
HAL Id: hal-00717316
https://hal.science/hal-00717316

Submitted on 12 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

H.264/SVC decoder performance comparison for
DSP-based consumer electronic applications

Fernando Pescador, Médéric Blestel, Eduardo Juarez, Mickaël Raulet, Matias
Garrido

To cite this version:
Fernando Pescador, Médéric Blestel, Eduardo Juarez, Mickaël Raulet, Matias Garrido. H.264/SVC
decoder performance comparison for DSP-based consumer electronic applications. Consumer
Electronics (ISCE), 2011 IEEE 15th International Symposium on, 2011, France. pp.171 -176,
�10.1109/ISCE.2011.5973807�. �hal-00717316�

https://hal.science/hal-00717316
https://hal.archives-ouvertes.fr

H.264/SVC DECODER PERFORMANCE COMPARISON FOR DSP-BASED

CONSUMER ELECTRONIC APPLICATIONS

F. Pescador
1
, M. Blestel

2
, E. Juarez

1
, M. Raulet

2
 and M. Garrido

1

1
Universidad Politécnica de Madrid

2
Institut d’Electronique et de Télécommunications

1
pescador, ejuarez, matias@sec.upm.es

2
mblestel, mraulet@insa-rennes.fr

ABSTRACT

In this paper, a performance comparison of two

H.264/SVC-compliant video decoders, Joint Scalable

Video Model and Open SVC, is presented. The

performance, in terms of time spent to decode a stream,

has been compared in PC and Digital Signal Processor

(DSP) environments. The performance of the Open SVC

decoder running on the PC is between three and eight

times better than achieved with the JSVM decoder; while

in the DSP environment, the improvement is between five

and twelve times. These results show that the Open SVC

decoder is more suitable as starting point for the

implementation of embedded applications based on DSP1.

1 INTRODUCTION

Nowadays, the terminals used in the multimedia

broadcasting environments are heterogeneous. In this

context Scalable Video Coding (SVC) techniques [1]

allow multimedia terminals to accommodate the spatial

and temporal resolutions and the quality of a decoded

video sequence to the available resources (screen size,

computational power or battery consumption).

SVC techniques have been defined in most video coding

standards [2][3], but their use has not become widespread

because of their jitter problems and poor efficiency [1].

However, the SVC features included in H.264 [4]

surpasses those used in former standards and facilitate new

possibilities.

Up to now, the available H.264/SVC decoder

implementations are restricted to the PC domain. The

JSVM [5] and Open SVC [6] are open source decoders

while [7] is a proprietary implementation from the IMEC.

In this paper, a performance comparison between the two

aforementioned open source H.264/SVC decoders is

presented for both, PC and DSP environments. The

performance has been measured in terms of time spent to

decode each layer of a H.264/SVC stream.

The results obtained demonstrate that the Open SVC

decoder is more suitable to be used in the implementation

of embedded systems, because its performance is between

1 This work was supported by the Spanish Ministry of Science and

Innovation under grant TEC2009-14672-C02-01 (PccMuTe: Power

Consumption Control in Multimedia Terminals).

five and twelve times better than achieved with the JSVM

decoder.

The rest of the paper is organized as follows. The features

of both decoders are outlined in section 2. In section 3, the

process to migrate the decoders to the DSP environment is

described. The results of the profiling tests are presented

and discussed in section 4. Finally, section 5 concludes the

paper.

2 H.264/SVC DECODERS PC-BASED

IMPLEMENTATIONS

Currently, there are two H.264/SVC video decoder

implementations with source code available: the JSVM

decoder and the Open SVC decoder. In this section the

main features of both implementations are summarized.

