
HAL Id: hal-00717339
https://hal.science/hal-00717339

Submitted on 12 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Just-in-time adaptive decoder engine: a universal video
decoder based on MPEG RVC

Jérôme Gorin, Hervé Yviquel, Françoise Prêteux, Mickaël Raulet

To cite this version:
Jérôme Gorin, Hervé Yviquel, Françoise Prêteux, Mickaël Raulet. Just-in-time adaptive decoder en-
gine: a universal video decoder based on MPEG RVC. Proceedings of the 19th ACM international con-
ference on Multimedia, 2011, New York, NY, USA, France. pp.711–714, �10.1145/2072298.2072426�.
�hal-00717339�

https://hal.science/hal-00717339
https://hal.archives-ouvertes.fr

Just-In-Time Adaptive Decoder Engine: A Universal Video
Decoder based on MPEG RVC

Jérôme Gorin
ARTEMIS, Institut

Telecom/Telecom SudParis
UMR 8145, SudParis, France
jerome.gorin@etu.upmc.fr

Hervé Yviquel
IRISA, University of Rennes 1

6 rue de Kerampont
22300 Lannion, France

herve.yviquel@irisa.fr

Françoise Prêteux
MINES ParisTech

60 Boulevard Saint-Michel
75272 Paris, France

Francoise.Preteux@mines-
paristech.fr

Mickaël Raulet
IETR, INSA Rennes

F-35000,
mickael.raulet@insa-

rennes.fr

ABSTRACT
In this paper, we introduce the Just-In-Time Adaptive De-
coder Engine (Jade) project, which is shipped as part of
the Open RVC-CAL Compiler (Orcc) project. Orcc pro-
vides a set of open-source software tools for managing de-
coders standardized within MPEG by the Reconfigurable
Video Coding (RVC) experts. In this framework, Jade acts
as a Virtual Machine for any decoder description that uses
the MPEG RVC paradigm. Jade dynamically generates a
native decoder representation suitable for X86, ARM and
CELL platforms with a possibility of exploiting multi-core
CPUs. Thus, according to the MPEG RVC decoder descrip-
tion coupled with a video coded stream, Jade can create,
configure and re-configure video decompression algorithms
adapting to the video content.

Categories and Subject Descriptors
4 [Multimedia systems and middleware]: Miscella-
neous; 3 [Scalability in media processing, analysis,
and applications]: Miscellaneous

General Terms: Algorithms, Languages, Performance, Stan-
dardization.

Keywords: Adaptive decoding, multimedia application,
dataflow programs, decoder reconfiguration, scalable execu-
tion, MPEG Reconfigurable Video Coding (RVC).

1. INTRODUCTION
MPEG Reconfigurable Video Coding (RVC) has been cho-

sen by MPEG to be an alternative paradigm for codec de-
ployment. The goal of MPEG RVC is to provide dataflow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

representations of existing reference software decoders at
component level. Thus MPEG RVC enables arbitrary de-
coder representations of any combination of fundamental
algorithms, without additional standardization steps. By
adding the side-information of the decoder description along-
side the video coded bitstream, MPEG RVC defines the new
concept of an RVC decoder. As shown on Fig. 1, an RVC de-
coder can create and handle several decoder descriptions on-
the-fly, either by using coding tools standardized in MPEG,
or proprietary implementations of coding tools, or other hy-
brid versions composed from proprietary and standardized
implementations.

or

or

Decoder Descrip�on

Coded data Decoded video

MPEG decoders

Proprietary decoders

Hybrid decoders

Normalized

coding tools
Proprietary

coding tools

Figure 1: Representation of a dynamic MPEG RVC
decoder.

In this paper, we introduce the Just-In-Time Adaptive De-
coder Engine (Jade) as the first portable decoder engine ca-
pable of managing on-the-fly MPEG RVC decoder descrip-
tions. The goal of Jade is to exploit the generic properties of
a dataflow representation to produce an efficient native de-
coder representation suited to the architecture of the under-
lying platform. Jade can create, configure and re-configure
the video decompression algorithms adaptively to the coded
video bitstream, avoiding incompatibility issues between de-
coders and coded bitstreams. This concept has significant
advantages compared to a “statically” compiled decoder: a
Just-In-Time decoding platform does not need decoder soft-
ware updates. Moreover, RVC descriptions are generic and
provide sufficient information to produce an efficient imple-
mentation suited for a wide range of platforms.

In the following, section 2 gives an overview of the MPEG

RVC standard and the property of its description. In sec-
tion 3, we provide a presentation of the main concept of Jade
and its implemented features. Finally, we give use procedure
in section 4.

