 2005. iccad-2005
(pp. 547–554).

Wipliez, M., Compilation Infrastructure for Dataflow Programs, Ph.D. dissertation, National
Institute of Applied Sciences (INSA) - Rennes, 2010.

Wipliez, M., & Raulet, M. (2010). Classification and Transformation of Dynamic Dataflow
Programs. In Design and Architectures for Signal and Image Processing (DASIP).

Zebelein, C., Falk, J., Haubelt, C., & Teich, J. (2008). Classification of General Data Flow
Actors into Known Models of Computation. Proc. MEMOCODE, Anaheim, CA, USA, 119–128.