2.1 Joint Scalable Video Model (JSVM)

In this standard, the video compression is performed by

generating a unique hierarchical stream with several layers

with different resolution. As an example, Fig. 1 shows a

diagram representing different scalability layers. Each box

represents a coded Network Adaptation Layer (NAL)

packet with a different spatial (DX), temporal (TX) and

quality (QX) resolution. An SVC decoder may decode,

e.g., only the shaded NALs to get full spatial resolution,

half temporal resolution and a reasonable quality level. A

different more powerful decoder might decode the entire

stream to get full temporal and spatial resolution and

higher quality.

timeT0

spatial

resolution

T1 T2 T3 T4

D0

D1

D2 D2,T4,Q0

D1,T4,Q1

D1,T4,Q0

D0,T4,Q2

D0,T4,Q1

D0,T4,Q0

D2,T3,Q0

D1,T3,Q1

D1,T3,Q0

D0,T3,Q2

D0,T3,Q1

D0,T3,Q0

D2,T2,Q0

D1,T2,Q1

D1,T2,Q0

D0,T2,Q2

D0,T2,Q1

D0,T2,Q0

D2,T1,Q0

D1,T1,Q1

D1,T1,Q0

D0,T1,Q2

D0,T1,Q1

D0,T1,Q0

D2,T0,Q0

D1,T0,Q1

D1,T0,Q0

D0,T0,Q2

D0,T0,Q1

D0,T0,Q0

Fig. 1. Space-temporal diagram showing different levels

of scalability

As a part of the standardization effort, the Joint Scalable

Video Model (JSVM) reference software [5] has been

developed. Streams with different levels of scalability can

be encoded and decoded with the testbench implemented

in the JSVM. Table I shows some of the currently

available C++ libraries used by the reference software.

TABLE I

SOME LIBRARIES USED IN THE JVSM CODE

Library This library provides classes…

H264AVCCommon

LibStatic (Common)

…used in both encoding and decoding process,

e.g. to provide different data structures

H264AVCEncoder

LibStatic (Encoder)

…used only in the encoder, e.g. to implement

the motion estimation or the entropy coding

H264AVCDecoder

LibStatic (Decoder)

…used only in the decoder, e.g. to implement

the stream analysis or the entropy decoding

H264AVCVideoIo

LibStatic (VideoIo)

…used to provide input video to the encoder or

to store the decoded video (from/to files)

BitStreamExtractor
... used to extract in a file the selected layers

from an other stream

The main advantages of this decoder are that it implements

all the profiles and levels defined in the standard. However

it has some important disadvantages for the

implementation of embedded systems: the source code has

been writing in C++, the performance has not been

optimized and it is not possible to select the layer to be

decoded and an additional tool, BitStreamExtractor, must

be used previously to extract the layer to be decoded.

2.2 Open SVC Decoder

The Open SVC Decoder [6], a C language H.264/SVC

Baseline Profile decoder, has been developed in the

framework of Scalim@ges project and is improved within

the SVC4QoE project [8]. This open source decoder is

based on an AVC Baseline Profile decoder, and has been

updated with most of tools of AVC Main profile and SVC

Baseline Profile.

Open SVC Decoder is able to decode all type of scalability

as temporal and quality scalability without any

restrictions, and only 1.5 and 2 ratio for two consecutive

enhancement layers for the spatial scalability as specified

into the SVC Baseline Profile.

The Open SVC Decoder has been developed with the main

idea to be deployed over different platforms with different

operating system [9] such as Digital Signal Processor

(DSP), Personal Digital Assistant (PDA), x86 or the Cell

processor.

This decoder is able to decode a specific layer in the

scalable structure of a stream. This particularity is very

useful in a broadcast environment as the layer selection

can be done during the decoding process. Moreover, when

transmission errors occur, a part of the stream can be

corrupted or missing; the decoder is then able to

automatically switch to a lower layer, compensating thus

transmission errors to optimize the visual quality of the

video sequence.

One of the main advantages of this implementation is that

the source code has been written in C language and the

stream extraction functionality is integrated with the

decoder. However, it does not support all the profiles and

levels yet.

3 H.264/SVC DECODERS DSP-BASED

IMPLEMENTATIONS

In this section, the process to migrate both decoders to the

DSP environment is briefly introduced.

3.1 JSVM Migration Process

The JVSM reference software, designed to run on a PC

environment, has been ported to the DSP. A separate

project using the Common, Decoder and VideoIo libraries

has been compiled and optimized.

The DSP development framework [10] supports C++

coding. Among other tasks, the porting process required

the redefinition of some data types, the implementation of

C functions not included in the DSP library (fileno and

fcntl) and the rewriting of incomplete type definitions.