2. MPEG RVC OVERVIEW

MPEG-C

XML Dataflow

Format

N
o

n
-N

o
rm

a
ti

v
e

N
o

rm
a

ti
v

e

Decoding Translation

Video Tools

Library

MPEG-B

Abstract Decoder Model

Encoded Video Data Decoded Video DataDecoding Solution

RVC Decoder Implementation

Figure 2: A typical use of the MPEG RVC Frame-
work.

The MPEG Reconfigurable Video Coding (RVC) [16] frame-
work is a new, still evolving ISO standard from MPEG.
It aims at providing video codec specifications based on a
high-level library of components. The main goal of MPEG
RVC is to produce new Abstract Decoder Model (ADM)
of already existing MPEG standard which will be suitable
for both hardware and software implementation [16]. An
ADM is a generic representation of a decoder, built as a
dataflow diagram of coding tools encapsulated into Func-
tional Units (FUs). Dataflow representations are expressed
with the XML Dataflow Format (XDF), an XML dialect
standardized in MPEG-B part 4 [16] (Codec configuration
representation) that describes the connections between FUs.
Each FU is described in RVC-CAL Actor Language (RVC-
CAL) and defines a processing entity of a decoder.

Figure 2 shows a typical use of a normative ADM descrip-
tion to produce a non-normative decoding solution that can
target either software or hardware platform. MPEG RVC
provides both a normative standard library of FUs stan-
dardized in MPEG-C part 4 [16], the Video Tools Library
(VTL), and a set of decoder descriptions/configurations ex-
pressed as networks of FUs. Such a representation is modu-
lar and helps the reconfiguration of a decoder by modifying
the topology of the network. Adding new coding technolo-
gies in an existing standard is a particularly sensitive part
of any standardization process. As a consequence, MPEG
RVC mainly focuses on the reusability of the standardized
coding tools by allowing different decoder descriptions to
instantiate common FUs across standards.

3. JUST-IN-TIME ADAPTIVE DECODER EN-
GINE FEATURES

Jade [13, 12], represented in Fig. 3, extends a Virtual Ma-
chine to handle a RVC decoder description. Its configuration
engine (Fig. 4) has two inputs, a decoder configuration and
a representation of the Video Tools Library (VTL) [11] stan-
dardized in MPEG-C. It outputs a complete dataflow repre-
sentation of the decoder as a set of interconnected functional
processing units in byte code format. This decoder repre-
sentation can then be compiled or interpreted by a specific

Machine code

Virtual Machine

(Compilation & execution)

Configuration

Engine

(Decoder generation)

Bytecode representation of decoder

Decoder

Description

Coded Data Decoded Video

Figure 3: Structure of the Just-in-time Adaptive
Decoder Engine.

Virtual Machine (VM). We chose to base Jade on the open
source LLVM infrastructure [15]. This VM provides efficient
Just-In-Time compilation and multicore execution for a wide
range of platforms (X86, X86-64, PPC, ARM, etc.).

Configuration Engine

Network

Instantiation

Decoder

Representation

Coding Tools

Configuration

 Dataflow representation of decoder

Figure 4: Configuration of an RVC description by
the configuration engine.

3.1 On-the-fly reconfiguration of decoders
The configuration engine of Jade contains several mech-

anisms to switch between different decoder representations
during the decoding process. The dataflow representation of
the coding tools provided by MPEG RVC gives the ability
to incrementally and partially re-program a decoder when
receiving new configurations from a bitstream.

The configuration and the reconfiguration of decoder are
illustrated in Table 1. Two representations of decoders are
standardized by MPEG RVC; the Simple Profile (SP) [17,
14] from the MPEG-4 part 2 standards and the Constrained
Baseline Profile (CBP) [10] of the Advanced Video Coding
(AVC)/H.264 decoder from the MPEG-4 part 10. Reconfig-
uration is done by switching to a proprietary configuration of
these decoders. The first configuration is an optimized con-
figuration of the same decoder provided by Ericsson. The
second reconfiguration is a configuration developed by the
IETR laboratory which represents the Fidelity Range Exten-
sions (FRExt) of MPEG-4 AVC. The benchmarks are real-

ized on an Intel E6600 Core2 Duo processor at 2.40 GHz and
the entire decoder configurations are available at http://orc-
apps.sourceforge.net.

Table 1: Configuration and reconfiguration times
between implementations of MPEG-4 part 2 Simple

Profile (SP) and MPEG-4 part10 Advanced Video
Coding.

Std. Configurations conf. reconf.
SP RVC -> Ericsson 1141 ms 380 ms
AVC CBP -> FRExt 3313 ms 1610 ms

3.2 Clustering and spreading execution on pro-
cessing units

Jade maximizes the use of the computing resources of any
target platform by taking advantage of the inherent paral-
lelism present in an MPEG RVC decoder. The configuration
of a decoder gives information about the interconnection
between coding tools (algorithms) that compose a decoder
without carrying any implementation details for a specific
platform. Therefore, Jade can execute the adaptive decoder
according to the features (e.g. multiple cores) of the under-
lying platform.