The source code of the Common, Decoder and VideoIo

libraries has been adapted in order to get correct

compilation and linking. Besides other minor changes

made to the Common and Decoder libraries, non-aligned

read operations have been replaced with DSP specific

instructions and template specialization declarations have

been added. In VideoIo, the code has been adapted to use

the file management functions fread, fwrite, fopen and

fclose instead of read, write, open and close.

The JSVM decoder always extracts the highest quality

layer included in a stream. To decode a specific layer, first

it must be extracted from the stream using the

BitStreamExtractor library. This application generates a

new file including only the selected layers. Obviously, this

process can not be done in embedded applications with

real time requirements.

As shown in Fig. 2, the stream extractor and the video

decoder have been integrated in only one application using

a share buffer between them. With this new application,

the user selects the layer to be decoded using the DX, QX

and TX parameters. The BitStreamExtractor module filters

the NAL units associated to the selected layer in real time

and stores them in a shared buffer. The decoder process

the stream allocated in the shared buffer and save the

uncompressed frames in a YUV file.

Sequence

file

New Application

Bitstream

Extractor
JSVM Video

Decoder

Share buffer

Reconstructed

YUV file

Fig. 2. Integration of BitstreamExtractor and Video

Decoder using a shared buffer.

3.2 Open SVC Decoder Migration Process

The Open SVC decoder has been developed for a PC-based

platform. The decoder has been ported to the DSP using the

methodology presented in [11]. In the DSP-version, the

decoder has been encapsulated into a DSP-BIOS task.

Code and data have been allocated in external memory.

The maximum size of the decoded pictures has been

reduced from HD (1920×1080) to SD (720×576). The way

to select the layer to be decoded has been modified. In the

original code, the layer was selected using the command

line arguments while in the DSP version these parameters

are introduced through a configuration file that is parsed at

the beginning of the decoding process.

The conformance of the DSP-based decoder has been done

using the sequences included in the standard [12].

4 RESULTS

4.1 Sequences Description

To test the decoders six well-known video streams (Akiyo,

Coastguard, Flower, Foreman, Mobile and News) have

been encoded using a commercial H.264/SVC encoder

[13]. Two different sets of test sequences have been

generated to evaluate the influence of a specific layer

embedded on the video stream in the decoder

performance. For each type of set, sequences that consist

of six layers extracted out from the eight possible

combinations among two spatial resolutions (QCIF and

CIF), two frame-rates (12.5 and 25 frames per second) and

two qualities (low and high) have been generated.

Furthermore, for each sequence the total bitrate and that of

the base layer are 512 Kbps and 102 Kbps (20% of a total

bitrate of 512 Kbps), respectively.

The stream structure of the first set of test sequences,

exemplified with the Akiyo sequence, can be seen in Fig.

3. Note that the two possible temporal scalability values

are omitted. In this type of test sequences, the first

enhancement layers are derived from the corresponding

base layers with only an increase in quality while the

second enhancement layers are derived from the previous

ones with only an increase in spatial resolution. In this

paper, they are designated as quality-spatial sequences to

stress the fact that the greatest quality layer is obtained

from the base layer with, first, a quality improvement and,

then, with a spatial resolution improvement.

QCIF

Low
QCIF

High
CIF

High

Fig. 3. Quality-Spatial six-layered test sequence structure.

Fig. 4 shows the stream structure of the second set of test

sequences. The first enhancement layers are derived from

the base layers with only an increase in spatial resolution

although the second enhancement layers are generated

from the first enhancement ones with an increase in

quality. In the rest of the paper the sequences belonging to

this set are designated as spatial-quality sequence.

As far as the codec parameters to generate the test

sequences concern, the GOP size equals 8 frames, the

CABAC is used for entropy coding, the deblocking filter

is active, all possible macroblock partitions are enabled for

inter-prediction, three reference frames are allowed, and

one B-frame is coded for each I-frame. All the generated

sequences have 880 frames.

QCIF

Low

CIF

Low

CIF

High
Fig. 4. Spatial-Quality six-layered test sequence structure.

4.2 PC-Based Decoder Performance

In this subsection the performance of the H.264/SVC

decoders is presented for a PC environment. The test-

bench used to evaluate the PC performance is based on a

dual-core processor running at 3GHz with 3 GB of RAM

memory.

Both decoders have been modified to measure the average

time used to decode a complete stream using PC internal

timers.

The two set of sequences described in section 4.1 have

been decoded with both decoders. The time spent by the

decoders for each layer of each sequence has been

measured. Then, the results has been averaged over the set

of spatial-quality and quality-spatial sequences.

In Table II, the average time in milliseconds spent to

decode all the layers of all the quality-spatial sequences is

presented for both decoders.

The number of frames decoded for each layer is different

depending of the temporal scalability. For the layers with a

temporal resolution of 25 frames per second, 880 frames

have been decoded; however, for the layers with half

temporal resolution, the number of decoded frames is 440.

Moreover, the Open SVC speed-up with regard to the

JSVM implementation, i.e. the quotient between the

average Open SVC rate and that of the JSVM is included

for each layer.

TABLE II

PERFORMANCE COMPARATION BETWEEN JSVM AND OPEN SVC DECODER

USING A PC FOR QUALITY-SPATIAL SEQUENCES (IN MSEC)

QCIF

12.5 fps

Low

QCIF

25 fps

Low

QCIF

12.5 fps

High

QCIF

25 fps

High

CIF

12.5 fps

High

CIF

25 fps

High

JSVM 1178 2040 1992 3451 12378 22938

Open SVC 293 496 613 1207 1727 2939

Speed-up 4.3 4.4 8.2 8.6 6.0 6.5

Table III presents the same information that Table II but

for the quality-spatial sequences.

TABLE III

PERFORMANCE COMPARATION BETWEEN JSVM AND OPEN SVC DECODER

USING A PC FOR SPATIAL-QUALITY SEQUENCES (IN MSEC)

QCIF

12.5 fps

Low

QCIF

25 fps

Low

CIF

12.5 fps

Low

CIF

25 fps

Low

CIF

12.5 fps

High

CIF

25 fps

High

JSVM 1164 1949 11017 20983 14843 27980

Open SVC 272 444 1341 2439 2466 4297

Speed-up 4.0 4.1 3.2 2.9 7.2 7.8

The conclusions obtained analyzing the results presented

in Table II and Table III are the following: • Both decoders achieve real-time performance for all

layers. • The average speed-up remains almost unchanged for

frame rate variations. • The performance of decoding a base layer with Open

SVC decoder is approximately four times greater than the

performance when the JSVM is employed. • The ratio between the Open SVC average speed-up of

the layers that experiment either a quality or spatial

improvement remains invariant for spatial-quality and

quality-spatial sequences.

4.3 DSP-based Decoder Performance

In this subsection, the test bench proposed to measure the

decoder performance in the DSP-based environment is

described. The results obtained for JSVM and Open SVC

decoders are showed.

a) Test bench used to measure the performance

A block diagram of the test-bench is shown in Fig. 5. As

can be seen, first, a test stream is read from a file and

written into a stream buffer allocated in external memory.

Then, the decoder reads the stream from the memory and

decodes it on a picture basis. At last, the decoded picture is

written into a buffer and also into a component YUV

video file.

Sequence

file

Decoding Task

File

Processing

Decoding

Process

File

Processing

Stream buffer Picture buffer

Reconstructed

YUV file

Fig. 5. Test-bench block diagram to profile the decoders.

A fixed-point video-oriented DSP [14] was used to

implement the H.264/SVC decoders. In Fig. 6, a

simplified block diagram of the DSP internal architecture

is shown.

The DSP is based on high-performance VLIW

architecture. Two levels of internal memory (L1 and L2)

are available. The L1P memory/cache consists of a 32 KB

memory space that can be configured as general purpose

mapped memory, direct mapped cache or combinations of

the two. The L1D memory consists of an 80 KB memory

space that can be entirely configured as general purpose

memory. Instead, up to 32 KB of L1D can be configured

as a 2-way set-associative cache. Finally, the L2

memory/cache consists of a 128 KB memory space, shared

between program and data. L2 memory can be configured

as a general purpose mapped memory, a cache memory, or

a combination of both.