Two optimizations algorithms based on execution models
were incorporated in Jade to utilize the concurrency of a
decoder configuration, depending on the number of cores in
the underlying platforms. The first optimization analyzes
a configuration and removes concurrency between tools to
find an efficient execution on a same core. The second op-
timization applies an efficient distribution of independent
coding tools onto separate cores. Table 2 shows the ability
of Jade for exploiting multi-core CPUs. Each decoder con-
figuration is executed on both cores of an Intel E6600 Core2
Duo processor at 2.40 GHz.

3.3 Easy edition and creation of decoders

Figure 5: Graphiti edition of the motion compensa-
tion for the MPEG-4 part 2 decoder.

Jade is delivered with a complete framework, called Open
RVC-CAL Compiler (Orcc), which permits exploring and

Table 2: Decoding performance of the two RVC im-
plementations of MPEG-4 part 2 (SP) and MPEG-4
part 10 (AVC) running on 1 and 2 cores.

Decoder One core Two cores Speedup
SP (RVC) 33 fps 61 fps 1.86
AVC (RVC) 36 fps 79 fps 2.19

editing decoder configurations. The configuration of a de-
coder is described using the XML Dataflow Format (XDF)
and can be edited using Graphiti1, a generic graph editor de-
livered as an Eclipse plug-in. Orcc also features a complete
IDE based on XText for editing the Video Tool Library. It
allows developers to add proprietary coding tools to VTLs
and to enhance their decoder implementation with modified
or completely new versions of decoder configuration.

Figure 5 shows a screenshot of the motion compensation
part of the MPEG-4 part 2 Simple Profile decoder as a block
diagram. The squares represent the coding tools of the con-
figuration and the wires the communications between the
coding tools. The triangles represent the inputs and out-
puts of the given network, allowing the use of a hierarchical
description.

4. USING JADE
The binaries and sources code of the first release version

(1.0) of Jade can be downloaded at [3]. The source code
package is organized in three different directories: the li-
brary sources (src), doxygen documentation (doc) and the
VTL folder (VTL). Jade necessarily requires a version of
the VTL as standardized in MPEG-C to be set in the VTL
folder. One can be downloaded at [3] or be generated by
the Orcc Framework. The installation documentation of the
Orcc framework is available at [6]. The user can also find
more open-source applications that are directly useable in
Jade such as a JPEG encoder, a GZIP compressor and a
cryptographic encoder (CTL) at [4].

The compilation of Jade also requires the use of three
other open-source projects, selected with portability in mind.
CMake [1] provides the ability of an easy cross-compilation
onto multiple operating systems and multiple processor ar-
chitectures. The SDL libraries [8] permit a portable display
and LLVM [5] delivers the necessary libraries for an efficient
Just-In-Time compilation for mixed platforms. For Win-
dows users, a library of POSIX thread management [7] is
necessary.

Jade provides several interfaces to test its different capa-
bilities. It can be integrated into the Eclipse framework,
used from the command line or directly in a player with
GPAC [2]. The reader can refer to [6] to find more informa-
tion about compilation, installation and use of Jade.

4.1 Interfaces of Jade
Jade provides a command line and a simulator interface

to demonstrate its configurability. It also provides two other
test interfaces : the scenario or console modes that provides
dynamic interaction with the engine.

1. Command line: The simplest way to test Jade is to use
the command line. The option –help gives a full list of
all options available for tuning Jade performance de-
pending on the underlying platform. The mandatory
options to launch Jade are an XDF network (-xdf),
an encoded video (-i), and the location of your Video
Tool Library folder (-L).

2. Console or scenario mode: These interfaces enable
testing the dynamic behavior of Jade. Series of com-
mands can be applied to Jade manager for on-the-
fly configuring and reconfiguring of multiple decoders.

1Graphiti is available at : http://graphiti-editor.sf.net

The list of commands is explained in detail in a README
file provided with the project package.

3. Orcc simulator : Jade can be shipped as an eclipse
plug-in for helping decoder developers to efficiently
test their application. First, the Orcc development
and the Graphiti editor must be correctly installed to
the eclipse framework. [6] gives instructions to install
the complete framework for creating and editing a de-
coder configuration. Once installed, Jade appears as a
new simulator on the Orcc Framework.

4.2 Integration of Jade in a GPAC player
GPAC [2] is currently following ongoing standardization

efforts such as HTTP streaming [18] or an MPEG-4 SVC
decoder [9]. GPAC is also capable of encapsulating/de-
encapsulating RVC decoder description into/frommp4 video
files. Jade is natively included in this project as a GPAC
plug-in that allows the player to intantiate on-the-fly an
RVC description from an mp4 files and to decode the as-
sociated embedded rawstream.