For the Open SVC implementation, the internal memory

has been configured as follows: L1D is divided in 32 KB

for cache memory and 48 KB for general purpose data;

L1P is configured as a 32 KB cache program memory and

L2 is splitted between level-2 cache memory and general

purpose memory.

A switched central resource interconnects the core with a

set of standard peripherals and a video processing

subsystem. The external memory is accessed through a

dedicated interface, EMIF, using a 64-bit data interface.

The other peripherals are an EDMA controller (EDMA2),

two video ports, an Ethernet port (EMAC), an output

audio interface (McASP) and several general-purpose I/O

pins (GPIO).

S
w

it
c
h
e
d
 C

e
n
tr

a
l
R

e
s
o
u
rc

e

Fig. 6 Architecture of the DSP.

A commercial prototyping board [15] based on this DSP

has been used to measure the decoder performance (see

Fig. 7). The board includes a DSP working at 594 MHz,

128 MB of SDRAM external memory, 80 MB of Flash

external memory and several interfaces.

Fig. 7. The DSP based development board.

b) Performance Results

The two set of sequences described in section 4.1 have

been decoded with the DSP-based versions of the JSVM

and Open SVC decoders.

The time spent by the DSP to decode each layer of each

sequence has been measured using DSP internal timers. In

this measure, the time used to access the files has not been

included.

The number of frames decoded depends of the temporal

scalability of each layer. For 25 frames per second

temporal resolution layers, 880 frames have been decoded;

while for layers with half temporal resolution 440 frames

are decoded.

The Table IV shows the average time in seconds spent by

the DSP when it decodes each layer included in the

quality-spatial sequences using both decoders. In the last

row, the Open SVC decoder speed-up with regard to the

JSVM implementation is included for each layer.

TABLE IV

JSVM AND OPEN SVC DECODER PERFORMANCE FOR QUALITY-SPATIAL

SEQUENCES (IN SEC).

QCIF

12.5 fps

Low

QCIF

25 fps

Low

QCIF

12.5 fps

High

QCIF

25 fps

High

CIF

12.5 fps

High

CIF

25 fps

High

JSVM 23.5 45.0 40.2 74.6 204.6 403.2

Open SVC 3.3 6.3 7.1 14.9 18.2 37.4

Speed-up 7.2 7.2 5.6 5.0 11.2 10.8

Table V presents the same information that Table IV but

for the quality-spatial sequences.

TABLE V

JSVM AND OPEN SVC DECODER PERFORMANCE FOR SPATIAL-QUALITY

SEQUENCES (IN SEC).

QCIF

12.5 fps

Low

QCIF

25 fps

Low

CIF

12.5 fps

Low

CIF

25 fps

Low

CIF

12.5 fps

High

CIF

25 fps

High

JSVM 22.8 44.0 196.3 375.3 242.7 473.2

Open SVC 3.2 6.3 14.7 30.9 27.2 58.5

Speed-up 7.1 7.0 13.3 12.1 8.9 8.1

The conclusions obtained analyzing the results presented

in Table IV and Table V for the DSP-based decoders are

similar than those derived for PC-based. Some additional

conclusions are the following: • The speed-up achieved in the DSP environment for

each layer of all the sequences is greater that obtained for

the PC. • The JSVM decoder achieves no real time performance

even for the base layers. • The Open SVC decoder achieves real time

performance but for the highest quality layer (CIF, 25 fps

and High) of both set of sequences.

As result of this analysis the Open SVC has been selected

as starting point for the implementation of a mobile

terminal device. This decoder achieves no real time

performance with some layers of the generated streams but

is not so far of this objective. For the set of quality-spatial

sequences 23.5 frames per second are decoded, while for

the set of spatial-quality sequences 15.0 frames per second

are decoded.

The methodologies presented in [16][17] are been applied

to reduce the time spent to decode the H.264/SVC

sequences. These methodologies improve the decoder

performance taking advantage of the SIMD (Simple

Instruction Multiple Data) architecture, using explicit

DMA transfers to move data between internal and external

memory and allocating code and data in the different

levels of internal memory to reduce the cache misses (the

first results obtained after the optimization process can be

checked at [18]).

5 CONCLUSIONS

In this paper, a performance comparison of two

H.264/SVC-compliant video decoders, JSVM and Open

SVC, is presented to select the decoder to implement on a

DSP-based multimedia mobile terminal. The decoders

were initially developed for PC environment so a

migration process to a DSP-based environment is needed.

The comparison shows that the Open SVC decoder clearly

outperforms the JSVM implementation for the PC- and

DSP-based environments.

As far as the frame rate variation concern the average

speed-up for both environments is not significantly

affected. In addition, the PC performance of decoding a

base layer with Open SVC is approximately four times

greater than the performance when the JSVM is employed.

In contrast, for DSP the performance is seven times

greater.

For DSP environment, the JSVM decoder achieves no real

time performance even for the base layers. However, the

Open SVC decoder achieves real time performance except

for the highest quality layer (CIF, 25 fps and High).

Therefore, the application of time-based optimization

methodologies to achieve real time performance is only

worthy for Open SVC decoder.

6 ACKNOWLEDGMENT

The authors would like to thank Ernesto Seisdedos, David

Samper and Alejandro González from Grupo de Diseño

Electrónico y Microelectrónico (UPM) for their

contributions to this work.

7 REFERENCES

[1] J-R Ohm, "Advances in Scalable Video Coding". Proceedings of the

IEEE, vol. 93, nº 1 pp. 42-56, Jan. 2005.

[2] ISO/IEC 13818-2 (ITU-T Rec. H.262). Generic coding of moving

pictures and associated audio information: Video. 1995.

[3] ISO/IEC 14496-2. Information technology. Coding of audio visual

objects. Part 2: Video. 1998.

[4] Joint Draft ITU-T Rec. H.264 | ISO/IEC 14496-10 / Amd.3 Scalable

Video Coding, July 2007.

[5] Joint Scalable Video Model JSVM-9.9, Available in CVS repository

at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen.

[6] M. Blestel and M. Raulet, “Open SVC Decoder”,

http://opensvcdecoder.sourceforge.net/.

[7] IMEC. http://www2.imec.be/be_en/press/imec-news/archive-2008/

imec-speeds-up-scalable-video-decoder-svc-with-factor-20.html

[8] M. Barkowsy, M. Blestel et al, “Overview of the SVC4QoE project”,

6th Int. ICST Conf. on Mobile Multimedia Communications Sept 2010.

[9] M. Pelcat, M. Blestel and M. Raulet. “From AVC decoder to SVC:

Minor impact on a data flow graph description” PCS2007. June 2007.

[10] Texas Instruments Incorporated. “Code Composer Studio v4.0 IDE

Getting Started Guide”

[11] F. Pescador, D. Samper, M.J. Garrido, E. Juárez and M. Blestel. "A

DSP based SVC IP STB using Open SVC Decoder". Int. Symposium on

Consumer Electronics. Braunschweig Germany, 7-10 June 2010.

[12] Sequences available at http://wftp3.itu.int/av-arch/jvt-site

/draft_conformance/

[13] MainConcept. SVC Baseline SDK DirectShow. Version 1.0.0.

Aachen, Septembre 22, 2009.

[14] Texas Instruments. DaVinci DSPs. http://focus.ti.com/docs/prod/

folders/ print/tms320dm6437.html.

[15] DM6437 Digital Video Development Platform (DVDP).

http://www.spectrumdigital.com/product_info.php?cPath=37&products_i

d=196&osCsid=0abf0072f9687529d1d010374287bd64.

[16] F. Pescador, G. Maturana, M.J. Garrido, E. Juárez and C. Sanz “An

H.264 video decoder based on a DM6437 DSP”. IEEE Trans on

Consumer Electronics. Vol. 55, Nº 1. Pp. 205-212. February 2009.

[17] F. Pescador C. Sanz, M.J. Garrido, E. Juarez y D.Samper. “A DSP

Based H.264 Decoder for a Multi-Format IP Set-Top Box”. IEEE Trans.

on Consumer Electronics. Vol 54. February 2008.

[18] F. Pescador, D. Samper, E. Juárez, M. Raulet and C. Sanz. “A DSP

Based H.264/SVC Decoder for a Multimedia Terminal”. IEEE

International Conference on Consumer Electronics. Las Vegas EEUU,

January 2011.

[19]