• Encapsulating RVC description: Use MP4Box -add
rawstream.264 :rvc=config.xml rvc video.mp4.
rawstream.264 is an encoded bitstream filename, con-
fig.xml is an XDF network and rvc video.mp4 is the
resulting mp4 files.

• De-encapsulating RVC description: Use MP4Client
rvc video.mp4 as command line or Osmo4 as a GUI.

5. CONCLUSIONS
Orcc is a two year old framework now used by industry

and research laboratories worldwide. In only one year, Jade
has evolved from its experimental origins to become a real
proof of concept of the MPEG RVC paradigm. It provides
the first Virtual Machine which is able to dynamically in-
stantiate RVC decoder descriptions avoiding inconsistency
between a coded bitstream and a decoding platform. An
interesting aspect of Jade and MPEG RVC is also its po-
tential usage in the academic and research world. Students,
developers and researchers can mix and modify on-the-fly
video coding algorithms in a particular decoder to get the
best trade-off between coding efficiency and computational
cost.

Although the performance is lower than a manually opti-
mized decoder on a single-core system, the property of the
MPEG RVC decoder representation is suitable for the next
generation of multi-core processor. Moreover, remembering
that dataflow representation of decoder provides a consider-
able potential parallelism, we have already planned to inte-
grate GPU management based on the OpenCL framework
to the Jade’s Virtual Machine.

6. ACKNOWLEDGMENTS
The authors would like to thank people having contributed

directly or indirectly to the development of Jade. First,
we cannot avoid offering our deepest respect to Matthieu
Wipliez who has led the Orcc project to maturity and his
genius for finding easy solutions to complex problems. We
also would like to take this opportunity to extend warm
thanks to Jean Lefeuvre and his team for their help and to
Olivier Labois for his work on the integration of Jade to
GPAC.

7. REFERENCES
[1] CMake. http://www.cmake.org/.

[2] GPAC. http://gpac.wp.institut-telecom.fr.

[3] Jade. http:
//sourceforge.net/projects/orcc/files/Jade/.

[4] Jade applications.
http://orc-apps.sourceforge.net/.

[5] LLVM. http://llvm.org.

[6] Orcc. http://orcc.sourceforge.net.

[7] Pthreads-w32.
http://sourceware.org/pthreads-win32/.

[8] Simple Direct Media Layer. http://www.libsdl.org/.

[9] M. Blestel and M. Raulet. Open SVC decoder: a
flexible SVC library. In Proceedings of the
international conference on Multimedia, MM ’10,
pages 1463–1466, New York, NY, USA, 2010. ACM.

[10] J. Gorin, M. Raulet, Y. L. Cheng, H. Y. Lin, N. Siret,
K. Sugimoto, and G. G. Lee. An RVC dataflow
description of the AVC Constrained Baseline Profile
decoder. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 753–756, 2010.

[11] J. Gorin, M. Wipliez, J. Piat, M. Raulet, and
F. Preteux. A portable Video Tools Library for
MPEG Reconfigurable Video Coding using LLVM
representation. In Design and Architectures for Signal
and Image Processing (DASIP 2010), pages 281–286,
2008.

[12] J. Gorin, M. Wipliez, F. Preteux, and M. Raulet.
LLVM-based and scalable MPEG-RVC decoder.
Journal of Real-Time Image Processing, pages 1–12.

[13] J. Gorin, M. Wipliez, M. Raulet, and F. Preteux. An
LLVM-based decoder for MPEG Reconfigurable Video
Coding. In IEEE Workshop on Signal Processing
Systems (SiPS 2010), Washington, D.C., USA, pages
281–286, 2008.

[14] J. W. Janneck, I. Miller, D. Parlour, G. Roquier,
M. Wipliez, and M. Raulet. Synthesizing Hardware
from Dataflow Programs: An MPEG-4 Simple Profile
Decoder Case Study. Journal of Signal Processing
Systems, 63(2):241–249, May 2011.

[15] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the international
symposium on Code generation and optimization:
feedback-directed and runtime optimization, page 75.
IEEE Computer Society, 2004.

[16] M. Mattavelli, I. Amer, and M. Raulet. The
Reconfigurable Video Coding Standard [Standards in
a Nutshell]. Signal Processing Magazine, IEEE,
27(3):159 –167, May 2010.

[17] G. Roquier, M. Wipliez, M. Raulet, J. Janneck,
I. Miller, and D. Parlour. Automatic software
synthesis of dataflow program: An MPEG-4 simple
profile decoder case study. In Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on, pages
281–286. IEEE, 2008.

[18] I. Sodagar. Overview of Dynamic Adaptive Streaming
over HTTP (DASH). In ISO/IEC JTC1/SC29/WG11
N11964, March 2011, Geneva, Switzerland.

